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Residue-Free Computing
Abstract: Computer applications often leave traces or
residues that enable forensic examiners to gain a de-
tailed understanding of the actions a user performed
on a computer. Such digital breadcrumbs are left by
a large variety of applications, potentially (and indeed
likely) unbeknownst to their users. This paper presents
the concept of residue-free computing in which a user
can operate any existing application installed on their
computer in a mode that prevents trace data from be-
ing recorded to disk, thus frustrating the forensic pro-
cess and enabling more privacy-preserving computing.
In essence, residue-free computing provides an “incog-
nito mode” for any application. We introduce our im-
plementation of residue-free computing, ResidueFree,
and motivate ResidueFree by inventorying the poten-
tially sensitive and privacy-invasive residue left by popu-
lar applications. We demonstrate that ResidueFree al-
lows users to operate these applications without leaving
trace data, while incurring modest performance over-
heads.
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1 Introduction
Many of the actions that users perform on their com-
puters leave digital traces. In a computer forensics in-
vestigation, these traces form digital breadcrumbs that
allow a forensic examiner to gain a fairly detailed un-
derstanding of what the user did with their computer—
which applications and files were accessed, the times
and potentially the duration of their accesses, and more
generally, the actions performed by the user.

Computer forensics is aided by modern operating
systems that tend to leave an enormous volume of these
breadcrumbs. Operating systems leave traces not nec-
essarily to ease the job of a forensic examiner, but
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rather to provide additional features and functionali-
ties. For example, modern operating systems maintain
access times to quickly locate the most recently modi-
fied files; these access times help an examiner determine
how the computer was used. Log-based filesystems are
designed to facilitate fast data recovery, but also leave
remnants of erased files and more generally allow exam-
iners to reconstruct the filesystem at various points in
time.

More generally, the traces left by operating systems
and applications leads to a status quo in which it is
exceedingly difficult to use a computer without leav-
ing a readily available record of one’s actions. Coun-
termeasures that enable greater privacy protections are
piecemeal, and are usually constrained to a particular
application—a notable example is the “incognito” or
“privacy” mode of modern web browsers that are de-
signed to remove local traces of web activity left by the
browser. More general solutions do exist [10, 12], but
they require modifications to the Linux kernel and fail
to capture some types of application residue. (We ex-
plore the related literature in more detail in the next
section.)

This paper introduces residue-free computing, a
privacy-preserving (or anti-forensics) mode of operation
for modern operating systems without requiring kernel
modifications. In residue-free computing, the user uses
their normal operating system and has access to their
existing files. The user may optionally choose to start
any installed program in residue-free mode, which en-
ables the program to run on top of a union filesystem.
The application has read access to all existing data on
any installed filesystem, but file modifications (includ-
ing deletions) are made to a volatile filesystem stored in
memory (i.e., RAM). Upon exiting the application, the
filesystem modifications are permanently erased. Con-
ceptually, residue-free computing provides an incognito
mode for any installed application.

Residue-free computing assumes an atypical threat
model. It assumes a cooperative user who wants to pre-
serve their privacy, and an application and operating
system that do not actively attempt to prevent the ap-
plication from executing in residue-free mode. That is,
residue-free computing is designed to work on appli-
cations and operating systems as they currently exist.
We assume as our adversary a forensic examiner who is
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able to take filesystem snapshots of the filesystem before
and after the execution of an application in residue-free
mode. We describe our adversary in more detail below,
but in brief, we do not protect against a network ad-
versary who learns which applications are being used
by examining network traces, nor do we protect against
malware running on the user’s device that attempts to
record actions. Our goal is to prevent our snapshot ad-
versary from learning which applications were used and
which files were accessed.

To be most useful, residue-free computing should
not require any program modifications and should be
compatible with all software already installed on the
computer, including its operating system. Increased
privacy should not come at a significant performance
penalty; running an application in residue-free mode
should incur limited overheads. Finally, residue-free
computing should be user-friendly, allowing a user to
easily opt to use residue-free computing mode (or not)
for any application.

There already exist techniques that achieve some of
the goals of residue-free computing. For example, the
user can simply run an application in a virtual ma-
chine and use checkpointing to roll back filesystem and
memory changes after the application exits. Or, the user
could use a live CD operating system such as The Am-
nesic Incognito Live System (Tails) [2] that is tailored
to frustrate forensic investigations by preventing traces
from being recorded to non-volatile storage. However,
these solutions incur high usability costs as they require
the user to significantly modify their behavior (to the
point of using an entirely different operating system) in
order to gain some privacy protections.

We present the design and implementation of
ResidueFree, an instantiation of residue-free comput-
ing that allows users to operate their existing applica-
tions (on their existing operating systems) in residue-
free mode. We perform an in-depth forensic investi-
gation in which we examine every persistent file cre-
ated or modified during a run in residue-free mode,
and find that ResidueFree leaks only minimal infor-
mation: namely, that ResidueFree was used. The ap-
plication being used and the affected files (both read
and modified) are invisible to the forensic examiner.
We show through extensive benchmark-based evalu-
ation that ResidueFree incurs moderate-to-limited
overhead. Finally, we provide a simple and intuitive in-
terface for ResidueFree for the Gnome desktop: users
run an application in residue-free mode by right-clicking
the application icon and selecting “Run in Residue-
Free.”

Motivating examples. To motivate the use of
residue-free computing, we consider two example sce-
narios.
Privacy from invasive cohabitants: A computer user
shares a residence with an individual (for example, an
abusive partner) who attempts to monitor the user’s
computer usage. This adversary may be technically so-
phisticated, but is not necessarily a trained forensic ex-
aminer. The user is also not especially technically so-
phisticated, but is aware that ResidueFree is installed
on their computer.

The user uses Skype. Although the user may not
be aware that Skype stores comprehensive log files that
contain chat transcript and Skype call metadata (in-
cluding participants and call durations), the user for-
tunately opted to use ResidueFree to operate Skype.
Since Skype was used in residue-free mode, the cohab-
itating adversary can neither identify that Skype was
used nor learn with whom the user communicated.
Privacy from a knowledgeable forensic investigator:
An investigative journalist enters a border crossing
when their computer is seized and imaged. The bor-
der crossing agent examines the journalist’s computer
to learn what they are investigating. Fortunately, the
journalist used ResidueFree to run the VLC media
player, so the log of the videos that they viewed (in-
cluding some interviews streamed from the web) are not
available to the agent, as they otherwise would have had
ResidueFree not been activated.

Contributions. In summary, this paper makes the
following contributions:
– The design of residue-free computing: a mode of op-

eration that provides an “incognito mode” for any
application;

– ResidueFree, an open-source implementation of
residue-free computing. ResidueFree is available
as free open-source software and is available at
https://larkema.github.io/residuefree/;

– A study of the residue (i.e., forensic traces) left
by popular applications, and an examination of
how ResidueFree prevents the collection of these
traces.

