
Proceedings on Privacy Enhancing Technologies ; 2020 (1):165–194

Max Hoffmann, Michael Klooß, Markus Raiber*, and Andy Rupp

Black-Box Wallets: Fast Anonymous Two-Way
Payments for Constrained Devices
Abstract: Black-box accumulation (BBA) is a build-
ing block which enables a privacy-preserving implemen-
tation of point collection and redemption, a function-
ality required in a variety of user-centric applications
including loyalty programs, incentive systems, and mo-
bile payments. By definition, BBA+ schemes (Hartung
et al. CCS ’17) offer strong privacy and security guaran-
tees, such as unlinkability of transactions and correct-
ness of the balance flows of all (even malicious) users.
Unfortunately, the instantiation of BBA+ presented at
CCS ’17 is, on modern smartphones, just fast enough for
comfortable use. It is too slow for wearables, let alone
smart-cards. Moreover, it lacks a crucial property: For
the sake of efficiency, the user’s balance is presented in
the clear when points are deducted. This may allow to
track owners by just observing revealed balances, even
though privacy is otherwise guaranteed. The authors in-
tentionally forgo the use of costly range proofs, which
would remedy this problem.
We present an instantiation of BBA+ with some exten-
sions following a different technical approach which sig-
nificantly improves efficiency. To this end, we get rid of
pairing groups, rely on different zero-knowledge and fast
range proofs, along with a slightly modified version of
Baldimtsi-Lysyanskaya blind signatures (CCS ’13). Our
prototype implementation with range proofs (for 16 bit
balances) outperforms BBA+ without range proofs by a
factor of 2.5. Moreover, we give estimates showing that
smart-card implementations are within reach.

Keywords: Mobile Payments, Customer Loyalty Pro-
grams, Incentive Systems, Black-Box Accummulation

DOI 10.2478/popets-2020-0010
Received 2019-05-31; revised 2019-09-15; accepted 2019-09-16.

Max Hoffmann: Ruhr-University Bochum, E-mail:
max.hoffmann@rub.de
Michael Klooß: Karlsruhe Institute of Technology, E-mail:
michael.klooss@kit.edu
*Corresponding Author: Markus Raiber: Karlsruhe In-
stitute of Technology, E-mail: markus.raiber@kit.edu
Andy Rupp: Karlsruhe Institute of Technology, E-mail:
andy.rupp@kit.edu

1 Introduction
A variety of applications such as mobile payments, toll
collection, or loyalty and incentive programs follow the
same basic principle: certain types of points are collected
and redeemed. From a user’s perspective this should be
done in a privacy-preserving way. The operator requires
protection against any kind of frauds. This basic func-
tionality has been formally captured by [21, 24], where
a general building block called BBA(+) for privacy-
preserving point collection is presented. BBA+ is a
framework where users create a token (a wallet) and
then use it to collect or spend points. It offers strong
privacy guarantees. For example, transactions are un-
linkable, even those before and after a user was cor-
rupted and all secrets were leaked.

The protocols for collecting and spending points
are offline in the sense that no connection to a central
database or entity is required. Thus, double-spending
detection is needed to prevent reuse of old token states.
This ensures that a user cannot skip the collection of
negative points (i.e. spent points) by simply reusing an
old token, as this will reveal his identity.

Unfortunately, the instantiation of BBA+ given
in [21] comes with some drawbacks: one is its reliance on
Groth–Sahai zero-knowledge proofs [20], which require a
large amount of computations in pairing groups and all
other building blocks to also work in this setting. This
leads to slow performance on weak hardware and makes
it unsuited for usage on smart cards, where even with a
dedicated co-processor for pairing-based operations [36],
evaluation of a pairing takes about 160 ms and multi-
plication in G2 about 100 ms (for the Fp254BNb and
Fp254n2BNb curves). For point collection/redemption
the user has to compute ≈ 100 multiplications in G2
alone, which already takes 10 s.

BBA+ also requires spending operations to reveal
the current balance. This may allow the system opera-
tor to track a (anonymous) user by just observing bal-
ances in spending operations. In the end, this may even
help to identify this user. So, while the privacy guar-
antees ensure that nothing but the balance is leaked,
this may not be enough. This attack on user privacy
is especially relevant in scenarios where a user spends

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 166

points (much) more often than he collects them, such
as mobile payments. To protect from this attack, range
proofs, e.g. [10], could be used. That is, instead of re-
vealing the balance, a ZK proof of sufficient funds is
performed. Since range proofs are expensive and would
make BBA+ impractical, especially with the techniques
used in [21], the authors refrained from using them.

1.1 Our Contribution

Using the Commit-then-Blind-Sign Principle.
In BBA+, tokens (wallets) consist essentially of (a com-
mitment to) balance, serial number, and a signature
(on the commitment). In an interaction, the serial
number is revealed, the signature verified, the balance
updated, and a new signature (on the updated com-
mitment) is issued. Reuse of a serial number indicates
double spending. To achieve authenticity of wallets and
prevent tampering, the signature is used. To attain
unlinkability, BBA+ cannot send the signature in the
plain, as this would link the interaction with the one
which issued the signature. The solution in [21] is to
prove possession of a valid signature (on a random-
ized commitment) in zero-knowledge. One may call
this the “commit-sign-prove” principle. Our approach
is different: We use a blind signature, so that a newly
issued signature is unknown to the issuer, and can later
be shown in the plain. This “commit-then-blind-sign”
principle also simplifies our construction and security
proofs. To this end, a suitable signature scheme without
pairings is needed. To the best of our knowledge the
only existing scheme [5] satisfying our requirements is
only known to be secure under sequential executions.
We need security under concurrent executions, and thus
present a slight modification of [5] and prove EUF-CMA
security in the generic group model. Under sequential
security, only one protocol may run at any time. This
is a nonsensical assumption for a distributed system
such as BBW, so we allow malicious users to attack
by running several executions concurrently, arbitrarily
interleaved. Security in this setting is harder to achieve.
Pairing-free. Our protocol does not rely on pairing
groups. While pairing groups are used to construct
many primitives, most notably the non-interactive zero-
knowledge proofs [20] used in [21], they require ex-
tra structure. This extra structure has led to recent
improvements in finding discrete logarithms in those
groups (c.f. [7, 26]), necessitating the use of larger
parameters to maintain ≈128 bit security, resulting in
slower algorithms. Additionally, the fastest currently

known elliptic curves (for example FourQ [15]) use tech-
niques for fast scalar-point multiplication that are not
applicable to pairing groups. Moreover, evaluating pair-
ings is expensive. Thus, when targeting constrained de-
vices, it is useful to avoid the need for pairing groups.
Range Proofs. When a user spends points, BBA+ dis-
closes the current balance in the clear, which opens pos-
sible attacks on privacy. We implement efficient range
proofs (Bulletproofs [10]), which show in zero-knowledge
that a user has sufficient funds.
Removing the Trapdoor. Defining the legitimate
balance of a wallet/token requires a way to link trans-
actions to that wallet, but transactions need to be un-
linkable. To solve this dilemma, Hartung et al. [21] in-
troduce a trapdoor only known to a trusted third party
which allows to track users. This trapdoor is only in-
tended for definitional purposes but knowledge of it
eliminates any privacy guarantees. We define a new
property called simulation-linkability, and show how to
circumvent the need for such a trapdoor by relying
on interactive proof systems, where standard rewind-
ing techniques replace the trapdoor. Thus, linkability is
possible only within the security proof, but not in reality
where rewinding users is not possible.
Attributes. Our construction allows embedding of at-
tributes into tokens. This can be used for different pur-
poses. For example, it is possible to embed an expira-
tion date into all tokens. If tokens are valid for, say 6
months, then double-spending information for older to-
kens can safely be deleted, keeping the database small.
This may also be used to limit the amount of damage
that can be inflicted through double-spending a stolen
token. Other use cases include embedding of discounts
or age verification, for example children or senior pric-
ing, in pre-payment systems.
Implementation. To evaluate the suitability of our
construction for use on constrained devices, we imple-
mented our BBW instantiation and measured execution
times on a smartphone. For 16 bit balances, we estimate
a run-time of 122 ms on the user side (without commu-
nication). For the system side, we measure a run-time of
182 ms, which, considering that the system side may use
more powerful hardware, is good enough. The total com-
munication is about 4 kB. We also provide estimations
for smart cards based on the number of multiplications
required, where only 68 are needed for 16 bit ranges.
This results in approximately 4 s for 256 bit curves on
the MultOS 4.3.1 card and 1.5 s for a card with co-
processor for ECC operations.
Compared to BBA+, point collection is 5.6 times faster
while transmitting half as much data. Spending points

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 167

is 6 times faster when performing range proofs for
16 bit values, and needs roughly a quarter of the com-
munication of BBA+ (with 16 bit range proofs). This
makes our scheme well suited for privacy-preserving
pre-payment systems on constrained devices such as
smartphones or wearables and provides a step towards
privacy-preserving wallets on smart cards.
Finally, we note that 16 bit are already enough for many
applications. For example, the EU limited anonymous
payments to 150 EUR [25].

1.2 Further Related Work

Intuitively, the problem of anonymous point collection
seems to be solvable using (transferable) e-cash. Har-
tung et al. [21] already argued why this does not work
though: Roughly speaking, in traditional offline e-cash,
e.g. [13], withdrawing a coin is identifying and coins
cannot be transferred, thus the accumulator can nei-
ther execute the withdraw protocol with the user nor
transfer coins it withdrew itself from the bank. Using
transferable e-cash such as [6] where anonymous and un-
linkable transfers of coins is possible (under certain as-
sumptions), the accumulator could withdraw coins and
transfer them to the user. However, an impossibility re-
sult by Canard and Gouget [14] implies, that if the is-
suer, accumulator, and verifier collude, transactions can
be linked. Additionally, users would be free to transfer
coins arbitrarily among each other, allowing for pooling
of points which is not desired in certain applications.

In [32] a privacy-preserving prepaid system for pub-
lic transportation is constructed. However, payment is
done by first paying the maximum possible transporta-
tion fee and then getting a refund based on the actual
ride taken, where the possible refund values are encoded
in the system parameters. While this might be practical
in the case of public transportation with only a small
amount of different prices, it cannot be extended to a
general two-way payment system.

Besides BBA+, which we already discussed, [30]
implements an anonymous and unlinkable incentive
scheme called uCentive. However, the scheme targets
a simpler scenario than we do: points are not accumu-
latable and double-spending detection is done online.
Moreover, security and privacy protocols are stated only
informally and no proofs are given.

In [5] Anonymous Credentials Light (ACL) are
presented, a building block for anonymous credentials
equipped with attributes. ACL does not provide a two-
way payment system, but may be used as building block

for one. However, security is only guaranteed for se-
quential interactions, a limitation not practical for real-
world scenarios. Their scheme has been implemented on
a smart card [22] and shown to be fairly practical.

Dimitriou [17] constructed an efficient privacy-
preserving point accumulation scheme based on ACL.
However, security is based on informal claims which
do not reflect the capabilities of real-world adversaries.
Problems stemming from concurrent executions are ig-
nored, as made evident by the use of the signature
scheme of [5] which is only sequentially secure. Addi-
tionally, spending points reveals the user’s identity.

In [23] a privacy-preserving system for toll collection
is built based on BBA+. In their system, users accumu-
late debt while driving and pay at regular intervals. The
authors extend BBA+ to address the challenges posed
by real-world interactions in this scenario, such as bro-
ken or lost user hardware. Interestingly, they avoid the
need for range proofs by following a post-payment in-
stead of a pre-payment approach. Their scheme is still
based on Groth–Sahai proofs and thus pairing groups.

Lastly, privacy-preserving cryptocurrencies such as
Dash [1] and ZCash [2, 33] provide another way of
anonymous two-way payments. However, these require
a reliable online connection, while our scheme explicitly
allows offline transactions. Furthermore, Dash comes
without formal security and privacy definitions, while in
ZCash transactions are only confirmed after several min-
utes, which makes them unsuitable for time-sensitive
scenarios, such as paying in a store using one’s smart-
phone. Additionally, using cryptocurrencies it is again
possible for users to transfer and pool funds among
themselves, which is not desired in certain applications.

1.3 Paper Organization

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce some cryptographic assumptions
and informally describe cryptographic building blocks
used. Section 3 describes the BBA+ scheme as intro-
duced by Hartung et al. [21], and Section 4 describes
our modifications to address weaknesses of BBA+. In
Section 5 we detail how we instantiated our construc-
tion, while Section 6 explains the signature scheme used.
Finally, in Section 7 we provide and discuss performance
metrics obtained by implementing our construction on
a smartphone.

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 168

2 Preliminaries
We use the common notation to describe cryptographic
protocols and define their security. By n, we denote the
security parameter. For two functions f(n) and g(n) we
write f ≈ g if |f − g| ≤ negl(n) for a negligible func-
tion negl(n). We use additive notation for (commuta-
tive) groups of prime order p. Group elements are always
denoted by upper case letters, scalars (i.e. elements of
Zp) by lower case letters.

2.1 Assumptions

Definition 2.1 (Group Generator). A group genera-
tor is a PPT algorithm gp := (G, G, p) ← SetupGrp(1n)
that on input of a security parameter 1n outputs the
description of a cyclic group G of prime order p with
|p| = n and generator G.

Definition 2.2 (Discrete Logarithm Assumption).
We say the DLOG assumption holds with regard to
SetupGrp if the advantage Advdlog

SetupGrp,A(n) defined as

Pr
[

(G, G, p)← SetupGrp(1n);x← Zp;X = xG;
x′ ← A(G, G,X) : x′G = X

]
is negligible in n for all PPT algorithms A.

Definition 2.3 (Decisional Diffie-Hellman Assumption).
We say the DDH assumption holds with regard to
SetupGrp if the advantage Advddh

SetupGrp,A(n) defined as

Pr

 (G, G, p)← SetupGrp(1n);x, y, z ← Zp;
X = xG, Y = yG,Z0 = xyG,Z1 = zG;
b← {0, 1}; b′ ← A(G, G,X, Y, Zb) : b = b′

− 1
2

is negligible in n for all PPT algorithms A.

2.2 Building Blocks

For formal definitions of the building blocks used, see
Appendix A.

Homomorphic Commitments
A commitment scheme allows the committing party to
commit (using Com) to some messagem from some mes-
sage space M while keeping it secret. At a later point,
m can then be revealed together with a “proof” that it
has indeed been fixed during the committing step (ver-
ifiable using Open). Homomorphic commitments allow
adding of commitments in a way that allows opening of
the result to the sum of the original messages.

Signatures
A signature scheme allows a signer (with a public and
a secret key) to sign (using Sign) a message m with
his secret key so that anyone with knowledge of his
public key can verify (using Verify) that m was indeed
signed by the signer and has not been modified since.
For privacy-preserving protocols, signatures with addi-
tional protocols BlindSign and BlindVerify for blind sig-
nature issuance and verification can be used. Recall that
EUF-CMA security is the standard security notion for
signatures. It asserts an adversary, which is given a sign-
ing oracle which signs any messages of its choice, cannot
produce a signature on a “fresh” message (of its choice).

Interactive Zero-Knowledge Proofs
A zero-knowledge (ZK) proof allows a prover to con-
vince someone (called the verifier) of the truth of a
statement (usually membership in some NP language)
without revealing any information beside the validity
of the statement. A ZK proof of knowledge (PoK) con-
vinces the verifier that not only the statement is true,
but also the prover “knows” a witness for it (again
without revealing any information about the witness).
We use the notion of witness-extended emulation intro-
duced by Groth and Ishai [19] to formalize knowledge
of the prover.

3 BBA+ Description
Hartung et al. [21] introduced a generic building block
for privacy-preserving point collection called BBA+.
BBA+ allows anonymous and unlinkable collection and
redemption of points, while ensuring users can’t over-
or under-claim their balance, and preventing users from
trading points among themselves. It also supports of-
fline double-spending detection, avoiding the need of a
permanent connection to some centralized database.

On a high level, the BBA+ framework involves three
types of parties:
A Trusted Third Party (TTP) generates the com-
mon reference string, together with a trapdoor that al-
lows linking of transactions, once to setup the system.
It does not need to interact with anyone afterwards.
Operators of the system can be divided into three
roles: the Issuer (I) responsible for issuing new tokens
to users, the Accumulator (AC) from which points are
collected and the Verifier (V) to whom points can be
spent. All operators have to trust each other and in

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 169

particular share the same secret key. Additionally, the
operators operate a shared central database in which
they store double-spending information. Connection to
this database does not have to be permanently available,
as double-spending can be detected after-the-fact when
inserting values into this database: spending the same
token twice results in two transactions with the same se-
rial number, and if two such transactions are detected,
it is possible to retrieve the identity of the misbehaving
user (together with a proof thereof).
Users have a token (piggy-bank) with which they want
to collect points. They are in possession of a public and
secret key. The public key is used to identify the user in
the system, and is assumed to be bound to some kind
of physical ID (e.g. passport, social security number,
etc.). It is assumed that ensuring uniqueness of keys
and verifying the physical ID is done out-of-band be-
fore interacting with the BBA+ protocols. To become a
participant of the scheme, a user performs the token is-
suing protocol with the issuer, during which knowledge
of the secret key corresponding to the claimed identity
is proven. Then, a user can use this token to accumulate
points by running the Add protocol with the accumula-
tor and spend these points by running the Sub protocol
with the verifier. (For more intuitive notation, we use
Add and Sub instead of Acc and Ver as in [21].)

