$ sciendo

Proceedings on Privacy Enhancing Technologies ; 2022 (2):47-67

Mansoor Ahmed-Rengers*, Diana A. Vasile*, Daniel Hugenroth*, Alastair R. Beresford, and Ross

Anderson

CoverDrop: Blowing the Whistle Through A

News App

Abstract: Whistleblowing is hazardous in a world of per-
vasive surveillance, yet many leading newspapers ex-
pect sources to contact them with methods that are
either insecure or barely usable. In an attempt to do
better, we conducted two workshops with British news
organisations and surveyed whistleblowing options and
guidelines at major media outlets. We concluded that
the soft spot is a system for initial contact and trust
establishment between sources and reporters. Cover-
Drop is a two-way, secure system to do this. We sup-
port secure messaging within a news app, so that all
its other users provide cover traffic, which we chan-
nel through a threshold mix instantiated in a Trusted
Execution Environment within the news organisation.
CoverDrop is designed to resist a powerful global ad-
versary with the ability to issue warrants against in-
frastructure providers, yet it can easily be integrated
into existing infrastructure. We present the results from
our workshops, describe CoverDrop’s design and demon-
strate its security and performance.

Keywords: whistleblowing, anonymous communication,
mobile application

DOI 10.2478/popets-2022-0035
Received 2021-08-31; revised 2021-12-15; accepted 2021-12-16.

*Corresponding Author: Mansoor Ahmed-Rengers:
OpenOrigins Limited and University of Cambridge,

E-mail: Mansoor.Ahmed@cl.cam.ac.uk

*Corresponding Author: Diana A. Vasile: Department of
Computer Science and Technology, University of Cambridge,
E-mail: Diana.Vasile@cl.cam.ac.uk

*Corresponding Author: Daniel Hugenroth: Depart-
ment of Computer Science and Technology, University of Cam-
bridge, E-mail: Daniel.Hugenroth@cl.cam.ac.uk

Alastair R. Beresford: Department of Computer

Science and Technology, University of Cambridge,

E-mail: Alastair.Beresford@cl.cam.ac.uk

Ross Anderson: Department of Computer Sci-

ence and Technology, University of Cambridge,

E-mail: Ross.Anderson@cl.cam.ac.uk

1 Introduction

Since the Snowden leaks [15], newspapers and their
potential sources have become aware of the mass-
surveillance infrastructure available to nation states.
This has profound implications for those who wish to
expose wrongdoing within government, and in organi-
sations that can call on its assistance.

Whistleblowers may face severe penalties if caught:
in the recent past, they have been physically intim-
idated [28], imprisoned [46, 51], and even assassi-
nated [45]. Even in less extreme cases, they face dis-
missal [35], litigation, and professional boycotts [41].
Yet, whistleblowing is often the last line of defence
against unethical or illegal behaviour by the powerful.
In the context of government agencies, it may be the
principal means of exposing crimes that may have been
covered up under the guise of national security. It is also
widely recognised as a crucial component in accountabil-
ity, and many countries have explicit laws for protecting
whistleblowers. Unfortunately, these laws have proven
to be insufficient in many recent cases. Since the Snow-
den revelations, we have seen the emergence of tools
such as SecureDrop, and many major news organisa-
tions have web pages to advise whistleblowers on how
to contact them securely with sensitive information. A
preliminary examination convinced us that the tools are
often hard to use securely and the advice inadequate.
How could we do better?

In order to understand the whistleblowing process
in the real world, we conducted two workshops with
journalists and IT staff at news organisations. These
workshops provided valuable insights into the practical
difficulties of supporting whistleblowers and how jour-
nalists work with them. The main lesson we drew from
these workshops was that there is no secure way for
whistleblowers to initiate contact with reporters. Conse-
quently, initial contact is undertaken via insecure means
and only later escalated to more secure channels (e.g.,
SecureDrop), by which point it may already be too late.

In this paper, we present CoverDrop, a system
which helps potential whistleblowers securely initiate
contact and whose design emerged from these discus-

[®) ov-ne-np |

sions. CoverDrop can be integrated into existing news
apps and enables news app users to contact journalists
at that news organisation, reducing the risk of insecure
communication from the start. It uses cover traffic gen-
erated by all the regular users of the news app to hide
whistleblowers’ communication, where traffic is passed
through one or more mixes at the newspaper. Thus, ev-
ery news app user acts as a potential whistleblower and
becomes inconspicuous in the crowd. We fortify this by
ensuring that the news app ordinarily sends a small
amount of constant cover traffic to the mix (Cover-

Node) hosted in the news organisation’s infrastructure;

the cover traffic is replaced with message contents when

a whistleblower communicates with a reporter.

In its most basic form, a single CoverNode is hosted
by the news organisation to protect the privacy of the
whistleblower. In order to reduce the attack surface, the
CoverNode software operates without storage and runs
inside a Trusted Execution Environment (TEE). To pro-
vide stronger protection, multiple CoverNodes, run by
different news organisations, can be chained together,
ensuring that whistleblowers cannot be identified unless
all the chained CoverNodes are compromised.

CoverDrop provides protection from a global pas-
sive network adversary with the ability to issue warrants
against infrastructure providers such as the newspaper’s
network service provider, or even their cloud service
provider. It achieves this without disrupting existing
content delivery infrastructure: CoverDrop can be in-
tegrated with Content Delivery Networks (CDNs) with
minimal networking reconfiguration.

In summary, the contributions made in this paper
are:

1. The development of a realistic adversarial model
and system requirements for an initial contact
mechanism based on actual journalists’ experiences.

2. A secure mobile library for easy deployment of
covert communication channels masked by cover
traffic in existing applications.

3. A TEE-based CoverNode that provides strong pro-
tection against a powerful adversary and supports
3 million messages per second per CPU core.

4. A networking model that supports integration into
existing CDN-based networks with minimal change.

5. Strong protection against a global passive adversary
that can also use warrants to compel infrastructure
providers and to seize devices from journalists (and
their sources).

6. An open-source prototype implementation.

CoverDrop: Blowing the Whistle Through A News App = 48

2 Status quo

In order to understand existing systems and workflows,
we checked what whistleblowing tools, processes and
advice different news organisations offer and analysed
their security properties (Table 1), and we organised two
workshops with journalists, IT staff and security special-
ists in British news organisations in late 2019 (§2.2).

2.1 Currently recommended options

We reviewed news organisations’ whistleblowing pages.
We selected 24 news organisations scoring highly on
Alexa top sites, ranking by category and by country.
Starting from the home page, we investigated the op-
tions they provide for people to contact them (Table 1).
Sadly, we found that only twelve newspapers of-
fer encrypted communication, either in the form of en-
crypted general-purpose messaging apps or of special-
purpose systems such as SecureDrop. We also wanted
to know how difficult it is for potential whistleblowers
to find this information so, as a heuristic, we counted the
number of links a reader has to traverse from the home-
page to the relevant whistleblowing page. Of the twelve
newspapers offering a secure option, only three link to
the information directly from the main page. Most place
links two or more hops away. Commendably, the New
York Times and The Guardian provide extensive infor-
mation on the options in an easy-to-understand manner.
Only a few newspaper sites offer PGP keys for
specific staff members rather than a company-wide or
department-wide account. This observation was later
corroborated by journalists in our workshop who stated
that having a “front desk” to deal with all leads is stan-
dard procedure. This led us to include a generic “any
reporter” account as an option in CoverDrop (see §4).

2.2 Workshops

We organised two workshops in London in September
2019 to understand journalists’ priorities and proce-
dures (Workshop 1), and capture technical requirements
(Workshop 2). We summarise the results below.

We invited journalists and information security ex-
perts from large news organisations in the UK (Work-
shop 1). There were 20 participants (coded as P1
through to P20): 17 in-person, 3 call-ins. Workshop 2
resulted from an invitation to present our approach to
one of the news organisations from the first workshop.

CoverDrop: Blowing the Whistle Through A News App = 49

= o
= [-%] o
-g = g 13 & g é) gﬂ
> =]] = o0 - = =5
T e E 5 x € £ 8 3 €
= =l § £ ¢ 8§ £ 4 5|8
5 F|8 8 3 % & 2 5 £|g
Newspaper a w|ldad FF @ O 2 W F O |
New York Times I0m+ 2* | e X X X e e e x | [47]
CNN 10m+ 4 X X X X x x x x |[Nn
Times of India Iom+ X | X X X X X x x x |[31]
BBC 10m+ X X e e e e X X e [27]
The Guardian 5m+ 1* | ¢ o X X e X e o [16]
Spiegel 5m+ 5 e e X e X e o x| [32]
Le Monde 5m+ 5 X X X X X X x e*|[26]
Washington Post Im+ X |e X e X X X X X |[34]
El Pais Im+ X |e e X X X X X Xx |][33]
Siiddeutsche Zeitung | 1m+ 2 e X e X e e e o [43]
Wall Street Journal Im+ X |e X e X X X X x |][22]
The Mainichi Sh. Im+ X X X X e X X x x |][23]
The Sun 500k+ 5 e e e X e X e x |[42]
China Daily 500k+ X |e e e X x x x x |][8
O Globo 100k+ x | X X x e x X x x |[12]
Buzzfeed 100k+ 2 e e X X e e e x |]29]
Globe and Mail 100k+ 1 e e o X X e e x | [11]
Dawn 100k+ X | X e e X X X x x |[9]
The Sydney M.H. 50k+ X | x X e X X x x x |[17]
Wired 10k+ 1 X X X X X x e x |[52]
The intercept X 1 e X X X e e e X |][19]
Wikileaks X 2 X X X X X X e x | [50]
Private Eye X X |e e @ X X X X x |[10]
Ars Technica X 2) X X e e e X e [4]

Table 1. A view of 24 different newspapers across the globe and the options they provide sources to contact the editorial team. Pop-
ularity is calculated by the number of installs from the Google PlayStore. Easy-to-find is calculated as the number of hops from the

main web page. Legend: @ = offered; x = not offered; * = custom solutions offered

The participants list was refined by the news organi-
sation and we presented to a team of roughly 40 peo-
ple including journalists, software engineers, and system
administrators. We obtained approval from our partic-
ipants to record the discussion during Workshop 1 to
produce a transcript such that the identity and affilia-
tion of the speakers and any other participants is not re-
vealed [18]. The workshop structure and approach were
approved by our institution’s Ethics Committee.