2 Related Work
The literature on privacy-enhancing methods of com-
puting is rich and diverse. In this section, we describe
how residue-free computing fits in the context of this
existing literature.

https://larkema.github.io/residuefree/
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Most related to residue-free computing are
PrivExec [22] and TpriVexeC [10] which have the
shared goal of providing an incognito-like privacy mode
for any application. Although residue-free computing,
PrivExec, and TpriVexeC all use a union filesys-
tem, they differ in several important respects: unlike
PrivExec and TpriVexeC, ResidueFree does not
require kernel modifications and works out-of-the-box
with popular Linux distributions. We achieve this by
leveraging existing efforts in Linux containerization. Ad-
ditionally, residue-free computing offers additional pri-
vacy guarantees over both PrivExec and TpriVexeC:
residue-free computing obfuscates which applications
were run and it conceals which files were read by the
application running in privacy-mode; both are exposed
by PrivExec and TpriVexeC. Like PrivExec and
TpriVexeC, we also provide a performance evaluation
of our approach and explore its overheads; however,
unlike the prior work, we also conduct a forensics in-
vestigation using filesystem snapshots to empirically
demonstrate the efficacy of our technique. Finally,
ResidueFree offers a forensics mode that allows a user
to explore the residues left by different applications.

Techniques that use a separate privacy-
preserving environment. As detailed in
Garfinkel’s survey of anti-forensic techniques, there
are many techniques a user could employ to disrupt a
potential future forensic investigation [14]. Residue-free
computing belongs to a class of techniques that attempt
to “minimize the footprint[s] [14]” available to computer
forensic tools. In Garfinkel’s survey, he considered two
footprint minimization techniques: the use of live CDs—
or operating systems that boot from a removable device
(e.g., a CD)—and virtual machines (VMs). In partic-
ular, Tails [2] is a live CD operating system designed
to provide strong privacy protections by avoiding any
writes to non-volatile storage and routing all network
communication anonymously via Tor [9]. Similarly, us-
ing a virtual machine allows a user to potentially destroy
traces by reverting to an earlier snapshot. This latter
approach however entails significant risk, since it relies
on the secure erasure of the unsaved machine state; in
practice, it is unclear that such information is actually
unrecoverable.

Similarly, so-called lightweight VMs such as con-
tainers (with Docker being a noteworthy example) can
provide strong application isolation and ensure that
filesystem modifications are not directly applied to the
system’s underlying filesystem. However, these contain-
ers do not eliminate traces; they merely shift the trace

from traditional files stored on the main filesystem to
containerized filesystems, which themselves are stored
on the main filesystem. In short, containers provide at
best a level of indirection, but do not significantly ob-
fuscate filesystem changes. A knowledgeable forensic ex-
aminer could easily examine containerized filesystems.
(We address the additional difficulty of securely deleting
these containerized filesystems below.)

Live CDs achieve many of the same privacy goals as
residue-free computing, which we describe in more de-
tail in §3. However, both live CDs and VMs incur large
usability costs, as they require the user to maintain at
least two computing environments: one for ordinary use,
and one for more private computing. Live CDs and VMs
prevent the user from making a quick impromptu deci-
sion to run an existing application (along with its exist-
ing configuration) in a more privacy-preserving mode,
since configuring the live CD or the VM requires a non-
trivial amount of work. In contrast, residue-free comput-
ing enables the user to run any application in a privacy-
preserving mode on demand, at the user’s whim. This
allows the user to run any installed application as al-
ready configured, without leaving a digital trace for a
potential future forensics investigation.

Private web browsing modes. Residue-free com-
puting is partially inspired by the private web browsing
modes of modern web browsers. These modes prevent
websites from accessing cookies stored in non-private
mode, and it erases browsing history, search history,
and cookies upon exit. However, private browsing modes
have historically not removed all forensic traces [27, 28].
Prior work has also shown that many users are un-
aware of private browsing modes, and many of those
who are aware do not understand the actual privacy
protections offered by these modes [13]. In particular,
Habib et al. show that many users of private browsing
modes overestimate their protections from targeted ad-
vertisements and user tracking [16].

Residue-free computing can be viewed as a form
of private or incognito mode for any application. Ar-
chitecturally, however, it is very dissimilar to browser-
based privacy modes. As discussed in more detail in §5,
residue-free computing uses redirect-on-write filesys-
tems and volatile filesystems stored on RAM-disks to
ensure that all file modifications are transient and re-
moved after the application exits. Private web brows-
ing modes require specific functionality in the applica-
tion (i.e., the web browser) to track file modifications
and ensure that they are removed after the browser
exits its privacy mode. We argue that residue-free
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computing offers stronger guarantees than application-
specific solutions since the former operates at the oper-
ating system/filesystem level, ensuring that any and all
filesystem modifications made by a program running in
residue-free mode are transient. In contrast, application-
specific solutions require careful attention by the pro-
grammer to identify and revert all modifications.

Steganographic file systems. The goals of residue-
free computing are also similar to those of stegano-
graphic filesystems (also called plausibly deniable stor-
age systems) [4]. Steganographic filesystems typically
have multiple layers of files, with a given layer be-
ing exposed by providing its corresponding key while
all other layers remain hidden. Conceptually, stegano-
graphic filesystems provide a mechanism where a co-
erced individual—for example, a detainee at a border
crossing—could provide a key that reveals benign con-
tent while obscuring the existence of the more sensitive
covert data. There are several deployed steganographic
filesystems, with notable examples including StegFS [20]
and (the now defunct) TrueCrypt [1]. However, these
systems do not hide the fact that the steganographic
filesystem is installed. Czeskis et al. show that an op-
erating system’s regular functionality may betray the
existence of the hidden volume, and demonstrate such
attacks against TrueCrypt [8]. Chen et al. extend the no-
tion of plausible deniability to include invisibility, which
also conceals evidence of the steganographic file sys-
tem [7].

In theory, steganographic filesystems enable users
to conceal the digital breadcrumbs left by their applica-
tions by obscuring the existence of the entire filesystem
on which the application resides. In practice, however,
steganographic filesystems require maintaining multiple
computing environments—one for an overt “cover” OS,
and a separate environment for covert application usage.
This entails a significant and persistent effort by the
user. Residue-free computing attempts to lighten this
workload by enabling on-demand privacy-preserving op-
eration of existing applications. We do not require the
user to maintain multiple copies of data or applications,
and only require that the user proactively starts an ap-
plication in residue-free mode when they want enhanced
privacy protections.

Secure deletion. Residue-free computing requires
that any filesystem modifications are undone after a
program running in residue-free mode terminates. On
modern log-based and versioning filesystems, this can be
(perhaps) surprisingly difficult [23]. Reardon et al. pro-
vide a comprehensive survey of the challenges and tech-

niques for securely removing data [26]. Much of the liter-
ature on secure deletion focuses on mobile devices (cf. [3]
and [11]) and their NAND-based flash file systems.

Our implementation (see §6) sidesteps the difficul-
ties of erasing data on flash-based storage media and
versioning filesystems by storing all file modifications
on volatile memory.

Redirect-on-write filesystems. Residue-free com-
puting makes extensive use of redirect-on-write filesys-
tems. A redirect-on-write filesystem makes a virtual
copy of an underlying base filesystem. Read operations
are usually directed to the underlying base filesystems,
while writes are made to a modified copy stored in a
separate storage area. Subsequent reads to modified files
are then directed to this separated storage area. Popular
implementations of redirect-on-write filesystems include
UnionFS [25], aufs [18], and overlay2 [6].

Designed primarily to support efficient snapshotting
(also called checkpointing) rather than anti-forensics,
redirect-on-write filesystems are by themselves insuffi-
cient for achieving the goals of residue-free computing.
The storage area that records filesystem modifications
constitutes a (fairly comprehensive) digital trace of ap-
plication and data use.

