DE GRUYTER OPEN

Proceedings on Privacy Enhancing Technologies 2015; 2015 (2):4—-24

Nikita Borisov*, George Danezis*, and lan Goldberg*
DP5: A Private Presence Service

Abstract: Users of social applications like to be notified
when their friends are online. Typically, this is done by a
central server keeping track of who is online and offline, as
well as of all of the users’ “buddy lists”, which contain sensi-
tive information. We present DPS5, a cryptographic service that
implements online presence indication in a privacy-friendly
way. DP5 allows clients to register their online presence and
query the presence of their list of friends while keeping this
list secret. Besides presence, high-integrity status updates are
supported, to facilitate key update and rendezvous protocols.
While infrastructure services are required for DP5 to operate,
they are designed to not require any long-term secrets and pro-
vide perfect forward secrecy in case of compromise. We pro-
vide security arguments for the indistinguishability properties
of the protocol, as well as an evaluation of its scalability and
performance.

DOI 10.1515/popets-2015-0008
Received 2014-11-15; revised 2015-05-15; accepted 2015-05-15.

1 Introduction

“We kill people based on metadata.”
— General Michael Hayden [16]

Many organizations, from hobbyist clubs to activist groups
to social media giants, provide a mechanism for their mem-
bers to engage in real-time online communication with their
friends. This is nowadays predominantly done using the feder-
ated XMPP [38] protocol with either web-based or standalone
clients to access services.

A crucial part of a messaging service is to provide indica-
tors of presence: when a person connects to the network, she
would like to be informed of which of her friends are currently
online. Depending on the exact details of the communication
service, she may also wish to be informed of some auxiliary
data associated with each of her online friends, such as the
friend’s current IP address, preferred device, encryption pub-

*Corresponding Author: Nikita Borisov: University of Illinois at
Urbana-Champaign, E-mail: nikita@illinois.edu

*Corresponding Author: George Danezis: University College London,
E-mail: g.danezis@ucl.ac.uk

*Corresponding Author: Ian Goldberg: University of Waterloo, E-
mail: iang @cs.uwaterloo.ca

lic key, or other information useful for establishing communi-
cation. Note that the communication itself may then occur in
a direct peer-to-peer manner, outside the scope or view of the
organization providing the presence service.

A typical presence mechanism works by having each user
inform the server of who her friends are. Then, whenever those
friends log in, they are informed of the user’s state (offline or
online), and if online, the auxiliary data. This ubiquitous and
straightforward presence mechanism, however, has a signif-
icant privacy problem: the server learns the complete list of
who is friends with whom, and when each user is online. How-
ever, it has been recently revealed that governments exercise
legal compulsion powers on service providers to disclose their
private data, as was the case for the Lavabit service [37]. In
January 2014 the New York Times also revealed documents,
leaked by Edward Snowden, demonstrating that online ad-
dress books and buddy lists are prime targets for surveillance
by the United States’ and United Kingdom’s signal intelli-
gence agencies [29]. This illustrates the surveillance value of
contact tracing and presence information and as a result, orga-
nizations providing presence service may be reluctant to even
hold this privacy-sensitive metadata.

In this work, we present DP5—the Dagstuhl Privacy Pre-
serving Presence Protocol P.!' DP5 allows organizations to
provide a service offering presence information (and auxiliary
data) to their users, while using strong cryptographic means to
prevent the organization itself from learning private informa-
tion about its users, such as their lists of friends.

The key contributions of this paper relate to the design and
analysis of DP5, a private presence system. More specifically,
we:

— Present a set of security properties, functional require-
ments, and a desirable threat model for private presence.
(§2)

— Describe a design, DP5, that fulfills the security require-
ments, based on private information retrieval and unlink-
able pseudonyms in consecutive epochs. (§3)

— Show that the DPS5 security mechanism provides unlink-
ability, and argue that it also provides forward secrecy
even when all infrastructure components are compro-
mised. (§4)

— Evaluate the system performance of all DP5 sub-
protocols. (§5)

1 The extra ‘P’ is for extra privacy.

[®) ov-ne-np |

— Discuss design and implementation options to strengthen
the security of DP5, notably against client compromise.

(86)

2 Design and Security Goals

The DPS5 service aims to provide a private alternative to pres-
ence systems that support real-time communications such as
instant messaging or Voice over IP (VoIP). In a nutshell, users
are able to register and revoke “friends”, and query the ser-
vice to retrieve the online status of those that listed them as
friends, as well as receive a small amount of extra informa-
tion useful for bootstrapping other security protocols. From
a security perspective, subject to some typical cryptographic
assumptions, the service does not learn who is friends with
whom, the topology of the social network remains secret, and
no one is in a position to fake the status of any honest user.
This section provides details about the properties and threat
model of the DP5 design.

2.1 Presence features

DPS5 acts as a presence mechanism, but is also enriched with
features that allow it to compose well with, and provide a solid
foundation for, other secure protocols.

It is assumed that users have established a shared secret
key “out-of-band” with each of their friends. This can be done
in practice using a Diffie-Hellman key agreement, after down-
loading all one’s friends’ public keys, using a physical anony-
mous mechanism for transferring the key (such as a USB drive
or smartphone), or using a privacy-friendly record retrieval
mechanism, such as private information retrieval (PIR). Once
users have the list of public keys of their friends they can per-
form a number of operations, through the DP5 infrastructure.

Friend & Presence Registration. A user Alice is able to use
a secret key she shares with Bob to register Bob as her friend.
As a result Bob is authorized to receive Alice’s online status
and other auxiliary data. Note that the “friend” relation is not
necessarily symmetric: if Alice lists Bob as a friend, then Bob
will see Alice’s presence information, but not necessarily vice
versa.

Alice may then register her online status at a particular
time period (epoch), along with a small amount of auxiliary
data for that time period. The registration is valid for the du-
ration of the epoch only and Alice’s status is automatically
changed to offline in the next epoch unless she re-registers.
Registration is facilitated in DP5 though protocols with a reg-
istration server.

DP5: A Private Presence Service —— 5

Presence Status Query. A user Bob should be able to query
the system and retrieve the online status of those users that
have registered him as a friend at a particular time period
(epoch). In particular we note that both Alice must have regis-
tered Bob as a friend, and Bob must issue a query for Alice’s
status, in order for Alice’s status to be provided to Bob. As part
of the response to the query, the auxiliary data of Alice is pro-
vided to Bob if she is online. Status queries are implemented
through protocols between users and DP5 lookup servers.