Each workshop involved presenting the participants
our view of the current world (Table 1), as well as an ini-
tial presentation of CoverDrop to trigger discussion. We
additionally used a semi-structured list of questions to
prompt discussion, which covered areas such as: source’s
contact method, keeping sources anonymous, collabo-
rating with other journalists, and benefits and draw-
backs of current systems they use. We conducted a the-
matic analysis on the transcript from Workshop 1 us-
ing double-blind coding to observe recurring themes in

the discussion. We then discussed, resolved and refined
the themes observed. Although Workshop 2 was more
focused on technical requirements due to the mixed au-
dience, we used the opportunity to validate the themes
that emerged during the first workshop.
Understanding journalists’ priorities. The aim
of this workshop was to get a better understanding of
how both specialist and mainstream tools support inves-
tigative journalism today: what works, what does not,
and whether the risks from using these are acceptable.
After the initial presentation it became apparent
that no system fits all needs. Bespoke systems for
whistleblowing require real understanding of comput-
ing, while mainstream applications were fairly easy to
use but did not provide the same guarantees. Protection
requirements not only differ by context, but also change
with time. Although a conversation with a source may
initially start off in one channel (which may not have
the most careful protection as it’s just an initial dis-

cussion) it is very common that it “moves to another
channel” (P4). Also, source cultivation is a long pro-
cess: “ [sources] want to build up the trust relationship
before [giving you the data for the story]” (P4); and
the sources themselves may change in nature: “[sources/
sometimes become whistleblowers because they’re getting
increasingly angry about something” (P9). This eleva-
tion poses a threat to anonymity since an increase in
protection may signal an increase in importance to any
listener. Reporters also want a balance between usabil-
ity and security: “I think we’d like the easiest solutions
that give us with usability the best protections” (P13).
Whistleblowing is with
10%7(P4) of user-sent content ever making a story,

infrequent, “less than
yet “you cannot give up the opportunity that some day
someone will” (P13). Securing communication often re-
lies on the journalists since they “take responsibility [as
to what secure tools to use] upon themselves a lot of the
time” (P9). Furthermore, reputation plays an important
role in source cultivation: “the hope is that we can proac-
tively approach an individual with the story based on our
reputation for covering that area. Or, alternatively, our
reputation is such that people might wish to contact us
directly rather than through the shop front.” (P9).

As we explored what a good solution ought to look
like, low latency and ease of use became a common fac-
tor. Current secure solutions are slow and lack confir-
mation of message receipt: “[SecureDrop] is very high
latency. [...] someone has to download [messages] on a
USB stick and take it to an air-gapped environment and
then decrypt it. And even that is quite a slow process.”
(P4). Discussion revealed that the real-world latency of
SecureDrop is around a day because of all the manual
handling. Lower latency (to enable multiple back-and-
forth messages in a day) was seen as critical for trust
establishment. We worked this into our requirements.

The journalists also repeatedly stated the need for
systems that make operational security easy for normal
users, that provide resilience to warrants, and that a
widespread, trusted whistleblowing system could lead to
greater transparency and therefore support democracy.

Technical requirements. The first workshop
helped us understand the immediate need: a secure,
anonymous and low-latency means for initial contact
and trust establishment. One of the organisations that
attended the initial workshop invited us to present an
early design for CoverDrop. We presented to a team of
roughly 40 people, including journalists, software engi-
neers, and system administrators. The presentation was
followed by unstructured discussion, which focused on:
the importance of blocking the screenshot ability within

CoverDrop: Blowing the Whistle Through A News App = 50

the app when using CoverDrop; the need for news or-
ganisations’ app developers to be able to patch the app
if vulnerabilities are found; and the use of their organ-
isations’” CDNs. Ease of deployment was emphasised in
both workshops, with many participants agreeing that
the solutions with the highest success rates are those
that can be rolled out with minimal engineering effort.

3 Adversarial assumptions

Following our workshops, we summarised the points
of failure commonly seen in whistleblowing operations.
Based on this and further feedback from journalists, we
developed a realistic adversary model.

3.1 Failure points

We focus on the devices involved in the communication
between whistleblower and reporter. Failures occur via
one of: compromised devices, network adversaries, com-
promised infrastructure, and operational security mis-
takes.

Compromised corresponding devices. Assum-
ing the corresponding devices are phones or tablets (ei-
ther iOS or Android), compromise can occur at several
levels: spyware apps, root spyware, temporary adver-
sarial possession, and physical attacks. Root spyware
typically allows access to data stored by other apps, as
well as UI control and keystroke logging. The latter ren-
ders network level protections ineffective. We consider
root spyware out of scope for both our system and the
existing systems we analyse. (If root spyware is a threat
post-disclosure, best practice would be to use Cover-
Drop only for initial contact, after which the journalist
will visit the source to give them a burner phone).

Non-root spyware apps cannot record the screen
discreetly due to the warning notification that the OS
displays when one application builds an overlay over
another. Various side channels have been proposed [6]
that allow Android apps to capture partial information
about keystrokes entered by other apps, but while such
techniques may help guess banking PINs (on easier-to-
attack numeric keyboards), their signal-to-noise ratio is
too poor for routine police surveillance.

Temporary adversarial possession may occur at bor-
der checks or through device confiscation by law enforce-
ment. USB forensic devices can then be used to retrieve
system information, assuming the phone has been un-

locked since it was powered on. We assume that adver-
sarial possession is possible and only the secure element
(SE) and equivalent TEEs could resist such attacks.

Network adversary. We assume that the adver-
sary has access to all of the networking infrastructure
(CDN, ISP, corporate LAN); however, we assume that
they are generally passive — they will not drop or ma-
nipulate messages but rather analyse message traffic to
infer connections. For a whistleblower, the knowledge
that one has spoken to a reporter at a particular time is
incriminating. So they need unobservable communica-
tion, not only protecting the message contents but also
the fact that any communication occurred at all.

Compromised infrastructure. Warrants allow
law enforcement to confiscate material deemed relevant
to an investigation. So we must assume that warrants
can be issued at any time after investigators learn of the
leak. They may be served on third parties such as ISPs,
postal services, and cloud providers.

Usability and operational security. Usability is
a well-known weakness in security systems [38, 40, 49];
if Johnny can’t encrypt, how can we expect him to blow
the whistle anonymously? Operational security mistakes
can happen at either end of the communication channel
and are more likely when journalists are doing some-
thing they do rarely, and the source is doing something
for the first time in their life under great stress [3].

3.2 Adversary model

Thus, we assume the following adversary model:

1. The adversary can monitor and record all commu-
nication to and from the news organisation, its jour-
nalists and all potential sources.

2. The adversary can monitor and record all internal
traffic within the news organisation.

3. The adversary may issue warrants at any point dur-
ing or after the leak, allowing them to gain physical
control of devices or servers of their choice.

4. The adversary may issue warrants to any third party
(CDNSs, cloud services, messaging app servers).

5. The adversary can install malicious (non-root) ap-
plications on any phone, including those of the re-
porter and those of all possible sources.

6. The adversary cannot compromise the TEE’s confi-
dentiality and remote attestation guarantees during
its normal run-time operation. The adversary may
issue warrants and perform physical attacks post-
disclosure, after which we can assume no guarantees
from the TEE.

CoverDrop: Blowing the Whistle Through A News App =—— 51

7. The adversary cannot compromise the mobile
phone’s secure element (SE), even after taking phys-
ical possession of the device.

This adversary is realistic for a senior civil servant who
blows the whistle on a government and hopes to remain
anonymous. This is the baseline adversary model con-
sidered, in § 6.2 we consider stronger adversarial models.

4 CoverDrop overview

4.1 System requirements

We developed functional requirements for CoverDrop
during our workshops: Two way asynchronous commu-
nication to allow for building trust and answering ques-
tions. Low latency allowing multiple messages to be ex-
changed per day. Responsiveness providing message de-
livery confirmation. High usability in the sense that the
UI should be easy for normal people to use and the pro-
tocol should not assume any knowledge of cryptography.
Ease of integration for the news organisation for both
the mobile app and networking components.
Whistleblowing involves multiple rounds of commu-
nication between the source and the reporters, so excess
latency results in further stress for an already anxious
whistleblower. We decided to favour low latency over
high bandwidth. As such, CoverDrop is not meant for
sending large files but rather for text message exchanges
to make initial contact and start to establish trust (the
journalists repeatedly remarked on the lack of a viable
system, §2.2). Thus, CoverDrop can be seen as comple-
mentary to systems such as PrivNote and SecureDrop.

4.2 Design

We first give a brief overview of CoverDrop and then
dive into the technical details.

Existing systems are inadequate in the face of our
adversary model. For example, if one of 67 civil ser-
vants must have leaked the document the Prime Min-
ister is fuming about to the Director of the Security
Service, then the Director — whose colleagues in the in-
telligence community operate a global passive adversary
— can simply look to see which of them downloaded a
Tor client and used SecureDrop (§2). So we decided to
take a different approach. Instead of designing a stan-
dalone niche application whose use could be a giveaway,

we decided to collaborate with news organisations to
build CoverDrop into their existing applications.

News organisations have a substantial user base for
their apps, which can provide cover traffic for covert
communications if we introduce constant throughput
channels into them. This CoverDrop strategy means
that the throughput per user is limited to short text
messages (see §4.1 for justification).

SecureDrop was designed using Tor to prevent
the news organisation knowing the IP address of the
whistleblower. However, this meant that the one civil
servant out of 67 who communicated via Tor could ex-
pect an ‘interview without coffee’. So CoverDrop does
not rely on Tor; the source contacts the news organi-
sation directly. We thwart correlation attacks by use of
constant-throughput proxies called CoverNodes (§6).

Our constant-throughput cover traffic is indistin-
guishable from the real messages from a source; only
by decrypting the feeds can we distinguish the two.
In order to ensure that the IP addresses of those who
send actual messages aren’t accessible to investigators
who serve warrants on a service provider, we implement
CoverNodes within a Trusted Execution Environment
(TEE); in our prototype, this TEE is SGX. We note
that one might use multiple CoverNodes across multi-
ple news organisations (as in Tor) for greater resilience
to compromise. In this description we focus on the sin-
gle CoverNode model and highlight changes required for
multi-CoverNode in §5.6.

All real messages have two layers of encryption: the
outer layer is encrypted with the CoverNode’s public
key, while the inner layer is encrypted with the recipi-
ent’s. The data from all the feeds (cover and real) are
passed to the SGX enclave where it is decrypted. If the
decrypted data indicates a real message, the enclave
caches the message until enough messages, cover or real,
have arrived and then sends them to the recipients. The
enclave never stores any record of messages on disk, so
warranted access to the server is ineffective.

In order to defend against spyware on the sending or
receiving devices we configure device security with care.
We discuss this for Android; similar mechanisms can be
employed on iOS. First, we mark our application con-
tent as sensitive to ask the operating system to prevent
other apps capturing screen content while CoverDrop is
in foreground. Second, all app data (active chat logs,
etc) are stored encrypted and padded to a fixed size.
Every news app user has this encrypted data regardless
of whether they have ever used the CoverDrop feature,
providing plausible deniability if the device is seized.
Third, the master secret for storage encryption is de-

CoverDrop: Blowing the Whistle Through A News App =— 52

rived from a passphrase and from a secret stored in the
secure element (SE). The passphrase gives user control
while the SE limits brute-force attacks.

Lastly, in order to meet our ease of integration goal,
we designed CoverDrop so that the news organisation’s
existing CDN infrastructure can route both the cover
messages and the real ones.