Definition 3.1 (BBA+ Scheme [21]). A BBA+ scheme
consists of PPT algorithms Setup, IGen, UGen, de-
terministic polynomial time algorithms UVer, IdentDS,
VerifyGuilt and interactive protocols Issue, Add and Sub.
At the core of the scheme lies a token τ, containing a
unique serial number s and the balance w ∈ V. It is
bound to the owner’s identity (i.e. the user’s public key).
Setup: The Setup algorithm takes as input the se-
curity parameter n and outputs a common reference
string crs and a trapdoor td. IGen(crs) generates a key
pair (PKI , skI) for the issuer, which is also shared with
the accumulator and verifier. UGen(crs) generates a
user key pair (PKU , skU). UVer, given a user key pair
(PKU , skU), a token τ and a balance w outputs a bit b in-
dicating whether τ is a valid token with balance w owned
by the user with public key PKU .
Token generation: The protocol Issue is executed be-
tween a user U , given his own key pair (PKU , skU) and
PKI ; and the issuer I, given PKU and the issuer key
pair (PKI , skI). Upon successful execution, U outputs a
token τ with initial balance 0 for the key pair (PKU , skU).
Both U and I additionally output a bit bU/bI that indi-
cates whether they accept the run.

Collecting points: To collect points, the protocol Add
is executed between user U with token τ containing serial
number s and balance w and the accumulator AC on
common input v (the amount of points to be collected).
At the end of the protocol, U outputs an updated token τ∗

(with balance w+v) while AC outputs a double-spending
tag dstag containing s. They additionally again output
a bit bU/bAC indicating whether they accepted the run.
Redeeming points: To spend points, the Sub protocol
is executed between a user U and a verifier V. It has
the same inputs and outputs as Add, with the exception
that the current balance is also part of the common input
(i.e. the verifier learns the user’s balance in the clear).
This allows the verifier to ensure that the user has a
sufficient balance to spend the desired amount of points,
or can be used in a post-payment system to clear the
accumulated debt.
Detection of double-spending: Using the same to-
ken twice results in two transactions with the same se-
rial number. At regular intervals (or whenever an on-
line connection is available), operators insert the double-
spending tags generated through the Add and Sub proto-
cols into the central database. While doing so, for each
inserted tag dstag they check whether the serial num-
ber s of it is already contained in the database. If this is
the case, the corresponding double-spending tag dstag′ is
retrieved from the database and IdentDS(dstag, dstag′) is
used to identify the offending user: IdentDS, given two
double-spending tags, returns the public key PKU of a
user together with a proof of guilt π or returns an error
⊥. In following legal action, VerifyGuilt can then be used
to convince a judge (or anyone else) of the misbehavior:
VerifyGuilt, given a user public key PKU and a proof of
guilt π outputs a bit b indicating whether the user with
public key PKU is guilty of double-spending.

The BBA+ scheme comes with strong security and pri-
vacy guarantees, which can be divided in the system side
and the user side: Security for the system side consists
of three goals:
1. Tokens can only be created and used in the name

of their legitimate owners (owner-binding).
2. A given user cannot claim more (or less) points than

he has collected up to that point, unless an old ver-
sion of a token is presented (balance-binding)

3. Users presenting old versions of their token can be
identified after the fact (double-spending detection).

Security for the user side consists of two goals:
1. Users should have the privacy guarantee that their

transactions are anonymous and cannot be used for
tracking (privacy-preserving)

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 170

2. Nobody should be able to forge a proof that a user
has committed a double-spending (false-accusation
protection)

To formally define what it means to use a token in the
name of someone and what the amount of points a user
has collected is, a way to link individual transactions
to the owner of the token is required. In BBA+, this is
achieved by having the TTP generate a trapdoor which
allows linking of transactions to individual users. More
formally, they defined a property called "trapdoor linka-
bility" which requires that all transactions result in some
linking information which can be used, together with the
linking trapdoor, to identify the corresponding user via
a deterministic algorithm ExtractUID.

In their security experiments formalizing above
goals, an adversary A may concurrently interact with
an honest issuer, accumulator, and verifier an arbitrary
(bounded by the polynomial run-time) number of times.
The adversary, playing the role of the user, may behave
dishonestly and not follow the corresponding protocols.
In order to formalize this adversarial setting, Hartung
et al. [21] defined oracles the adversary may query:

Definition 3.2 (Oracles).
MalIssue(PKU) lets the adversary initiate the Issue pro-

tocol with an honest issuer I, provided that there is
no pending MalIssue call for PKU and PKU has also
not been used in a successful call to MalIssue before.

MalAcc(v) is used by the adversary to initiate the Add
protocol with AC for input v.

MalVer(v, w) is used by the adversary to initiate the Sub
protocol with V for inputs w and v.

We say that a call to an oracle is successful if the honest
party represented by the oracle accepts the run (i.e. the
accept bit bI/bAC/bV is 1).

Then they defined owner-binding, which states that a
token bound to some user public key PKU can only be
obtained with knowledge of the corresponding skU and
that tokens used during Add/Sub must be bound to a
public key for which the Issue protocol has been per-
formed.

Next, they require that, unless double-spending oc-
curred, a user cannot claim a different balance than the
exact sum of points collected up to that point:

Definition 3.3 (Balance-Binding). A trapdoor-
linkable BBA+ scheme is called balance-binding if for
any PPT adversary A in the experiment ExpbbBBA+,A(n)
from Figure 1 the advantage of A defined by

AdvbbBBA+,A(n) := Pr
[
ExpbbBBA+,A(n) = 1

]
(1)

is negligible in n.

Experiment ExpbbBBA+,A
(crs, td)← Setup(1n), (PKI , skI)← IGen(crs)
b← AMalIssue,MalAcc,MalVer(PKI)
The experiment outputs 1 iff A made a successful call to MalVer
with extracted user public-key PKU such that

– all successful MalIssue/MalAcc/MalVer calls produced
unique token version numbers

– the claimed balance w ∈ V does not equal the sum of
previously collected accumulation values v for PKU , i.e.

w 6=
∑

v∈VPKU

v

where VPKU is the list of all accumulation values v ∈ V that
appeared in previous successful calls to MalAcc or MalVer
for which PKU could be extracted using ExtractUID.

Fig. 1. Balance-binding experiment.

Since they desired their system to be offline (i.e. without
the need of a permanent connection to some centralized
database), users cannot be prevented from using the
same token twice. Thus, they require that a user doing
so is detected, revealing his identity and providing a
proof that he did cheat which can be verified by anyone.

User security is defined using the real/ideal world
paradigm. In the real world, the adversary interacts
with oracles implementing the real user protocols. In
the ideal world, the adversary interacts with a simula-
tor. The simulator has to play the role of the oracles,
but without receiving any private user information. To
this end, it is given access to a simulation trapdoor for
the crs. It is then demanded that no PPT adversary
can distinguish between the real and the ideal world.
For an in-depth explanation of the different oracles used
see [21].

Definition 3.4 (Privacy-Preserving). A BBA+ scheme
is privacy-preserving if there exist PPT algorithms
SimSetup and SimCorrupt as well as interactive PPT al-
gorithms SimHonIssue, SimHonAdd and SimHonSub that
receive no private user input, such that for all PPT ad-
versaries A = (A0,A1) in the experiments from Fig-
ure 2, the advantage AdvprivBBA+,A(n) of A defined by∣∣∣Pr[Exppriv-realBBA+,A(n) = 1]− Pr[Exppriv-idealBBA+,A(n) = 1]

∣∣∣ (2)

is negligible in n.

Lastly, false-accusation protection guarantees that users
cannot be framed for a double-spending they did not
commit.

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 171

Experiment Exppriv-realBBA+,A(1n)
(crs, td)← Setup(1n), (PKI , state0)← A0(crs)
b← AHonUser,RealHonIssue,RealHonAdd,RealHonSub,RealCorrupt

1 (PKI , state0)
return b

Experiment Exppriv-idealBBA+,A(1n)
(crs, tdsim)← SimSetup(1n), (PKI , state0)← A0(crs)
b← AHonUser,SimHonIssue,SimHonAdd,SimHonSub,SimCorrupt

1 (PKI , state0)
return b

Fig. 2. Real/Ideal world privacy experiments

For formal definitions of owner-binding, double-
spending detection and false-accusation protection see
Appendix B.

4 From BBA+ to BBW
Several shortcomings of the BBA+ scheme, as described
in Section 3, were discussed in the introduction. To
recall, it relies on Groth–Sahai (GS) zero-knowledge
proofs [20] together with pairing-based cryptographic
primitives. Since the protocol is interactive anyway, we
can replace GS proofs with more efficient interactive
proofs, namely Sigma protocols [29]. Now we are not
bound by the constraints of GS proofs anymore, in par-
ticular, pairing-free instantiations become possible.

Another drawback of BBA+ was the need to reveal
the current balance to spend points, as this can impact
real-world privacy guarantees. Hartung et al. consider
range-proofs to ensure a sufficient balance as a solution,
but refrain from using them due to poor performance.
We introduce a balance space V = {0, . . . , 2l−1} (which
is sufficiently small to avoid problems caused by over-
flows, e.g. 2|V| < |Zp|). We employ Bulletproofs [10],
which are very efficient range-proofs compatible with
our existing zero-knowledge proofs.

The security guarantees of BBA+ require a method
to define the correct balance of a user for the secu-
rity proof, while still ensuring user privacy. Hartung
et al. [21] solve this by introducing a trapdoor that al-
lows to completely abolish privacy, which is only known
to a trusted third party (and thus available in the se-
curity proofs, but assumed to not be used in the real
world). Through our use of interactive zero-knowledge
protocols, we can make use of a technique called rewind-
ing to achieve the same result, without the need of a
trapdoor. Rewinding denotes the process of running an
adversary A to receive some output and then rewind A
to some previous state to let it re-run with the same ran-
domness but different input (e.g. zero-knowledge chal-
lenge). While this is possible during security proofs
(where black-box access to the program of an adver-
sary is assumed), it is not possible in the real world,
where it is not possible for a system operator to re-

set the user’s hardware. Formally, we introduce a new
property for BBA+ schemes, called simulation linkability
which replaces trapdoor linkability introduced in [21]. As
a side effect, since our common reference string is indeed
only a common random string, and there is no trapdoor
anymore, it is possible to set up our scheme without
a trusted third party by generating the crs for exam-
ple through evaluating a cryptographic hash function
on e.g. the timestamp during initialization. Note also
that, unlike in BBA+, a misbehaving TTP that leaks
information on how the crs was generated (including
e.g. the discrete logarithms of the elements in the crs)
to the operator does not impact user privacy (though
leaking this information to users allows them to claim
arbitrary balances and attributes).

Another drawback of BBA+ that hinders deploy-
ment in the real world is the need to store double-
spending tags forever. We solve this problem by adding
attributes to the token that can be revealed during Add
and Sub interactions. Their main use is to define valid-
ity periods for tokens, which allows to discard double-
spending tags after the validity period expired. Addi-
tionally, they allow for efficient verification of other at-
tributes the user may have, such as discounted prices
for students or age-verification for purchases (such as
alcohol). This allows checking of the required attributes
once during token generation (by e.g. checking a student
card or passport) instead of for each transaction, remov-
ing the need to show identifying documents. We want to
note though that care has to be taken when choosing the
possible attributes, as they might allow linking of users
if chosen poorly. In our envisioned scenarios, either the
majority of users share the same attributes (e.g. there
are only 2 validity periods in use at any given time) or
the attributes are already clear from the context (e.g. to
be able to buy alcohol, the user must be above the le-
gal age). The user learns (during token creation) which
attributes will be part of his token and during each in-
teraction chooses which attributes will be revealed (out-
side of our protocol), and needs to not accept attributes
that would violate his privacy. As a concrete example,
we propose validity periods of six months, ending every
three months, so new tokens are always valid for be-
tween three and six months (depending on how close to

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 172

the end of a quarter the token is issued). This allows to
keep the database of double-spending tags small while
also ensuring that approximately half the users share the
same attribute. We want to stress that only attributes
required for a given transaction are revealed (e.g. when
no age-restricted goods are to be purchased, there is no
need to reveal the age-verification attribute).

Definition 4.1 (BBW Scheme). A BBW Scheme con-
sists of PPT algorithms Setup, IGen, UGen, determinis-
tic polynomial time algorithms UVer, IdentDS, VerifyGuilt
and interactive protocols Issue, Add and Sub. At the core
of the scheme lies a token τ that contains a unique se-
rial number s, the tokens balance w ∈ V and some at-
tribute(s) attr and is bound to the owner’s identity (i.e.
the user’s public key).
Setup: The Setup algorithm takes as input the security
parameter n and outputs a common reference string crs.
IGen(crs) generates a key pair (PKI , skI) for the issuer,
which is also shared with the accumulator and veri-
fier. UGen(crs) generates a user key pair (PKU , skU).
UVer given a user key pair (PKU , skU), a token τ, at-
tribute attr and a balance w outputs a bit b indicating
whether τ is a valid token with public attribute attr and
balance w owned by the user with public key PKU .
Token generation: The protocol Issue is executed be-
tween a user U , given some attribute attr, his own
key pair (PKU , skU) and PKI ; and the issuer I, given
PKU , the same attribute attr and the issuer key pair
(PKI , skI). Upon successful execution, U outputs a to-
ken τ with initial balance 0 and public attribute attr for
the key pair (PKU , skU). Both U and I additionally out-
put a bit bU/bI that indicates whether they accept the
run.
Collecting points: To collect points, the protocol Add
is executed between a user U with token τ containing se-
rial number s, balance w and public attribute attr and
the accumulator AC on common input (attr , v) (the pub-
lic attribute of the token and the amount of points to be
collected). At the end of the protocol, U outputs an up-
dated token τ∗ (with balance w + v) while AC outputs a
double-spending tag dstag containing s. They addition-
ally again output a bit bU/bAC indicating whether they
accepted the run.
Spending points: To spend points, the Sub protocol is
executed between a user U and a verifier V. It has the
same inputs and outputs as Add, except that the new
balance w∗ is computed as w∗ = w−v. Additionally, the
user proves (in zero-knowledge) that w ≥ v holds.
Detection of double-spending: IdentDS, given two
double-spending tags, returns the public key PKU of a

user together with a proof of guilt π or returns an error
⊥. VerifyGuilt given a user public key PKU and a proof of
guilt π outputs a bit b indicating whether the user with
public key PKU is guilty of double-spending.

To remove the need of the trapdoor for ExtractUID,
we formally define what it means for a scheme to be
simulation-linkable. The main difference to trapdoor-
linkable is that there is no need for a trapdoor but the
algorithm is allowed to fail with negligible probability.

For some fixed n ∈ N, crs ← Setup(1n) T Add
n,crs de-

notes the set of transcripts (including AC’s output)
resulting from any Add protocol run accepted by AC
with any (potentially malicious) party, and T Sub

n,crs ana-
log for V.

Definition 4.2 (Simulation-Linkability). A BBW
scheme is called simulation-linkable if it satisfies the
following conditions:
Completeness: Let n ∈ N, (crs, td) ← Setup(1n) and

tr ∈ T Add
n,crs. Then there exist inputs PKU , skU , τ,

w and random choices for an honest user U and
honest accumulator AC such that an Add protocol
run between U and AC with these inputs and random
choices leads to the same transcript tr. The same
holds for all tr ∈ T Sub

n,crs with respect to Sub.
Extractability: There exists a PPT algorithm

ExtractUID that, given two related transcripts
tr1, tr2 ∈ T Add

n,crs (or T Sub
n,crs resp.) produced by the

interaction of a honest user U with public key PKU
and the honest accumulator AC (or honest verifier V
resp.) outputs the public key PKU . Two transcripts
tr1, tr2 are called related if they are identical up to
the point where the zero-knowledge challenge is sent,
and then contain different challenges and different
responses.
Additionally, there exists an expected PPT algo-
rithm GenerateTranscripts that, given access to a
transcript oracle O = 〈U ,AC〉 (or O = 〈U ,V〉 resp.)
outputs two related transcripts tr1, tr2 ∈ T Add

n,crs
(resp. tr1, tr2 ∈ T Sub

n,crs) with overwhelming probabil-
ity. GenerateTranscripts is allowed to rewind O and
resume with fresh randomness for AC (resp. V).

Remark 1. Since ExtractUID only receives transcripts
tr1, tr2 ∈ T Add

n,crs (resp. T Sub
n,crs), and completeness in

above definition requires that any such transcript can
be produced by an honest user, the output of ExtractUID
is well defined even for malicious users U∗.

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 173

We note that our version of ExtractUID only outputs
the user’s public key with overwhelming probability (in-
stead of always, as is the case for trapdoor linkability).
Thus, it is necessary to extend all security experiments:
the adversary additionally also wins if he is able to per-
form a successful interaction for which ExtractUID fails
to output the public key. Additionally, for user privacy,
the ideal world oracles now need access to the user at-
tributes where needed, but the oracle for Sub does not
receive the balance anymore. The formal definitions are
lengthy and can be found in Appendices D.3 and D.4.