Friend Suspension or Revocation. Finally, Alice or Bob may
decide that they wish to not be friends any more. Alice can thus
choose to remove Bob from her friends and not advertise her
presence to him, and Bob may choose to not query for Alice’s
presence or auxiliary data. If they only do this temporarily we
call the action a presence “suspension”, and in the long term
call this a presence “revocation”.

2.2 Threat model and security
assumptions

The DP5 design ensures some security properties for presence
subject to some system and cryptographic security assump-
tions, as well as some limitations on the parties an adversary
can control or corrupt. However, the DP5 protocol is extremely
robust against passive or active network adversaries. More pre-
cisely the security of DP5 rests on the following threat model:

Secure end-user hosts. Throughout this work we assume that
honest users’ end systems are secure. In particular DP5 makes
use of public-key encryption, for which the long-term private
keys of users must remain confidential. Furthermore, the long-
term public keys of a user’s friends identify the social network
that DP5 aims to protect, and thus must be stored securely
on a user device. The security of end hosts is an orthogonal
problem to the one DP5 aims to solve. However, we discuss
in Section 6.3 how to best partition an implementation of the
DP5 protocol to store any long-term keys into secure hardware
to protect against some software attacks. We similarly assume
that honest services run on secure end systems that can main-
tain secrecy and integrity as necessary. Servers are engineered
to not require long-term secrets, and provide forward secrecy,
to mitigate any compromises.

Computational cryptography assumptions. DP5 makes use
of a number of cryptographic techniques, and thus assumes
that the adversary has not made cryptographic breakthroughs
allowing him to bypass them. In particular we assume that the
secure channels between honest users and honest infrastruc-
ture services provide the necessary authenticity, integrity and
confidentiality. We also assume an adversary is not able to vi-
olate the properties of a secure pseudo-random function (PRF-

IND), secure encryption (IND-CPA) or violate the Decisional
Diffie-Hellman (DDH) assumptions or the co-DHP assump-
tion for bilinear groups. (We elaborate on a variant that does
not rely on pairing-friendly elliptic curves in Appendix A, at
the cost of some extra server-side computation and storage.)

Ubiquitous passive network observer and dishonest users.
We assume an adversary can observe all the information that
is in transit between all honest and dishonest participants in
the protocols. All security properties should hold even for an
adversary with a full record of all network communications
between all parties. An adversary can also make use of the
presence system both by registering the presence of malicious
users, as well as by querying it in any manner.

Threshold of honest infrastructure servers. The DP5 pro-
tocol uses a coalition of infrastructure servers to achieve its
goals, particularly to implement information-theoretic PIR
(IT-PIR), an inherently multi-server protocol (see §3.3). It is
assumed that at least one of those servers does not collude
with the others to violate any security properties and executes
the protocol correctly. Other servers may be passively dishon-
est: in such a case they follow the protocol, but share their
internal state and secrets with the adversary. The DP5 proto-
col is designed to maintain all its security properties against
such adversaries. It may be the case that some other servers
are actively malicious, and do not follow the DP5 protocol.
In such a case the DP5 protocol maintains its confidential-
ity and integrity properties, but may not provide some of its
functionality—namely, it may suffer from denial of service.
We discuss how to ameliorate this issue in Section 6.4.

The assumption of a threshold of honest servers is
standard for building privacy technologies. Most practical
anonymizers, including onion routing and mix networks, rely
on a threshold of honest servers to provide privacy properties.
These servers can either be provided commercially, as was
done in the Freedom network [10], by volunteers, as is the case
in Tor [25], or by privacy-aware organizations. We specifically
design DPS5 to be deployed by a small coalition of independent
service providers that wish to offer their users a high degree of
privacy. That said, the threshold assumption may be relaxed by
using a computational PIR (CPIR) scheme in place of IT-PIR,
at a 70-100 times higher computational cost on the (single)
server. Alternately, the hybrid IT-PIR + CPIR scheme by De-
vet and Goldberg [21] provides some additional protection to
an IT-PIR scheme, even when all servers are colluding, with
negligible additional server computation.

Security in the covert model. Finally, some availability as-
pects of the protocol rely on the “covert security” model,
namely that adversaries follow the protocol if deviations
would be detected with some non-negligible probability.
Specifically, we rely on this model to argue that registration

DP5: A Private Presence Service —— 6

servers would not remove presence entries without due author-
ity.

2.3 Security goals

In this section we present the security goals of the DP5 service.
It is worth noting that the security properties described are
in relation to the additional information that could be leaked
by the presence protocol and not the communication channels
used.

Privacy of presence. Only friends of Alice are able to detect
whether Alice is or is not online. More formally, an adversary
with a transcript of the contents of DP5 protocol interactions,
as observed by all the infrastructure servers, cannot distinguish
whether Alice was one of the honest participants or not.

Integrity of presence. Only Alice can convince one of her
friends that she is online. More formally, if an honest friend
of Alice becomes convinced that Alice is online at a partic-
ular epoch, it must be the case that Alice has performed the
presence registration protocol for that epoch. Conversely, if an
honest friend finds Alice to be offline, this must be due to Alice
not having (successfully) completed the registration protocol
for that epoch.

Privacy of the social graph. Either Alice registering friends
or her presence, or Bob querying for the presence of his
friends, should reveal no information about who their friends
are. Given any two lists of friends (up to a public maximum
length) for any honest participant in the DP5 protocol, it is
indistinguishable to the adversary which of the two lists was
used. This holds for all parts of the protocol, including friend
registration, presence registration, presence querying, and the
storage or retrieval of auxiliary data.

Unlinkability between epochs. User actions are not linkable
across epochs to an adversary that is not their friend. Specifi-
cally, given a transcript of the DP5 protocol for a specific user
at an epoch, and a transcript at a subsequent epoch, an adver-
sary cannot distinguish if the transcripts originated from the
same user or different users.

Privacy of auxiliary data. Only friends can recover the plain-
text of a user’s auxiliary presence data. If the adversary sub-
mits to the user two candidate plaintexts, and the user chooses
one as their auxiliary data for a specific epoch, the adversary
cannot efficiently distinguish which of the two was chosen.