4.3 Security goals

Our workshops (§2.2) revealed three core security prop-
erties required for making initial contact with journal-
ists: confidentiality & integrity, unobservable communi-
cation, and infrastructure plausible deniability. We out-
line CoverDrop’s security goals with reference to our ad-
versary model (§3.2) and justify in §6 how CoverDrop
achieves these goals.

G1: confidentiality & integrity. The adversary
is unable to read or modify the contents of messages
between potential sources and journalists.

G2: unobservable communication. The adver-
sary cannot tell which, if any, news app users are cur-
rently sending messages to journalists.

G3: plausible deniability. Even with physical
possession, the adversary cannot determine which, if
any, news app users have previously used CoverDrop.

4.4 Limitations

There are inherent trade-offs between the provision of
cover traffic, fixed-size messages, and rate limits. An in-
crease in bandwidth would allow us to support larger or
more frequent messages for the minority of users who
are whistleblowers, but require the remaining users to
send larger volumes of cover traffic. However, our re-
search has determined that there is a sweet spot where
the traffic costs for the average user remain low while
the bandwidth required to support whistleblowers is suf-
ficient to support first contact with a journalist. We note
that messages larger than the predefined size are split
into multiple packets and sent over time (due to the rate
limits).

We do not consider stronger privacy guarantees,
such as perfect forward secrecy and future secrecy, which
are becoming the norm for secure messaging apps. Here,
they offer little benefit. Perfect forward secrecy, for ex-
ample, is achievable through changes to the protocol,
such as adding session identifiers and key state. How-
ever, should key compromise occur, two of CoverDrop’s

core security goals are defeated since not only does the
adversary learn the contents of the message (G1), but
they can also now prove the victim was using CoverDrop
to communicate with a journalist (G2). Perfect forward
secrecy would not recover security past this point.

Lastly, to fully support security goals G2 and G3,
CoverDrop relies on the security of TEEs (in our imple-
mentation SGX), Secure Element on device, and third-
party libraries. We discuss the effect compromise of ei-
ther of these elements has on the security of CoverDrop
in §6.2 and provide an extended analysis of the proper-
ties provided by encrypted storage on the mobile device
in Appendix B.

5 System details

We first describe the protocol flow before explaining the
specific components and actors. As the page limit pre-
vents us explaining all the implementation details, we
refer the reader to the source codel!.

We implemented the SGX CoverNode using the Vi-
sual Studio SGX SDK in C++4. The WebApi is im-
plemented in Python and deployed on a virtual ma-
chine behind a well-known CDN provider. The sample
NewsReader application and the CoverDrop mobile li-
brary are implemented in Kotlin for Android. The mo-
bile library uses libsodium? for all cryptographic mes-
sages (X25519 key exchange, XSalsa20 stream cipher,
Poly1305 as the MAC, and Ed25519 signatures).

5.1 Protocol flow

Our system has four sets of actors: (1) news organisa-
tions interested in providing an accessible and trustwor-
thy way for sources to contact reporters; (2) reporters
who want to receive newsworthy information and are
willing to take measures to protect their sources; (3)
whistleblowers who want to share information securely
with a reporter while protecting their anonymity; and
(4) regular users who simply have the news reader app
installed on their devices. They want to minimise any
negative implications of participating in the system such
as energy consumption and excess mobile data traffic.
We describe the protocol flow as illustrated in Fig-
ure 1. The public and private identifiers and keys are

1 https://github.com/coverdrop/prototype
2 https://libsodium.gitbook.io/doc/

CoverDrop: Blowing the Whistle Through A News App = 53

Reporter: idr, pubr, privg
CoverNode: pubsax, privsgx,
reporters : {idg — pubr}
CDN: pubsgx, reporters: {idrp — pubr}
App: puba, priva, Kuser || KsE

Table 2. Private (priv) and public (pub) keys of the entities and
actors.

summarised in Table 2. We use E to denote private-
public-key encryption and S for private-public-key sig-
nature. As noted earlier, for simplicity we focus on the
single-CoverNode model here; §5.6 summarises the con-
siderations involved in switching to multi-CoverNode.

During the initial setup of CoverDrop all re-
porters choose a unique, fixed-length identifier idg
and a key-pair pubg,privg for encrypting their mes-
sages. Reporters are enrolled by sending a signed tuple
(idg,pubr) to SGX @. This sign up process can be mod-
ified to interface with any Identity Provider (IDP) that
the news organisation might already be using. The SGX
enclave (CoverNode) verifies the signature and adds it
to its mapping reporters : {idg — pubr}. The enclave
periodically sends its own pubsgx and the reporters
mapping to the WebApi/CDN: POST /pubkeys @.

When the news reader app is first started by any
user (other than a reporter) it downloads /pubkeys from
the CDN @ (or they might come bundled with the app).
It creates encrypted storage with a randomly chosen
passphrase (see §5.4) and a buffer out of messages to be
sent. Every x minutes (where x is a global parameter set
by the news organisation) the oldest message from out
is sent to the CDN: POST /message @. If out is empty,
a “cover” payload is encrypted using pubsgx and sent
instead. These cover-traffic messages are detected when
being decrypted by SGX and discarded @.

We now describe the process of starting a Cover-
Drop session on the app. After navigating to the
CoverDrop screen within the app, the user enters a
passphrase. CoverDrop then tries to decrypt the exist-
ing encrypted storage using Ky ser + Ksg. If it succeeds,
it retrieves its data (including keys and message his-
tory) from storage. Otherwise, the existing storage is
supplemented with a fresh one (storing puba, priva)
and encrypted using fresh Kyger + Kgg. It is indistin-
guishable from any storage that is created during the
first app start (see previous paragraph).

The process of sending a message M4y to a
First, the
text to the reporter is created by encrypting the

reporter is as follows. inner cipher-

https://github.com/coverdrop/prototype
https://libsodium.gitbook.io/doc/

CoverDrop: Blowing the Whistle Through A News App =— 54

Open Open
Internet News organisation's network Internet
< < > >
Ordinary peer's s CDN Reporter's
phone phone WebApi sex e phone Reporter X
Enrolimer
: Seal
: credentials
: o ACK- >
A] ° POST /pubkey
eporter list
dissemination «——GET /pubkeys——>
GET /pubkey - Generate dummy
Generate dummy : messages
r . " :) : wait until
Generate dummy | wait until message : <«———————POST /message————————— next round
message next round POST /message——» :
- — POST - >
wait unti
next round o <«——GET /messages——>»
o Check for real'messages;
: add cover traffic
Co(ver traﬂig «—POST /user_deaddrop—] :
repeate)
constantly and - <«—POST /reporter_inbox:
indefinitely) Cache and publish
: deaddrop and inbox
<«—GET /user_deaddrop—>»
«—— | GET/user_deaddro : :
Try to decrypt <«—GET /reporter_inbox————————>
all messages : Try to decrypt
: all messages
_ :
Send message e
[to reporter A : Generate dummy
Pad and encript Tssees
ad an it unti
.yp <«—————————POST /message wait untlld
wait unti POST /message——> next roun
next round 9
«—GET /messages—»
Check for real ‘messages;
add cover 1rafﬁc
Whistleblower
sends message < «—POST /user_deaddrop—|
to reporter A <«—POST /reporter_inbox:
Cache and publish
: deaddrop and inbox
<«—GET /user_deaddrop—» GET /reporter_inbox
Try to decrypt
all messages
Notify about
| message
-
Learn about
|::| whistleblower's
pub key
~
Send message
to whisteblower
: o Pad and encrypt
Generate dummy) ;
messages - POST /messac wait until
wait until POST /messa next round
next round g
<«——GET /messages——>»
Reporter A :
repliestothe < Check for real'messages;
message add cover traffic
«—POST /user_deaddrop-
«—POST /reporter_inbox-
Cache and publish
: deaddrop and inbox
<«—GET /user_deaddrop—» | «————GET /reporter_j |nbox—>
Notify about__| :
message
-

Fig. 1. Protocol flow in CoverDrop.

Reporter
enrolment
sequence

padded payload and public key @ to the reporter:
Ca,inner = Epuby(pad(Ma,puba)). This inner cipher-
text is then encrypted for the CoverNode C4 =
Epubsex (tdr, Ca inner) and added to the outgoing
buffer out.

Second, the message is delivered to the Cover-
Node via the CDN © where it will successfully decrypt
C A inner- The CoverNode awaits sufficiently many mes-
sages and creates cover messages (see §5.2) @. For all
outgoing messages, the CoverNode adds a signature and
publishes (C inner, Sprivsex (CA,inner)) to the reporter
inbox.

Third, the reporters download the inbox regularly
and verify the signatures @. They then attempt to de-
crypt all messages and only succeed for real messages
sent to them ° Now they can read M4 and use puby
to link the message to an existing chat session (if any).

Fourth, the reporter sends a reply Mpr by encrypting
it using the sender’s public key and adding their signa-
ture: CR,inner = Epub, (MR, idR, SpriUR (MR)) ° They
then send Cr = Epubgex (CR,inner, Sprivg (CR,inner)) to
the CoverNode. The signature prevents other users from
posing as reporters — that would allow them to trick
users or fill the dead drop.

Finally, the message is handled by the CoverNode
similarly in the other direction. The only difference is
that the CoverNode will verify the signature and post
it to user_deaddrop instead @. The readers’ phones
will download the dead drop messages regularly and use
trial-and-error to find messages that they can decrypt
whenever the user opens their session.

5.2 CoverNode

The SGX enclave acts as a trusted CoverNode hiding
the sender /recipient relationships from an observer and
providing defence in depth. It is never accessed by the
newsreader app directly and never stores any state to
disk. Instead, it reads messages from the CDN/WebApi
and publishes messages there. This shields it from direct
DoS attacks and decouples it from timing attacks.

The CoverNode acts as a Threshold Mix [39] in
both directions: forwarding messages from readers to re-
porters and vice versa. Both work similarly, so we only
describe the direction from reader to reporter here.

First, the CoverNode will poll the /message end-
point until it has received enough messages to meet
its input threshold ¢;, (a configurable parameter). It
then decrypts them and learns (idgr, CA inner) for all.
All cover messages are discarded while the actual mes-

CoverDrop: Blowing the Whistle Through A News App =—— 55

sages MR qctual are collected for each reporter idg.
Second, for each reporter the SGX enclave generates
tout — |MR,actual| cOver messages where ¢4, is the out-
put threshold. These cover messages are encrypted with
a random private key that does not belong to any re-
porter. Finally, all messages are signed by SGX and pub-
lished to the reporter inboxes on the CDN/WebApi.

An observer only sees that the CoverNode consumes
tin encrypted messages of fixed size and produces oyt
encrypted messages of fixed size for each reporter inbox.
Practically, t;,, > tou: as the vast majority of messages
are cover traffic.

5.3 Ul design

The CoverDrop library provides the background ser-
vices, cryptographic methods, and data interfaces. It
does not provide any user interface components itself,
allowing native integration with the news organisation’s
app branding and workflow. We developed a prototype
news reader app that shows how it can be integrated.