Remark 2 (Modeling privacy for attributes). Recall
that modeling user security via the real/ideal paradigm
ensures that a real-world adversary learns no more than
an ideal-world adversary. However, if a (desired) pri-
vacy property does not hold in the ideal world, then
neither need it hold in the real. Thus, we must assume
that attributes are used in a privacy-preserving man-
ner. Uniquely identifying attributes do not contradict
real/ideal world security. However, due it is sufficient
to study the impact of attributes on privacy in the ideal
world. The impact on privacy is highly dependent on
the setting. Thus, it has to be carefully analyzed indi-
vidually for every application of BBW. In Section 4,
we outlined some acceptable usage, such as children,
adult, senior pricing earlier where a “physical world”
adversary must learn the attributes anyway. Similarly,
sensible implementations of expiration dates should pre-
serve privacy, because at any time, a large portion of
users share the same expiration date.

5 Instantiation
Recall that a token contains a signature on (a commit-
ment to) the balance, serial number and some other val-
ues, which is verified in a transaction. Then to modify
the balance, a new signature on (a commitment to) the
updated balance and a new serial number is formed.
To provide correctness on the one hand, and user pri-
vacy on the other hand, ZK proofs are used to hide
sensible information while proving that the new com-
mitment is formed correctly. Thus, to instantiate our
scheme, we need to find a suitable and efficient zero-
knowledge proof system and a compatible signature and
commitment scheme. We have one algorithm SetupGrp
that outputs the description of an elliptic curve group
G of prime order p with generator G which is then used
by all building blocks.

As already mentioned, for efficiency reasons we
make use of sigma protocols for our ZK proofs. We
make use of the generalized definition of a sigma proto-
col by Maurer [29] which is perfect special honest veri-
fier zero-knowledge. We extend it by replacing the chal-
lenge with a Blum coin-toss to achieve perfect compos-
able zero-knowledge as proposed by Damgård [16]. To
do so, we use the Pedersen commitment scheme for mes-
sages of length 1 (a single element of Zp). We refer to
this commitment scheme as CZK in the following. Mau-
rer’s scheme allows proofs of knowledge for preimages of
group-homomorphisms (where the homomorphism may
depend on the statement being proven). We consider
homomorphisms Φ: A → B, where A and B are of the
form Gn1 × Zn2

p .
To prove that w ≥ v in the Sub protocol, we use

range proofs. A range proof is a ZK proof that the con-
tent of a commitment lies within a given interval. We
prove that w − v ∈ V, which is equivalent to w ≥ v as
long as |Zp| > 2|V|. We use Bulletproofs [10] to imple-
ment the range proof, referred to as RP in the following.

For commitments, we make use of the Pedersen
multi-commitment scheme, referred to as PC in the fol-
lowing, which allows to commit to a vector ml of mes-
sages in a single group element.

Choosing a signature scheme poses the greatest
challenge: the running time of the scheme is dominated
by verifying signatures (both in zero-knowledge and on
the user side to ensure correct token creation). We need
a signature scheme that allows signing of committed
messages (i.e. signing a group element) and verifica-
tion of such signatures in an unlinkable way. Addition-
ally, both during the process of obtaining a signature as
well as during verification, it must be possible to prove,
in zero-knowledge, statements involving the content of
the signed message. The latter requirement severely re-
stricts the class of possible signature schemes. While
structure-preserving signatures obviously fulfill our re-
quirements, they rely on pairings. Normal blind signa-
ture schemes (without pairings) usually do not allow to
(efficiently) prove statements about the content of the
signed message (for example due to the use of a cryp-
tographic hash function whose output is then signed).
The same problem arises when using normal signatures
to get a signature on a commitment and then prove
knowledge of both the commitment and the signature in
zero-knowledge (which satisfies unlinkability), as again
the use of a hash-function on the message prevents ef-
ficient zero-knowledge proofs containing the content of
the message. Camenisch and Lysyanskaya [11, 12] intro-
duced a class of signatures commonly referred to as CL-

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 174

type signatures intended for usage in privacy-preserving
protocols. CL-type signatures consist of a commitment
scheme and a signature scheme and come with efficient
(interactive) protocols to obtain signatures on commit-
ted messages and to prove knowledge of a signature in
zero-knowledge, which are exactly the properties we re-
quire. Unfortunately, known CL-type signatures rely on
either RSA groups ([11]) or pairings ([12, 31]). Thus,
we decided to adapt the blind signature scheme of
Baldimtsi and Lysyanskaya [5] into a CL-type signa-
ture scheme. Since the authors only provided a proof
for sequential security of their blind signature protocol
(where the adversary must finish one interaction with
the signer before he is allowed to start a new one), while
we require concurrent security for our scheme (as it is
implausible to assume an adversary cannot interleave
protocol executions in a distributed setting as targeted
by us), we also provide a proof of concurrent security in
the generic group model which may be of independent
interest. The resulting signature scheme is described in
detail in Section 6.

5.1 Instantiating BBW

The scheme is summarized in Figures 3 and 5 to 7. In
the following, we explain the details of the algorithms
and protocols. Whenever a ZKPoK is conducted be-
tween parties, the verifying party aborts and outputs
⊥ if it does not accept the proof.

Setup: Setup, run by the trusted third party, generates
a suitable group and the common reference string crs for
the scheme, which consists of a common reference string
crscom for the commitment scheme PC and a common
reference string crspok for the zero-knowledge scheme Z
that is used in Issue, Add and Sub.
IGen generates a key pair for the system operator, which
simply consists of a key pair for the signature scheme S.
UGen generates a key pair for a user, consisting of a
secret key skU (a random element in Zp), and a public
key PKU = skUG, which is used as the users identity.
Token generation: The protocol to issue new tokens
is shown in Figure 5. A token consists of a random
serial number s ∈ Zp, a balance w ∈ V, the users
secret key skU ∈ Zp, and the double-spending infor-
mation u1 ∈ Zp, together with a valid signature σ

(under the issuers public key PKI) on the message
m := (s, w, skU , u1). To ensure the serial number s is
indeed random, it is chosen jointly by the user and the

issuer (making use of the homomorphic property of the
commitment scheme PC).
To obtain an initial token, the user forms a commit-
ment C′ on (s′ ∈ Zp, 0, skU , u1), where s′ ← Zp is his
random share of the serial number and u1 ← Zp, with
initial balance 0. He then performs a zero-knowledge
proof P1 with the issuer to prove knowledge of the se-
cret key corresponding to his public key PKU , knowl-
edge of the content of the commitment C′ and to en-
sure that the balance is 0. The issuer verifies the zero-

Setup(1n, l)
gp := (G, p, G)← SetupGrp(1n)
(crssig, crscom)← S.Setup(gp, 5)
crspok ← Z.Setup(gp)
crsrp ← RP.Setup(gp, l)
crs := (gp, crssig, crscom, crspok, crsrp)
return crs

IGen(crs)
(PKsig, sksig)← S.KeyGen(crs)
return (PKI , skI) := (PKsig, sksig)

UGen(crs)
y ← Zp

(PKU , skU) := (yG, y)
return (PKU , skU)

Fig. 3. Setup and Key Generation

Proof P1 (for the Issue protocol)
Statement: crscom, C

′,PKU
Witness s′, skU , u1, d

′ so that

PC.Open(crscom, (s′, 0, skU , u1, 0), C′, d′) = 1
skUG = PKU

Proof P2 (for the Add protocol)
Statement: crscom, s, t, u2, C

′, attr, σ1
Witness s′, w, skU , u′1, d

′, C, u1, σ2 so that

PC.Open(crscom, (s′, w, skU , u′1, attr), C′, d′) = 1
PCB.Open(crscom, (s, w, skU , u1, attr), (ζ, ζ1), σ2) = 1

skUu2 + u1 = t

Proof P3 (for the Sub protocol)
Statement: crscom, crsrp, s, t, u2, C

′, attr, σ1, CRP, v
Witness s′, w, skU , u′1, d

′, C, u1, σ2, r so that

PC.Open(crscom, (s′, w, skU , u′1, attr), C′, d′) = 1
PCB.Open(crscom, (s, w, skU , u1, attr), (ζ, ζ1), σ2) = 1

skUu2 + u1 = t

PC.Open(crscom, (w − v), CRP, r) = 1

Additionally, a range proof that w − v ∈ V (using CRP) is per-
formed.

Fig. 4. Zero-Knowledge Proofs

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 175

U(PKI ,PKU , skU , attr) I(PKU ,PKI , skI , attr)

s
′
, u1 ← Zp

m
′ := (s′, 0, skU , u1, 0)

(C′, d)← PC.Com(m′) C′, π1

ZKPoK P1

s
′′ ← Zp

m
′′ := (s′′, 0, 0, 0, attr)

(C′′, 0)← PC.Com(m′′; 0)
C′′, s′′

C = C
′ + C

′′; s = s
′ + s

′′
C = C

′ + C
′′

m := (s, 0, skU , u1, attr)

σ ←−−−−−−−−−−−−−−−−− BlindSign(C,m)

τ = (σ, s, u1)
if UVer(skU , τ, 0, attr) = 0

return (⊥, 0)
else return (τ, 1) return 1

Fig. 5. Issue Protocol

knowledge proof, then chooses s′′ ← Zp, uses the ho-
momorphic property of PC to generate a commitment
C on (s′ + s′′, 0, skU , u1) and then engages in an inter-
action of the protocol BlindSign of S to sign the tuple
(s′ + s′′, 0, skU , u1) with his private key skI . Finally, af-
ter receiving the signature through BlindSign, the user
verifies that it is valid.
Collecting points: To collect points, the Add protocol
described in Figure 6 is used. In the protocol, AC starts
by choosing a random value u2 ← Zp and sending it to
U , who then computes the second part of the double-
spending token (s, t) as t = skUu2 + u1. The user then
prepares a new token by again forming a commitment
C′ on (s′, w, skU , u′1), where s′, u′1 ← Zp are new ran-
dom values, while w is the same as in his existing token.
The user then sends C′ and t together with the serial
number s contained in his token to the accumulator and
performs the ZKPoK P2 with AC to prove knowledge
of a valid token and correct computation of t and C′.
After verifying the proof, AC adds his share s′′ ← Zp to
the new serial number as well as the amount of points
collected v to the balance in C′ (again using the homo-
morphic property of PC). Then the user and AC again
perform the BlindSign protocol to sign the new tuple
(s′ + s′′, w + v, skU , u′1). Finally, the user again checks
that the resulting token is valid and contains the cor-
rect new balance.
Spending points: The protocol Sub works mostly the
same as Add, with the difference that v is subtracted
from the balance and P3 contains a range proof that
w − v ∈ V.

U(PKI ,PKU , skU , w, v, attr) AC(PKU ,PKI , skI , v, attr)
parse: (σ, s, u1) := τ u2 ← Zp

parse: (σ1, (d, γ)) := σ
u2

t = skUu2 + u1

s
′
, u
′
1 ← Zp

m
′ := (s′, w, skU , u′1, attr)

(C′, d∗)← PC.Com(m′) s, t, C′, σ1, π1

ZKPoK P2

if ¬S.Verify1(σ1)
return (⊥, 0)

dstag = (s, t, u2)

s
′′ ← Zp

m
′′ := (s′′, v, 0, 0, 0)

(C′′, 0)← PC.Com(m′′; 0)

C
∗ = C

′ + C
′′

C′′, s′′

C
∗ = C

′ + C
′′

s
∗ = s

′ + s
′′;w∗ = w + v

m
∗ := (s∗, w∗, skU , u′1, attr)

σ
∗ ←−−−−−−−−−−−−−−−−−−− BlindSign(C∗,m∗)

τ
∗ = (σ∗, s∗, u′1)

if UVer(skU , τ∗, w∗, attr) = 0
return (⊥, 0)

else return (τ, 1) return (dstag, 1)

Fig. 6. Add Protocol

Detection of double-spending: Algorithms IdentDS
and VerifyGuilt are shown in Figure 7. IdentDS exploits
that the two double-spending tags are blinded by the
same value u1 to extract the users secret key. The users
identity is then revealed by computing his public key.
VerifyGuilt checks that the value contained in the proof
of guilt π is indeed the secret key corresponding to PKU .

UVer(PKI ,PKU , skU , τ, w, attr)
parse: (σ, s, u1) := τ

if (PKU = skUG ∧ S.Verify(PKI , (s, w, skU , u1, attr), σ) = 1)
return 1

else return 0

IdentDS(PKI , (s1, z1), (s2, zw))
parse: (t, u2) := z1, (t′, u′2) := z2

if
(
s1 6= s2 ∨ u2 = u

′
2

)
return ⊥

else skU = (t− t′)(u2 − u′2)−1 mod p,PKU = skUG
return (PKU , π := skU)

VerifyGuilt(PKI ,PKU , π)
if πG = PKU return 1
else return 0

Fig. 7. User verification of tokens and double-spending algorithms

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 176

5.2 Security of BBW

In the security games (see Section 3 as well as ap-
pendix B), the adversary engages in multiple, possibly
concurrent and arbitrarily interleaved ZK arguments.
We show by hybrid argument that this does not af-
fect the possibility to extract witnesses from those ar-
guments.

Theorem 5.1 (Extraction). If P1, P2 and P3 have
witness-extended emulation, there exists an expected
PPT extractor E∗ that has overwhelming probability for
extracting witnesses for all successful calls to MalIssue,
MalAcc and MalVer made by an PPT adversary A in the
security games.

The idea in the proof is to extract one witness at a time
and view all oracle calls except the one for which the
witness is being extracted as part of the adversary. This
is possible since we do not rely on extracted information
during interaction with the adversary, but only to de-
termine whether the adversary was successful. For the
full proof, see Appendix D.1.

In the following, we refer to an interactive proto-
col between an honest party and a (possibly) malicious
party as complete if for every transcript tr of a trans-
action that results in the honest party accepting, there
exists inputs and random choices for honest parties so
that an interaction between them results in the same
transcript.

Theorem 5.2 (Simulation-Linkability). If BBW and S
are correct, P2, P3 and BlindSign are complete and
P2 and P3 have witness-extended emulation, BBW is
simulation-linkable (Definition 4.2).

Theorem 5.3 (System Security). If BBW is
simulation-linkable, the premises of Theorem 5.1 and
the DLOG assumption in G hold, PC is additively ho-
momorphic and binding and S is EUF-CMA secure,
then BBW is owner-binding (Definition B.1), balance-
binding (Definition 3.3) and ensures double-spending
detection (Definition B.2).

For the proofs, see Appendix D.3. Owner-binding wrt.
Issue is a straight-forward reduction to CDH. For owner-
binding wrt. Add/Sub, we show that any adversary able
to win the game with non-negligible probability can be
used to break EUF-CMA security of S. The proof for
balance-binding closely follows the one in [21]. Equiv-
ocation of Pedersen commitments does not have to
be considered explicitly anymore as it is covered by

EUF-CMA security. Instead of building a graph based
on signed commitments, a graph based on the unique
serial numbers can be built. Then it can be shown that
an adversary successfully attacking balance-binding can
be used to break EUF-CMA security of S.

Theorem 5.4 (User Security). If P1, P2 and P3 are
composable zero-knowledge and PC is equivocable, then
BBW is privacy-preserving, and if additionally the
DLOG assumption holds in G, it is secure against false
accusation of double-spending.

The proof is largely the same as in [21]. For details,
see Appendix D.4. We make use of the simulation trap-
door (i.e. the equivocality trapdoors of the commitment
scheme) to step-by-step remove private input from the
oracles until we are left with the ideal-world oracles that
do not receive any private input. The main difference
to [21] is that the signature σ1 is sent to the adversary
during the protocol, and replacing it by a simulated one
relies on the DDH assumption to be indistinguishable
(see Appendix C.2).

The proof for false-accusation protection is straight-
forward and the same as in [21].

6 Signature Scheme
Starting from the signature scheme of Baldimtsi and
Lysyanskaya [5], we construct a CL-type signature
scheme: Messages of arbitrary but fixed length l are first
committed into a single group element using Pedersen
commitments and then signed.

The scheme of Baldimtsi and Lysyanskaya (called
ACL) is a blind signature with attributes, where efficient
ZK proofs regarding the attributes are possible. It is
based on the blind signature scheme of Abe [3] and a
blinded variant of the Pedersen commitment scheme:
Given a Pedersen commitment C on m (with opening
information d) and an additional generator Z (that is
part of the crs), C′ = (γZ, γC) is also a commitment
on m with opening information (d, γ). Additionally, C′

and C are unlinkable (without knowledge of γ) under
the DDH assumption. Below, we refer to this variant of
Pedersen commitments as PCB.