3 Threat Model and Goals
Our system model includes the user, who is the opera-
tor of the machine; the operating system; the application
to be run in residue-free mode; the filesystem that con-
tains the operating system and the application1; and
the adversary, who conducts a forensic investigation.

Goals. The primary goals of residue-free computing
are to prevent the adversary from (1) identifying which
application was used in residue-free mode and (2) identi-
fying any files that were modified (including file creation
and deletion) or accessed by an application operating in
residue-free mode. For ease of exposition, we consider a
single use of residue-free mode in this paper, but our
goals naturally extend to sequential or concurrent use
of residue-free computing: for example, the adversary
should not be able to tell which applications were run
in residue-free mode during their investigation.

1 In practice, the user’s computer can have multiple filesystems.
For ease of exposition, we consider the filesystem to be one log-
ical volume in this paper.
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An important secondary goal of residue-free com-
puting is ease-of-use. Although this is far more difficult
to quantify, residue-free computing should not require
significant work or expertise on the part of the user.
Residue-free computing should be compatible with the
user’s existing operating system and applications, and
all of the user’s data (i.e., all data stored on their filesys-
tem) should be available to an application operating in
residue-free mode. The behavior of an application run-
ning in residue-free mode should be identical to that ap-
plication running outside of residue-free mode, except-
ing for the existence of trace data not being available
after the program exits. Starting a program in residue-
free mode should be intuitive and not require a high
level of technical expertise.

Finally, operating in residue-free mode should not
incur significant overhead. The performance of a pro-
gram operating in residue-free mode should be on par
with its operation outside of residue-free mode.

Threat model and adversary capabilities. We
consider an adversary who has access to snapshots
of the filesystem before and after an application runs
in residue-free mode. The adversary has knowledge of
residue-free computing, and can apply any forensic tools
or analyses to the snapshots. We assume the adversary
has, at minimum, knowledge of publicly documented
forensic artifacts in the operating system, such as those
presented by Nishida [21].

The adversary is not permitted to eavesdrop on the
computer’s network communication or monitor the com-
puter while an application is running in residue-free
mode. In general, “live” or real-time forensics is consid-
ered out-of-scope for residue-free computing. The goal
of residue-free computing is to remove the residue left
by applications on the filesystem in order to subvert a
forensic investigation. It does not protect against ad-
versaries who use other means (e.g., network eavesdrop-
ping) to ascertain a user’s computer usage.

We assume that the operating system (including the
implementation of the filesystem) and any applications
do not attempt to detect and thwart residue-free com-
puting. While applications should be agnostic to (and
even ignorant of) residue-free computing, we do not at-
tempt to conceal its existence from an application that
actively tries to detect it. Similarly, residue-free com-
puting does not protect against spyware or other forms
of malware that may be running on the user’s computer.

Security properties. Residue-free computing meets
the above two goals: a forensic examination of the
second snapshot (taken after the program operating

in residue-free mode exits) and optionally the first
filesystem snapshot (taken before the program spawned
in residue-free mode begins execution) reveals nei-
ther which application was run in residue-free mode
nor which files were accessed (read, modified, created,
deleted, etc.) by that application.

We emphasize that residue-free’s security proper-
ties are met after the program running in residue-free
mode terminates; during that program’s operation, we
do not attempt to hide that it is running or what files
it accesses.

The adversary is permitted to learn that the com-
puter supports residue-free mode (e.g., that Residue-
Free is installed) and the time that the user launched
residue-free mode; which specific application(s) were
run remains hidden.

4 Motivation: Case Studies of
Popular Application Residues

To motivate the need for residue-free computing, we first
investigate the frequency and degree to which popu-
lar applications leave residues. We also examine these
residues to attempt to gauge the level of privacy loss
or information leaked to forensic examiners. Conceptu-
ally, this provides a baseline of how much an examiner
can learn without the protections offered by residue-free
computing.

We selected applications across a wide range of cat-
egories, based on their ranking in Ubuntu’s Software
application. We focused our selections on popular ap-
plications, where popularity was based primarily on our
own experiences with these applications and the ease
at which we could find independent information that
hinted at the application’s popularity (e.g., blogs and
YouTube videos made by users). While we attempted
to identify quantitative application metrics for Ubuntu
desktop applications, we could not identify a definitive
metric similar to an Apple App Store or Google Play
download metric. The applications, which are listed in
Table 1 in the Appendix, were installed either using
the default packages from Ubuntu Software on Ubuntu
18.04 (if available) or the version available on the appli-
cation’s web site (if not).

To perform our investigation, we used the forensic
mode of ResidueFree, which we describe more fully in
§6. In brief, we used a redirect-on-write filesystem to
isolate all files that the application modified while in
use. We also provided unique inputs, which we call ca-
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nary strings (e.g., “gorgonzola penguins”) to the appli-
cations to determine whether the applications’ residues
captured these inputs. Their presence in an application’s
residue suggests that a forensic examiner would have
detailed information about the user’s inputs to that ap-
plication.

We manually inspected the application residues to
search for both our canary strings as well as other ob-
vious information about the user’s session (e.g., times-
tamps, chat logs, names of transferred files, log entries,
etc.).

We emphasize that our manual analyses do not al-
low us to exhaustively determine the information con-
tained within an application’s residue. The presence of
canary strings tells us definitively that the user’s inputs
are captured, but the absence could indicate that the
information is somehow otherwise recorded (e.g., in an
encoded form). As a result, the residues we identify are
a subset of all the potential residues that could be un-
covered by a trained forensic examiner (especially one
well-versed in a particular application), and should be
taken as conservative estimates of the trace data left by
popular applications.

Our findings are summarized in Table 1 in the Ap-
pendix. We found that these common user applications
left a significant amount of residue on the filesystem
that, if left on disk for an attacker to read, could re-
veal significant data on how the user used the applica-
tion. For example, Spotify leaves all songs the applica-
tion displayed to the user and the user’s social media
information on the filesystem; Skype records detailed
information from the user’s audio, video and instant
message conversations, including message contents, re-
cipient usernames, and timestamps; Discord stores the
channels a user participated in; and VLC tracks and
updates timestamps on recently played media files.

Privacy-focused applications, such as Signal, Tele-
gram, Brave Web Browser, Tor Web Browser, and
other web browsers operating in “private” or “incog-
nito” mode do not record detailed data on the user’s
activity, but they sufficiently modify the filesystem to
clearly denote that the user ran the applications and
when the user ran them. Unfortunately, designing these
private browsing modes is difficult since developers need
to track (and subsequently, eliminate) any state nat-
urally kept by the browser. Subtle errors can lead to
tracking. For example, Solomos et al. recently showed
that malicious websites could bypass incognito mode on
all major browsers using favicons [27]. ResidueFree
avoids such tracking by eliminating all persistent data.

Most of this data is stored without the user’s knowl-
edge or explicit consent, which is not to say that
these applications are categorically flawed. Much of the
residue applications leave is used to provide additional
features or performance benefits to users, and these ap-
plications do not consider an attacker with future ac-
cess to the user’s machine in their threat models. How-
ever, a user seeking to manually remove the details from
their session would be hard-pressed to do so for every
application. Most of the residue we found is stored in
hidden directories (i.e., directories whose names begin
with ‘.’), in files multiple directory levels deep, and/or
in files without descriptive names. Rather than task a
user with finding every file that may contain information
from their session, we provide a solution that automati-
cally discards all changes to the filesystem made during
their session.