Integrity of auxiliary data. If an honest friend of Alice recov-
ers a plaintext of auxiliary data it must be the case that Alice
ran the registration protocol at that epoch, with that plaintext
as input.

Indistinguishably of offline status, suspension and revoca-
tion. A user Bob—even if Alice had registered him as a friend
in the past—cannot distinguish whether Alice is offline, has
suspended him, or has revoked him as a friend.

Auditability of infrastructure. All actions that the central-
ized registration services perform should be publically verifi-
able. In particular a public append-only log of all actions of
registration servers should not violate any security properties.

Forward and backward secrecy of infrastructure. An ad-
versary with the power to extract cryptographic keys from in-
frastructure servers at some point in time cannot compromise
the security of any past epochs. Once fresh authentication keys
are generated future uses of DP5 are also safe.

Optional support for anonymous channels. The DP5 proto-
col does not leak any additional information about the identity
of clients than do the underlying communications channels. In
particular, if the communication channels leak no identity, nei-
ther does DP5—which means that using DP5 over an anony-
mous channel preserves anonymity.

We note that although Alice’s friends can never be con-
vinced that Alice is online when she is not, the second compo-
nent of integrity of presence, namely that Alice’s registration
is not dropped, is enforced by an auditing mechanism. The
integrity of auxiliary data requires either the mechanism de-
scribed in Appendix A or the use of digital signatures.

3 The DP5 Presence Protocol

3.1 Protocol description

The objective of the DP5 protocol is, broadly, for users to ad-
vertise their presence status to their friends only, without re-
vealing their social network to any single third party. The pro-
tocol assumes a number of participants collaborate to achieve
this: users, one of whom we call by convention Alice, regis-
ter their presence in the system to a registration service; users,
such as one called Bob, can then query the service to retrieve
the status of users with whom they are friends. The service is
composed of a registration server, handling the user registra-
tion side of the protocol, and a number of private information
retrieval (PIR) lookup servers handling the query side of the
protocol.

For clarity of presentation we will pin Alice’s role as
wishing to advertise her presence to her friend Bob, while Bob
only queries the system for Alice’s presence. Of course, in
practice, all parties partake in both the registration and query
protocols, and have multiple friends.

DP5: A Private Presence Service =—— 7

3.2 DP5 setup

The DP5 protocol assumes that Alice and Bob share a crypto-
graphically strong symmetric secret keys K, (we note that
these keys have a “direction”—the key K, is also shared
but different from K ;). This key can be computed through a
Diffie-Hellman key agreement [23], assuming Alice and Bob
can each learn discover each other’s public key. An appropri-
ate key derivation function can be used to extract K,;, and a
different K3,. The DP5 protocol does not require this shared
key to be stable in the long term; thus, it is also possible for
Alice and Bob to use a mechanism offering perfect forward
secrecy to derive the shared key periodically.

The DPS5 protocol divides time into short-term epochs,
meant to last on the order of a few minutes, and long-term
epochs, on the order of a day. Clients and infrastructure are
assumed to have loosely synchronized clocks.

All parties to the DP5 protocol share a common set
of cryptographic primitives: three families of keyed pseudo-
random functions (PRF% (m), ¢ € {1,2, 3}, implemented us-
ing a hash function such as SHA-256 [27]); an authenticated
encryption primitive (AEADYY (h;m))? (such as AES [18]
in GCM mode [35]); and access to secure channels between
clients and infrastructure (using TLS [22]).

Furthermore, DP5 makes use of three generators
g1,92 and gr of groups G1,G2 and Grp respectively for
which an efficiently computable asymmetric pairing function
e(G1,G2) — Gr is known, such that e(g{, g5) = ¢g%°. The
Decisional Diffie-Hellman problem is assumed to be hard in
each of these groups (so that a “type 3” pairing [28], without
an efficiently computable isomorphism from G2 to G or the
reverse, is in use), as well as the Co-DHP (aka Co-CDH) [8]
problem for G1 and G2. An efficiently computable hash func-
tion Hy : Gpr — {0,1}" from elements of Gr to 7-bit
strings is known by all (7 is the length of an identifier). Ev-
eryone also knows two efficiently computable hash functions
Hi : T — G2 (where T is the set of valid epoch timestamps)
and Hz : G1 — {0,1}"” (where v is the key size of the PRF>
function).

Finally, all users share some global parameters, such as a
maximum number of friends Ngmax, the number Npjmmax of PIR
servers and their IP addresses, the sequence number and dura-
tion of short-term (¢;) and long-term (77) epochs, and the byte
size of all inputs and outputs of the cryptographic primitives.

2 h here is the part of the message that is not encrypted but included
in the authentication (what the AEAD calls “associated data”—mnot to be
confused with the DP5 auxiliary data); we omit A when it is empty.

3.3 PIR sub-protocol

DP5 uses private information retrieval (PIR) in order to al-
low clients to retrieve presence information from DP5 servers
without revealing to the servers what information is being re-
quested. In DP5, we use information-theoretic PIR, in which
multiple (non-colluding) PIR lookup servers are employed.
We choose IT-PIR for its 70-100 times speed improvement
over computational PIR, but see §2.2 for more discussion of
this choice. The databases to be searched are dictionaries of
(key,value) pairs, where the keys are arbitrary ID strings of
some fixed length, and the values are ciphertexts C. There
will be one such database for each short-term and for each
long-term epoch. A DPS5 client seeks to retrieve from a partic-
ular database the values corresponding to a list of given dic-
tionary keys, without revealing that list of keys to the lookup
servers. (The client will also typically pad the list of keys to
some fixed length in order to hide even the number of keys
being retrieved.)

We denote by PIRLOOKUP(T, (ID1, IDa, ..., ID})) the
interactive protocol performed between the DPS5 client and
each of the Npimax lookup servers. The parameters are 7—
an epoch identifier (short term ¢; or long term 73) to select
the database to query—and a list of dictionary keys to look
up. The protocol consists of two round trips with each server:
the client sends 7 to each server (in parallel), and receives a
response containing metadata for the corresponding database;
the client then sends a PIR query to each server (again in par-
allel), and receives the PIR responses.