We interpret these “attributes” as the message,
which then allows for efficient ZK proofs regarding the
message. The resulting scheme works roughly as follows.
The signer has a real public key PK (of which he knows
the corresponding secret key sk) and a “tag” public key

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 177

Z (generated by a trusted party or by applying a crypto-
graphic hash function to his public key, so that nobody
knows the corresponding secret key). To sign a message
m, a blinded Pedersen commitment C′ = (Z1, Z2) is cre-
ated (using the tag public key Z). A signature then con-
sists of a non-interactive (via the Fiat–Shamir transfor-
mation) ZKPoK, proving knowledge of either the secret
key sk or the discrete logarithms of Z1 and Z2 (which are
not known to anyone). This construction allows for effi-
cient ZK proofs involving m. To obtain blind signatures,
a user sends C (together with a ZKPoK of the opening
to m) to the signer, who then interactively performs
the ZKPoK with the user. To obtain the challenge, the
user queries the hash function (after applying appropri-
ate blinding factors). This results in a signature that
is unlinkable to any information received by the signer
during signing.

Definition 6.1. Our CL-type signature scheme con-
sists of algorithms Setup, SimSetup, KeyGen, Sign and
Verify:
Setup(gp, l): Generates a common reference string

crscom := (H0, . . . ,Hl) ← PC.Setup(gp, l), samples
random Z,H ← G and chooses a hash function H :
{0, 1}∗ → Zp. Outputs crs = (gp,H, Z,H, crscom).

SimSetup(gp, l): Generates a common reference string
(crscom, tdcom) ← PC.SimSetup(gp, l), samples ran-
dom z, h ← Zp, computes Z = zG,H = hG and
chooses a hash function H : {0, 1}∗ → Zp. Outputs
(crs, td) = ((gp,H, Z,H, crscom), (z, h, tdcom)).

KeyGen(crs): Samples random sk ← Zp and computes
PK = skG. Outputs (PK, sk).

Sign(crs, sk,m): Sets C = PC.Com(crscom,m; 0). Then
samples random u, r′1, r

′
2, c
′, u′3 ← Zp and computes

A = uG, B1 = r′1G + c′C, B2 = r′2H + c′(Z − C),
B3 = u′3Z and sets e = H(Z,Z1, A,B1, B2, B3).
Then computes c = e − c′, r = u − cx, r′3 = u′3 − c′

and outputs σ = (σ1, σ2) where σ1 := (Z,C, r, c, r′1,
r′2, c

′, r′3) and σ2 := (0, 1).
Verify(crs,PK,m, σ): Parse σ := (σ1, σ2) where σ1 :=

(Z̃, C̃, r̃, c̃, r̃′1, r̃′2, c̃′, r′3) and σ2 := (d, γ). Check
that Z̃ 6= 0, PCB.Open(crscom,m, (Z̃, C̃), σ2) = 1
and Verify1(crs,PK, σ1) = 1, where Verify1 out-
puts 1 if for Ã = r̃G + c̃PK, B̃1 = r̃′1G + c̃′C̃,
B̃2 = r̃′2H + c̃′(Z̃ − C̃) and B3 = r′3Z + c̃′Z̃ it holds
that

c̃+ c̃′ = H(Z̃, C̃, Ã, B̃1, B̃2, B3)
and 0 otherwise.

The scheme additionally consists of two interactive pro-
tocols for obtaining blind signatures and verification of
signatures in zero-knowledge:

BlindSign: The user first computes a commitment
(C, d) ← PC.Com(crscom,m) on his message
m. He then sends C to the signer and per-
forms a ZKPoK Π1 of m and d such that
PC.Open(crscom,m,C, d) = 1. If the signer accepts
the proof, they then engage in the interactive sign-
ing protocol to generate a blind signature.
See Figure 8 for the description of the interactive
signing protocol.

User(PK, C,m, d) Signer(sk, C)
ensure PC.Open(m,C, d) = 1

ZKPoK Π1

γ ← Z∗p C
′ = Z − C

Z̃ = γZ, C̃ = γZ1 u, r
′
1, r
′
2, c
′ ← Zp

C̃
′ = Z̃ − C̃ A = uG

u
′
3 ← Zp B1 = r

′
1G+ c

′
C

B3 = u
′
3Z B2 = r

′
2H + c

′
C
′

A,B1, B2

check that A,B1, B2 ∈ G
t1, t2, t3, t4, t5 ← Zp

Ã = A+ t1G+ t2PK

B̃1 = γB1 + t3G+ t4C̃

B̃2 = γB2 + t5H + t4C̃
′

ε = H(Z̃, C̃, Ã, B̃1, B̃2, B3)
e = ε− t2 − t4 e

c = e− c′

r = u− csk
c, r, c′, r′1, r

′
2

c̃ = c+ t2; c̃′ = c
′ + t4

r̃ = r + t1; r′3 = u
′
3 − c̃

′
γ

r̃
′
1 = γr

′
1 + t3; r̃′2 = γr

′
2 + t5

σ1 = (Z̃, C̃, r̃, c̃, r̃′1, r̃
′
2, c̃
′
, r
′
3)

σ2 = (d, γ)
return σ := (σ1, σ2)

Fig. 8. Protocol for obtaining blind signatures

BlindVerify: The user with signature σ := (σ1, σ2) on
a message m, where σ1 = (Z̃, C̃, r̃, c̃, r̃′1, r̃′2, c̃′, r′3)
and σ2 = (d, γ), sends σ1 to the verifier and
performs a ZKPoK Π2 of m and σ2 such that
PCB.Open(crscom,m, (Z̃, C̃), σ2) = 1. The verifier
checks that Verify1(crs,PK, σ1) = 1 and Π2 is valid.
To implement Π2 as a Σ-protocol, the equations to
be shown can be rewritten as

Com(m; d)− γ′C̃ = 0 (3)
γ′Z̃ = Z (4)

where γ′ = γ−1.

Remark 3. Modifications detailed above are mainly re-
garding notation and to remove the blind message and

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 178

thus allow the EUF-CMA security definition and do not
change ACL on a technical level.

Theorem 6.2. Above signature scheme is EUF-CMA
secure in the combined generic group and random oracle
model.

Note that since BlindSign contains a ZKPoK of the mes-
sage m, the set of messages that have been signed us-
ing the oracle for BlindSign is well defined, and thus
EUF-CMA security is applicable. In the generic group
model introduced by Shoup [35], the adversary operates
on the group through a group oracle that allows com-
putation of the group law, inversion and checking for
equality. The adversary only receives random identifiers
of group elements he either receives as input or com-
putes through use of the oracles. See Appendix C.1 for
the proof.

We additionally require that issuing and verification
of signatures through BlindSign and BlindVerify is un-
linkable. More precisely, the signer/verifier should learn
nothing from the interactions that allows him to link
the signature verified during BlindVerify to a particu-
lar interaction of BlindSign. Note that unlinkability only
holds between signing and verifying, engaging the veri-
fying protocol twice for the same signature is linkable.

Theorem 6.3. The protocol BlindSign is perfectly blind
if Π1 is composable perfect zero-knowledge, PC is per-
fectly hiding and H is a random oracle. It additionally
allows for extraction of the signed message if Π1 has
witness-extended emulation.

Theorem 6.4. The protocol BlindVerify is composable
zero-knowledge if Π2 is composable zero-knowledge, PCB
is hiding, the DDH assumption holds in G and H is
a random oracle. It additionally has witness-extended
emulation if Π2 has witness-extended emulation.

For the proofs see Appendix C.2.

7 Performance Evaluation
We evaluate the performance of BBW by measuring ex-
ecution times and network payload of a practical im-
plementation. Since data transmission times largely de-
pend on external factors and the instantiation scenario,
we exclude them from our measurements and instead
provide estimates based on NFC with its maximum
transmission speed of 424 kbit/s.

Evaluation is done on a modern smartphone fea-
turing a Snapdragon 845 (4 × 2.8 GHz & 4 × 1.77 GHz)
and running Android 9. The implementation was done
in C++17 and employs the RELIC toolkit v0.5.0, an
open source library with support for elliptic curve arith-
metic [4], for underlying group operations.

In order to compare the performance of BBW with
BBA+ we also implemented BBA+ with support for 16-
bit range proofs as described in [21] and measured exe-
cution times on the same platform.

Note that a modern smartphone represents a par-
ticularly strong device in embedded computing. To ob-
tain performance estimations for smart cards (or other
low-end micro controllers), we count the number of mul-
tiplications done and estimate the execution time based
on the performance of a dedicated ECC coprocessor [36]
and the MultOS card. Note that this coprocessor was de-
signed for fast pairing execution and was thus optimized
for Barreto-Naehrig (BN) curves. Although the authors
also supplied performance estimates for Curve25519,
their processor does not make use of the special form
of Curve25519 that would allow for faster arithmetic. A
dedicated coprocessor for either Curve25519 or FourQ
curves [15] should result in much faster implementa-
tions, especially as FourQ curves can achieve signifi-
cantly higher performance than Curve25519 [28].

7.1 Implementation Details

To obtain small group elements (and thus minimize net-
work payload) and fast computation times, we chose to
use the elliptic curve Curve25519 ([8, 9, 27]) which pro-
vides 128 bit of security. For the range proofs in the Sub
protocol we employ Bulletproofs by Bünz et al. [10]. The
authors first construct a protocol with linear data trans-
mission size and then extend it to provide logarithmic
data size at the cost of additional prover computation
time. We implemented both variants for both 16 and
32 bit ranges, referring to the variant with linear data
size as Subl,lin and to the logarithmic variant as Subl,log
in the following, where l denotes the size of the range.
We suggest to use 16 bit on weak devices and 32 bit on
smartphones (if needed).

7.2 Evaluation

Table 1 shows our measurement results. The evaluation
was performed utilizing a single CPU core and results
are averaged over 1000 individual executions.

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 179

Execution Time [ms] Transmitted Data [B] Smart card estimations

User System User System Combined #multiplications Estimated Runtime [ms]
Algorithm BBW BBA+ BBW BBA+ BBW BBW BBW BBA+ in G [36] [18]

Issue 52 102 20 70 625 380 1005 1024 40 920 2440

Add 62 284 45 262 1330 415 1745 4208 30 690 1830

Sub16,lin 122 707 182 605 2876 1045 3921 14368 68 1564 4148
Sub16,log 475 - 234 - 2143 1359 3502 - 253 5819 15433

Sub32,lin 170 - 302 - 3994 1045 5039 -
Sub32,log 870 - 389 - 2213 1394 3607 -

Table 1. Performance measurements of BBW and BBA+ on our smartphone platform and lower-bound estimations for smart cards

While Issue and Add are highly efficient with approx-
imately 50 ms and 60 ms respectively, the performance
of Sub varies with different parameters and algorithm
choices. As expected, there is a runtime-communication
tradeoff when employing the logarithmic range proofs:
the amount of data that has to be transmitted in total is
reduced (5039 B to 3607 B for l = 32) while the computa-
tional complexity is increased tremendously (170 ms to
870 ms for l = 32). Note that, using NFC with 424 kbit/s,
3607 B are transmitted in approx. 70 ms and 5039 B are
transmitted in approx. 95 ms. Even when using NFC at
only 106 kbit/s (e.g. when using smart cards), the differ-
ence amounts to only about 110 ms, which is still faster
than the additional computation.

Using the number of multiplications in G, we can
estimate a lower bound for the execution time on other
platforms. Note that we restrict our estimations to the
user side, as the backend is expected to be notably more
powerful. Furthermore, as these estimations are solely
based on the number of point multiplications, execution
times of concrete instantiations would be higher due to
the remaining computations and I/O. The dedicated
coprocessor by Unterluggauer and Wenger [36] takes
23 ms for a multiplication on Curve25519. On a Mul-
tOS 4.3.1 card, point multiplication on ≈250 bit curves
takes 61 ms [18]. The resulting estimated lower bounds
for execution time of BBW are shown in Table 1. It is
worth noting that, although the MultOS card does not
employ a dedicated coprocessor, the execution time is
only increased by a factor of less than 3.

7.3 Discussion

Our evaluation shows that, although the logarithmic
variant of Sub results in less transmitted data, the over-
head in execution time is tremendous. While this may
not be an issue on the smartphone, as 1 s for 32 bit

ranges might be an acceptable waiting period for users,
more than 5.8 s or even 15.4 s for just 16-bit ranges
as in our estimations for smart cards is unacceptable.
Therefore, we favor the linear variant, as the penalty of
transmitting the additional data is easily outweighed by
the processing time saved. Regarding the smartphone,
this reduces the computation time of the user to only
170 ms for Sub32,lin. On more constrained devices, using
the linear variant and l = 16 results in promising ex-
ecution times, i.e. close to 1.5 s for Sub on [36], which
may be acceptable depending on the scenario. Note that
Sub without range proofs takes approximately as long
as Add, and thus less than 1 s on [36].

Comparing our implementation with the perfor-
mance of BBA+, we see improvement in all areas.
Regarding transmitted data, the Issue protocols are
roughly equal, while for Add the transmitted data was
reduced from 4208 B to 1745 B. The most notable dif-
ference is in Sub, where the amount of transmitted data
was reduced from 14368 B when supporting only a 16-
bit range proof, to 5039 B for Sub32,lin, i.e., supporting
a 32-bit range proof. Regarding execution time and the
favorable linear variant of Sub, BBW is faster in every
protocol. Especially Sub32,lin is more than four times as
fast than Sub in BBA+ despite supporting 32-bit range
proofs, and still twice as fast as Sub without any range
proofs (where execution time is the same as in Add).
Additionally, our scheme also offers a significantly faster
system-side, enabling the use of weaker hardware in op-
erator terminals (such as subway turnstiles).

Regarding practical implementations on smart
cards, possible problems might arise from the amount
of RAM required (which we did not optimize for on our
smartphone implementation) and bad connectivity us-
ing NFC in passive mode. As almost all multiplications
are fixed-point, storing pre-computation tables would
allow for more efficient algorithms. However, this re-
quires such tables for every element in the common ref-

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 180

erence string, which requires somewhat large amounts
of permanent storage.

Acknowledgements
We thank the anonymous reviewers for their helpful
comments. This research received funding from the Ger-
man Research Foundation (DFG) within grants RU
1664/3-1 and PA 587/10-1, the Helmholtz Security Re-
search, program Supercomputing & Big Data, Data Se-
curity and the Competence Center for Applied Security
Technology (KASTEL).

References
[1] Dash - Dash is Digital Cash You Can Spend Anywhere. URL

https://www.dash.org/.
[2] Zcash – Privacy-protecting digital currency. URL https:

//z.cash/.
[3] M. Abe. A Secure Three-Move Blind Signature Scheme for

Polynomially Many Signatures. In G. Goos, J. Hartmanis,
J. van Leeuwen, and B. Pfitzmann, editors, Advances in
Cryptology — EUROCRYPT 2001, volume 2045, pages
136–151. Springer Berlin Heidelberg, Berlin, Heidelberg,
2001. 10.1007/3-540-44987-6_9. URL http://link.springer.
com/10.1007/3-540-44987-6_9.

[4] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient
LIbrary for Cryptography. URL https://github.com/relic-
toolkit/relic.

[5] F. Baldimtsi and A. Lysyanskaya. Anonymous credentials
light. In Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security - CCS
’13, pages 1087–1098, Berlin, Germany, 2013. ACM Press.
10.1145/2508859.2516687.

[6] F. Baldimtsi, M. Chase, G. Fuchsbauer, and M. Kohlweiss.
Anonymous Transferable E-Cash. In J. Katz, editor, Public-
Key Cryptography – PKC 2015, pages 101–124. Springer
Berlin Heidelberg, 2015.

[7] R. Barbulescu and S. Duquesne. Updating Key Size Estima-
tions for Pairings. Journal of Cryptology, Jan. 2018. ISSN
1432-1378. 10.1007/s00145-018-9280-5.

[8] D. J. Bernstein. Curve25519: New Diffie-Hellman Speed
Records. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin,
editors, Public Key Cryptography - PKC 2006, pages 207–
228. Springer Berlin Heidelberg, 2006.

[9] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-
Y. Yang. High-speed high-security signatures. Journal of
Cryptographic Engineering, 2(2):77–89, Sept. 2012. ISSN
2190-8516. 10.1007/s13389-012-0027-1.

[10] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell. Bulletproofs: Short Proofs for Confiden-
tial Transactions and More. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 315–334, May 2018.
10.1109/SP.2018.00020.

[11] J. Camenisch and A. Lysyanskaya. A Signature Scheme with
Efficient Protocols. In S. Cimato, G. Persiano, and C. Galdi,
editors, Security in Communication Networks, pages 268–
289. Springer Berlin Heidelberg, 2003.

[12] J. Camenisch and A. Lysyanskaya. Signature Schemes and
Anonymous Credentials from Bilinear Maps. In M. Franklin,
editor, Advances in Cryptology – CRYPTO 2004, pages 56–
72. Springer Berlin Heidelberg, 2004.

[13] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Com-
pact E-Cash. In R. Cramer, editor, Advances in Cryptology –
EUROCRYPT 2005, pages 302–321. Springer Berlin Heidel-
berg, 2005.

[14] S. Canard and A. Gouget. Anonymity in Transferable E-
cash. In S. M. Bellovin, R. Gennaro, A. Keromytis, and
M. Yung, editors, Applied Cryptography and Network Secu-
rity, pages 207–223. Springer Berlin Heidelberg, 2008.