5 Architecture
Residue-free computing is composed of three main com-
ponents: a completely volatile RAM disk, a union
filesystem [25], and an isolated execution environment.
These components must not write to the user’s on-
disk filesystem nor modify any filesystem metadata and
should sufficiently interact with the user’s system to
provide a nearly indistinguishable user experience from
running the application outside of residue-free mode.
This latter interaction requires special care, since the
application’s functionality may require it to communi-
cate with other processes, but such interprocess commu-
nication (IPC) should not result in leaked information
about the application running in residue-free mode. As
a result, system processes may need to be modified dur-
ing residue-free computing to eliminate sensitive logging
and protect against information the operating system
may otherwise leave on the user’s disk.

The execution environment and RAM disk will both
contain information from the user’s residue-free session
that must be kept private, while the union filesystem
is a logical component that facilitates file access with-
out moving data to a new physical device. At the same
time, residue-free must have access to the physical com-
puter hardware necessary to run user programs without
having the system log sensitive information. Figure 1
visualizes this architecture.

We define a completely volatile RAM disk as a
filesystem physically hosted on RAM that can reliably
have all of its contents made irrecoverable. To securely
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Fig. 1. The architecture of residue-free computing.

erase the contents of RAM disk, an implementation
could either overwrite every bit of the disk or encrypt
the contents of disk in real time with an irrecoverable
key (we discuss the associated overhead costs of this im-
plementation choice in §7.3). Any data written to the
RAM disk should be made unrecoverable quickly after
a residue-free computing session ends and must be com-
pletely erased after the user’s system powers off or enters
sleep mode.

The union filesystem takes the volatile RAM disk
and merges it with the user’s filesystem to create a logi-
cally unified filesystem interface while accessing two dif-
ferent physical devices. The union filesystem must have
read-write access to the RAM disk and read-only ac-
cess to the user’s filesystem. Conceptually, this allows
the application running in residue-free mode to appear
to have full (i.e., read-write) access to the user’s regular
filesystem. Every write a process using the union filesys-
tem makes must be written to the RAM disk and these
writes must be readable to processes that use the union
filesystem (so long as the RAM disk is still intact). The
union filesystem can read from the user’s filesystem for
data that has not been created or changed in the iso-
lated execution environment, and these reads must not
modify any file data or filesystem metadata on the user’s
regular filesystem. The union filesystem does not store
any data; it merely mediates access between the two
storage devices.

Finally, the isolated execution environment must
run on top of the union filesystem and should pro-
vide a nearly indistinguishable user experience from the
user’s system. The environment must ensure that all
calls to the filesystem are made to the union filesystem
and should be sufficiently isolated to minimize interac-
tion with user processes running outside of residue-free
mode. However, this isolation must be balanced with
sufficient access to system resources, including system

processes, to provide a functional user experience with
as few performance costs as possible. In addition, sys-
tem processes may be modified to provide additional
privacy guarantees without limiting their functionality.

In summary, a user should not notice that they are
using residue-free computing while the underlying oper-
ations do not modify the user’s filesystem.

6 Implementation
We implement the residue-free computing architecture
using an encrypted RAM disk, the unionfs copy-on-
write filesystem, and a Docker container. We carefully
configure these components to enable access to the
user’s system resources and additionally modify select
system processes. Our proof-of-concept implementation,
which we refer to as ResidueFree, implements the ba-
sic requirements of residue-free computing while pro-
viding additional features to the user that go beyond
architectural requirements. While this implementation
incurs moderate overhead and performance costs, par-
ticularly on file operations, it overwhelmingly meets the
architecture’s privacy goals.

ResidueFree is released as free open-source soft-
ware and is available to download at https://larkema.
github.io/residuefree/.

ResidueFree operates on Linux, and has been
tested with Ubuntu 18.04 LTS with kernel 5.4.0.48. As
noted in §3, ResidueFree is designed for standard sys-
tem configurations and cannot provide privacy guaran-
tees when system administrators install enhanced log-
ging capabilities that are specifically designed to cap-
ture and record all computer activity (e.g., kernel-level
provenance tracking [5, 24]). We emphasize that the
“stock” versions of popular distributions (e.g., Ubuntu,
RedHat/Fedora, Debian, Mint, etc.) should be largely
compatible with ResidueFree, but may require small
changes to how ResidueFree modifies system pro-
cesses. 2 Finally, ResidueFree requires administrative
privileges (e.g., sudo) to switch into residue-free mode;
the application itself runs with the user’s regular (non-
administrative) privileges.

We implement the volatile RAM disk by encrypting
files as they are written to RAM.We mount a temporary
filesystem (tmpfs), then mount an encrypted filesystem
(ecryptfs [17]) on top of it. ResidueFree initializes

2 For example, our implementation targets logs written by the
Gnome desktop environment, so implementations targeted at
KDE distributions would have to account for KDE-specific logs.

https://larkema.github.io/residuefree/
https://larkema.github.io/residuefree/
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and mounts the encrypted file system with a random
key, and adds the key and its cryptographic hash to
the keyring. ResidueFree enables access to the files in
the tmpfs filesystem only while the ecryptfs filesystem
remains mounted. The tmpfs filesystem is initially set
to one gigabyte, but the size can be configured by the
user. In edge-cases where the tmpfs filesystem is larger
than available RAM, data in the tmpfs filesystem may
be written to swap space. Though this is not ideal, the
encryption provided by the ecryptfs filesystem prevents
any meaningful residue from being retrieved by an ad-
versary.

We construct the union filesystem using the unionfs
package [25]. Unfortunately, Docker currently does not
allow root (i.e., /) filesystem mounts, which is necessary
to ensure that the application running in residue-free
mode functions as it would if it were not in residue-free
mode. We sidestep this constraint by separately mount-
ing the computer’s top-level directories. The union
mounts have the copy-on-write option set (among other
options) so that files modified in the Docker session are
copied in their entirety to the RAM disk. Once a mod-
ified or newly created file is on the RAM disk, future
read operations read from RAM rather than the old ver-
sion on the user’s filesystem. After mounting, Residue-
Free sets the permissions of the directories in the union
filesystems to match the permissions in the user’s filesys-
tem.

A particularly challenging aspect of ResidueFree
is to provide an isolated execution environment while
simultaneously allowing the application running in
residue-free mode to interact with the necessary sys-
tem processes/daemons to ensure the program oper-
ates correctly. Rather than construct our own isolated
execution environment, we use Docker, which provides
strong isolation and has a mature codebase. We mount
the /dev filesystem inside the Docker container and
run the container as privileged to allow the applica-
tion to interface with the system’s devices. However,
simply mounting the union filesystems and /dev into a
Docker container still does not provide sufficient access
to the user’s system resources for a functional user expe-
rience. To ensure sufficient access, we bind-mount criti-
cal unix sockets from the host filesystem into the union
filesystems and keep ResidueFree in the same network
namespace as the host. All sockets in /tmp/.X11-unix/,
/tmp/.ICE-unix/, and the /run/user/<UID>/ directo-
ries, as well as the /run/lock and /run/dbus sockets,
are bind-mounted into their respective union filesystem
directories. In addition, running ResidueFree in the
same network namespace as the host allows applica-

tions to access abstract unix sockets set up by system
processes.3 These steps allow processes running inside
ResidueFree to have transparent access to daemons,
GUI components, and other critical system resources.