At the end of the protocol, the client learns the associ-
ated values (C1, Co, . .
if the corresponding ID; was not in the database correspond-
ing to the epoch 7), and the servers learn 7 and k (though, as
above, k£ may be larger than the number of IDs the client was
actually interested in). Importantly, the servers do not learn the
ID;, the C;, or even which C; are L. The details of the proto-
col can be found in Appendix B.

., Ck) (where some of the C; may be L

3.4 DP5 overview

Sections 3.5 and 3.6 provide the full details of the DP5 reg-
istration and query protocols respectively. The message flows
between user, registration server and lookup servers are also
fully illustrated in Figure 1. Here we start by presenting a
high-level overview of interactions, and the rationale behind
the DP5 design.

The intuition behind DP5 is as follows. When Alice is on-
line, she will upload an indication of her presence, as well as
her auxiliary data (her “presence record”), to a DP5 registra-
tion server, encrypted in a way that only her friends can read it.

DP5: A Private Presence Service —— 8

Her friend Bob will then query the server for Alice’s (and all of
Bob’s other friends’) presence records. However, even though
the server cannot read Alice’s encrypted record, if this lookup
were done naively, the server would learn that Bob requested
the record uploaded by Alice, and would therefore learn that
Alice and Bob were friends.

Instead, Bob queries for his friends’ presence records us-
ing PIR. To accomplish this, time is divided into epochs. At
the end of each epoch, the registration server collects all of
the presence records uploaded during that epoch, and creates
the PIR database for that epoch as described in Appendix B. It
then sends a copy of this database to each of the Npjmmax PIR
lookup servers. During the next epoch, Bob will use multi-
server IT-PIR to look up his friends’ records. Note that the
separate (non-colluding) PIR lookup servers would be unnec-
essary if CPIR were used instead of IT-PIR, but we choose
to use IT-PIR for computational cost reasons, as described in
Section 3.3.

Even so, the computation cost of IT-PIR is somewhat too
high. In order to upload her presence record encrypted so that
only her friends can read it, the straightforward approach is for
Alice to upload, for each of her friends, one presence record
encrypted with a symmetric key derived from the key she
shares with that friend, so that Alice uploads Ngmax presence
records in total during each epoch. This makes the size of the
database very large, and since the computational cost of PIR is
proportional to the size of the database, it makes the PIR com-
putation expensive. We could ameliorate this by making the
epochs longer, but Bob only sees Alice as being online once
the next epoch starts. If this epoch length is too long, it will
affect the user acceptance of the system.

To address this problem, we add a layer of indirection. We
have long-term epochs and short-term epochs. In each long-
term epoch 7 _1, Alice uploads one presence record for each
of her friends as above, but her auxiliary data is replaced with
a presence key PJ (“a” for Alice). She uses the same presence
key in each of the Npyax records (encrypted individually for
each friend), so that each of her friends can learn it, but no
one else can. Then in each short-term epoch ¢; contained in
the next long-term epoch 77, Alice uploads a single presence
record, encrypted with a key derived from P, known only to
her friends.

The databases for the short-term epochs are then much
smaller, and using PIR to query them frequently is more rea-
sonable, while the databases for the long-term epochs are
larger, but are queried less often: the length of the long-term
epoch now governs how quickly a friend suspension or revoca-
tion will take effect, while the length of the short-term epoch
continues to govern how quickly friends are visible as being
online.

The final twist is that all of Alice’s friends will learn her
presence key P! for long-term epoch T}, and so we need some
way to prevent one of Alice’s friends from uploading a pres-
ence record that makes it appear as if Alice is online during
some short-term epoch ¢; contained in 7}, when she is really
not. To this end, we make the presence key PJnota symmetric
key, but rather a public key, and Alice will use the correspond-
ing private key to produce a signature. The lookup servers (at
least a threshold of which are assumed to be honest, recall) will
then check that each entry in the short-term database is accom-
panied by a valid signature. The lookup servers must not learn
the public key Pg , however. In the remainder of this section,
we show that by making the dictionary key for the short-term
database to be the common result of the two pairings in BLS
signature verification [9], the lookup servers can ensure that
when Alice’s friends look up her presence record in the short-
term database (using her public key P, only Alice could have
produced the required signature checked by the lookup server,
even though the lookup server does not itself learn Alice’s pub-
lic key. In Appendix A, we give an alternate construction that
uses more standard digital signatures, but using one-time-use
public/private key pairs derived from Pl during each short-
term epoch. The derived public key is made available to the
lookup servers, but it is unlinkable to either Pg or to the de-
rived keys from other short-term epochs.

3.5 DP5 registration

Alice registers her presence and auxiliary data for each epoch,
by updating a number of databases at epoch t;_1 and Tj_1,
which are made available for all to query at epoch ¢; and T);.

Long-term epoch friendship database. Once per long-term
epoch T);_1, Alice may update the long-term epoch friendship
database for the next long-term epoch T} with a record for
each of the friends to whom she wishes to advertise her pres-
ence. Alice only needs to update this long-term database if she
wishes to modify the set of friends she advertises presence to,
by adding new or removing older friends. Otherwise she may
skip the long-term epoch registration (see detailed discussion
in Section 3.7).

The long-term epoch database is an oblivious repository
of records for each directed friend link in the system; how-
ever, note carefully that this database does not leak informa-
tion about the actual friendships to those without the appropri-
ate secret keys. To perform this update, Alice picks a random
, and derives a fresh public presence

private key z €r |G1
key P] = g%, and deletes any older key pairs. Then for each
friend she derives the shared key for the long-term epoch, and
encodes a database entry comprising an identifier, and a ci-
phertext of her fresh public key.

DP5: A Private Presence Service —— 9

For instance, Alice encodes an entry for Bob using
their shared key K, for long-term epoch T} as follows.
She first derives an epoch key using a pseudo-random func-
tion and the identifier for the long-term epoch: K ib =
PRF} (T}). She then creates a public identifier for the key as
IDbe = PRF%(!“) (TJ), and encrypts her public kgy as _Cgb =
AEAD(;{ib (ID?,; PY). The resulting entry is (/D?, C7 ".

Alice encodes an entry for each of her friends, and then
pads the list of entries with random entries up to a maximum
number of friends Ngmax. Those random entries are generated
by Alice performing the encoding process above using a ran-
domly chosen fresh shared key. She then sends the fixed-size
list of entries to the registration server, which stores it. Alice
stores the fresh private-public key pair (z, Pl) until a new one
is generated. This procedure is illustrated in Figure 1a.