[15] C. Costello and P. Longa. Four$$\mathbb {Q}$$: Four-
Dimensional Decompositions on a $$\mathbb {Q}$$-curve
over the Mersenne Prime. In T. Iwata and J. H. Cheon,
editors, Advances in Cryptology – ASIACRYPT 2015, pages
214–235. Springer Berlin Heidelberg, 2015.

[16] I. Damgård. Concurrent Zero-Knowledge is Easy in Practice.
Technical Report 014, 1999. URL https://eprint.iacr.org/
1999/014.

[17] T. Dimitriou. Privacy-respecting rewards for participatory
sensing applications. In 2018 IEEE Wireless Communications
and Networking Conference (WCNC), pages 1–6, Apr. 2018.
10.1109/WCNC.2018.8377269.

[18] P. Dzurenda, S. Ricci, J. Hajny, and L. Malina. Performance
Analysis and Comparison of Different Elliptic Curves on
Smart Cards. In 2017 15th Annual Conference on Privacy,
Security and Trust (PST), pages 365–36509, Aug. 2017.
10.1109/PST.2017.00050.

[19] J. Groth and Y. Ishai. Sub-linear Zero-Knowledge Argu-
ment for Correctness of a Shuffle. In N. Smart, editor, Ad-
vances in Cryptology – EUROCRYPT 2008, pages 379–396.
Springer Berlin Heidelberg, 2008.

[20] J. Groth and A. Sahai. Efficient Non-interactive Proof Sys-
tems for Bilinear Groups. IACR Cryptology ePrint Archive,
2007:155, Jan. 2007. URL http://eprint.iacr.org/2007/155.

[21] G. Hartung, M. Hoffmann, M. Nagel, and A. Rupp. BBA+:
Improving the Security and Applicability of Privacy-
Preserving Point Collection. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1925–1942, New York, NY, USA, 2017.
ACM. 10.1145/3133956.3134071.

[22] G. Hinterwälder, F. Riek, and C. Paar. Efficient E-cash with
Attributes on MULTOS Smartcards. In S. Mangard and
P. Schaumont, editors, Radio Frequency Identification, pages
141–155. Springer International Publishing, 2015.

[23] M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, and R. Schw-
erdt. P4TC—Provably-Secure yet Practical Privacy-
Preserving Toll Collection. Technical Report 1106, 2018.
URL https://eprint.iacr.org/2018/1106.

[24] T. Jager and A. Rupp. Black-Box Accumulation: Collecting
Incentives in a Privacy-Preserving Way. Proceedings on
Privacy Enhancing Technologies, 2016(3):62–82, July 2016.
10.1515/popets-2016-0016.

[25] V. Jourová. Strengthened EU rules to prevent money
laundering and terrorism financing, July 2018. URL

https://www.dash.org/
https://z.cash/
https://z.cash/
https://doi.org/10.1007/3-540-44987-6_9
http://link.springer.com/10.1007/3-540-44987-6_9
http://link.springer.com/10.1007/3-540-44987-6_9
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/1999/014
https://eprint.iacr.org/1999/014
https://doi.org/10.1109/WCNC.2018.8377269
https://doi.org/10.1109/PST.2017.00050
http://eprint.iacr.org/2007/155
https://doi.org/10.1145/3133956.3134071
https://eprint.iacr.org/2018/1106
https://doi.org/10.1515/popets-2016-0016

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 181

https://ec.europa.eu/info/files/factsheet-main-changes-
5th-anti-money-laundering-directive_en.

[26] T. Kim and R. Barbulescu. Extended Tower Number Field
Sieve: A New Complexity for the Medium Prime Case. In
M. Robshaw and J. Katz, editors, Advances in Cryptology –
CRYPTO 2016, pages 543–571. Springer Berlin Heidelberg,
2016.

[27] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for
Security. Technical Report RFC7748, RFC Editor, Jan. 2016.
URL https://www.rfc-editor.org/info/rfc7748.

[28] Z. Liu, P. Longa, G. C. C. F. Pereira, O. Reparaz, and
H. Seo. Four$$\mathbb {Q}$$on Embedded Devices with
Strong Countermeasures Against Side-Channel Attacks. In
W. Fischer and N. Homma, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2017, pages 665–686.
Springer International Publishing, 2017.

[29] U. Maurer. Zero-knowledge proofs of knowledge for group
homomorphisms. Designs, Codes and Cryptography, 77
(2-3):663–676, Dec. 2015. ISSN 0925-1022, 1573-7586.
10.1007/s10623-015-0103-5.

[30] M. Milutinovic, I. Dacosta, A. Put, and B. D. Decker.
uCentive: An Efficient, Anonymous and Unlinkable Incen-
tives Scheme. In 2015 IEEE Trustcom/BigDataSE/ISPA,
volume 1, pages 588–595, Aug. 2015. 10.1109/Trust-
com.2015.423.

[31] D. Pointcheval and O. Sanders. Short Randomizable Sig-
natures. In K. Sako, editor, Topics in Cryptology - CT-RSA
2016, pages 111–126. Springer International Publishing,
2016.

[32] A. Rupp, G. Hinterwälder, F. Baldimtsi, and C. Paar. P4R:
Privacy-Preserving Pre-Payments with Refunds for Trans-
portation Systems. In A.-R. Sadeghi, editor, Financial Cryp-
tography and Data Security, pages 205–212. Springer Berlin
Heidelberg, 2013.

[33] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. Zerocash: Decentralized Anony-
mous Payments from Bitcoin. In 2014 IEEE Sympo-
sium on Security and Privacy, pages 459–474, May 2014.
10.1109/SP.2014.36.

[34] J. T. Schwartz. Fast Probabilistic Algorithms for Verification
of Polynomial Identities. J. ACM, 27(4):701–717, Oct. 1980.
ISSN 0004-5411. 10.1145/322217.322225.

[35] V. Shoup. Lower Bounds for Discrete Logarithms and Re-
lated Problems. In W. Fumy, editor, Advances in Cryptology
— EUROCRYPT ’97, pages 256–266. Springer Berlin Hei-
delberg, 1997.

[36] T. Unterluggauer and E. Wenger. Efficient Pairings and
ECC for Embedded Systems. In L. Batina and M. Robshaw,
editors, Cryptographic Hardware and Embedded Systems
– CHES 2014, pages 298–315. Springer Berlin Heidelberg,
2014.

A Formal Instantiations of
Building Blocks

A.1 Commitment Scheme
Definition A.1 (Non-interactive commitment scheme).
The triple (Setup,Com,Open) is called a non-interactive
commitment scheme for message space M with group
setup SetupGrp if the following holds:
Completeness: For all gp ← SetupGrp(1k), all crs ←

Setup(gp) and all m ∈M and (C, d)← Com(crs,m)
it holds that Open(crs,m,C, d) = 1

Perfectly Hiding: For all (unbounded) adversaries A

Pr

 gp ← SetupGrp(1k); crs ← Setup(gp);
(m0,m1)← A(crs); b← {0, 1}
(C, d)← Com(crs,mb) : A(crs, C) = b

 = 1
2

Binding: For all PPT adversaries A

Pr


gp ← SetupGrp(1k); crs ← Setup(gp)
(C,m, d,m′, d′)← A(crs) :
m 6= m′ ∧ Open(crs,m,C, d) = 1
∧ Open(crs,m′, C, d′) = 1

 ≈ 0

The commitment scheme is called additively homo-
morphic if the message space M is an additive group
and it has an algorithm for adding commitments such
that the resulting commitment can be opened to the sum
of the messages.
It is called equivocable, if knowledge of a trapdoor al-
lows opening of commitments to arbitrary messages and
existence of the trapdoor cannot be detected.

We use Pedersen multi-commitments:

Definition A.2 (Pedersen Multicommitments). The
Pedersen multi-commitment scheme is given by:
Setup(gp, l) samples x1, . . . , xl ← Z∗p and returns crs :=

(H,H1, . . . ,Hl) := (G1, x1G1, . . . , xlG1).
SimSetup(gp, l) works as Setup(gp, l), but sets td :=

(x1, . . . , xl) as trapdoor, and returns (crs, td).
Com(crs,m) where m = (m1, . . . ,ml) samples d ← Z∗p

and returns (C, d) := (dH +
∑l
i=1miHi, d).

SimCom(crs) returns (C, d) := (dH, d), where d← Z∗p.
Open(crs,m,C, d) where m = (m1, . . . ,ml) returns 1 if

dH +
∑l
i=1miHi = C and 0 otherwise.

CAdd(C1, C2) returns C1 + C2.
DAdd(d1, d2) returns d1 + d2.
Equiv(C, d,m, td) returns d′ = d−

∑l
i=1mlxl where m =

(m1, . . . ,ml) and td = (x1, . . . , xl).

https://ec.europa.eu/info/files/factsheet-main-changes-5th-anti-money-laundering-directive_en
https://ec.europa.eu/info/files/factsheet-main-changes-5th-anti-money-laundering-directive_en
https://www.rfc-editor.org/info/rfc7748
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1109/Trustcom.2015.423
https://doi.org/10.1109/Trustcom.2015.423
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1145/322217.322225

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 182

Definition A.3 (Blinded Pedersen Commitment).
For the blinded Pedersen commitment, Setup adds an-
other element Z ← G \ {0} to the common reference
string, and Com calculates the commitment (γZ, γC)
as described above. The unveil information consists of
(d, γ).

Theorem A.4. If the DLOG assumption holds with
regard to SetupGrp, the Pedersen multi-commitment
scheme is an equivocable, additively homomorphic non-
interactive commitment scheme and the blinded variant
is an equivocable non-interactive commitment scheme.

A.2 Signatures
Definition A.5 (Signature Scheme). A signature
scheme (with setup SetupGrp and message space M)
is a triple (KeyGen,Sign,Verify) which satisfies correct-
ness: ∀gp ← SetupGrp(1n),∀(PK, sk) ← KeyGen(gp),
∀m ∈M: Pr[Verify(PK,m,Sign(sk,m)) = 1] = 1
It is called EUF-CMA secure if for all PPT adversaries
A with access to a signing oracle Ssk we have

Pr

 gp ← SetupGrp(1n); (PK, sk)← KeyGen(gp);
(m∗, σ∗)← ASsk(·)(PK) :
m∗ /∈ QSsk

A ∧ Verify(PK,m∗, σ∗) = 1

 ≈ 0

where QSsk
A is the set of all messages m for which A did

an oracle query.

A.3 Zero-Knowledge
Definition A.6 (ZKPoK). For a polynomial time de-
cidable ternary relation R we define the group-dependent
language Lgp as the set of x for which there exists w with
(gp, x, w) ∈ R. We call w a witness for x.
An interactive zero-knowledge proof of knowledge con-
sists of PPT algorithms Setup, SimSetup, ExtSetup and
interactive PPT algorithms (P,V) called the prover and
the verifier. By tr = 〈P(x),V(y)〉 we denote the public
transcript produced by the interaction between P and V,
ending with V either accepting or rejecting.
Moreover, we require the following properties:
Perfect completeness: For all gp ← SetupGrp(1n),
crs ← Setup(gp), (x,w) ∈ Lgp : 〈P(x,w),V(x)〉=1.
Composable Zero-Knowledge: There exists a sim-
ulation trapdoor and a PPT algorithm called the simu-
lator that, when given the simulation trapdoor, can sim-
ulate the prover without access to a witness for any PPT
verifier V∗ when given black-box access to V∗ in a way
that even an adversary that generates the statement to
be proven and is also given the simulation trapdoor has

only negligible advantage in deciding whether transcripts
are produced by the simulator or an actual interaction
between P and V∗. Additionally, existence of the trap-
door must be undetectable from the crs.
Witness-Extended Emulation There exists an ex-
pected PPT extractor E that when given access to a tran-
script oracle of the interaction of a prover P∗ with the
verifier V produces a transcript indistinguishable from
one obtained from a real interaction between P∗ and V,
and if the transcript is accepting also outputs a valid
witness w. Note that this also implies soundness.

We extend the generic sigma protocol introduced by
Maurer [29] with a Blum coin-toss to achieve concur-
rent zero-knowledge:

Definition A.7 (Modified Zero-Knowledge Protocol).
Our modified ZK scheme is given by:
– Setup(gp) generates crs ← CZK.Setup(gp) and out-
puts crspok = crs.

– SimSetup(gp) generates (crs, td)← CZK.SimSetup(gp)
and outputs (crspok, tdpok) = (crs, td).

– The interactive ZKPoK for x : Φ(x) = Z is per-
formed roughly as follows:
P picks a random k ← A, computes T = Φ(k) and
sends T together with a commitment on his half of
the challenge to V
V randomly picks his half of the challenge and
sends it to P
P computes the challenge c from the two halves,
sets r = k+cx and sends r together with the open-
ing of his challenge half to V
V computes c and checks that Φ(r) = T +cZ holds.

Theorem A.8. The protocol in Definition A.7 is an
argument for the relation Rgp with (gp, Z, x) ∈ R ⇔
Φ(x) = Z. It has composable perfect zero-knowledge if
CZK is equivocable and witness-extended emulation if
CZK is binding.

Composable perfect zero-knowledge follows from equiv-
ocability of CZK (see [16]), the proof for witness-
extended emulation is straightforward.

Definition A.9 (Bulletproof Range Proof). The Bul-
letproof range proof scheme consists of an PPT algo-
rithm Setup and an interactive protocol RangeProof be-
tween a prover P and a verifier V.
Setup(gp, l) generates a common reference string crsrp

for the range [0, 2l].

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 183

RangeProof The prover P with inputs (crsrp, v, r, C)
convinces the verifier V with inputs (crsrp, C) that
C = Com(v; r) and that v ∈ [0, 2l − 1].

For details on how the interactive proof is performed,
see [10].

Theorem A.10. The range proof in Definition A.9 has
perfect completeness, perfect special honest verifier zero-
knowledge and witness extended emulation. If the chal-
lenge is replaced by a Blum coin toss, it has perfect com-
posable zero-knowledge.

For the proof see [10, Cor. 2] and [16] for composable
zero-knowledge.

B Formal Definitions of BBA+

Definition B.1 (Owner-Binding). A trapdoor-linkable
BBA+ scheme is called owner-binding if for any PPT
adversary A in the experiments Expob-issueBBA+,A(n) and
Expob-acc-verBBA+,A (n) from Figure 9 the advantages of A de-
fined by

Advob-issueBBA+,A(n) := Pr
[
Expob-issueBBA+,A(n) = 1

]
Advob-acc-verBBA+,A (n) := Pr

[
Expob-acc-verBBA+,A (n) = 1

]
are negligible in n.

Experiment Expob-issueBBA+,A(n)
(crs, td)← Setup(1n)
(PKI , skI)← IGen(crs), (PKU , skU)← UGen(crs)
b← AMalIssue,MalAcc,MalVer(crs,PKI ,PKU)
The experiment returns 1 iff A made a successful call to
MalIssue(PKU).

Experiment Expob-acc-verBBA+,A (n)
(crs, td)← Setup(1n), (PKI , skI)← IGen(crs)
b← AMalIssue,MalAcc,MalVer(PKI)
The experiment returns 1 iff A made a successful call to MalAcc
or MalVer such that ExtractUID applied to that call outputs a
public key PKU for which MalIssue has never been called before.

Fig. 9. Owner-binding experiments for Issue and Add/Sub

Definition B.2 (Double-Spending Detection). A
trapdoor-linkable BBA+ scheme ensures double-spending
detection if for any PPT adversary A in the experiment
ExpdsdBBA+,A(n) from Figure 10 the advantage of A de-
fined by

AdvdsdBBA+,A(n) := Pr
[
ExpdsdBBA+,A(n) = 1

]
(5)

is negligible in n.

Experiment ExpdsdBBA+,A(n)
(crs, td)← Setup(1n), (PKI , skI)← IGen(crs)
b← AMalIssue,MalAcc,MalVer(PKI)
The experiment returns 1 iffA did two successful MalAcc/MalVer
calls resulting in two double-spending tags dstag1 = (s, z1) and
dstag2 = (s, z2) with extracted public keys PK(1)

U and PK(2)
U

such that at least one of the following conditions is satisfied:
– PK(1)

U 6= PK(2)
U or

– IdentDS(PKI , dstag1, dstag2) 6= (PK(1)
U , π) or

– IdentDS(PKI , dstag1, dstag2) = (PK(1)
U , π) but

VerifyGuilt(PKI ,PK(1)
U , π) = 0

Fig. 10. Double-spending detection experiment.

Definition B.3 (False-Accusation Protection). A
trapdoor-linkable BBA+ scheme ensures false-accusation
protection if for any PPT adversary A = (A0,A1) in the
experiment ExpfacpBBA+,A(n) from Figure 11 the advantage
of A defined by

AdvfacpBBA+,A(n) := Pr[ExpfacpBBA+,A(n) = 1] (6)

is negligible in n.

Experiment ExpfacpBBA+,A(n)
(crs, td)← Setup(1n)
(PKI , skI)← A0(crs), (PKU , skU)← UGen(crs)
π ← ARealHonIssue,RealHonAdd,RealHonSub

1 (PKI ,PKU)
The experiment returns 1 iff VerifyGuilt(PKI ,PKU , π) = 1.