Our UI design is concerned with ease of access to the
CoverDrop features while minimising operational secu-
rity mistakes. We provide screenshots in Figure 2. The
library allows app developers to place entry points of
their liking. From our survey of existing channels and
workshops we think that a main menu entry and the in-
vestigative reporters’ profiles are the places where users
are likely to expect CoverDrop.

The CoverDrop entry screen always shows options
for continuing a previous session and starting a new
one. This is because CoverDrop itself only retrieves its
state when the encrypted data is loaded with the user’s
passphrase (if any). This prevents an adversary from
knowing if a user has used CoverDrop or not simply by
loading the login screen.

The fixed frequency of outgoing messages imposes
delays on communication with which the user might be
unfamiliar. Thus, we show a progress bar to explain
when the next batch of messages will be sent. We impose
this fixed frequency to ensure that the whistleblower
does not exceed the cover traffic rate and thus become
noticeable to a network adversary. In a real application,
the integrator might dispense with this, reasoning that
no whistleblower making initial contact could reason-
ably expect a busy journalist to answer within seconds.

333 van 333 van 333
Reporters Send a Tip = &

ROSALIND FRANKLIN Already sent something?

WRITE E-MAIL & oY
CHARLES DARWIN
@ Chare Send for the first time
4 WRITE E-MAIL
- @ gazing twelve perfectly
. ISAAC NEWTON
B

Coverdrop Splash &

C

oading CoverDrop Session.

CoverDrop: Blowing the Whistle Through A News App = 506

van 335 van 334 van
Coverdrop Menu € Chat Session

You: Hell laund

Created: Jan 14,202
Active Chats

Remote: That sounds ineresting. You can send us copy via
3, Rosalind Frankiin mail - detals are on our website

Received: Jan 14,202

All Contacts You: Have you received the documents?
Created: 3 days ago

o Rosalind Franklin
-

— Remote: We got your documents. Can you confirm that the
name mentioned on page 12 is PYTHAGORAS?
se Charles Darwin Received: 1 hour a
ah

oo lIsaac Newton
-

Fig. 2. The CoverDrop feature is accessible through reporter profiles and regular navigation. Both login options (new and existing ses-
sion) are always shown. Active sessions and chat logs are only available after decryption of the CoverDrop storage.

5.4 Secure app library

The secure app library allows organisations to integrate
CoverDrop into their existing mobile apps. We devel-
oped it for recent Android versions and provide a project
where we integrate it into a sample newsreader app.

The library registers a background service that runs
at fixed intervals and sends encrypted messages to the
news organisation. Every epoch, either a real or a cover
message is sent. Since we send the same number of fixed-
sized encrypted messages at regular intervals, this does
not leak any information about whether communication
is taking place.

All CoverDrop state is stored in an encrypted file
on disk that is padded to a fixed size of 100 KiB. When
the app is opened for the first time, the library creates a
new encrypted file. This is done using the regular session
creation routines with a randomly chosen passphrase
pw and a fresh SE key Kgg. This ensures that every
newsreader installation will contain an encrypted file,
providing plausible deniability for whistleblowers. The
app updates the last-modified date of the encrypted file
on every start-up. During the first start-up the library
also chooses a permanent salt value. Our storage imple-
mentation uses cryptographic routines provided by the
platform and the Argon2 password hash function.

When a user starts a new CoverDrop session with
passphrase pw, an empty CoverDrop state state is cre-
ated and encrypted as follows. First, the empty state
state is padded to a fixed size of 100 KiB. Second, a
new non-exportable key Kgg is created within the SE.
Then the padded plaintext is encrypted inside the SE
using AES-GCM with Kgg returning ciphertext cipher’.
Third, we use a Key Derivation Function (KDF) to de-

Fixed-size

-l enter passphrase

encrypted file

(—

Ciphertext+IV
K_User
KDF (Argon2) AES-CTR

SccurcElement

4
—b AES-GCM

yes

cipher'

reset: encrypt
new empty blob
. S UUID User
- S Sessions

Fig. 3. Flowchart for decrypting the ciphertext stored on disk.
The encryption is analogous.

rive Kyger from pw and a salt value. Then the inter-
mediate ciphertext cipher’ is encrypted using AES-CTR
with Kyge, resulting in the final ciphertext.

Trying to access/decrypt an existing CoverDrop
state is performed analogously (see flow chart in Fig-
ure 3). Note that a successful decryption depends on
both Kyser and Kgg. Their correctness is not observ-
able until the GCM tag is checked for validity at the last
step. Hence an attacker can only verify the passphrases
by passing the entire cipher’ through the SE.

We assume that the SE resists physical access and
does not allow attackers to extract stored keys. Its band-
width and speed limit the brute-force abilities of an at-
tacker. In our experiments we observed a decryption
bandwidth of not more than 20 KiB/s on a Pixel 3 de-
vice. This means that an attacker cannot guess more
than 12 passphrases per minute. This allows us to gener-
ate simpler passphrases from a wordlist that are easy to
remember without writing down. When the user enters a
passphrase later we check the words against the wordlist
to catch common typos. This is important as an incor-
rect or new passphrase would otherwise indicate that
the users wants to start a new session. Our passphrases
consist of three words randomly chosen from a 7777 en-
try list resulting in ~ 4.70 - 101 possible passphrases.
Therefore, an attacker is expected to require more than
70,000 years to try all possible combinations.

We discuss this construction and its properties in
detail in Appendix B.

5.5 WebApi/CDN integration

The workshops highlighted the need to consider existing
network infrastructure and the risk of denial-of-service
attacks. Therefore, we decided to allow integration into
existing cloud delivery networks (CDNs). CDNs provide
distributed caching of static resources and DoS protec-
tion through rate-limiting and SSL.

We use distributed caching to disseminate the re-
porter list and the dead drop containing encrypted mes-
sages. These are accessed by all clients regularly. Using
the CDN removes this load from the news organisa-
tion’s web servers. The CDN maintains copies of multi-
ple rounds (e.g. last 7 days) so that clients that missed
some rounds (e.g. due to being offline) can catch up.

Where clients send messages (i.e. POST requests)
the rate-limiting feature will disallow more POST re-
quests per client than anticipated by the protocol. All
POST requests are handled by a web service called
WebApi instead of going directly to the CoverNode —
i.e. it forms a message queue. CoverNodes then collect
these from the WebApi on their own schedule, sepa-
rating them from direct traffic and reducing the risk of
exposing the enclave directly to DoS and timing attacks.

5.6 Multiple CoverNodes

As mentioned, CoverDrop can be deployed in a multi-
node proxy model i.e., multiple CoverNodes acting in

CoverDrop: Blowing the Whistle Through A News App =—— 57

succession. If all the CoverNodes are within the same
news organisation, then the changes to the protocol
above are straightforward: the sending device picks the
desired route for the message, onion-encrypts the mes-
sage using the public keys of the SGX proxy and sends it
to the first hop. At each hop, the SGX enclave decrypts
one layer and finds the public key of the next hop, then
forwards the packet. The final hop decryption will re-
veal to the CoverNode whether the message is a cover
message or not, where it would be processed as usual.

Things get slightly more complicated if these Cov-
erNodes are located in different organisations. Smaller
news organisations may end up being bottlenecks as
they struggle to cope with the traffic (cover and real)
from larger news organisations. Some form of load bal-
ancing, possibly by making the number of SGX nodes
proportional to the expected user base, may be needed.
A significant benefit of having multi-organisation de-
ployment is that it allows smaller news organisations to
benefit from the cover traffic volume of larger peers. An
interesting avenue for future work would be to design
extensions that allow users of news app A to contact
journalists in news organisation B.

6 Security analysis

We first assess whether CoverDrop meets the security
goals outlined in §4.3. We discuss in §6.1 each case by
reference to an adversary who attempts to defeat each
of CoverDrop’s security goals and justify why they fail.
The adversary only succeeds if they operate outside our
threat model; namely, if they are provided with an un-
locked CoverDrop session; if a message is waiting in the
outgoing message queue out; or if the adversary accesses
the device before and after the communication without
the whistleblower knowing about the first access. Fur-
thermore, our analysis depends on the security of three
elements that are used within the CoverDrop infras-
tructure: TEEs (SGX), on-device SE, and third-party
libraries. We discuss in §6.2 what happens to the secu-
rity offered by CoverDrop when one of these elements is
compromised. In Appendix A we also discuss alternative
attacks that can lead to the censorship of CoverDrop.
Lastly, we discuss the properties of encrypted storage
on the mobile device at large in Appendix B.

For the encryption of messages we require an IND-
CCAZ2 secure authenticated encryption scheme and a
Diffie-Hellmann key exchange. We implement this in our
construction using XSalsa20-Poly1305 and X25519.

6.1 Defeating our security goals

Setup: The Adversary, Adv, monitors and records all
communication on the public Internet and within the
news organisation. Adv may also serve warrants to gain
physical access to the CDN, CoverNode, and user de-
vices. A whistleblower, Alice, wants to contact a jour-
nalist, Bob, by sending M 4. Adv may attack at the fol-
lowing times: before Alice sends her initial message
(Alice only sends regular cover traffic until this time);
during the communication (Message M 4 is in-flight;
after the
communication has taken place (Alice continues to send

Alice has an active CoverDrop session); |45

cover traffic and has an active CoverDrop session). At
any point in time, 78, we assume there are
other app subscribers who opened the app recently, all
of which send cover traffic messages.

G1: confidentiality &
provides confidentiality and

integrity. CoverDrop
integrity of messages
through authenticated encryption. The sender creates
an ephemeral key pair for each message and the encryp-
tion layer therefore ensures all ciphertexts are indepen-
dent.

(G2: unobservable communication. At [/ and
Alice only sends cover messages and Adv. cannot
gain any information. At time the message Mg
might be part of the traffic that Adv. captures between
the app and the CoverDrop node. Adv. cannot decide if
M 4 is real or cover since all messages are of the same
size and they are all encrypted such that only the Cover-
Node can decrypt them with its private key. The same
is true for messages from the CoverNode to recipients.
From this it follows that the the message itself does not
leak any information about whether a communication
is taking place. Moreover, the timing of the messages is
independent of whether any real communication is tak-
ing place. Therefore, the scheme achieves unobservable
communication.

G3: plausible deniability. We identified three
ways through which Adv might attempt to defeat the
plausible deniability goal, namely whether Adv can tell
that Alice has been using CoverDrop to communicate.

G3.A: Adv compromises the CDN. Regardless
of the timing of the attack () the CDN is
oblivious to the contents of the messages or final desti-
nation of the messages, hence compromising it does not
give any advantage.

G3.B: Adv confiscates the CoverNode. Before
communication , all messages from Alice were for
cover, so confiscating the CoverNode gives Adv no in-
formation. During communication [#85, the CoverNode

CoverDrop: Blowing the Whistle Through A News App = 58

has knowledge of legitimate messages versus cover mes-
sages. However, this information does not leave the SGX
enclave and always resides in encrypted memory. Lastly,
after delivery of the message [, the CoverNode will
have deleted all previous messages. This happens after
each epoch and if the system is powered down.