Short-term epoch user and signature database. Once per
short-term epoch ¢;_1, Alice updates the short-term epoch
user database for epoch t; with a single entry, denoting she
is online, and some auxiliary data mfr Alice first derives
s%, = Hi(t;)", which represents an unforgeable signature that
Alice is online. Furthermore, Alice encrypts her auxiliary data
as ¢, = AEADY (my), where K, = PRF} (s (ti). She
then sends the record (sg, ¢,) to the registration server.

The registration server, upon receiving an entry (sf“ cfl)
from Alice, first derives an identifier ID!, = Hy(e(g1,s%)).
(Note that this value also equals Ho(e(ng, Hy(t:))), by the
properties of pairings.) Then the server updates two parallel
databases: the entry (ID,, ¢!} is added to the short-term epoch
user database for ¢;, and the entry (ID?,s) is added to the
short-term epoch signature database. This procedure is illus-
trated in Figure 1b.

3.6 DP5 query

At the beginning of epoch T the registration service makes
public the full long-term epoch friendship database with all
entries received during epoch 7)_1. Similarly, at the begin-
ning of each short-term epoch ¢;, the registration server makes
available the separate short-term user and signature databases
collected during epoch ¢;—;. All PIR servers download all
databases as soon as they become available.

Furthermore, each PIR server audits at the start of ¢; the
user database using the entries in the signature database: each
entry (ID%,c%) in the user database must correspond to an
entry (IDf,,, s%) in the signature database, such that ID! =
Ho(e(g1,%)). If the audit succeeds the PIR server proceeds
to answer requests for entries in the databases.

Once per long-term epoch 77, during 7 or at a later long-
term epoch, Bob queries the long-term friendship database for

Alice Registration Server Lookup Servers
Register for epoch 7:
z €r |G1l;

PI = g7; Store z
Vb E,{bl A bemux}'
wa = PRFy . (T})
ID], =PRF% (T})
- o P
cl, = AEADKjb(ID Pi)
a

J .
ab’” a

Register ¥b.(ID?, C7)

J J
Query at epoch T: vab- (1D, Cop)

Vb € {bl A le’mmx}'
D], = PRF% (T})
(i) + PIRLOOKUP(T;, (ID},))
(PIR sub-protocol)
K7, = PRFy_ (T})

Pl = Df:cryptKjlJ ()
a

(a) DP5 protocols to register and query presence for long-term
epoch T;

Fig. 1. DP5 protocols for long and short term epochs

entries corresponding to each of his friends. First, he recon-
structs for each of his friends a shared identifier; e.g., for Alice
he computes the identifier IDib = PRF%(GI) (T}). He then pads
this list of friend identifiers with a number of random identi-
fiers, up to a maximum number of friends Ngmax. Finally, using
PIRLOOKUP, he queries the long-term friendship database for
the fixed-length list of identifiers. As a result, he receives a list
of identifier and ciphertext entries <ID3}b, C’}b), one for each
of his friends f who registered in epoch 7%_1. For each of
those entries, for example Alice’s, he decrypts ciphertext Cgb
using key K(zb = PRF}(M (T}) to yield Alice’s current public
presence key PJ. This procedure is diagrammed in Figure 1a.

Up to once per short-term epoch ¢;, Bob may wish to re-
fresh the status information of his friends including Alice. As
a first step, Bob reconstructs the identifier of Alice using the
latest public presence key P! available for her. To this end he
computes ID, = Ho(e(PJ, Hy(t;))) for Alice, and similarly
an ID for each of his other friends. He then uses PIRLOOKUP
on the list of those identifiers, padded with random strings to
a maximal length of Ngmax. Upon completion of the retrieval
protocol, Bob decrypts each returned ciphertext entry with a
symmetric key derived as K, = PRFZg(P;{)(ti)' If the de-
cryption succeeds the status of the friend is set as “online”,
and the auxiliary data m, is returned. Otherwise the friend’s
status is set as “offline”, and no auxiliary data is returned. This
procedure is illustrated in Figure 1b.

DP5: A Private Presence Service — 10

Alice Registration Server Lookup Servers

Register for epoch ¢;:
S:; = H; (tI)T
K! =PRF® _ (t;
- H.3<Pé><)
c, = AEAD’ , (m})
Ka v i

DY =

Ho(e(g1,s,))

Update (ID%, ct), (ID:, st

a"a>

Audit ¢;:
Va.ID}, = Ho(e(g1, s,,))

Ya.(ID%, i), (ID, st)

Register (s&, c;)

Query at epoch ¢;:
Vb € {b1...bng,,)
ID} = Ho(e(P}, Hi(t:)))
(ch) «— PIRLOOKUP(t;, (ID}))
(PIR sub-protocol)
K} = PRF;B(Pg)(ti)

mj, = Deerypty ()

(b) DP5 protocols to register and query presence for short-term
epoch t;

3.7 Protocol details and options

The DPS5 protocols can be parametrized to achieve differ-
ent trade-offs and optional client-side steps may be taken to
achieve additional properties

Epoch lengths. The presence mechanism is divided into long-
term epochs and short-term epochs. The length of the short-
term epoch governs how quickly Bob will notice that Alice
has come online; presence indications only change at the be-
ginning of each new short-term epoch. The length of the long-
term epoch governs how quickly Alice can suspend or revoke
Bob as a friend; such a de-friending will only take effect at the
beginning of the next long-term epoch.

In addition, the two epoch lengths have differing perfor-
mance characteristics. In the long-term epoch the registration
phase has a space complexity of ©(Nimax), Where Nemax is
the maximal number of friends. However, in the short-term
epoch the registration space complexity is merely ©(1), mak-
ing short-term updates extremely efficient. Both mechanisms
require Nimax queries to the database, through the PIR mech-
anism. However, the size of the database is different in each
case: the long-term database is larger and contains N - Nimax
entries, where IV is the number of distinct registered clients,
whereas the short-term database only contains /V entries, mak-
ing queries cheaper.