While these steps prevent applications running in-
side ResidueFree from writing data to disk, operating
system features outside of ResidueFree may still write
sensitive data to disk, especially given that Residue-
Free intentionally provides access to system processes.
To address this challenge, ResidueFree modifies the
main filesystem’s mount options, mlocate, the system
journal daemon, the syslog daemon, the system ap-
port service, the user’s pulse audio daemon, the user’s
keyring, and the user’s Gnome shell. Before starting
the Docker container, ResidueFree remounts the main
filesystem with the noatime (no access time) option
to ensure that execute and access operations are not
tracked inside ResidueFree. ResidueFree updates
mlocate’s configuration file to not update file names un-
der a ResidueFree mount point, restarts the system
journal daemon with all journal logs written to none
(instead of the default disk), and stops the syslog and
apport services from running. ResidueFree also stops
the user’s pulse audio and keyring daemons and then
starts them again inside the ResidueFree container.4

Finally, ResidueFree sets the current Gnome shell to
stop recording application use and sets the file where
Gnome stores application use to read-only.

After ResidueFree exits, the ecryptfs is imme-
diately unmounted. At this point, none of the data
in ResidueFree’s write-cache is logically recoverable,
as the key for its encrypted contents is not stored
in any process and ecryptfs clears the keyring when
the corresponding filesystem is unmounted. The tem-
porary filesystem unmount follows, and all directories
that ResidueFree creates as well as the RAM disk’s
(encrypted) contents are removed. ResidueFree then

3 The most important of these is the user’s session dbus. Certain
applications will only interact with the abstract socket connec-
tion to the user’s dbus and refuse connections to the filesystem
socket connection.
4 Pulse audio, by default, tracks the names of applications that
produce sound in a file. Applications can store user information,
such as their login state, in the keyring. When these applications
restart inside ResidueFree, these file changes are written to the
RAM disk.
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restores the seven system modifications to their original
state.5

To address unexpected exits and ensure the proper
removal of any residue, ResidueFree handles inter-
rupt and termination signals by executing this cleanup
process. ResidueFree also launches a detached back-
ground process that will execute this cleanup process
if ResidueFree exits and cannot do so itself (i.e., af-
ter receiving a kill signal). In a scenario where the en-
tire computer unexpectedly shuts down, the encrypted
filesystem and RAM disk unmount - leaving the residue
unrecoverable.

As we describe in more detail in §7.1, our evaluation
of the user’s filesystem contents reveal that no residue
exists from the application run in residue-free mode, nor
is there any evidence that the particular application was
run in residue-free mode (or at all).

Docker-based isolated execution environment.
We use a Docker container to construct our iso-
lated execution environment because of Docker’s well-
documented, well-maintained features that allow us to
incorporate our filesystem modifications without re-
implementing Linux’s isolation capabilities. Docker’s
popularity makes user-customization and additional
open-source contributions to ResidueFree much sim-
pler while allowing us to make modular backend filesys-
tem changes. While we could likely cut performance
costs by only using the containerization features nec-
essary for ResidueFree, these extensive modifications
are outside the scope of our proof-of-concept implemen-
tation.

Notably, our ResidueFree container is far outside
of Docker’s typical use case. While Docker is typically
used to run lightweight, single applications securely sep-
arated from the host operating system, our “container”
provides access to every file on the host file system, and
does not provide traditional Docker security assurances.
A remote attacker who gains access via a process run-
ning inside ResidueFree will not only have full read-
access to the entire filesystem, but the numerous system
resources and privileged configurations granted to the
Docker container make container-escaping trivial.

5 The Gnome shell updates application use every five min-
utes, so ResidueFree launches a background process that only
restores Gnome application use recording five minutes after
ResidueFree exits. All other system configurations are restored
on ResidueFree’s exit.

Forensic mode. To increase ResidueFree’s use-
fulness, our implementation also includes a “forensic”
mode in which, instead of writing all modified files to
RAM, the user can opt to write all modified files to their
filesystem. Conceptually, forensic mode allows the user
to determine exactly what residue is left after running
an application. This mode operates identical to normal
ResidueFree, except that it does not mount a tmpfs
nor ecryptfs filesystem. Instead, ResidueFree’s foren-
sic mode mounts the read-write portion of the unionfs
filesystems in a folder of their choosing. When forensic
mode exits, the write-cache is unmounted and all its
files and directories have their owner set to the user.
To reduce the risk of any potentially malicious files
added during the ResidueFree session, ResidueFree
removes the execute permissions from executable files.
The residue described in Table 1 was collected using
forensic mode.

Persistent Files. Conceivably, a user may want to
store select files from their ResidueFree session, such
as a word processing document or a PDF file down-
loaded via web browser. To enable these use cases,
ResidueFree creates a specific folder in the user’s home
directory for files the user does not want deleted. When
ResidueFree exits, these files are transferred to the
user’s desktop. To prevent the inadvertent deletion of
desired files, ResidueFree displays a brief message
when launched reminding the user that all files not
stored in the persistent folder will be deleted at the end
of their ResidueFree session.

Optimizations and additional features.
ResidueFree includes a number of options during
installation and at run-time for the user to tailor their
use of ResidueFree. When running ResidueFree
for the first time, users have the option to enable the
Docker daemon to startup with system boot. If enabled,
it will reduce the costs of launching ResidueFree the
first time after system boot, but will stand out on many
client machines and may not be ideal for users wishing
to raise as little attention as possible to the fact that
ResidueFree is on the system (we discuss associated
performance costs in §7.3).

A core design goal of ResidueFree is to make the
interface as intuitive, unobtrusive, and user-friendly as
possible. The user can opt to add a right-click option
for every desktop application to run in ResidueFree
mode, as shown in Figure 2.

Once installed, users can run ResidueFree in ei-
ther privacy (the default) or forensic mode. In privacy
mode, users can specify the size of the RAM disk. In
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Fig. 2. Application right-click menu with an option to run the
application in residue-free mode.

forensic mode, the user can specify the output direc-
tory’s location and whether to compress the output file.

Operating system portability. Our initial imple-
mentation of ResidueFree operates on Linux. Because
it uses Docker to help enforce sandboxing and Docker it-
self uses a Linux kernel to drive its containers, Residue-
Free cannot straightforwardly be modified for other op-
erating systems. (Although Docker can run on OSX, the
kernel used inside containers is still Linux, which would
not permit local OSX applications to be run.) How-
ever, much of the containerization enabled by Docker
can be duplicated on OSX, and we have made sig-
nificant progress in doing so towards a future OSX-
compatible release of ResidueFree. ecryptfs is also
Linux-dependent, but ResidueFree is agnostic to the
cryptographic filesystem that protects the ramdisk, and
could easily be adapted to support a FUSE-based so-
lution (e.g., EncFS6). We are planning to fully support
OSX in a future releases of ResidueFree, which we
hope will lead to more widespread adoption.