G3.C: Adv confiscates Alice’s device. When
confiscating Alice’s device at any time, the encrypted
storage does not leak information (including resistance
against brute-force attempts by the attacker). This is
explained in §5.4 and Appendix B. However, during
Adv could perform three attacks: (i) If there is a mes-
sage in the outgoing message queue, Adv knows that
Alice has recently composed a message which has not
been sent yet;> (ii) If the CoverDrop session is unlocked
and in memory, Adv can inspect all state; (iii) If Adv
confiscates Alice’s device at two different times, Adv can
tell if CoverDrop was used in the mean time. This can
be countered if Alice is aware of the first access by Adv
and publicly announces a new (empty) CoverDrop ses-
sion with an unknown passphrase (e.g. by re-installing
the app).

6.2 Compromise of security assumptions

In §6.1 we analyse the security CoverDrop provides in
the face of an adversary that challenges our security
goals (§4.3). In our analysis we assume that SGX, SE,
and third-party libraries are secure. In this section we
consider how CoverDrop’s security changes if our secu-
rity assumptions are violated.

SGX compromise. Firstly, we note that we rely on
SGX as a defense-in-depth mechanism and still expect
the server to be secured in a manner similar to how Tor
node operators secure their servers. This means using
a dedicated server for the CoverNode and not running
unrelated applications on it. Utilising SGX reduces the
attack surface available to the adversary but does not
eliminate it owing to side-channel attacks discovered on
the platform [5, 14, 48]. In case the adversary manages
to compromise the CoverNode SGX enclave during run-
time in a single CoverNode setup, they can determine
which messages are cover and which ones are real. Com-
bined with global network observation, they can also tell

3 This attack can be countered by the app inserting cover mes-
sages into the message queue. However, this adds complexity
and can lead to out-of-order delivery which has its own usabil-
ity challenges. Therefore, we leave it for future work.

who send those messages thus successfully executing a
correlation attack. The content of the messages remains
protected.

In a single-CoverNode environment, some mitiga-
tions to reduce the likelihood of compromise include
running the latest version of the SGX Platform Soft-
ware, using newer hardware with mitigations against
speculative execution attacks and re-compiling client
software with updated SDK [30]. A more robust and
effective mitigation would be to move to a multi-
CoverNode deployment. In such a deployment, the ad-
versary would have to compromise all the nodes involved
in routing the message (not just the entry and exit
nodes). Thus, this is an effective mitigation for such
an attack especially if the CoverNodes are in differ-
ent organisations. In settings where competent targeted
attacks are likely, newspapers might consider a multi-
CoverNode deployment.

Secure Element (SE) compromise. So far, we
assumed that the SE of the whistleblower’s device re-
sists physical attack. If this assumption is violated (say,
new attack methods are discovered), the adversary may
brute-force the passphrase that protects the encrypted
storage at a much higher rate. If this is a concern (or
if the smartphone does not have SE support), the app
should generate a more complex passphrase that makes
brute-force expensive. Additionally, evidence of commu-
nication should be deleted as soon as is practical by
creating a new session. This might be achieved by au-
tomatically deleting inactive sessions after a set period
of time, although this may present usability challenges
which we leave to future work.

Third-party libraries. Many mobile applications
including news organisations depend on a large number
of third-party libraries. Most of them are provided pre-
built and make it very hard for the news organisation to
inspect them for malicious behaviour. Others, such as
advertisement libraries, intentionally share personally
identifiable information (PII) with third parties. Moving
towards in-house systems (e.g. NYT’s first-party adver-
tisement system [44]) is a positive development not just
for source protection but for the privacy of all users.

7 Performance analysis

For our performance discussion, we assume a news or-
ganisation and audience with the following properties:
There are 1 million users of the news reader application
among which there are 100 active whistleblowers. Each

CoverDrop: Blowing the Whistle Through A News App = 59

m 1.25 0
£ L7 9
= 1.00 - 63
© 0.75 - 59
@ r4 o
2 0.50 - L32
o L

£ 0.25 29
g 18
£ 0.00 '

100k im 10m

Active app users

Fig. 4. Total daily traffic for the CDN and required number of
CoverNodes cores for different user bases allowing for 2x peak
traffic. The dotted line indicates the moderate scenario from our
performance discussion. The x-axis uses log-scale.

whistleblower sends on average 5 real messages per day.
(We ignore for now the possible use of the app by or-
dinary users to give non-sensitive comments and feed-
back to reporters.) The epoch time is 1h. This means
there are about 24 million messages per day from all
users and about 21 whistleblower messages per hour.
The news organisation has signed up 10 reporters who
send on average 10 messages per day.

We now discuss SGX’s configuration: For the direc-
tion user-to-reporter we let SGX wait for 106 messages
and output batches (including cover traffic) of 10 mes-
sages. Therefore, SGX outputs a total of 240 messages
per day to the reporters. In the opposite direction we
set the input threshold to 100 messages and the output
threshold 10. Therefore, SGX outputs a total of 240 mes-
sages per day to the dead-drop endpoint for users. Our
results show how traffic and the number of CoverNodes
scale linearly for smaller and larger organisations.

7.1 Mobile application

We evaluate our Android prototype using a Google Pixel
3 device running Android 11.

The creation of a cover message requires 7.5ms
1.4ms) of CPU time. With an epoch time of
1h this means less than 200ms in total per day which

(0 =

is small compared to e.g. network operations. Only an
actual whistleblower has to decrypt the messages that
have been downloaded in the background when they
open their CoverDrop session — i.e. the following oper-
ations do not apply to the vast majority of users. Each
decryption operation takes 7.4ms (o = 2.4ms). The user
will have to perform these for all messages of the user-
facing dead-drop (here: 240) and for all reporters from
whom they expect a message (here: 1). Thus, they need
to perform about 1.8 seconds of work when opening
a session every 24 hours. The reporters face a larger

amount of messages (here: 2,400), but they only need
to check with their own key. Therefore, they also per-
form about 18 seconds of work per day.

Cryptographic operations increases CPU load and
might have an observable thermal effect. We leave the
examination of this potential side-channel for future
work. Android does not allow access to device-wide CPU
usage [13], but thermal information can be read without
special permission.

Library size is of concern for mobile applications
as they make download times longer and require more
disk space. Our prototype library increases the app size
by less than 500 KB for most devices (Appendix C).
This is small compared to existing news reader applica-
tions (usually more than 10 MB in size — Appendix C).

We measured the data usage of the network re-
quests of our prototype newsreader app (Appendix D).
Sending a (cover) message requires about 6 KB in total
including HTTPS overhead - resulting in a total of 4.3
MB per month. However, since the payloads are already
encrypted, it could use minimal protocol and achieve
less than 0.5 KiB (or 360 KB per month). Downloading
the user-facing dead-drop creates 110 KB in traffic per
request (or 3.3 MB per month). For comparison: popu-
lar news apps use about 1.5 MB when loading the first
screen (Appendix D). Individual articles with images
typically require downloads larger than 100 KB.

The impact on Battery Life is limited as Cover-
Drop’s CPU and data usage is low compared to general
news app usage. Thus, the number of messages per re-
porter and per reader could be increased substantially
without degrading device battery life allowing Cover-
Drop to be used for routine communications between
readers and journalists and for confidential tip-offs.

The presented implementation has API and hard-
ware requirements. The Hardware Security Element
is only accessible from API level 28 (about 40% of all
Android devices using the Google PlayStore?). On lower
APT levels the lack of a SE must be mitigated by set-
ting much harder parameters for the password hashing
function and not using the wordlist.

CoverDrop provides easy integration for app de-
velopers. They need to implement the user interface
matching their app design, interaction with the syn-
chronous library calls, and four callbacks for interacting
with the WebApi via HT'TPS. We integrated our library

4 From the New Project Wizard in the Android Studio IDE
(version 4.2.2, September 2021).

CoverDrop: Blowing the Whistle Through A News App = 60

in a prototype news app including all UI functionality
in about 900 lines of Kotlin and 1100 lines of XML.

7.2 CoverNode

We implemented the CoverNode in Intel SGX and con-
ducted some performance tests. The CoverNode consists
of two components: the trusted enclave where decryp-
tion of messages occurs and the untrusted application
where network communication occurs. We conducted
tests on a laptop with an i7-8565U processor (up to
4.6 GHz) decrypting messages (X25519 and XSalsa20)
sent to the CoverNode. With a single threaded enclave,
each message takes approximately 1.20 ms when pro-
cessing in batches of 1000 messages, giving us a through-
put of 833 messages per second (3 million messages per
hour). A higher batch size reduces processing time since
it reduces the number of transitions from untrusted to
trusted enclave space which is a relatively expensive
operation. It is possible to scale performance by in-
stantiating multiple enclave processes up to the num-
ber of cores on the CPU. On our 4-core processor, we
achieved linear speed-up with 4 parallel CoverNode pro-
cesses after which the throughput plateaued. If it is nec-
essary to scale even further, one can use multiple SGX
servers in parallel and split the load among them via the
CDN/WepApi. As the requests will not be evenly dis-
tributed throughout the day, we suggest deploying more
CoverNodes than a strict reading of the above numbers
would suggest. In Figure 4 we double this number to ac-
count for traffic bursts. We have taken care not to use
SGX’s monotonic counter functionality which has been
shown to have limited write cycles [24]. Moreover, no
state is stored to disk by the enclave, thus avoiding any
concerns about SGX’s sealing functionality.

7.3 CDN and WebApi

Most CoverDrop traffic is generated by the news apps
downloading the user-facing dead-drop (about 110 KiB,
Appendix D) every 24 hours. A user base of 1m re-
sults in a total traffic of 102 GB per day (9.95 Mbit/s),
which scales linearly with the number of users and con-
figured message throughput. This shows the importance
of CDN support in our design, which can very easily dis-
tribute the small and static file close to the user. In prac-
tice these values are smaller as we can remove users from
CoverDrop participation if they have not used the app
in the last, say, 7 days. Getting accurate numbers for

daily active users (DAU) for news apps is difficult but
sources suggest that it may be two orders of magnitude
lower than the installed base [21]. This suggests that
CoverDrop needs to support less than a million users
for the New York Times, which seems on the low side.
But as a global network adversary can disambiguate ac-
tive and inactive app users, our anonymity set is always
with respect to the DAU not the number of downloads.

8 Related work

Research into whistleblowing systems is sparse. Volmer
et al. propose a submission platform using ad networks
to route messages from a source to a relevant news or-
ganisation [37], but it cannot guarantee message deliv-
ery and it does not withstand our adversary model. Mc-
Gregor et al. present a grounded-theory approach using
in-depth, semi-structured interviews with French and
American journalists, showing the need for the com-
puter security community to understand the needs of
journalists and study the journalistic process to deal
with the significant barriers to communication between
journalists and their sources [25]. A Tor-based approach
can allow whistleblowers to upload documents to news
organisations, but the user requires significant computer
security knowledge [20]. Additional hurdles include Tor
being banned in many countries and discussions in our
workshop noted that using Tor can be a red flag.