Fig. 11. False accusation protection experiment

C Proofs for the Signature
Scheme

C.1 Proof of EUF-CMA Security

We make use of the following Lemma:

Lemma C.1 (Schwartz [34]). Let p be prime and let
t ≥ 1. Let F (X1, . . . , Xk) ∈ Zpt [X1, . . . , Xk] be a
nonzero polynomial of total degree d. Then for random
x1, . . . , xk ∈ Zpt , the probability that F (x1, . . . , xk) = 0
is at most d

p .

Proof of Theorem 6.2. First note that because the Ped-
ersen commitment scheme is binding and the user per-
formed a proof of knowledge of m, the message being
signed during BlindSign is well-defined.1

1 And since the adversary had to compute the commitment,
the message m can be obtained from the queries to the group
oracle.

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 184

In the generic group model, the adversary is only
allowed black-box access to the group. More precisely,
group elements are identified by uniformly random cho-
sen handles from {0, 1}n. The adversary receives handles
for the group elements in his input and is given access
to oracles to compute the group law and inversion that
take identifiers and return an identifier for the result.

As a first step, we modify the group oracle as
follows: The oracle keeps a list of the handles (ran-
dom bitstrings) the adversary receives and the in-
ternal representation of that group element. Inter-
nally, group elements are represented by polynomi-
als Fi ∈ Zp[X1, . . . , Xk]. The generator G is repre-
sented by the constant polynomial 1 and the public
key PK is represented by the constant polynomial sk
(where skG = PK). For each element H,Z,H0, . . . ,Hl
of the common reference string a new indeterminate
XH , XZ , XH0 , . . . XHl

is introduced and the element is
represented by the polynomial Xi for the correspondent
indeterminate. When the adversary queries the group
law oracle on two elements Fi, Fj the resulting group
element is represented by Fk = Fi + Fj , and when he
queries the group inversion oracle on Fi, the resulting
group element is represented by Fk = −Fi. If Fk is al-
ready in the list, the corresponding handle is returned,
otherwise a new one is chosen at random. After the ad-
versary finished and outputted his solution, a random
x := (x1, . . . , xk) ∈ Zkp is chosen and all polynomials are
evaluated at x. During interaction, whenever a random
group element is chosen (including cases where a ran-
dom scalar s is chosen and the group element is com-
puted by sY for some group element Y) a new inde-
terminate Xi is introduced and the element is repre-
sented as above. Whenever non-random group elements
are computed, the oracle addition/inversion is used.

More precisely, during the BlindSign protocol, the
adversary receives group elements Ai, B1,i, B2,i. The Ai
are again represented by a polynomial in a newly intro-
duced indeterminate Xi, while B1,i, B2,i are represented
by polynomials in existing indeterminates (and depend
on the group element Ci the adversary supplied).

If two distinct polynomials Fi, Fj evaluate to the
same group element, a simulation failure occurs and we
abort, otherwise this is indistinguishable to the real ex-
periment. We call this event FG. Note that for an ad-
versary performing qG queries to the group oracle and
engaging in qsign signing protocols, there exist at most
5 + l + qG + 3qsign ≈ qG + 3qsign polynomials Fi in at
most 3 + l + qsign ≈ qsign indeterminates Xj . Note also
that the polynomials Fi are of degree either 0 or 1, as
for Fk = Fi+Fj it holds that the degree of Fk is at most

the larger of the degrees of Fi and Fj , and polynomials
inserted otherwise are of degree 0 or 1. Then it follows
from Lemma C.1 that the probability of two polyno-
mials Fi and Fj in qsign indeterminates to be equal on
random x ∈ Zqsign

p is at most 1
p , and as there are at most(

qG+3qsign
2

)
pairs of polynomials, we have

Pr[FG] ≈
(
qG + 3qsign

2

)
1
p

(7)

Then observe that an adversary has two options to
come up with a valid signature:
1. For a given signature on message m obtained

through interaction with the signing oracle, open
the commitment (Z̃, C̃) part of the signature to a
different message m′

2. Generate a fresh signature by computing some
group elements via the group oracle and some non-
group data that arbitrarily depends on the re-
sponses to the group and random oracles

For simplicity, we first assume that no hash collisions
occur, i.e. there are no queries q1, q2 to the random
oracleH so thatH(q1) = H(q2). Should two such queries
occur, we abort. We call this event FH (hash collision).
Since H is a random oracle, for an adversary performing
qH queries to H, we have

Pr[FH] ≈
(
qH
2

)
1
p

(8)

Regarding (1), note that (Z̃, C̃) uniquely defines C:
For the adversary to be able to open the blinded com-
mitment, he must supply some γ ∈ Zp so that γZ = Z̃

and γC = C̃. Two different openings d and d′ to dif-
ferent messages m and m′ for C result in two different
polynomials F and F ′ with coefficients m, d and m′, d′

that both evaluate to C. This constitutes a simulation
failure as described above and is thus already contained
in FG.

For (2), the adversary needs to forge the ZKPoK,
i.e. come up with group elements Z̃, C̃ and val-
ues c̃, r̃, c̃′, r̃′1, r̃

′
2, r
′
3 ∈ Zp for which c̃ + c̃′ =

H(Z̃, C̃, Ã, B̃1, B̃2, B3) holds for Ã = r̃G + c̃PK,
B̃1 = r̃′1G + c̃′C̃, B̃2 = r̃′2H + c̃′(Z̃ − C̃) and
B3 = r′3Z + c̃′Z̃.

We call the first part of the ZKPoK (knows sk such
that skG = PK, corresponding to c̃) the key side and
the second part (knows (w1, w2, γ) such that w1G =
C̃, w2H = (Z̃ − C̃), γZ = Z̃, corresponding to c̃′) the
message side.

Now for the key side, observe that the adver-
sary only receives non-group elements of the form
ri = ai + cisk with new random ai each time, and ai

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 185

and sk otherwise are only accessed through the group
oracle, whose output is statistically independent of ai
and sk, and thus ri is statistically independent of sk.
Thus, the probability to output some Ã ∈ G and then
for c̃ dependent on Ã successfully compute r̃ for which
it holds that Ã = r̃G+ c̃PK is at most qG

2H(c̃) , where H(c̃)
is the entropy of c̃.

For the message side, following equations must hold:

B̃1 = r̃′1G+ c̃′C̃ (9)
B̃2 = r̃′2H + c̃′(Z̃ − C̃) (10)
B3 = r′3Z + c̃′Z̃ (11)

Now, we view the group elements A uses as multivariate
polynomials Fi(X1, . . . , Xl) and rewrite the equations as

r̃′1 = FB̃1
− c̃′FC̃ (12)

r̃′2XH = FB̃2
− c̃′(FZ̃ − FC̃) (13)

r′3XZ = FB3 − c̃′FZ̃ (14)

So, after evaluating the polynomials at x chosen uni-
formly random as mentioned above, equation (12) holds
if either FB̃1

and FC̃ are both constant or only with
probability 1

2H(c̃′) , where H(c̃′) is the entropy of c̃′. Sim-
ilarly, equation (14) holds if FZ̃ and FB3 are both of the
form riXZ or again only with probability 1

2H(c̃′) . For
equation (13) to hold, both FB̃2

as well as (FZ̃ − FC̃)
need to be of the form riXH , otherwise it again only
holds with probability 1

2H(c̃′) . But as FZ̃ = riXZ and
FC̃ = rj , it cannot hold that (FZ̃ − FC̃) = rkXH . Thus,
the probability that equations (12) to (14) are simulta-
neously satisfied is only 1

2H(c̃′) , and the probability that
both the key-side and the message-side are simultane-
ously satisfied is at most

qG
2H(c̃)

qG
2H(c̃′) =

q2
G

2H(c̃)+H(c̃′)

. Since it has to hold that c̃+c̃′ = c andH(c) ≈ n sinceH
is a random oracle and it holds that H(c) = H(c̃+ c̃′) ≤
H(c̃, c̃′) ≤ H(c̃) + H(c̃′) we have that H(c̃) + H(c̃′) ≥ n

and thus the probability of (2) is at most
qG
2n (15)

So to conclude, the probability of an adversary to
succeed in forging a signature is at most the sum of 1
and 2 and the failure events FG and FH. So from (7),
(8) and (15) we have

Adveuf-cma
A (n) ≤

q2
G

2n +
(
qG + 3qsign

2

)
1
p

+
(
qH
2

)
1
p

which is negligible in n since qG, qH and qsign are poly-
nomials in n, while p ≈ 2n.

C.2 Proofs of Blindness/Zero-Knowledge

Proof of Theorem 6.3. The only information that is
sent outside the composable perfect zero-knowledge
proof Π1 is C = PC.Com(m; d) which is statistically in-
dependent of m as PC is perfectly hiding and e, which
is statistically independent of m because H is a random
oracle. Extraction of the signed message directly follows
from witness-extended emulation of Pi1.

Zero-Knowledge Verification
First note that because C is uniquely defined by
(γZ, γC) and C was sent to the signer, the protocol
only achieves computational zero-knowledge (learning
C during this interaction allows linking the signature to
a signing interaction, thus we need to treat C as part of
the witness). We follow the proof of blindness in [5].

Proof of Theorem 6.4. The user sends the following in-
formation to the verifier: Z̃ = γZ, C̃ = γC, r̃ = r+t1, c̃ =
c+t2, r̃′1 = γr′1+t3, r̃′2 = γr′2+t5, c̃′ = c′+t4, r′3 = u′3+c′γ.
The ti have all been chosen uniformly at random by the
user, thus r̃, r̃′1, r̃′2, c̃, c̃′ and r′3 are all statistically in-
dependent of the values r, r′1, r′2, c, c′ sent by the signer.
Additionally, it holds that r̃G+ c̃X = Ã, r̃′1G+ c̃′C̃ = B̃1
and r̃′2H+c̃′(Z̃−C̃) = B̃2, but Ã, B̃1 and B̃2 are also sta-
tistically independent of A,B1 and B2. Finally, c̃+ c̃′ = ε

is statistically independent of e = ε − t2 − t4. Thus, it
remains to show that any adversary that can link Z̃, C̃
to C can be used to solve the DDH problem.

First, note that there are two types of signatures a
simulator might output: σ = (Z̃, C̃, r̃, c̃, r̃′1, r̃′2, c̃′, r′3) is
correct if there exists γ such that Z̃ = γZ and C̃ = γCi
for some interaction i with the signer and the signature
verifies. The signature σ is fake if no such γ exists (but it
still verifies). It is easy for the simulator to output a fake
signature with control over the random oracle: it picks
random Z̃, C̃ ← G, r̃, r̃′1, r̃′2, c̃, c̃′, r′3 ← Zp and programs
the random oracle so that the signature verifies.

Now, observe that an adversary able to successfully
distinguish between a correct and a fake signature (with
non-negligible advantage ε) can be used to solve the
DDH problem. We construct a reduction B as follows:

The reduction B gets as input a DDH instance
(gp, A,B,D). B then sets Z = A and H = eG and
H0, . . . ,Hl to e0A, . . . , elA for randomly chosen ei ∈ Zp.
Then B constructs the signature as Z̃ = D and C̃ = kD

for random k ← Zp, chooses all other values at ran-
dom and programs the random oracle as explained
above. (Note that as B knows the discrete logarithms

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 186

of H0, . . . ,Hl and thus knows k ∈ Zp for honestly gen-
erated commitments C so that C = kA.) If (gp, A,B,D)
is a DH-tuple, then it holds that A = aG,B = bG

and D = abG, and thus Z̃ = D = bA = bZ and
C̃ = kD = kbA = bC is identically distributed as a cor-
rect signature. Conversely, if (gp, A,B,D) is not a DH-
tuple, then (Z̃, C̃) is a fake signature. Thus, B outputs
“DH” if A outputs “real” and “random” otherwise.

D Proofs for BBW

D.1 Extraction

Proof of Theorem 5.1. We consider an adversary
AMalIssue,MalAdd,MalSub that stopped after interacting q

times with the three oracles, where q is bounded by a
polynomial in the security parameter.

For any successful interaction with one of the oracles
(from the oracle’s point of view) we extract a witness
for the argument used in the interaction in the follow-
ing way: We fix the randomness of A and that of all
oracles. Then, starting with the interaction for which
the ZKPoK was completed last, we iteratively extract
witnesses one-by-one: For the interaction we want to
extract, we supply the extractor E of the correspond-
ing ZKPoK with a transcript oracle O of all messages
part of the ZKPoK. Due to the witness-extended emu-
lation property and since the interaction was successful
and thus the first transcript produced is accepting, E
outputs a witness with overwhelming probability in ex-
pected polynomial time.

We repeat this step for every successful oracle in-
teraction, of which there are at most q. This results
in an extraction algorithm E∗ with expected runtime
q · t where t is the expected runtime of E . Since E has
expected polynomial runtime and q is bounded by a
polynomial, the resulting runtime is expected polyno-
mial. As the probability for successful extraction is over-
whelming for each interaction and the amount of inter-
actions is bounded by q, the probability that all wit-
nesses are successfully extracted is overwhelming.

D.2 Simulation-Linkability

We start with the requirement of P2, P3 and BlindSign
being complete:

Lemma D.1. P2 and P3 are complete.

Lemma D.2. The protocol BlindSign to obtain blind
signatures is complete.

Proof of Lemma D.1. We prove Lemma D.1 for P2, the
proof for P3 works analog. A transcript for P2 is of
the form tr =: (π1, c, π2) where π1 =: (T,CZ) and
π2 = (c′, dZ, r). Since tr is accepting, it holds for the
group homomorphism Φ: A → B used in P2 and the
statement Z that Φ(r) = T + (c + c′)Z, as well as
CZK.Open(c′, CZ, dZ) = 1.

c′, dZ and CZ are part of the protocol, and the honest
prover P can choose the same values. Since Z is in the
image of Φ and Φ is a homomorphism, it follows that
T is also in its image. Thus, there exists (at least one)
x ∈ A for which it holds that Φ(x) = Z. Then, for fixed
c, c′ and x, there exists k ∈ A such that r = k + (c +
c′)x and Φ(k) = T . Hence, the honest prover P with
witness x and randomness k, c′, dZ interacting with the
honest verifier V with randomness c produce the same
transcript tr .

Proof of Lemma D.2. A transcript for BlindSign is of
the form tr =: (trZ, (A,B1, B2), e, (c, r, c′, r′1, r′2)) where
trZ is a transcript of the zero-knowledge proof of knowl-
edge for the opening of the commitment C given as com-
mon input to the user and signer. With the same argu-
ment as in the proof of Lemma D.1 this zero-knowledge
protocol is complete and there exist suitable inputs and
random choices for the honest user U that lead to the
same transcript trZ. All messages sent by the signer only
depend on the common input C, his own random choices
and the message e, so as long as there are inputs for the
honest user that lead to the same value of e, the re-
sulting interaction leads to the same transcript tr . e is
calculated as ε− t2 − t4, where ε is the output of H on
values depending on t2 and t4, so there need to exist val-
ues for which H outputs e+ t2 + t4. As G is cyclic with
prime order, every group element is a generator. Thus,
independent of the choices of t2 and t4, there exist values
for t1, t3 and t5 so that α, β1 and β2 can be any ele-
ment from G. Since H is a random oracle, for some fixed
values of ζ, ζ1 and µ, the output of H(ζ, ζ1, α, β1, β2, µ)
is still uniformly random, and thus there exist suitable
choices for t1, . . . , t5 so that H(. . .) = e+t2 +t4 (as there
are p3 possible values for (α, β1, β2) but only p possible
values for H(. . .)).

Now we can show that our scheme is indeed simulation-
linkable:

Proof of Theorem 5.2. Completeness: We need to
show that any accepting transcript could be produced

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 187

by interaction of an honest user U with an honest accu-
mulator AC/verifier V when given suitable inputs and
randomness. More precisely, we need to show that for
all values part of an accepting transcript, there exist in-
puts and random choices for U and AC/V that result in
these values being part of the transcript.
A transcript for Add has the form tr =:
(u2, (s, t, C′, σ1,), trP2(C′′, d′′, s′′), trBlindSign). For trP2
by Lemma D.1, and for trBlindSign there exist suitable
inputs and random choices by Lemma D.2.
s is part of the token and chosen uniformly at random
during honest token generation, so any value of s can
be part of a token given as input to U . t is calculated
as t = skUu2 + u1, so for any user secret key skU and
any value u2 sent by AC/V, there exists a value u1 that
results in t, which is also chosen uniformly at random
during honest token generation and can thus be part
of the input token. C′ is a Pedersen commitment on
some message m′. As Pedersen commitments are per-
fectly hiding, there exists a random choice d′ for any
message m′ so that C′ is a commitment on m′ with
opening information d′. σ1 =: (ζ, ζ1, ρ, ω, ρ′1, ρ′2, ω′, µ) is
part of a valid signature σ := (σ1, σ2 := (d, γ)). Since
P2/P3 have witness-extended emulation (and are thus
sound), we have that ζ = γZ and ζ1 = γC for some com-
mitment C (note that this fixes the choice of γ). Then,
as above, there exists a random choice d for any message
m so that C is a commitment on m with opening infor-
mation d. Now, as the signature basically consists of a
(non-interactive via Fiat-Shamir transformation) sigma-
protocol zero-knowledge proof, with the same argument
as in the proof of Lemma D.1 there exist suitable inputs
and random choices for which σ1 is produced.
Extractability: Since P2 and P3 have witness-
extended emulation, there exists an extractor E for
them. Extraction for Σ-protocols is achieved by first
getting enough related transcripts and then supply-
ing them to an algorithm KnowledgeExtractor that out-
puts the witness. It is thus possible to construct
GenerateTranscripts and KnowledgeExtractor from E and
implement ExtractUID by running KnowledgeExtractor to
receive a witness x containing the user secret key skU
and then computing and outputting PKU = skUG.