Skipping short-term epochs. A deployment can leverage this
asymmetry to provide extremely timely updates. The long-
term epoch can be set at the granularity of a day, while the
short-term epoch can in the order of magnitude of minutes.
Clients register their presence in the long-term epoch, and also
at regular intervals in the short-term database. To detect pres-
ence it is imperative that all clients have an up-to-date view
of their friends’ entries from the long-term database, since this
enables them to use the short-term update mechanism. This is
relatively infrequent, and therefore cheap in terms of process-
ing and bandwidth costs.

Clients can choose, according to available resources, how
often they wish to query the short-term database. Short-term
queries can be scheduled either for each short-term epoch, pe-
riodically but less frequently than the short-term epoch inter-
val, or on-demand when a high-level (observable) action that
requires presence information is undertaken. The frequency
of updates may depend on load, network availability, or any
other non-sensitive information but must not be dependent or
adapt to the actual presence information retrieved in previous
epochs. Such adaptive strategies create a timing side-channel
that the adversary could use to infer the friends of a client—
which is exactly what DPS5 attempts to obscure.

Adding friends, suspending presence, and revocation.
Adding a friend so that they receive DP5 updates is very ef-
ficient: Alice and Bob merely have to establish a shared secret
key, and exchange their public presence keys Pﬂ and Pfé. How
this exchange is performed is outside the scope of DP5 but the
resulting social link should be unobservable by an adversary.
Using the ephemeral keys, new friends can query the short-
term epoch databases and retrieve presence information im-
mediately at the next short-term epoch. Starting with the next
long-term epoch they may query and update DP5 normally us-
ing their shared secret key.

Removing friends and obscuring presence takes longer.
As mentioned above, the cost of a longer long-term epoch is in
terms of inflexibility of suspension or revocation of presence.
In order for Alice to selectively revoke a friend Bob, she must
change her presence key before the next time she registers with
the long-term friendship database, and not use her shared key
with Bob in the next long-term registration protocol. Any up-
dates to the long-term friendship database can only take place
once the long-term epoch changes, and thus the immediacy of
revocation is limited by the long-term epoch length.

Filling in long-term updates. Alice’s friends may be offline
long enough to miss a particular long-term epoch update. The
DPS5 protocol assumes that all clients check for their friends’
presence each long-term epoch. Therefore it is necessary to re-
quest, using the full PIR mechanism, all epochs that have been
missed sequentially. Clients may be tempted to only query

DP5: A Private Presence Service — 11

a subset of recent epochs, until they have identified the lat-
est long-term update for all their friends. While this may be
cheaper than requesting all updates, the stopping rule depends
on the secret list of friends of a client, resulting in an observer
receiving information about the list of friends by observing the
number of requests. Consequently we require all clients to se-
quentially query all long-term epochs, even though this may
leak to the adversary how long they have been offline.

In a practical DP5 deployment lookup server may wish to
limit the number of older long-term epoch databases they re-
tain. In such settings, all users should be required to execute
the long-term epoch registration process often enough to en-
sure that their keys are still present in a retained past epoch.
Given the relatively small size of the long-term database (see
Table 2) as compared to the cost of bulk storage, we do not
explore this possibility further.

Self-checking our own entries. A partial auditing mechanism
is included in DP5 through PIR servers checking signatures on
the database of entries. However, this only guarantees that ma-
licious misleading entries are not included in the databases,
but not that the registration server does not drop valid entries.
Each client may perform some limited checks to reduce the
likelihood of a malicious registration server not serving the full
database. A client may query the database for keys that it reg-
istered corresponding to some of its friends, to check they are
included and served correctly. The DP5 protocol may be fur-
ther extended so that the registration servers provide a signed
receipt upon each registration. This would allow non-inclusion
of records to be verified by third parties, and the registration
server replaced.

This auditing mechanism is quite robust: once the
databases are provided to the lookup servers, selective denial
of service by the registration server is no longer possible. Fur-
thermore, the privacy properties of PIR ensure that the queries
to the known entries are perfectly private and do not leak any
information about the identity or any other secret of the client.
Since DP5 requires clients to query a maximum number of
entries this audit process can consume unused slots and does
not add any extra cost, as long as the clients query for fewer
friends per epoch than the maximum allowed.

4 Security argument

We present proofs or proof sketches for key properties of DP5
in Appendix C. Table 1 summarizes the assumptions that are
made about the infrastructure with respect to each of these
properties. We briefly discuss the remaining properties here.
— Indistinguishability of offline status, suspension, and
revocation. To revoke or suspend Bob’s access, Alice

DP5: A Private Presence Service

— 12

Table 1. Assumptions necessary for enforcing security properties. The Auditable? column describes whether auditing can detect viola-
tion of this property, should the trust assumptions be violated. ¢ is the system threshold parameter for the privacy of IT-PIR.

Property Example Assumptions Auditable?
Privacy of presence Cannot tell if Alice online in epoch ¢; Alice’s (unrevoked) buddies are un- no
compromised
Integrity of presence Cannot make Alice appear onlineinan | none no
epoch when she does not register
Cannot make Alice appear offline | honest-but-curious registration yes
when she does register server and t + 2 PIR servers
Privacy of social graph Cannot tell if Alice has Bob as abuddy | no collusion among more than ¢ PIR no
servers
Unlinkability between epochs Cannot link two registrations across | Alice’s (unrevoked) buddies are un- no
epochs compromised
Privacy and integrity of auxiliary | Cannot learn Alice’s auxiliary data Alice’s (unrevoked) buddies are un- no
data compromised
Cannot modify Alice’s auxiliary data Registration server does not collude yes
with Alice’s buddies
Indistinguishability of offline | Bob cannot tell if Alice is offline or has | Alice’s other (unrevoked) buddies do no
status, suspension, and revoca- | revoked his access not collude with Bob
tion

chooses a new public presence key P and does not share
it to Bob. To maintain indistinguishability, Alice may gen-
erate a separate key P! and share it with Bob through the
long-term database. Alice can use Pg in the short-term
registration protocol, but from Bob’s point of view, Al-
ice will always appear as offline, as a consequence of the
privacy of presence property.

— Auditability of infrastructure. The above privacy prop-
erties do not rely on the registration server maintaining
any secrets and so a public audit log of registration mes-
sages will not violate any security properties.