Despite limited related research, whistleblowing oc-
curs frequently in practice. We look at the systems com-
monly in use today and compare these with CoverDrop.
Based on the analysis (Table 1) and our workshops
(§2.2), we focused on physical mail (PM), Whatsapp,
Signal, Email, PGP+Email, and SecureDrop.

PM and email win on ease-of-use and familiarity.
With PM the whistleblower can take precautions with-
out any training and the one-way bandwidth is effec-
tively unlimited; but communication is necessarily one-
way (return addresses expose the source), video surveil-
lance makes drop-offs risky, and postage franking leaks
approximate geographical location. With email, a source
might use a throwaway email address, but warranted
access, metadata logging, privacy-intrusive clients, and
lack of encryption by default make it very hard to main-
tain operational security without any computer knowl-
edge, since many email providers’ policy require a phone
number or recovery email address when signing up.

PGP offers the major benefit that messages are not
passed in plaintext, but PGP clients are notoriously dif-

CoverDrop: Blowing the Whistle Through A News App =—— 61

ficult for even college-educated people to use [38, 40, 49].
There is also no onion encryption or cover traffic to
thwart correlation attacks.

SecureDrop is purpose-built for whistleblowers to
share files with reporters anonymously. It uses generated
pseudorandom identifiers for the source and does not re-
quire any personal data to sign up. It relays all messages
over the Tor network, so the news organisation does not
know the whistleblower’s IP address. This gives it strong
resilience to warrants served on ISPs, news organisations
and even the whistleblower. We consider SecureDrop to
be the closest to CoverDrop in terms of security and
infrastructure assumptions (our choice of name itself is
homage). However, it has issues. Downloading and using
Tor singles out the whistleblower, particularly against a
global passive adversary: leaks have shown that the use
of privacy-preserving technologies like Tor has put peo-
ple on NSA watch lists [36]. Tor’s plausible deniability
set may be small: if only you are using Tor in your of-
fice and the leak comes from your office, you may expect
trouble. Moreover, installing Tor and navigating to the
onion link presents a usability challenge for all but the
most tech-savvy whistleblowers. Finally, SecureDrop’s
latency is a real problem. During our workshops, we
learned from reporters that this high round-trip latency
(often in the order of days) together with the lack of
read receipts has led to potential sources starting a con-
versation but dropping out due to anxiety.

Signal is fairly popular with > 10m Android in-
stalls [1]. Its main weakness lies in its use of mobile
phone numbers as identifiers for user accounts. This
means that the whistleblower needs to reveal their
phone number when communicating with a reporter.
This implicates the source despite the end-to-end en-
cryption. Moreover, the Signal server does not imple-
ment any network obfuscation, so a global passive ad-
versary might use timing analysis; such an adversary
could presumably collect all the traffic to and from the
server. Lastly, ISPs can reveal which [P addresses have
sent or received Signal messages at a given time, provid-
ing another vector of attack for less global adversaries.

WhatsApp is a closed-source messaging app which
uses a variant of the Signal messaging protocol. It has
a much larger user base than Signal, with more than
a billion installs on Android [2]. However, unlike Sig-
nal, it collects and stores a substantial amount of meta-
data about conversations including time of communi-
cation, message size, contacts list, etc. As with Signal,
WhatsApp uses mobile phone numbers as identifiers.

Other options. Threema differentiates itself from
the other systems by not requiring a phone number

CoverDrop: Blowing the Whistle Through A News App =—— 62

Features

Mail

Email

PGP +Email
SecureDrop
CoverDrop

Identifiers
Encrypts plaintext messages

No personally identifiable 1Ds
System generated random ID

[e]

Warrants

X
Resilience to warrants on third parties X
Resilience to warrants on news org. °
Resilience to warrants on reporter .
Res. to warrant on whistleblower post leak .
Res. to warrant on whistleblower during leak

Correlation attacks

Resilience to global network adversary o
Effective anonymity set at install

Effective anonymity set during leak
Resilience to geo. location leakage

Easy-to-use for laypersons

Usability

High throughput

Verifiable delivery of messages

o
X

°

Low latency two-way communication X
X

Spam prevention / rate limits °
.

® O @ @ 0 0 x ® x X X X ® x|® x x| Whatsapp
® O @ @ /0 X O X|X X X ® O|® x x| Sjignal
® X X ® /0 x ® x|0 0 X X X|X X ®

X O @ O e/e © & o (06 & ¢ ¢ ¢ o o o

® X X ® X|0 X O x|0 0O 0O O Oo|e x e
@ X X X X|® @ x 0O|le @ @ @ 0|0 o @

Table 3. Whistleblowing systems and features that are fully e, partially o, and not X supported.

or email ID for sign-up. However, it requires payment
via app stores which raises different privacy concerns.
PrivNote is a simple anonymous and encrypted dead-
drop site. While this gives good anonymity guarantees
it doesn’t provide any means of two-way communica-
tion, which was considered crucial for trust establish-
ment by journalists at our workshop. It also leaves the
question of how to get the note URL to the journalist —
an operation where CoverDrop might be an ideal choice.

Finally, in an extreme threat environment, such as
when a newspaper has caused real anger to an intelli-
gence agency, it is prudent to expect that root malware
will be installed quickly, remotely and covertly on the
phones of all relevant suspects and reporters. Such at-
tacks are rare, as the market price for iPhone zero-days
is now well into seven figures and such assets are not
used casually. However, these exist (as the owner of the
Washington Post discovered) and are difficult to block.

The established best practice in high-profile cases
of whistleblowing against state actors is for the journal-
ist to meet the source and give them a burner phone,
so that they can communicate independently of any de-
vices known to authority. A physical visit also helps the
journalist assess the source, not just to establish trust,
but to work out whether any other support might be rel-
evant and needful. In such cases, CoverDrop’s role is to
make contact establishment easier, and much more se-

cure — and thereby to make the news organisations that
deploy it the destination of choice for future Snowdens.

9 Conclusion

In this paper we highlighted the shortcomings of the sys-
tems currently offered to whistleblowers by the world’s
major news organisations. We discussed them at length
in two workshops with journalists, which enabled us to
develop a realistic threat model, and thus a set of re-
quirements for a secure, usable system for trust estab-
lishment between sources and reporters. We designed a
system for secure initial contact to meet these require-
ments, called CoverDrop, in consultation with news or-
ganisations. CoverDrop uses constant-throughput chan-
nels with all users of an organisation’s news app acting
as sources of cover traffic, giving a large anonymity set
in which its sources can hide. Cover traffic and confiden-
tial messages are carried over the existing CDN infras-
tructure to TEE-backed mix nodes hosted by the news
organisation. We have demonstrated the security of this
scheme against a realistically strong adversary, built a
prototype and investigated its performance. We hope to
see CoverDrop become the next-generation standard for
whistleblower protection across news organisations.

Acknowledgements

We would like to thank our workshop participants and

PETS reviewers for their invaluable feedback on this

work. Mansoor Ahmed-Rengers was supported by TO-
DAQ and OpenOrigins Limited. Diana A. Vasile and
Daniel Hugenroth were partially supported by a Nokia
Bell Labs Scholarship, and Daniel also by the Cam-
bridge European Trust. Alastair R. Beresford and Ross

Anderson were partially supported by EPSRC [grant
number EP/M020320/1].

References

(1]

(2]

(3]

(7]
(8]

(9]
(10]

(11]

(12]

(13]

(14]

(15]

Signal Private Messenger - Apps on Google Play, 2019. http
s://play.google.com /store/apps/details?id=org.thoughtcri
me.securesms.

WhatsApp Messenger - Apps on Google Play, 2019. https:
//play.google.com/store/apps/details?id=com.whatsapp&h
|=en_GB.

Mansoor Ahmed-Rengers, llia Shumailov, and Ross Ander-
Snitches Get Stitches: On The Difficulty Of Whistle-
blowing. In Proceedings of the 27th International Workshop

son.

on Security Protocols, 2019.
ArsTechnica. Have a confidential news tip for Ars Tech-
nica?, 2019. https://arstechnica.com/news-tips/.

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari
Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Soft-
ware Grand Exposure: SGX Cache Attacks Are Practical.
arXiv e-prints, page arXiv:1702.07521, February 2017.

Peng Cheng, Ibrahim Ethem Bagci, Utz Roedig, and Jeff
Yan. SonarSnoop: Active Acoustic Side-Channel Attacks,
2018.

CNN. Tips, 2018. http://edition.cnn.com/feedback/tips/.
China Daily. Contact us, 2019. http://www.chinadaily.com
.cn/e/static_e/contact.

Dawn. Contact us, 2019. https://www.dawn.com/contact/.
Private Eye. Contact, 2019. https://www.private-eye.co.uk/
about/contact.

The Globe and Mail. PGP directory and SecureDrop links,
2018. PGP directory (https://sec.theglobeandmail.com/pg
p/) and SecureDrop (https://sec.theglobeandmail.com/secu
redrop/).

O Globo. Contact us (Portuguese), 2019. https://oglobo.g
lobo.com/fale-conosco/.

Google Issue Tracker. Android o prevents access to
/proc/stat, 2017. https://issuetracker.google.com/issu
es/37140047.

Johannes Goétzfried, Moritz Eckert, Sebastian Schinzel, and
Tilo Miller. Cache attacks on intel sgx. In Proceedings

of the 10th European Workshop on Systems Security, Eu-
roSec’17, New York, NY, USA, 2017. Association for Com-
puting Machinery.

The Guardian. The NSA Files, 2013. https://www.theguard
ian.com/us-news/the-nsa-files.

[16]

[17]
(18]
(19]

[20]

[21]

[22]
(23]

[24]

[25]

26]

[27]

28]
[29]
[30]
[31]

(32]

33]

(34]

(35]

(36]

CoverDrop: Blowing the Whistle Through A News App = 63

The Guardian. How to contact the Guardian securely, 2017.
https://www.theguardian.com/help/ng-interactive /2017 /m
ar/17 /contact-the-guardian-securely.

The Sydney Morning Herald. Contact us, 2019. https:
//www.smh.com.au/contact-us.

Chatham House. Chatham house rule. https://www.chatha
mhouse.org/about-us/chatham-house-rule.

The Intercept. The Intercept welcomes whistleblowers, 2020.
https://theintercept.com/source/.

H. Jayakrishnan and R. Murali. A simple and robust end-
to-end encryption architecture for anonymous and secure
whistleblowing. In 2019 Twelfth International Conference on
Contemporary Computing (IC3), pages 1-6, 2019.

Joseph Johnson. Daily active users (DAU) of leading iPhone
news apps in the United Kingdom (UK) during October
2020, 2020. https://www.statista.com /statistics/878573/lea
ding-iphone-news- apps-dau-united-kingdom/.

Wall Street Journal. Contact us, 2019. https://customerce
nter.wsj.com/contact.

The Mainichi. Contact form, 2019. https://form.mainichi.jp
/mdn/common/content.html.

Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra
Dhar, David Sommer, Arthur Gervais, Ari Juels, and Srdjan
Capkun. ROTE: Rollback protection for trusted execution.
In 26th USENIX Security Symposium (USENIX Security 17),
pages 1289-1306, Vancouver, BC, August 2017. USENIX
Association.