Like OSX, Windows has support for FUSE filesys-
tems. FUSE-based copy-on-write filesystems exist, and
coupled with FUSE-based encrypted filesystems, many
of the logical components of ResidueFree are currently
available for Windows. However, Windows presents
unique challenges such as the common use of shared key-
stores (e.g., the Windows registry) as well as the use of
isolation features that significantly differ from those of
Linux and OSX. Consequently, enabling Windows sup-
port remains a more distant future goal.

6 https://github.com/vgough/encfs

7 Evaluation
We conducted both forensic and performance analyses
to evaluate our proof-of-concept implementation. For
our forensic evaluation, we compared the filesystems
of two different virtual machines across three different
states: before running ResidueFree, immediately after
running a series of applications within ResidueFree,
and ten minutes after ResidueFree exits. For our per-
formance analyses, we used the Iozone7 and Phoronix8

performance benchmark suites and timed tasks in com-
mon user applications to analyze the filesystem and gen-
eral system performance of ResidueFree. Finally, we
timed ResidueFree’s startup and shutdown overhead
times.

We ran our performance analyses on an Ubuntu
18.04 machine running directly on a Toshiba Satellite
E45W-C4200X with a two-core 2.10 GHz Intel i3-5015U
processor, 6 GB of RAM, and a 500 GB HDD. Which
is to say, we ran our performance tests on a (metaphor-
ical) potato to demonstrate its functionality for users
with access to limited hardware resources.

7.1 Forensic Evaluation

The primary goal of ResidueFree is to eliminate any
filesystem changes a user or process makes while us-
ing ResidueFree. Our implementation should leave no
residue on the filesystem, and ideally nowhere on disk,
that could be useful in a forensic examination. Our
forensic analysis shows ResidueFree leaves no informa-
tion about what processes the user ran inside Residue-
Free and what file(s) or filesystem data those processes
may have accessed. While an examiner can determine
that ResidueFree is installed on the computer and the
times a user ran ResidueFree, no further information
is left in the filesystem.

For our analysis, we compared the filesystems of two
virtual machines (VMs) across three states. First, we
created an Ubuntu 18.04 virtual machine (VM), down-
loaded a series of applications and installed Residue-
Free, and then cloned the VM to ensure the two VMs
would be as close to identical as possible. While one
VM, which we refer to as the “baseline VM,” remained
active in the background, we used the other VM, or
“ResidueFree VM”, to launch ResidueFree and in-

7 http://www.iozone.org/
8 https://www.phoronix-test-suite.com/

https://github.com/vgough/encfs
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teract with several applications inside ResidueFree.
After exiting ResidueFree, we immediately froze both
VMs and made copies of their virtual disks. We then
restored the ResidueFree VM, let it run for an addi-
tional ten minutes, and then froze the VM and copied
its virtual hard disk again.9 We then mounted read-only
copies of these filesystems in a separate machine, gen-
erated hashes of each file in all three states (including
the virtual disks’ swap files), and manually inspected
the contents of any files whose hashes differed between
the baseline VM and either of the ResidueFree VM’s
filesystem snapshots.

Within the ResidueFree VM, we first connected
to ProtonVPN using an OpenVPN configuration file.
We then opened LibreOffice Writer to create and save
a short document, ran Firefox to generate a favicon-
based “supercookie” from https://supercookie.me/, and
played an entire Youtube video. While Firefox was run-
ning, we intentionally caused Chromium to crash. We
then opened Chromium successfully and downloaded a
PDF, ended ProtonVPN, and opened Nautilus to select
the PDF and read it using Evince. Next, we opened
Telegram and sent a message, then downloaded a sim-
ple .txt file from another computer on the local network
using Filezilla, and finally used apt to install a new ap-
plication (gnome-gmail). We then exited ResidueFree
and immediately froze the VM.

Thirty-nine files differed between the baseline VM
and the ResidueFree VM both immediately after
ResidueFree ran and after ten minutes idling. We
manually analyzed each file to determine that no sen-
sitive information from the ResidueFree session was
part of these differences. We determined the differ-
ences were caused by either routine filesystem activity
(e.g., timestamps differing by a few seconds or different
unique identifiers for system resources) or indications
that ResidueFree ran (e.g., Docker and Containerd
logs noting ResidueFree’s container invocation or log
files that tracked the ResidueFree launch command).
In the latter case, none of the files indicated which ap-
plication was run in residue-free mode.

Notably, ResidueFree removes common residue
identified by trained forensic examiners. Nishida [21]
describes locations in the Ubuntu operating system for
reliably identifying forensic artifacts left by the oper-

9 We took the ResidueFree VM’s state twice to ensure
that system processes with delayed writes, namely Gnome’s
application-use tracking described in §6, did not generate any
residue.

ating system and the Gnome Desktop Environment.10

For application downloads and use, he points to sys-
tem log files, application installation files, journal files,
Gnome’s file for tracking application use, Gnome’s file
for tracking recently opened files, and a handful of addi-
tional miscellaneous files in the user’s cache or that are
application-specific. ResidueFree ensures that none of
the described forensic artifacts are written to disk.

In addition, ResidueFree did not preserve any files
from Firefox or Chromium, including favicons where
the supercookie attempts to persist between sessions.
As Solomos et al. [27] note, these favicon-based super-
cookies persisted past all major browsers’ “private” or
“incognito” modes. While these incognito modes are
generally effective, they are vulnerable to novel persis-
tent storage techniques like this one. By ensuring that
all file modifications never touch the user’s disk, no
matter an application’s settings, ResidueFree protects
against such user-tracking attacks.

7.2 Filesystem Costs

Since ResidueFree effectively intercepts file operations
to prevent application residues, we performed a detailed
evaluation of ResidueFree’s file I/O overheads. That
is, we sought to answer the question, what is the per-
formance penalty of using ResidueFree? We used the
Iozone Filesystem Benchmark suite to evaluate 13 differ-
ent filesystem operations on a baseline standard mode
without ResidueFree, on ResidueFree without the
ecryptfs mount on top of the RAM filesystem, and on
the fully-fledged (with ecryptfs) ResidueFree. We ran
the suite 30 times for each category, and took an average
across block sizes and file sizes for each file operation in
each run. Figure 3 shows the average of those 30 av-
erages for each file operation, with error bars denoting
the standard distribution. For the ResidueFree tests,
we ran the Iozone Benchmark 30 times in a row in the
same ResidueFree session.

On average, ResidueFree file operations run at
30.1% the speed of standard mode file operations: 636.9
vs. 2113.8 MB/s. Without ecryptfs, ResidueFree runs
40.6% as fast as standard mode, averaging 858.9 MB/s.
ResidueFree runs 74.1% as fast as ResidueFree with
encryption disabled; the difference between them al-
most entirely comes from write operations (when the en-

10 While Nishida [21] evaluates Ubuntu 20.04 and we evaluate
Ubuntu 18.04, almost all forensic artifacts remain the same.

https://supercookie.me/
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Fig. 3. Filesystem operation speeds from Iozone Benchmark tests.

cryption layer actually operates on the files). Residue-
Free runs at 22.3% the speed of ResidueFree with-
out encryption on write operations (120 vs. 537 MB/s),
but 95.1% as fast on read operations (1000 vs. 1134.8
MB/s). Finally, we note that the performance costs
shown in Figure 3 are not weighted by the frequency
of the individual file operations.