D.3 System Security

We first state the slightly modified formal definitions for
security.

Definition D.3 (Oracles). The adversary in the fol-
lowing security games is given access to the following
oracles.
MalIssue(PKU) lets the adversary initiate the Issue pro-

tocol with an honest issuer I provided that there is
no pending MalIssue call for PKU and PKU has also
not been used in a successful call to MalIssue before.

MalAdd(attr , v) is used by the adversary to initiate the
Add protocol with honest AC for input v ∈ V.

MalSub(attr , v) is used by the adversary to initiate the
Sub protocol with honest V for input v ∈ V.

Definition D.4 (Owner-Binding). A simulation-
linkable BBW scheme is called owner-binding if for
any PPT adversary A in the experiments Expob-issueBBW,A(n)
and Expob-add-subBBW,A (n) from Figure 12 the advantages of A
defined by

Advob-issueBBW,A(n) := Pr
[
Expob-issueBBW,A(n) = 1

]
Advob-add-subBBW,A (n) := Pr

[
Expob-add-subBBW,A (n) = 1

]
are negligible in n.

Experiment Expob-issueBBW,A(n)
crs← Setup(1n)
(PKI , skI)← IGen(crs), (PKU , skU)← UGen(crs)
b← AMalIssue,MalAdd,MalSub(crs,PKI ,PKU)
The experiment returns 1 iff A made a successful call to
MalIssue(PKU).

Experiment Expob-add-subBBW,A (n)
crs← Setup(1n), (PKI , skI)← IGen(crs)
b← AMalIssue,MalAdd,MalSub(PKI)
The experiment returns 1 iff A made a successful call to MalAdd
or MalSub such that ExtractUID applied to that call outputs a
public key PKU for which MalIssue has never been called before.

Fig. 12. Owner-binding experiments for Issue and Add/Sub

Definition D.5 (Balance Binding). A simulation-
linkable BBW scheme is called balance-binding if for
any PPT adversary A in the experiment ExpbbBBW,A(n)
from Figure 13 the advantage of A defined by

AdvbbBBW,A(n) := Pr
[
ExpbbBBW,A(n) = 1

]
(16)

is negligible in n.

Definition D.6 (Double-Spending Detection). A
simulation-linkable BBW scheme ensures double-
spending detection if for any PPT adversary A in the
experiment ExpdsdBBW,A(n) from Figure 14 the advantage
of A defined by

AdvdsdBBW,A(n) := Pr
[
ExpdsdBBW,A(n) = 1

]
(17)

is negligible in n.

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 188

Experiment ExpbbBBW,A
crs← Setup(1n)
(PKI , skI)← IGen(crs)
b← AMalIssue,MalAdd,MalSub(PKI)
The experiment outputs 1 iff either of the following holds:
1. ExtractUID fails to extract a public key for any of the suc-

cessful calls to MalAdd or MalSub
2. or A made a successful call to MalSub such that

– all successful MalIssue/MalAdd/MalSub calls produce
unique token version numbers

– the amount of points v∗ ∈ V subtracted exceeds the
sum of previously collected points w for PKU (ex-
tracted from the call to MalSub), i.e.

v
∗
> w =

∑
v∈V Add

PKU

v −
∑

v∈V Sub
PKU

v,

where V Add
PKU

is the list of all accumulation values v ∈ V
that appeared in previous successful calls to MalAdd
for which PKU has been extracted using ExtractUID,
and V Sub

PKU
for MalSub respectively.

Fig. 13. Balance binding experiment.

Experiment ExpdsdBBW,A(n)
crs← Setup(1n)
(PKI , skI)← IGen(crs)
b← AMalIssue,MalAdd,MalSub(PKI)
The experiment returns 1 iff A did two successful
MalAdd/MalSub calls resulting in two double-spending
tags dstag1 = (s, z1) and dstag2 = (s, z2) such that at least
one of the following conditions is satisfied:

– ExtractUID fails to extract PK(1)
U or PK(2)

U for the respective
calls or

– PK(1)
U 6= PK(2)

U or
– IdentDS(PKI , dstag1, dstag2) 6= (PK(1)

U , π) or
– IdentDS(PKI , dstag1, dstag2) = (PK(1)

U , π) but
VerifyGuilt(PKI ,PK(1)

U , π) = 0

Fig. 14. Double-spending detection experiment.

We split the proof of Theorem 5.3 in separate proofs for
owner-binding, double-spending detection and balance-
binding.

Owner-Binding
The proof for owner-binding wrt. Issue is a straight-
forward reduction to the CDH problem.

Proof of owner-binding wrt. Add/Sub . We proceed in a
series of games.
Game 1 is the real experiment.

InGame 2, if ExtractUID fails for any call to MalAdd
or MalSub, the experiment aborts and returns 0. We call
this event failure event F1 (ExtractUID failed).

In Game 3, when A finished running, we use
the extractor E∗ from Theorem 5.1 to extract wit-
nesses for all zero-knowledge proofs. More precisely,
for each call to MalIssue, we extract a message

m′ := (s′, w = 0, skU , u1) and store a record
(PKU ,m′,m∗ := (s′ + s′′, w = 0, skU , u1)), where PKU is
the user public key for which MalIssue was called andm∗

is the message for which A obtained a signature, with
s′′ being the issuers random share of the serial number.
For each call to MalAcc or MalVer we extract a message
m′ := (s′, w, skU , u′1) and a message m := (s, w, skU , u1)
together with a valid signature σ and store a record
(PKU ,m′,m, σ,m∗ := (s′+s′′, w+v, skU , u′1)), where PKU
is the public key extracted by ExtractUID and m∗ is the
message for which A obtained a signature, with s′′ be-
ing the issuers random share of the serial number and v
the amount of points collected/redeemed. If extraction
of any witness fails, the game aborts and returns 0. We
call this event failure event F2 (extraction failure).

In Game 4 we check for each extracted message
m if there exists a previous call to MalIssue, MalAcc or
MalVer for which our record contains m∗ with m∗ = m,
i.e. if every message for which A proves knowledge of a
signature has indeed been signed by the experiment. If
this is not the case for any call, the experiment aborts
and returns 0. We call this event failure event F3 (forged
signature).
Let Advgame−i

BBW,A (n) = Pr
[
Expgame−i

BBW,A (n) = 1
]
denote the

advantage of A in Game i. Thus, by definition,
Advgame-1

BBW,A(n) = Advob-acc-verBBW,A (n).
Since each game only differs from the previ-
ous one if the respective failure event occurred,
we also have Advgame-4

BBW,A(n) = Advgame-1
BBW,A(n) −

Pr
[

Expgame−1
BBW,A (n) = 1 ∧

(∨3
i=1 Fi

)]
.

Now lets consider the success probability of A in Game
4: As we already ensured that ExtractUID always suc-
ceeds, the only way for A to win is to make a call to
MalAcc or MalVer which results in an extracted PKU for
which MalIssue has not been called previously.

So consider the first call to MalAcc or MalVer where
this happens. We have a record for this call containing a
message m := (s, w, skU , u1) and a valid signature σ on
m. As we ensured that m has been signed in a previous
call, we have another call for which the record contains
m∗ = m and a public key ˆPKU . But due to the equa-
tions shown in the respective zero-knowledge proof (and
since soundness for the proof holds when extraction was
successful), we know that ˆPKU = PKU must hold. Thus,
if the call containing m∗ was to MalAcc or MalVer, it is a
previous call containing PKU , which contradicts the as-
sumption of considering the first such call. If it is a call
to MalIssue, it contradicts the assumption that MalIssue
has not been called for PKU .

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 189

Thus, it holds that A can not win this game
and we have Advgame-4

BBW,A(n) = 0. Now, let us dis-
cuss the failure events. F1 only occurs with negligible
probability as BBW is simulation-linkable, so we have
Pr[F1] ≤ negl(n). F2 also only occurs with negligi-
ble probability according to Theorem 5.1, so we have
Pr[F2] ≤ negl(n). When F3 occurs, we extracted a
valid signature σ on a message m that has never been
signed. Thus, we can construct an adversary BEUF-CMA
against the EUF-CMA security of S and it holds that
Pr[F3] = Adveuf-cma

S,BEUF-CMA(n).
Putting everything together, we have

Advob-acc-verBBW,A (n) = Advgame-1
BBW,A(n)

= Pr

[
Expgame−1

BBW,A (n) = 1 ∧ ¬
(3∨
i=1
Fi
)]

+ Pr

[
Expgame−1

BBW,A (n) = 1 ∧
(3∨
i=1
Fi
)]

≤ Advgame-4
BBW,A(n) + Pr

[(3∨
i=1
Fi
)]

≤ Pr[F1] + Pr[F2] + Pr[F3]
≤ negl(n) + negl(n) + Adveuf-cma

S,BEUF-CMA(n)

which is negligible since S is EUF-CMA secure.

Double-Spend Detection
Proof. We make use of the same sequence of
games 1 to 4 as in the proof of owner-binding.
Let Advgame−i

BBW,A (n) = Pr
[
Expgame−i

BBW,A (n) = 1
]

again
denote the advantage of A in Game i. We
thus have that Advgame-1

BBW,A(n) = AdvdsdBBW,A(n) and
AdvdsdBBW,A(n) ≈ Advgame-4

BBW,A(n) + Adveuf-cma
S,BEUF-CMA(n).

Now let us again consider the success probability of
A in Game 4:
Let PK(1)

U ,m(1) := (s(1), w(1), sk(1)
U , u

(1)
1), σ(1) be the ex-

tracted values from the call resulting in dstag1 = (s, z1)
and PK(2)

U ,m(2) := (s(2), w(2), sk(2)
U , u

(2)
1), σ(2) from the

call resulting in dstag2 = (s, z2) respectively, with
s(1) = s(2) = s. Let also z1 =: (t(1), u

(1)
2) and

z2 =: (t(2), u
(2)
2). Note that it holds that PK(i)

U = sk(i)
U G.

There are 4 ways for A to win:
Case 1 ExtractUID fails to extract a PKU for either call
Case 2 PK(1)

U 6= PK(2)
U

Case 3 IdentDS(PKI , dstag1, dstag2) 6= (PKU , π)
Case 4 IdentDS(PKI , dstag1, dstag2) = (PK(1)

U , π) but
VerifyGuilt(PKI ,PK(1)

U , π) = 0

Case 1 can never happen, as we already ensured
ExtractUID successfully extracts PKU for all calls, hence
Pr[Case 1] = 0.
In Case 2 we have two messages m(1), m(2) that were
both signed by the experiment and for which it holds
that s(1) = s(2) but sk(1)

U 6= sk(2)
U (since PK(1)

U 6= PK(2)
U).

But s(i) is chosen uniformly at random from Zp (ob-
serve that for any s′ ∈ Zp and uniformly randomly cho-
sen s′′ ← Zp it holds that s′ + s′′ is uniformly ran-
dom over Zp) and thus the probability for s(1) = s(2)

is at most q2

p where q is the amount of successful calls
A did to MalIssue, MalAcc and MalVer. Hence, we have
Pr[Case 2] ≤ q2

p .
For Case 3, recall that we have double spending tags
dstag1 and dstag2 with t(1) = sk(1)

U u
(1)
2 + u

(1)
1 and

t(2) = sk(2)
U u

(2)
2 + u

(2)
1 . From the definition of IdentDS

it follows that IdentDS(dstag1, dstag2) = (PK(1)
U , sk(1)

U) if
the following conditions are satisfied: (1) sk(1)

U = sk(2)
U

(2) PK(1)
U = sk(1)

U G (3) u(1)
2 6= u

(2)
2 and (4) u(1)

1 = u
(2)
1 .

Assume PK(1)
U = PK(2)

U (otherwise Case 2 is satis-
fied). From the definition of ExtractUID, it follows that
PK(1)
U = sk(1)

U G,PK(2)
U = sk(2)

U G and thus sk(1)
U = sk(2)

U .
u

(1)
2 6= u

(2)
2 holds with probability at least 1− q2

p as both
are chosen uniformly at random from Zp by the Accu-
mulator/Verifier. It remains the case that u(1)

1 6= u
(2)
1 .

Again, as we already ensured that m(1) and m(2) were
both signed by the experiment during a call to any or-
acle, this means there were two distinct calls that re-
sulted in the same serial number s. Thus, as in Case 2,
the probability for this is at most q2

p . This leads us to
Pr[Case 3 | ¬Case 2] ≤ q2

p + q2

p .
Case 4 can never happen due to the definitions of
IdentDS and VerifyGuilt: If IdentDS outputs (PKU , π)
(and not ⊥), it computed PKU as πG, while VerifyGuilt
checks whether PKU = πG. Thus Pr[Case 4] = 0.
Hence, A’s advantage in Game 4 is Advgame-4

BBW,A(n) ≤ 3q2

p

and we have that

AdvdsdBBW,A(n) ≈ 3q2

p
+ Adveuf-cma

S,BEUF-CMA(n)

which is negligible since S is EUF-CMA secure and q2

p

is negligible.

Balance-Binding
This proof closely follows the proof of [21, Thm. B.5].

Proof. We show that an adversary cannot make us mis-
count his balance and that he cannot claim a higher
balance than what we counted.

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 190

To achieve this, we proceed in a series of games,
where the first game is the real experiment and the last
game is setup such that it is impossible for the adver-
sary to win. We show that the difference between two
such games is either negligible or any adversary able
to differentiate between them can be used to build an
adversary against one of the building blocks.

Firstly, we now explain the different games.
Game 1 is the real experiment.
InGame 2, if ExtractUID fails for any call to MalAcc

or MalVer, the experiment aborts and returns 0. We call
this event failure event F1 (ExtractUID failed).

In Game 3, when A finished running, we use
the extractor E∗ from Theorem 5.1 to extract wit-
nesses for all zero-knowledge proofs. More precisely,
for each call to MalIssue, we extract a message
m′ := (s′, w = 0, skU , u1) and store a record
(PKU ,m′,m∗ := (sout := s′ + s′′, w = 0, skU , u1), s′′),
where PKU is the user public key for which MalIssue was
called and m∗ is the message for which A obtained a
signature, with s′′ being the issuers random share of
the serial number. For each call to MalAcc or MalVer we
extract a message m′ := (s′, w, skU , u′1) and a message
m := (sin := s, w, skU , u1) together with a valid signature
σ and store a record (PKU ,m′,m, σin,m∗ := (sout := s′+
s′′, w + v, skU , u′1), s′′), where PKU is the public key ex-
tracted by ExtractUID and m∗ is the message for which
A obtained a signature, with s′′ being the issuers ran-
dom share of the serial number and v the amount of
points collected/redeemed. If extraction of any witness
fails, the game aborts and returns 0. We call this event
failure event F2 (extraction failure).

In the following we view the set of transactions as
a directed graph, where each successful transaction is a
vertex and there exists an edge from transaction A to
transaction B, if the serial number sout from A is equal
to the serial number sin of B.

In Game 4 we make sure that the indegree of ev-
ery vertex associated with a call to MalAcc or MalVer
is at least one, i. e. every serial number sin that ap-
peared in a call to MalAcc or MalVer was part of
a signed token generated in a previous interaction.
Let r̂ec = (P̂KU , m̂′, m̂ := (ŝin, ŵ, ŝkU , û1), σ̂in, m̂∗ :=
(ŝout, ŵ∗, ŝkU , û∗1), ŝ′′) denote the record of the transac-
tion considered. Then, the game checks for every suc-
cessful MalAcc/MalVer transaction (containing ŝin) if
there exists a previous transaction whose record con-
tains sout with sout = ŝin. If no such transaction exists,
the game aborts and returns 0. We call this event failure
event F3 (new serial number).

In Game 5 we now make sure that the indegree
of every vertex associated with a call to MalAcc/MalVer
is at most one, i. e. every serial number sin that ap-
peared in a call to MalAcc or MalVer has been signed
in exactly one previous transaction. To do so, the game
now additionally checks if there is more than one pre-
vious transaction containing sout such that sout = ŝin.
If at least two such transactions exist, the game aborts
and returns 0. We call this event failure event F4 (serial
number collision).

In Game 6 we make sure that the outdegree of
every vertex is at most one, i. e. that every serial number
sout is used as input in at most one other transaction. To
do so, for every call to MalAcc or MalVer the game checks
if there already exists another transaction containing sin
with sin = ŝin and if so aborts and returns 0. We call
this event failure event F5 (double spending).