— Forward secrecy of infrastructure. The long-term se-
crets of the PIR servers are used only for establishing
TLS connections. Assuming that TLS is used in forward-
secure mode, their compromise does not reveal any infor-
mation about past registrations. (The servers should take
care, however, not to store the plaintext PIR requests or
responses after their use.) A compromise of the long-term
secrets of the registration server can affect integrity only,
and thus do not enable the compromise of past informa-
tion.

— Optional support for anonymous channels. Alice’s
identity is not revealed in the registration protocol, as
guaranteed by the privacy of presence and unlinkability
between epochs properties. The use of PIR in the query
protocol, in turn, reveals no information about the iden-

tity of the querier.

1 BT Feeee=====1
_______ - i Reg (short-term
08 1 [iLookup (short-term
: ! Reg (long-term
' i Lookup (long-term
o 06| ! i
= H
© 1
)
S 04 H
H
! H
02| 1 /
i ; J
0 ! t t T
0 0.5 1 1.5 2

Time (s)

Fig. 2. Overall user-facing latency for the registration and lookup
operations, excluding four network RTTs for registration and five
for lookup.

5 Evaluation

5.1 Implementation

The implementation of the DP5 protocol consists of publicly
available open-source libraries, as well as clients and servers
using those libraries.

The cryptographic core relies on OpenSSL for AES and
hash operations, as well as the TLS channels between clients
and servers. The AEAD function is instantiated with 128-bit
AES in Galois Counter Mode (GCM) and an all-zero IV (since
all keys used are fresh). All PRFs are based on hashing the
secret key and other inputs using SHA-256 [27] and trun-

DP5: A Private Presence Service

Table 2. Data sizes for N = 1000 users, Ny,q, = 100. Registration and lookup costs are per user.

Long-term Short-term Scaling
Req | Resp Req | Resp || (in # of users)
DB size 13 MiB 84 KiB O(N)
Registration || 9004 B 5B 164B 5B e(1)
Lookup 300KiB | 500KiB 200B | 400B @(Nl/z)

cating the output hash to 16 bytes. The group G is defined
as Curve25519 [5] using Adam Langley’s implementation.?
Pairing-friendly curves are provided by the RELIC library [1],
and the Optimal Ate pairing over a 256-bit Barreto-Naehrig
curve defines groups G1, G2 and Gr. We use the Percy++
library [31] for the robust PIR functions.

The DP5 library is implemented in C++ (1000 lines of
.h files, and 4800 lines of .cpp files), and the network code
in Python 2.7 (2700 lines of .py files). These include unit test
code, functional test code, integration tests, and experimental
setup code. All client-server interactions are encoded as web
requests using the lightweight Cherrypy framework, and both
clients and servers are build around the Twisted non-blocking
network libraries. The core library interfaces with the high-
level network code using both native bindings and the CFFI
foreign call interface for Python. Our code is available under

an open-source license.*

5.2 Performance

To evaluate the performance of DP5, we ran 1000 simultane-
ous clients accessing the DP5 infrastructure. The clients were
running on an 80-core Xeon 2.4 GHz server with 2TiB of
RAM. (Note that only a small fraction of the RAM was uti-
lized during the experiments.) For each of the short-term and
long-term protocols, we used one server for registration and
three servers supporting PIR. Each server was running on a
16-core Xeon 2.0 GHz machine with 256 GiB of RAM. The
machines were interconnected using 1 Gbps Ethernet.

Figure 2 summarizes the user-facing latency of the op-
erations over a 10-hour execution, with the short-term and
long-term epochs set to 1 minute and 10 minutes, respectively.
(In practice, we expect long-term epochs to be much longer,
around a day; 10 minutes was chosen to stress-test the sys-
tem.) In order to measure a worst-case scenario, we had all
clients perform their registration and lookup operations simul-
taneously, thus putting maximum load on the servers. For the
short-term epoch, we expect this to represent real-world be-

3 https://github.com/agl/curve25519-donna
4 git://git-crysp.uwaterloo.ca/dp5

1
&
@ 0.1
o
o
]
(2]
3 oot
[0
o
>
< [e
E 0001 ¢ Total
= r Bandwidth -----
r [0 U m——
0.0001 = = :
1K 10K 100K 1M

Number of users

Fig. 3. Per-user cost for the bandwidth and CPU associated with
running a long-term PIR server with a 24-hour epoch.

havior, as all users will want to look up their friends’ pres-
ence information right at the start of each epoch. For the long-
term epoch, however, clients will come online during differ-
ent parts of an epoch, and thus may experience lower delays.
Monitoring the behavior of the servers, the PIR servers for the
long-term database had high CPU utilization for the approx-
imately 65 seconds following an epoch change; other servers
were minimally utilized and thus appear to be able to support
significantly larger numbers of clients. Note that the figure ex-
cludes network latency. Given the RTT between the client and
the (registration or lookup) server, one should add three RTTs
for the TCP/TLS handshake, and one more RTT for the regis-
tration protocol, or two more RTTs for the PIRLOOKUP pro-
tocol.

Table 2 lists the sizes of the requests and responses in
our protocol, excluding the overhead from the HTTP and
TLS protocols. The size of the long-term epoch database is
about 13 KiB per user, while the size of the short-term epoch
database is about 80 bytes per user. The bandwidth costs of
synchronizing the databases are therefore much smaller than
those of serving the lookup requests, particularly as the num-
ber of users grows: the per-user lookup size grows as the
square root of the number of users, while the per-user database
synchronization cost is fixed, and independent of the number
of users.

We used an Nyyy,q, of 100 for our experiments. Note that
buddies in DP5 represent users whose presence you want to
actively follow, and thus is going to be smaller than the number

https://github.com/agl/curve25519-donna
git://git-crysp.uwaterloo.ca/dp5

of contacts in a typical social network such as Facebook. We
do assign 100 buddies for each user, but we note that the actual
number of buddies per user or the friendship topology have
no impact on the performance of DP5 as requests are always
padded to Nyaq-

Increasing Nypq. system-wide would increase the size of
the long-term database by a linear factor, but will not affect
the size of the short-term database. Correspondingly, the long-
term lookup communication would grow as O (N fl,,',fw) while
the short-term communication as © (N). As an alternative,
users with unusually large numbers of friends could execute
the registration and lookup protocols several times each epoch;
such distinguished behavior may, however, be subject to traffic
analysis and allow an adversary to isolate heavier users from
the rest of the user population.