7.3 Additional Performance
Considerations

Impacts on network, CPU, and RAM speed. In
addition to the filesystem costs, we evaluated Residue-
Free’s impacts on other key system performance mea-
sures. We used the Phoronix Test Suite to evaluate net-
work device, processing, and RAM speeds, with and
without ResidueFree.

We ran all Phoronix Benchmarks 10 times consec-
utively in both standard mode and in ResidueFree.
We ran all 10 ResidueFree runs in the same Residue-
Free session. Unlike our other tests, the Phoronix runs
did not fall into a uniform distribution. In particular,
tests running in ResidueFree were more prone to vari-
ance. However, the results show ResidueFree performs
approximately the same as standard mode in these non-
filesystem benchmarks.

To measure performance on network devices, we
used Phoronix’s network-loopback benchmark11 to mea-
sure data transfer speeds over the loopback interface.
Transfer speeds for both ResidueFree and standard
mode are practically equivalent, with ResidueFree
averaging 11 MB/s faster than standard mode. Since
ResidueFree shares a network namespace with the

11 https://openbenchmarking.org/test/pts/network-loopback
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face from the Phoronix network-loopback benchmark.
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mark.

host, these results are expected. We show these results
in Figure 4.

To measure processing performance, we used
Phoronix’s OpenSSL12 and API-Test13 benchmarks.
The OpenSSL benchmark measures how fast the system
calculates RSA signatures, while the API benchmark
measures how many frames per second the system can
render using various graphics API operations.

On average, ResidueFree performs 4096-bit RSA
signatures at 99.8% the rate of standard mode, calcu-
lating 289.9 vs. 290.4 signatures per second. We show
these results in Figure 5.

We ran all 22 of the API benchmark’s per-API tests,
though only 20 of them successfully ran on our system
(both inside and outside of ResidueFree). We ran the
tests at a 1024x768 resolution. ResidueFree performs
graphics API operations at 98.5% the rate of standard

12 https://openbenchmarking.org/test/pts/openssl
13 https://openbenchmarking.org/test/pts/apitest
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Fig. 6. Subset of Graphics API Tests from Phoronix API-Test
Benchmark

mode, registering an average of 13.83 vs. 14.04 frames
per second across the 20 different benchmarks. As with
our filesystem benchmarks, this average is not weighted
by the frequency of the operations in actual software.
We provide a representative set of the API benchmarks
in Figure 6.

Finally, we use Phoronix’s RamSpeed benchmark14

to measure how fast the system transfers data into and
out of RAM when the processor is performing various
calculations on a large set of either integer or floating
point numbers. We ran both integer and floating point
tests on an average of the copy, scale, add, and triad op-
erations. ResidueFree’s RAM speed is notably faster
than standard mode, transferring data through RAM
at an average of 117.7% of standard mode, 10325 vs.
8771 MB/s, between integer and floating point storage.
We have not isolated a cause for either ResidueFree
higher average performance over the baseline nor de-
creased performance in the first two outlier runs. We
posit that ResidueFree’s use of a RAM disk may yield
positive caching effects. These results are shown in Fig-
ure 7.

Startup and shutdown costs. Finally, we cal-
culated the overhead costs of starting up and shut-
ting down ResidueFree. As noted in §6, Residue-
Free takes a noticeably longer time to launch when the
Docker daemon is not configured to startup with system
boot. Even with the daemon enabled, the first Residue-
Free launch after system boot is still slower than subse-
quent launches. We have not noticed any variables that
impact shutdown times.

We define the startup time to be the time between
the invocation of ResidueFree and the start of the ap-
plication running in residue-free mode. To measure the

14 https://openbenchmarking.org/test/pts/ramspeed-1.4.2
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Fig. 7. RAM speeds from Phoronix RamSpeed benchmark.
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Fig. 8. ResidueFree startup and shutdown overhead times.

time required to launch the first ResidueFree invoca-
tion after system boot, we restarted our machine, waited
until all boot processes finished running and CPU us-
age was consistently below .2% (approximately five min-
utes), and repeated the above procedure. We collected
startup times 10 times for the initial ResidueFree ex-
ecution without and with the Docker daemon enabled.
When measuring successive launches, we ran our modi-
fied ResidueFree 30 times.

Similarly, we define the exit time to be the time be-
tween the application’s exit and ResidueFree’s termi-
nation. We ran this version of ResidueFree 30 times.
All of our overhead times were tightly distributed and
showed little variance.

As shown in Figure 8, the first ResidueFree ses-
sion that is launched after system boot without the use
of the Docker daemon requires 17.7 seconds, on aver-
age. The first launch with the daemon enabled takes 7.7
seconds, and successive launches require 3.9 seconds. Of
those times, the Docker container takes 15.5, 5.6, and 2.2
seconds to launch; and all operations outside of Docker
(i.e., creating the encrypted RAM disk, mounting the
union filesystems, and modifying system processes) take
2.2 seconds or less.
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Importantly for our privacy goals, ResidueFree ex-
its quickly, averaging 2.4 seconds to shutdown among
the 30 exits we tested. The quick exit is important for
a user who needs to quickly remove access to filesys-
tem residue, and we prioritized the quick exit time by
amortizing the costs of erasing residue as files are en-
crypted and written to a RAM disk. In our implementa-
tion, ResidueFree only needs to destroy the encryption
key to ensure residue is unrecoverable. Alternative im-
plementations that remove file residue by overwriting all
of the RAM disk when the user exits a ResidueFree
session would improve filesystem performance but no-
ticeably increase exit times.

7.4 Use-Case Performance Measurements

In addition to our (micro)benchmarking experiments,
we also measured the more “holistic” cost of us-
ing ResidueFree by considering the total overhead
(measured in time) of performing simple tasks within
ResidueFree, relative to these tasks’ execution with-
out ResidueFree. We designed our tasks around typ-
ical user applications—a subset of those discussed
in §4—and executed these tasks ten times in both
ResidueFree and standard mode. The results of our
use-case-based measurements are shown in Figure 9 and
described in more detail below.

LibreOffice. We timed how long it took LibreOffice
to convert five 1 MB open document (.odt) files to pdfs.
On average, it took standard mode 12.6 and Residue-
Free 19.7 seconds (↑56.59%) to convert the files.

SFTP. To test how long it would take an application
to read a file from disk and send it over the network, we
timed how long it took SFTP to send an 81 MB file to
another computer on the local network. On average, it
took standard mode 5.4 seconds and ResidueFree 4.9
seconds (↓9.8%) to transfer the file.

VLC. To test how long it would take a video to load
from disk, we timed how long it took VLC to load a 24
second, 21 MB, 1080p mp4 file from disk and completely
play it. On average, it took standard mode 26.1 seconds
and ResidueFree 26.8 seconds (↑2.68%) to load and
play the video.

wget. To test file download speeds, we timed how
long it took wget to download a 1 GB file from a com-
puter on the local network. On average, it took stan-
dard mode 40.8 seconds and ResidueFree 39.9 seconds
(↓2.06%) to download the file.
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Fig. 9. Runtimes to complete tasks on typical user applications.

Firefox. To test internet browsing speeds, we used
Selenium to automate web browser interaction. We
timed how long it took Firefox, driven by Selenium,
to visit 10 different Wikipedia pages followed by
youtube.com. On average, it took standard mode 16.6
seconds and ResidueFree 16.8 seconds (↑1.20%) to
visit the pages.