In Game 7 we now have for every MalAcc/MalVer
transaction exactly one previous transaction where ŝin
was generated and signed. We now make sure that the
public key P̂KU in each new such transaction is equal to
the public key PKU from the previous transaction. If this
is not the case for the first time, the game aborts and
return 0. We call this event failure event F6 (miscount).

InGame 8 we check for over-claims along the path.
By now, our graph consists of unary trees, where the
root of each tree represents a call to MalIssue and con-
secutive child nodes represent changes to the balance
associated with the respective user (and we made sure
that for each such tree there is exactly one user asso-
ciated with the transaction, namely the one for which
MalIssue was called). Now, the game first checks that
for each MalVer transaction, it holds that w ≥ v (and
thus ŵ ∈ V). Additionally the game checks each MalAcc
transaction if for its predecessor transaction record it
holds that ŵ = w + v and for each MalVer transac-
tion that ŵ = w − v. If either of these not the case
for any transaction, a wrong balance has successfully
been claimed and the game aborts and returns 0. We
call this event failure event F7 (wrong claim).

Let Advgame−i
BBW,A (n) = Pr

[
Expgame−i

BBW,A (n) = 1
]
denote

the advantage of A in Game i. Thus, by definition,

Advgame-1
BBW,A(n) = AdvbbBBW,A(n) (18)

Note that in Game 8, if none of the failure events
occurred, what has been counted as balance for PKU
up to a MalVer call coincides with the claimed balance.
Hence, the adversary cannot win this game and we have

Advgame-8
BBW,A(n) = 0 (19)

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 191

Since each game only differs from the previous one
if the respective failure event occurred, we also have

Advgame-8
BBW,A(n) = Advgame-1

BBW,A(n)−

Pr

[
Expgame−1

BBW,A (n) = 1 ∧
(7∨
i=1
Fi
)] (20)

Now let us discuss the failure events.
F1 only occurs with negligible probability as BBW

is simulation-linkable, thus

Pr[F1] ≤ negl(n) (21)

F2 only occurs with negligible probability according
to Theorem 5.1, so

Pr[F1] ≤ negl(n). (22)

If F3 occurs, we have a serial number ŝin that didn’t
occur in previous transactions. As we assume that P2
and P3 are sound, we have the signature σ̂in as part
of r̂ec, which is a valid signature for the message m =
(ŝin, ŵ, ŝkU , û1) that has not been signed by the experi-
ment. Hence, we can construct an EUF-CMA adversary
BEUF-CMA against S with advantage

Adveuf-cma
S,BEUF-CMA(n) ≈ Pr[F3] (23)

If F4 occurs, we have two previous records rec1 and
rec2 both containing sout = ŝin. As sout was computed
as s′ + s′′, where s′ was chosen by A but s′′ was cho-
sen uniformly at random from Zp by the oracle, sout
is uniformly random over Zp. Thus, the probability for
sin1 = sin2 is at most q2

p , where q is the amount of suc-
cessful calls A did to MalIssue, MalAcc and MalVer. So
we have

Pr[F4] ≤ q2

p
(24)

If F5 occurs, we have a record rec containing sin =
ŝin. But due to the winning conditions of A, it holds
that

Pr
[
Expgame−i

BBW,A (n) = 1 ∧ F5

]
= 0. (25)

If F6 occurs, we have a previous record rec con-
taining PKU 6= P̂KU . As we already made sure that
each serial number is only part of one signed token,
which in this case must be m = (sout, w + v, skU , u′1)
and PKU 6= P̂KU implies skU 6= ŝkU , the sound-
ness of P2 and P3 means we have another message
m̂ = (ŝin = sout, ŵ, ŝkU , û′1) and valid signature σ̂in on
m̂. As m̂ was never signed before, we can construct an
adversary BEUF-CMA against the EUF-CMA security of
S with advantage

Adveuf-cma
S,BEUF-CMA(n) ≈ Pr[F6] (26)

If F7 occurs, there are two possibilities: there exists
a MalVer transaction for which w < v (F7.1) or there
exists a MalAcc or MalVer transaction for which ŵ 6=
w + v (ŵ 6= w − v resp.) holds (F7.2).

If F7.1 occurs, we can construct an adversary Bwee
against witness-extended emulation of RP with advan-
tage

AdvweeRP,Bwee(n) ≈ Pr[F7.1] (27)

. For F7.2 we again have two tokens with the same
serial number that differ in another part. So with
the same argument as above, we have a message
m̂ = (ŝin = sout, ŵ, ŝkU , û′1) and signature σ̂in on m̂,
but m̂ has never been signed (as ŵ 6= w + v), so we
can again construct an adversary BEUF-CMA against the
EUF-CMA security of S with advantage

Adveuf-cma
S,BEUF-CMA(n) ≈ Pr[F7.2] (28)

. Thus, we have

Pr[F7] ≤ AdvweeRP,Bwee(n) + Adveuf-cma
S,BEUF-CMA(n) (29)

Putting everything together, we have from (19)
to (26) and (29) that

AdvbbBBW,A(n) = Advgame-1
BBW,A(n)

= Pr

[
Expgame−1

BBW,A (n) = 1 ∧ ¬
(7∨
i=1
Fi
)]

+ Pr

[
Expgame−1

BBW,A (n) = 1 ∧
(7∨
i=1
Fi
)]

= Advgame-8
BBW,A(n)

+ Pr

[
Expgame−1

BBW,A (n) = 1 ∧
(7∨
i=1
Fi
)]

≤ negl(n) + Pr

[(7∨
i=1
Fi
)]

≤ negl(n) + negl(n) + negl(n)

+ Adveuf-cma
S,BEUF-CMA(n) + q2

p

+ 0 + Adveuf-cma
S,BEUF-CMA(n)

+ AdvweeRP,Bwee(n) + Adveuf-cma
S,BEUF-CMA(n)

≈ q2

p
+ Adveuf-cma

S,BEUF-CMA(n)

which is negligible as we assumed S to be EUF-CMA
secure and q2

p is negligible.

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 192

D.4 User Security/Privacy

Again we state the slightly modified formal definitions
for user privacy/security.

Definition D.7 (Privacy-Preserving). We say that a
BBW scheme is privacy-preserving, if there exist PPT
algorithms SimSetup and SimCorrupt as well as inter-
active PPT algorithms SimHonIssue, SimHonAdd and
SimHonSub that receive no private user input, such that
for all PPT adversaries A = (A0,A1) in the experi-
ments from Figure 2, the advantage AdvprivBBW,A(n) of A
defined by∣∣∣Pr[Exppriv-realBBW,A(n) = 1]− Pr[Exppriv-idealBBW,A (n) = 1]

∣∣∣ (30)

is negligible in n.

Definition D.8 (False-Accusation Protection). A
simulation-linkable BBW scheme ensures false-
accusation protection if for any PPT adversary
A = (A0,A1) in the experiment ExpfacpBBW,A(n) from
Figure 11 the advantage of A defined by

AdvfacpBBW,A(n) := Pr[ExpfacpBBW,A(n) = 1] (31)

is negligible in n.

Experiment ExpfacpBBW,A(n)
crs← Setup(1n)
(PKI , skI)← A0(crs)
(PKU , skU)← UGen(crs)
π ← ARealHonIssue,RealHonAdd,RealHonSub

1 (PKI ,PKU)
The experiment returns 1 iff VerifyGuilt(PKI ,PKU , π) = 1.

Fig. 15. False accusation protection experiment

We again split the proof of Theorem 5.4 in separate
proofs for privacy-preserving and false-accusation pro-
tection.

Privacy-Preserving
Proof. To show that BBW is privacy-preserving, we de-
fine a sequence of games Game 1, . . . , Game 5, where
Game 1 is the game where all oracles are those from
the real world, while Game 5 is the game where all
oracles are those from the ideal world.

We denote the experiment with an adversary A
playing the game i by Expgame−i

BBW,A (n).
We write Setupi,HonIssuei,HonAddi,HonSubi and

Corrupti to denote the implementations of the oracles
in game i (the oracle HonUser remains unchanged in all
games).

Game 1 We set Setup1 = Setup, HonIssue1 =
RealHonIssue, HonAdd1 = RealHonAdd, HonSub1 =
RealHonSub and Corrupt1 = RealCorrupt as in Fig-
ures 3 to 6. So in other words, Expgame−1

BBW,A (n) is iden-
tical to Exppriv-realBBW,A(n).

Game 2 We modify Setup2 such that crssig is
not generated by S.Setup(gp) but instead by
(crssig, tdsig) ← S.SimSetup(gp) (and thus crscom is
generated as (crscom, tdcom) ← PC.SimSetup(gp)),
crspok is not generated by Z.Setup(gp) but in-
stead by (crspok, tdpok) ← Z.SimSetup(gp) and crsrp
is not generated by RP.Setup(gp) but instead by
(crsrp, tdrp)← RP.SimSetup(gp).

Game 3 We redefine HonIssue3,HonAdd3 and HonSub3
such that the proofs done with the adversary are
simulated (using the trapdoors tdpok and tdrp to
choose the challenge beforehand).

Game 4 We modify HonIssue4,HonAdd4 and HonSub4
so that the commitment C′ sent to the adver-
sary is replaced by a commitment to (0, 0, 0, 0, 0)
and the signature σ1 is replaced by random val-
ues for which the random oracle H is accord-
ingly programmed so the signature verifies. We
also modify Corrupt4 to equivocate (using tdcom)
the commitment C (which was sent by A and
now is a commitment to (s′′, v, 0, 0, 0)) to one
containing random s, u1 and the correct skU , w
and attr with opening information d, and gen-
erate a new signature σ by choosing random
γ, ω, ω′, ρ, ρ′1, ρ

′
2, µ ← Zp, computing ζ = γZ,

ζ1 = γC, setting σ = (ζ, ζ1, ρ, ω, ρ′1, ρ′2, ω′, µ, d, γ)
and programming the random oracle H so that the
signature verifies.
We also need to make sure UVer still
works as expected in HonIssue4,HonAdd4
and HonSub4. To achieve this we replace
the call UVer(PKI ,PKU , skU , τ, w∗, attr) with
UVer(PKI , 0G, 0, τ, v, 0).

Game 5 We now modify HonAdd5 and HonSub5 so that
t and s are chosen at random.

We note that Expgame−5
BBW,A (n) is identical to

Exppriv-idealBBW,A (n).
We now show that a PPT adversary A cannot dis-

tinguish between games i and i+1. By Di we denote the
probability that A is able to distinguish Game i from
Game i + 1.

Game 1 to Game 2 Only the crs is changed and
this is perfectly indistinguishable for both crscom

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 193

and crspok (see the zero-knowledge property of the
proofs and the equivocality property of PC) Thus,
we have

Pr[D2] = 0 (32)

Game 2 to Game 3 In this hop, the real zero-
knowledge proofs are replaced by simulated ones.
Note that the proven statements are still valid.
We introduce 2 new games: in Game 2.1, only P1
proofs are replaced by simulated ones. InGame 2.2
we also replace the proofs for P2 and in Game 2.3
additionally proofs for P3 are replaced, so Game
2.3 = Game 3.
Now assume there is an adversary A that can dis-
tinguish between Game 2 and Game 2.1. We
argue by use of an hybrid argument with games
Game 2.0 to Game 2.0.q = Game 2.1. In
Game 2.0.j, the first j proofs for P1 are simu-
lated, while all proofs from j + 1 to q are real.
As A notices a difference between Game 2.0 and
Game 2.0.q, there must be an index j ∈ [q] such
that A can distinguish between Expgame−2.0.j

BBW,A (n)
and Expgame−2.0.j+1

BBW,A (n). We can then construct an
adversary B1−j against the composable perfect
zero-knowledge property of P1. It then holds that
Pr[D2.1] ≤

∑q−1
i=0 Advzk

P1,B1−i
(n), but as we assume

that P1 is perfectly composable zero-knowledge, it
holds that Advzk

P1,B1−i
(n) = 0 for all i ∈ [q − 1] and

thus
Pr[D2.1] = 0 (33)

Next, consider the hop from Game 2.1 to Game
2.2. This time the proofs for P2 are also replaced by
simulated ones. We argue by use of the same hybrid
argument as above: in Game 2.1.j, all proofs for
P1 are simulated and the first j proofs for P2 are
simulated, while proofs j + 1 to q for P2 are real.
Hence we have that

Pr[D2.2] = Advzk
P2,B1−i

(n) = 0 (34)

The same argument can also be done for the hop
from Game 2.2 to Game 2.3 and so to conclude
we have

Pr[D3] ≤ Pr[D2.1] + Pr[D2.2] + Pr[D2.3] = 0 (35)

Game 3 to Game 4 The difference in Game 4 is
that all the commitments and signatures are re-
placed. We first argue about replacing the commit-
ments: Assume there is an adversary A that can dis-
tinguish between Expgame−3

BBW,A (n) and Expgame−4
BBW,A (n).

We argue by use of an hybrid argument with games

Game 3.0 toGame 3.q =Game 4. InGame 3.j,
the first j commitments are replaced by simulated
commitments while all commitments from j + 1 to
q are real. As A notices a difference between Game
3.0 and Game 3.q, there must be an index j ∈ [q]
such that A can distinguish between Expgame−3.j

BBW,A (n)
and Expgame−3.j+1

BBW,A (n). We can construct an adver-
sary C against the equivocality of PC that internally
runs A and simulates the oracles. C has the same
advantage in the equiv-exp as A in distinguishing
games 3.j and 3.j + 1, so

Advequivocality
PC,C (n) = Pr[D3.j+1] (36)

But as PC is equivocable, we have that
Advequivocality

PC,C (n) = 0 and thus Pr[D3.j+1] = 0
for all j ∈ [q − 1]. For the signatures, we have the
same argument, but against blindness of BlindVerify.
Thus, for similarly defined games 3.j and 3.j+ 1 we
have

Advzero−knowledge
S,C (n) = Pr[D3.j+1] (37)

and thus overall we have

Pr[D4] ≤ qAdvzero−knowledge
S,C (n) ≤ negl(n) (38)

Game 4 to Game 5 In the last step, the values s and
t are chosen at random (if the user has not been
corrupted in the previous call). Thus, there are two
cases to regard: in Case 1, the adversary has success-
fully corrupted the user PKU in the previous call and
in Case 2 the previous oracle call for PKU was any
other oracle than Corrupt. In Case 2, this changes
nothing for the attacker, as u1 is chosen uniformly at
random in every interaction and thus t = skUu2 +u1
is a uniformly random value as any other depen-
dency on u1 has already been removed in the previ-
ous games. The same is true for s = s′ + s′′ where
s′ is chosen uniformly at random.
In Case 1, the adversary knows the last value of u1
as well as s that will be used in the next interaction.
As u2 is chosen from the adversary, he can check if
t = skUu2 +u1 actually holds (since he also received
skU upon corruption) and whether the correct s is
used. For this reason, in the interaction immediately
following a corruption, the real user algorithm is
used.
Thus, we have

Pr[D5] = 0 (39)

To conclude, we have that

AdvprivBBW, A(n) ≤ D2 +D3 +D4 +D5 ≤ negl(n) (40)

and thus BBW is privacy-preserving.

Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices 194

False-Accusation Protection
Proof. Assume there is an adversary A that breaks
false-accusation protection. Note that the oracles used
in the false-accusation experiment are a subset of those
used in the privacy-preserving experiment. Thus we can
replace all oracles by the simulation oracles and can dis-
tinguish two cases:

Case 1 A is still able to output a valid proof of guilt
π = skU with non-negligible probability. Since
all simulation oracles have besides PKU no input
that is related to skU and are PPT, we can con-
struct an adversary B against the DLOG exper-
iment that gets PKU as challenge and simulates
the false-accusation game for A and outputs the
proof A returns, which is the discrete logarithm
of PKU .

Case 2 A is no longer able to output a valid proof of
guilt. Then A can be used to create an ad-
versary B against the privacy-preserving exper-
iment that distinguishes between the real and
the ideal game. As BBW is privacy-preserving,
it holds that AdvprivBBW, B(n) ≤ negl(n).

So to conclude, we have that

AdvfacpBBW, A(n) = Advdlog
B (n) + negl(n) (41)

which is negligible as we assumed the DLOG assump-
tion to hold.

	Black-Box Wallets: Fast Anonymous Two-Way Payments for Constrained Devices
	1 Introduction
	1.1 Our Contribution
	1.2 Further Related Work
	1.3 Paper Organization

	2 Preliminaries
	2.1 Assumptions
	2.2 Building Blocks

	3 BBA+ Description
	4 From BBA+ to BBW
	5 Instantiation
	5.1 Instantiating BBW
	5.2 Security of BBW

	6 Signature Scheme
	7 Performance Evaluation
	7.1 Implementation Details
	7.2 Evaluation
	7.3 Discussion

	A Formal Instantiations of Building Blocks
	A.1 Commitment Scheme
	A.2 Signatures
	A.3 Zero-Knowledge

	B Formal Definitions of BBA+
	C Proofs for the Signature Scheme
	C.1 Proof of EUF-CMA Security
	C.2 Proofs of Blindness/Zero-Knowledge

	D Proofs for BBW
	D.1 Extraction
	D.2 Simulation-Linkability
	D.3 System Security
	D.4 User Security/Privacy