Susan E McGregor, Polina Charters, Tobin Holliday, and
Franziska Roesner. Investigating the computer security prac-
tices and needs of journalists. In 24th {USENIX} Security
Symposium ({USENIX} Security 15), pages 399-414, 2015.
Le Monde. Contact the editor (French), 2019. https:
//www.lemonde.fr/faq/?question=28465-contacter-
redaction-28465.

BBC News. How to share your questions, stories, pictures
and videos with BBC News, 2018. https://www.bbc.co.uk/
news/10725415.

BBC News. 'whistleblower' taped to chair and gagged, 2018.
https://www.bbc.co.uk/news/uk-scotland-44222575.
BuzzFeed News. Share tips securely & anonymously, 2018.
https://contact.buzzfeed.com/?country=en-uk.

Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim
Brorsson. A survey of published attacks on intel sgx, 2020.
The Times of India. Main page, 2019. https://timesofindia.
indiatimes.com.

Spiegel Online. How to contact the Spiegel (German), 2019.
https://www.spiegel.de/extra/so-nehmen-informanten-
sicheren-kontakt-zum-spiegel-auf-a-1030502.html.

El Pais. Contact us (Spanish), 2019. https://elpais.com/est
aticos/contacte/.

The Washington Post. Send a letter to the editor, 2019.
https://helpcenter.washingtonpost.com/hc/en-us/articles/
236004788-Send- a-letter-to-the-editor.

ProPublica. NY Fed Fired Examiner Who Took on Goldman,
2013. https://www.propublica.org/article/ny-fed-fired-
examiner-who-took-on-goldman.

Seth Rosenblatt. NSA likely targets anybody who's 'Tor-
curious’, July 2014. https://www.cnet.com/news/nsa-likely-
targets-anybody-whos-tor-curious/.

https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms
https://play.google.com/store/apps/details?id=com.whatsapp&hl=en_GB
https://play.google.com/store/apps/details?id=com.whatsapp&hl=en_GB
https://play.google.com/store/apps/details?id=com.whatsapp&hl=en_GB
https://arstechnica.com/news-tips/
http://edition.cnn.com/feedback/tips/
http://www.chinadaily.com.cn/e/static_e/contact
http://www.chinadaily.com.cn/e/static_e/contact
https://www.dawn.com/contact/
https://www.private-eye.co.uk/about/contact
https://www.private-eye.co.uk/about/contact
https://sec.theglobeandmail.com/pgp/
https://sec.theglobeandmail.com/pgp/
https://sec.theglobeandmail.com/securedrop/
https://sec.theglobeandmail.com/securedrop/
https://oglobo.globo.com/fale-conosco/
https://oglobo.globo.com/fale-conosco/
https://issuetracker.google.com/issues/37140047
https://issuetracker.google.com/issues/37140047
https://www.theguardian.com/us-news/the-nsa-files
https://www.theguardian.com/us-news/the-nsa-files
https://www.theguardian.com/help/ng-interactive/2017/mar/17/contact-the-guardian-securely
https://www.theguardian.com/help/ng-interactive/2017/mar/17/contact-the-guardian-securely
https://www.smh.com.au/contact-us
https://www.smh.com.au/contact-us
https://www.chathamhouse.org/about-us/chatham-house-rule
https://www.chathamhouse.org/about-us/chatham-house-rule
https://theintercept.com/source/
https://www.statista.com/statistics/878573/leading-iphone-news-apps-dau-united-kingdom/
https://www.statista.com/statistics/878573/leading-iphone-news-apps-dau-united-kingdom/
https://customercenter.wsj.com/contact
https://customercenter.wsj.com/contact
https://form.mainichi.jp/mdn/common/content.html
https://form.mainichi.jp/mdn/common/content.html
https://www.lemonde.fr/faq/?question=28465-contacter-redaction-28465
https://www.lemonde.fr/faq/?question=28465-contacter-redaction-28465
https://www.lemonde.fr/faq/?question=28465-contacter-redaction-28465
https://www.bbc.co.uk/news/10725415
https://www.bbc.co.uk/news/10725415
https://www.bbc.co.uk/news/uk-scotland-44222575
https://contact.buzzfeed.com/?country=en-uk
https://timesofindia.indiatimes.com
https://timesofindia.indiatimes.com
https://www.spiegel.de/extra/so-nehmen-informanten-sicheren-kontakt-zum-spiegel-auf-a-1030502.html
https://www.spiegel.de/extra/so-nehmen-informanten-sicheren-kontakt-zum-spiegel-auf-a-1030502.html
https://elpais.com/estaticos/contacte/
https://elpais.com/estaticos/contacte/
https://helpcenter.washingtonpost.com/hc/en-us/articles/236004788-Send-a-letter-to-the-editor
https://helpcenter.washingtonpost.com/hc/en-us/articles/236004788-Send-a-letter-to-the-editor
https://www.propublica.org/article/ny-fed-fired-examiner-who-took-on-goldman
https://www.propublica.org/article/ny-fed-fired-examiner-who-took-on-goldman
https://www.cnet.com/news/nsa-likely-targets-anybody-whos-tor-curious/
https://www.cnet.com/news/nsa-likely-targets-anybody-whos-tor-curious/

[37] Volker Roth, Benjamin Giildenring, Eleanor Rieffel, Sven
Dietrich, and Lars Ries.
online whistleblowing platforms. In International Conference

A secure submission system for

on Financial Cryptography and Data Security, pages 354—
361. Springer, 2013.

Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent E.
Why Johnny Still, Still Can't Encrypt: Eval-
CoRR,

(38]
Seamons.
uating the Usability of a Modern PGP Client.
abs/1510.08555, 2015.

Andrei Serjantov, Roger Dingledine, and Paul Syverson.
From a trickle to a flood: Active attacks on several mix
types. In International Workshop on Information Hiding,
pages 36-52. Springer, 2002.

Steve Sheng, Levi Broderick, Jeremy J Hyland, and Colleen

(39]

[40]
Alison Koranda. Why johnny still can't encrypt: evaluating
the usability of email encryption software, 02 2019.

Der Spiegel. Former US Official Reveals Risks Faced by
Internal Critics, 2016. http://www.spiegel.de/international
/world /ex-us-official-reveals-risks-faced-by-internal-govt-
critics-a-1093360-2.html.

The Sun. The sun launches whistleblowers’' charter, 2015.
https://www.thesun.co.uk/archives/news/142181 /the-sun-
launches-whistleblowers-charter/.

Siiddeutsche Zeitung. So erreichen Sie das Investigativ-Team
der Siiddeutschen Zeitung, 2020. https://www.sueddeutsche
.de/projekte/kontakt/.

The NYT Open Team. To serve better ads, we built our
own data program, 2020. https://open.nytimes.com/to-serv
e-better-ads-we-built-our-own-data-program-c5e039bf247b.
New York Times. Russian Bank Reformer Dies After Shoot-
ing, 2006. https://www.nytimes.com/2006,/09/15/world/e
urope/15russia.html?_r=1&oref=slogin.

New York Times. Manning Sentenced to 35 Years for a
Pivotal Leak of U.S. Files, 2013. https://www.nytimes.com/
2013/08/22/us/manning-sentenced-for-leaking-government-

(41]

(42]

(43]

(44]

(45]

[46]

secrets.html.
New York Times. Got a confidential news tip?, 2018. https:
//www.nytimes.com/tips.

(47]

Stephan van Schaik, Andrew Kwong, Daniel Genkin, and
Yuval Yarom. SGAxe: How SGX fails in practice. https:
/ /sgaxeattack.com/, 2020.

Alma Whitten and J. D. Tygar. Why Johnny Can'T En-
crypt: A Usability Evaluation of PGP 5.0. In Proceedings
of the 8th Conference on USENIX Security Symposium -
Volume 8, SSYM'99, Berkeley, CA, USA, 1999. USENIX
Association.

Wikileaks. Submit documents to WikiLeaks, 2016. https:
/ /wikileaks.org/Press.html#£submit_help_contact.
Wikipedia. Indictment and arrest of Julian Assange, 2019.

(48]

(49]

(50]

[51]
https://en.wikipedia.org/wiki/Indictment_and_arrest_of_J
ulian__Assange.

WIRED. How to tip WIRED anonymously, 2019. https:
//www.wired.com/securedrop/.

(52]

CoverDrop: Blowing the Whistle Through A News App =— 64

A Censorship resilience

An adversary may attempt to censor CoverDrop in two
ways: (i) by performing DoS on the CoverNodes or (ii)
by disallowing news organisations from using Cover-
Drop. It is interesting to note that since CoverDrop does
not expose any additional servers, all the network con-
nections are routed via existing infrastructure. Thus,
unlike with Tor, a nation state cannot simply blocklist
IP addresses: they would have to censor the news organ-
isations themselves. The difficulty of doing so depends
on the freedom of the press in a given jurisdiction.

To perform DoS on CoverNodes, the adversary
would have to either create millions of users (to over-
whelm using cover traffic) or send many fake legitimate
messages. The first attack vector can be defeated by per-
forming remote attestation with the SE, which would
force the adversary to purchase millions of devices; be-
sides (as seen in section §5.2) scaling CoverNodes is in-
expensive. The second attack vector is harder to thwart.
Since CoverNodes only output a small amount of data
in proportion to the input (to reduce overhead for apps),
the adversary may be able to force CoverNodes to drop
legitimate messages by overfilling their buffers. We can
blocklist public keys or devices at the CDN level, al-
though for a nation-state adversary this would only
mean a marginal increase in attack cost. This issue is
not unique to CoverDrop; other systems with no way to
blocklist nodes, such as SecureDrop, can also be over-
whelmed by spam. Preventing such attacks remains an
open question for whistleblowing systems in general.

B Security properties of the
encrypted storage on the
mobile device

In this section we argue that the construction for en-
crypted storage (see §5.4) achieves plausible deniabil-
ity (including rate limiting password guesses). The con-
struction takes into account the constraints of the An-
droid platform and Secure Element (SE), e.g. regarding
available encryption modes. We repeat our construction
in pseudocode in Algorithm 1.