Performance summary and experiential assess-
ment. In summary, ResidueFree incurs moderate
performance penalties when conducting file-heavy op-
erations, while graphic-, network-, and RAM-based op-
erations are mostly cost free.

Though there is a significant cost to file operations,
these operations make up a small enough portion of a
typical user application’s workload, outside specifically
file-heavy tasks, that they create no more than a few
seconds delay for small tasks.

8 Limitations
While we include a number of user options and
though many sophisticated applications run seamlessly
in ResidueFree, there is room for improvement. Some
straightforward improvements include allowing multiple
ResidueFree sessions at the same time, deleting addi-
tional system logs that track ResidueFree runs and
Docker container changes, and adding options to ob-
fuscate the ResidueFree runtime or delete itself after
running.

More challenging limitations are imposed by the ap-
plications that do not run inside ResidueFree. Dur-
ing our testing, we found that applications packaged
as “snaps” do not run in ResidueFree due to the
snap daemon’s inability to either connect into Residue-
Free via a socket bind-mount or run independently in-
side of ResidueFree. Similarly, applications that re-
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quire “daemonizing” or running in the background in
conjunction with multiple other system processes, such
as specific VPN solutions or server applications (e.g.,
Plex Media Server), do not run inside the Residue-
Free container. Determining appropriate levels of in-
teraction with background system processes while main-
taining a lightweight, containerized implementation of
the ResidueFree execution environment will be the
focus of future work as we release our current Residue-
Free implementation as open-source code.

In addition, our contributions and evaluation fo-
cus on the technical aspects of residue-free computing
and our ResidueFree implementation. Though we de-
signed ResidueFree with common user applications,
restraints faced by different user communities, and over-
all usability in mind, we did not perform any usability
reviews or consult with different user communities. We
believe ResidueFree makes significant usability con-
tributions, but recognize this has not been validated
by lay users. Our proof-of-concept runs on Linux. As
we discuss in §6, while our implementation does not
straightforwardly map to Windows, the overall archi-
tecture may still serve as an effective roadmap towards
achieving future Windows support.

Finally, residue-free computing defines residue as
data left on the filesystem. We do not take steps to en-
sure that data left in RAM by processes run in residue-
free mode is removed, nor does ResidueFree prevent
processes’ memory from being swapped to disk. We are
aware of services that address these limitations (for ex-
ample, Linux’s grsecurity extensions [15] or the use of
encrypted swap).

9 Conclusion
This paper presents residue-free computing, an anti-
forensics privacy-enhancing technology that enables an
“incognito”-like privacy mode for existing applications,
without requiring kernel modifications. We motivate
residue-free computing by exploring the residue (digital
breadcrumbs) left by popular Linux applications, and
show that such residue can contain highly sensitive in-
formation, potentially unbeknownst to the applications’
users.

Our implementation of residue-free computing,
ResidueFree, enables users to run their existing ap-
plications in a mode that avoids leaving residue. We
explore the effectiveness of ResidueFree by perform-
ing a forensic investigation on both unprotected and

ResidueFree-protected invocations of an application,
and show that ResidueFree effectively eliminates ap-
plication residue.

We evaluate the performance costs of Residue-
Free, and determine that they are moderate. Our
benchmark-based evaluation reveals that the privacy
protections provided by ResidueFree come at the cost
of slower file operations, although common user tasks
did not result in a significant or intolerable slowdown.

Our overarching aim in developing ResidueFree
was to provide a user-friendly mechanism that enables
users to use existing applications on their current com-
puter platforms in a more privacy-preserving and safe
manner. Towards that goal, ResidueFree is released as
free and open-source software and is available for down-
load at https://larkema.github.io/residuefree/.
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A Application Residues
Table 1 presents the residues of popular applications
when not running in residue-free mode.
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Table 1. Residues of popular applications running on Ubuntu Linux 18.04.

Application Category Residue

0AD Gaming 0AD records detailed logs of gameplay (i.e., every command issued alongside a timestamp), system
performance logs, and timestamps for the user’s most recent session.

Discord Comm. Discord leaves the names of the channels that the user viewed, usernames (both the user’s and
others in the channel that the user messaged), the user’s login email, various application settings,
message drafts and, in some cases, recent messages.

Eclipse Dev. Tool Eclipse leaves configuration settings, and user and program metadata.
Evince Productivity Evince, Ubuntu’s default PDF reader application, does not specifically track which files it accessed.

However, Gnome tracks the number of times each desktop application, including Evince, opens a
file and the most recent time each application opened the file.

Filezilla Productivity After connecting to an FTP server, Filezilla leaves as residue the server’s IP address, the login
username, and the user’s base-64 encoded password (using default settings), and the most recent
local directory used.

LibreOffice Productivity LibreOffice tracks the name of each file it opens, even if the file is deleted, and updates the modified
timestamp of those files. In addition, Gnome tracks that LibreOffice opened or created a given file
like it does with Evince. Further, LibreOffice logs timestamps for each time LibreOffice starts.

Minetest Gaming When playing as a client on another server, Minetest stores the IP address of the server and the
usernames of all players on the server. When playing locally, Minetest stores user settings and game
save data.

ProtonVPN Comm. ProtonVPN, when connecting to VPN servers using OpenVPN, modifies an OpenVPN configuration
file and the operating system logs the creation of a new IP interface. ProtonVPN uses both
OpenVPN and a command line tool for connecting to its servers. As the command line tool is
currently in beta, our analysis is based on the connection process described at https://protonvpn.
com/support/linux-vpn-setup/.

Signal Comm. Signal did not leave any identifiable sensitive information from the user’s session, but left detailed
logging information in dedicated files that reveal when the user ran Signal.

Skype Comm. Skype records retain a significant amount of information including timestamps for when a call
started, when the user joined the call, when the call ended, whether or not they hosted the call,
and chat messages.

Slack Comm. Like Skype, Slack records the workspaces the user was logged into, the channels the user had access
to in those workspaces, user information - such as names, emails, and links to profile pictures - for
all workspace members, and the contents and timestamps for channel and draft messages.

Spotify Aud./Vid. Spotify leaves residue data (e.g. title, artist, album) for all songs presented to the user, timestamps
for the song the user was playing, and social media (e.g., Facebook) account information (login
username and friend activity).

Telegram Comm. Telegram did not leave any identifiable sensitive information from the user’s session, but left detailed
logging information in dedicated files that reveal when the user ran Telegram.

VLC Aud./Vid. VLC updates the modified timestamp of files it accesses and tracks recently played media in a
separate file.

Web Browsers
Brave
Firefox
Chromium
Opera
Tor

Comm. Firefox, Chromium, and Opera running in their default operating mode left considerable, but well-
known, residue such as cookies and cached data, making it trivial to determine the user’s web
activity. However, we were unable to determine user activity in these browser’s “private” or “incog-
nito” modes, nor we were able to identify user activity from standard Tor and Brave sessions.
Our analyses included searches for data from specific sites visited, images loaded, and cached data
stored using evercookies [19]. All browsers left sufficient logging information in application-specific
log files to reveals when the user ran the browser.

https://protonvpn.com/support/linux-vpn-setup/
https://protonvpn.com/support/linux-vpn-setup/
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