We assume that key material cannot be extracted
from the SE and that therefore the SE effectively limits
the decryption bandwidth. We further assume a stream
cipher that is IND-CPA secure — we use AES-CTR in
our implementation. We further assume an authenti-

http://www.spiegel.de/international/world/ex-us-official-reveals-risks-faced-by-internal-govt-critics-a-1093360-2.html
http://www.spiegel.de/international/world/ex-us-official-reveals-risks-faced-by-internal-govt-critics-a-1093360-2.html
http://www.spiegel.de/international/world/ex-us-official-reveals-risks-faced-by-internal-govt-critics-a-1093360-2.html
https://www.thesun.co.uk/archives/news/142181/the-sun-launches-whistleblowers-charter/
https://www.thesun.co.uk/archives/news/142181/the-sun-launches-whistleblowers-charter/
https://www.sueddeutsche.de/projekte/kontakt/
https://www.sueddeutsche.de/projekte/kontakt/
https://open.nytimes.com/to-serve-better-ads-we-built-our-own-data-program-c5e039bf247b
https://open.nytimes.com/to-serve-better-ads-we-built-our-own-data-program-c5e039bf247b
https://www.nytimes.com/2006/09/15/world/europe/15russia.html?_r=1&oref=slogin
https://www.nytimes.com/2006/09/15/world/europe/15russia.html?_r=1&oref=slogin
https://www.nytimes.com/2013/08/22/us/manning-sentenced-for-leaking-government-secrets.html
https://www.nytimes.com/2013/08/22/us/manning-sentenced-for-leaking-government-secrets.html
https://www.nytimes.com/2013/08/22/us/manning-sentenced-for-leaking-government-secrets.html
https://www.nytimes.com/tips
https://www.nytimes.com/tips
https://sgaxeattack.com/
https://sgaxeattack.com/
https://wikileaks.org/Press.html#submit_help_contact
https://wikileaks.org/Press.html#submit_help_contact
https://en.wikipedia.org/wiki/Indictment_and_arrest_of_Julian_Assange
https://en.wikipedia.org/wiki/Indictment_and_arrest_of_Julian_Assange
https://www.wired.com/securedrop/
https://www.wired.com/securedrop/

cated encryption scheme that is IND-CPA secure and
whose output is indistinguishable from random noise —
we use AES-GCM on the SE in our implementation.
Finally, we assume that the operating system does not
log any file access records other than the last-modified
timestamp.

Algorithm 1 Construction for the encrypted storage
on the smartphone. The global variable storage refer-
ences the file on disk.

1: procedure ONAPPSTART

2 if storage = NONE then > Very first app start
3 storage <~ ALLOCATESTORAGEFILE()

4 storage.salt < RANDOM()

5 storage.iv < RANDOM()

6: SE_GENNEWKEY() > Fresh Kgg
7 state < NEWSTATE()

8 passphrase < RANDOM()

9

SAVE(passphrase, state)

10: TouCH(storage) > Updates last-modified
11:

12: procedure SAVE(passphrase, state)

13: Kyser ¢ KDF pggone (storage.salt, passphrase)
14: contentpadded < PAD(state, 100 KiB)

15: cipher’ < SE_ ENCRYPTAESGCM(contentpqdded)
16: cipher + AESCTR(K yser, sStorage.iv, cipher’)

17: storage.blob < cipher

18:

19: procedure LOAD(passphrase)

20: cipher < storage.blob

21: Kyser ¢ KDF ppgone (storage.salt, passphrase)
22: cipher’ <+ AESCTR(K yser, storage.iv, cipher)

23: result + SE_ DECRYPTAESGCM(cipher”)

24: if result = L then

25: return "bad passphrase” > GCM

tag mismatch: the app would then typically ask the
user if they want to create new storage.

26: else

27 return UNPAD(result)

Lemma B.1. The size of the encrypted storage.blob
does not leak any information about previous sessions.

Proof. The construction ensures that each encryption
of the current state results in a file of a predefined size.
Both active session creation and the initialisation (dur-
ing the first app start) use the same method SAVE, re-
sulting in the same size ciphertext. O

CoverDrop: Blowing the Whistle Through A News App = 65

Lemma B.2. The ciphertext cipher in the storage.blob
does not leak any information about previous sessions.

Proof. The inner construction uses an IND-CPA secure
encryption scheme (line 15). The second encryption step
(line 16) acts as a stream cipher on cipher’ and does not
add information about the state. Therefore the cipher-
text cipher does not leak information about persistent
state. O

Lemma B.3. The filesystem metadata of the encrypted
storage does not leak any information about previous
sesstons.

Proof. The fields storage.iv and storage.salt are only
set at the very first start of the news app (lines 4-5) and
never updated by CoverDrop sessions.

A recent last-modified date, recorded by the file sys-
tem, would allow an adversary to identify an active ses-
sion if it is only updated after CoverDrop use. Our con-
struction updates this information on every start (line
10) and so does not leak this information.

Therefore the filesystem metadata generated by an
active session are indistinguishable from those generated
by normally use of the app. O

Lemma B.4. The first decryption step (AES-CTR,
line 22) does not leak any information about the key
used for decryption.

Proof. In AES Counter Mode the key is used to initiate
a stream cipher that is then XOR-ed with the plaintext
(here: cipher). The plaintext decrypted by this step is
the AES-GCM ciphertext cipher’ which is itself indistin-
guishable from random noise. Therefore, the adversary
does not gain any information here even if they try the
correct key. O

Lemma B.5. The second decryption step (AES-GCM,
line 28) can only be performed on the SE of the targeted
device and only at a mazimum rate of b/s where b is the
throughput of the SE and s is the size of the payload.

Proof. The key Kgg is generated as non-exportable
within the SE. The chance of guessing the key in use
Kgp is prohibitively small (and smaller than the chance
of guessing the passphrase). Therefore the decryption
cannot be accelerated by using external hardware.

The GCM tag can only be verified after the entire
ciphertext (length: ||cipher’|| = s = 100KiB) has been
processed by the SE. Therefore, the SE’s bandwidth b

effectively limits the overall rate at which an adversary
can test keys to b/s. O

Theorem B.6. The encrypted storage provides plausi-
ble deniability and ensures a maximum rate of b/s where
b is the throughput of the SE and s is the size of the pay-
load.

Proof. Lemmas B.1, B.2, and B.3 show that encrypted
storage with an active session is indistinguishable from
the encrypted storage of a CoverDrop app which has
never actively been used. Plausible deniability follows
directly from this.

From Lemmas B.4 and B.5 it follows that an ad-
versary has to perform both decryption steps for each
password /key they try. This is because the intermedi-
ate decryption results do not leak any information. The
maximum rate cannot be higher than that of the second
decryption step which is b/s by Lemma B.5. U

Theorem B.7. An adversary that confiscates a device
at two points Ty, Ty in time can determine if CoverDrop
was used in between.

Proof. The adversary can compute a fingerprint of the
encrypted storage at T1 and again at Ts. If CoverDrop is
actively used after 77 and before T the re-encryption of
the storage will lead to a new ciphertext if the password
or the persisted state changes. U

Note: this information leakage can be be countered by
re-installing the app after every device confiscation, or
equivalently by announcing a fresh (empty) CoverDrop
session with a random password that is not revealed.

CoverDrop: Blowing the Whistle Through A News App = 606

C Mobile app size

We analysed the impact on app size by compiling our
sample application in release mode using standard opti-
misation with and without the CoverDrop library. The
vast majority of Android devices run either arm64-v8a
or armeabi-v7a. Table 4 shows our results. CoverDrop
adds about 160 KB in class files and varying amounts
in pre-compiled libraries (.so) such as libsodium for our
cryptographic operations. The biggest file in resources
is our wordlist file which is about 100 KB uncompressed
(about 42 KB compressed).

armb64-v8a armeabi-v7a x86_64
classes.dex 157.9 KB 157.9 KB 157.9 KB
.so files 267.7 KB 340.4 KB 402.2 KB
resources 106.6 KB 106.6 KB 106.6 KB
misc 35.2 KB 35.2 KB 35.2 KB
Final APK 404.7 KB 476.3 KB 537.4 KB

Table 4. Increase of application size for different architectures.
The final impact on the distribution file (.apk file) is smaller than
the sum of changes due to compression.

This overhead is small compared to the download
sizes of the top 7 news apps (all with more than 5m
downloads) from Table 1. We summarise the download
sizes for Android 11 in Table 5 as provided by the Google
PlayStore.

App Download size
com.nytimes.android 20.49 MB
com.cnn.mobile.android.phone 45.50 MB
com.toi.reader.activities 21.17 MB
bbc.mobile.news.uk 17.14 MB
com.guardian 15.52 MB
de.spiegel.android.app.spon 4.51 MB
com.lemonde.androidapp 14.85 MB
Average 19.88 MB

Table 5. Download size of popular news apps.

D Mobile app traffic

We analysed the traffic generated by the most com-
mon requests against the CDN having TLS/SSL enabled
and our web service via plain HTTP. The web service
is served through an Nginx proxy with GZip compres-
sion enabled. The mobile application is using OkHttp3
as its networking library (avoiding connection re-use)
and measures the traffic via calls to the Android API
NetworkStats. We filled the user-facing deaddrop with
240 messages and the public keys endpoint has 3 re-
porters. The standard payload size is 255 bytes and the
user-facing messages have a total size of 385 bytes each,
including overhead from the cryptographic operations.
Table 6 summarises our findings. The requests via the
CDN have a higher overhead due to TLS/SSL.

Operation [RX TX
HTTP
GET /deaddrop 105.8 KB 4.1 KB
GET /pubkeys 0.7 KB 0.4 KB
POST /user_message 0.3 KB 1.3 KB
HTTPS via CDN
GET /deaddrop 110.2 KB 3.0 KB
GET /pubkeys 4.5 KB 0.8 KB
POST /user_message 4.3 KB 1.8 KB

Table 6. Traffic of common requests in our CoverDrop prototype.

As a comparison target, we installed the top 7 appli-
cations (all having more than 5m downloads) from Ta-
ble 1. We started them once to accept the default option
of all introduction and popup screens. Then we mea-
sured the data usage of the first screen multiple times
by first deleting the cache and then starting the app.
Table 7 show results of 5 measurements for each app.

Traffic

1.11 MB(e=0.32 MB)
0.95 MB(0=0.24 MB)
0.70 MB(0=0.10 MB)
0.43 MB(0=0.23 MB)
1.39 MB(¢=0.33 MB)
4.67 MB(0=0.20 MB)
1.47 MB(0=0.15 MB)
1.58 MB

App
com.nytimes.android

com.cnn.mobile.android.phone
com.toi.reader.activities
bbc.mobile.news.uk
com.guardian
de.spiegel.android.app.spon
com.lemonde.androidapp

Average

Table 7. Average data usage for loading the first screen of popu-
lar news apps.

CoverDrop: Blowing the Whistle Through A News App =—— 67

	CoverDrop: Blowing the Whistle Through A News App
	1 Introduction
	2 Status quo
	2.1 Currently recommended options
	2.2 Workshops

	3 Adversarial assumptions
	3.1 Failure points
	3.2 Adversary model

	4 CoverDrop overview
	4.1 System requirements
	4.2 Design
	4.3 Security goals
	4.4 Limitations

	5 System details
	5.1 Protocol flow
	5.2 CoverNode
	5.3 UI design
	5.4 Secure app library
	5.5 WebApi/CDN integration
	5.6 Multiple CoverNodes

	6 Security analysis
	6.1 Defeating our security goals
	6.2 Compromise of security assumptions

	7 Performance analysis
	7.1 Mobile application
	7.2 CoverNode
	7.3 CDN and WebApi

	8 Related work
	9 Conclusion
	A Censorship resilience
	B Security properties of the encrypted storage on the mobile device
	C Mobile app size
	D Mobile app traffic