5.3 Scaling

The bottleneck server-side lookup operations involved in DP5
are easily parallelizable and thus more resources can be de-
ployed to support larger user populations. As the number of
users grows, the database size will grow linearly with the num-
ber of users. Our PIR implementation uses bandwidth that
grows as the square root of the size of the database, and thus
remains practical for significantly larger user populations. The
per-user server-side computation for PIR, however, is linear in
the database size.

The long-term PIR server is the most resource-intensive
component of DP5. In our experiments it used about 15 core-
minutes and 1 GB of bandwidth per epoch. Figure 3 plots an
estimate of the cost of running such a PIR server, using $0.84
as the cost of one hour on a 16-core machine and $0.12 as
the cost of 1 GB of data transfer,5 and a 24-hour epoch. User
populations in the thousands can easily be supported with vol-
unteer resources. We observe that a subscription service can
support as many as 1 million users at a per-user cost of about
$0.50/month. As mentioned in §2.2, our target deployment for
DP5 is a coalition of privacy-sensitive service providers, and
not something on the scale of Google or Facebook, so our
above deployment costs are reasonable.

5 These costs are Amazon’s EC2 prices as of November 2014 (https:
/laws.amazon.com/ec2/pricing/). We note that cloud-computing providers
are not an ideal site for a PIR server, as the provider could not necessar-
ily be trusted to remain honest and preserve users’ privacy, but they do
provide a useful baseline for estimating the costs of computing resources.

DP5: A Private Presence Service —— 14

6 Discussion

6.1 Channel anonymity

The DP5 design allows clients to access presence services
through anonymous, pseudonymous or authenticated chan-
nels. The presence service is guaranteed to preserve the prop-
erties of the channel and leak no more information about the
identity of the clients, and their friends, than the channel al-
ready would allow an adversary to infer.

For clients that use DP5 over authenticated or pseudony-
mous channels, it provides relationship anonymity only. An
adversary does not learn the friends of any clients but can ob-
serve a specific client or pseudonym being online / offline. This
information is leaked by the channel, not the presence service.

Using the DPS5 services over an anonymous channel pro-
vides both relationship anonymity, and unlinkability across
long-term and short-term epochs, vis-a-vis the presence ser-
vice. However, most deployed anonymity systems do not pro-
vide full unobservability, and therefore do leak when a net-
work end-point is using the anonymity network and when it is
out of it. Therefore, despite an adversary observing the DP5
infrastructure not being able to infer the online / offline pro-
file of a client, it might be able to do so if the client is under
direct observation. Channels that offer unobservable access to
anonymity networks may mitigate against this attack.

6.2 Suspension, revocation, and
pseudonyms

We divide time into short-term and long-term epochs in order
to balance up-to-date presence with timely revocation. For Al-
ice to revoke Bob she removes the key she shared with Bob
(Kg4p) from the long-term update mechanism, and refreshes
her ephemeral epoch key. This results in Bob not being able to
retrieve the next fresh ephemeral epoch key for Alice, and so
he cannot query her short-term presence or auxiliary data.

Alice may selectively allow Bob to query her presence in
specific epochs. However, once Bob has access to her key for
a specific long-term epochs, the presence mechanism is all-or-
nothing: either all friends, including Bob, get updated or none
does.

To achieve finer temporal control over which friends can
or cannot see updates from Alice, she has to use multiple pseu-
donyms. This can be achieved by dividing her friends into a
mutually exclusive sets, and providing each set with a differ-
ent presence key. During any short-term epoch Alice can reg-
ister with all, or any subset of the presence keys to advertise
her presence to different sets of friends. However, registering

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/

multiple pseudonyms during a short-term update is suscepti-
ble to traffic analysis. An adversary can observe the number of
short-term updates originating from Alice to infer the number
of sets of friends she advertises to, whether she is not adver-
tising to some sets, and even to identify her between different
short-term or long-term epochs if the number of pseudonyms
is atypical. For this reason advertising multiple pseudonyms is
best done when using anonymous channels, by repeating the
full short-term registration protocol once for each pseudonym.

6.3 Forward secrecy and hardware
stores

Various parts of the DP5 protocol have been designed, or can
be easily altered, to provide stronger guarantees against end-
point compromise. Purely cryptographic mechanisms can pro-
vide forms of forward secrecy, preventing retrospective pri-
vacy violations in case keys are compromised. Hardware mod-
ules with a narrow interface can be used to prevent long-term
secrets being extracted in case the software stack of clients is
compromised, as was the case in the Heartbleed attacks against
OpenSSL.

A natural way to derive the shared key K 45, used for long-
term registration, is by using a Diffie-Hellman key exchange.
Once this key is derived, there is no need to store the public or
private Diffie-Hellman keys that were used for the derivation
any more. Simply using fresh key pairs with different friends,
and deleting them after the first key derivation has taken place,
is good practice.

In the DP5 design, the long-term epoch keys K ib are de-
rived using the master shared key K, and the epoch identifier
T};. This enables the storage of long-term shared keys into a
hardware security module that only exports epoch key K Zb.
As a result, if a client is compromised, only the keys relating

6 Once the in-

to the current long-term epoch are accessible.
trusion has been detected, subsequent keys should still be safe.
It is important to note that even this limited compromise has
profound consequences that are not limited in time: once an
adversary has access to Alice’s secrets for one epoch, it can
determine who her friends are. Thus this mechanism only pro-
tects future updates of Alice’s friends list.

Another option provides some limited form of forward se-
crecy: we can modify the key derivation for long-term epochs
tobe K7, = PRF
key now only depends on the previous long-term epoch keys,

(T})- Since the long-term epoch shared

previous keys can be securely deleted. This means that past

6 The hardware security module would need to have a secure source of
time, or maintain state to prevent rolling back to previous epochs.

DP5: A Private Presence Service —— 15

databases cannot be analyzed by an adversary who compro-
mises the keys. This mechanism does not protect future up-
dates once keys are compromised.

Importantly, despite hardware storage of keys or the al-
ternate derivation of keys, a compromise not only leaks the
presence and status of Alice for some epochs but also of all
of her friends who have authorized her to read their status.
This, we believe, is a fundamental limitation of any private
presence protocol: if a user is compromised, the set of all in-
formation they were authorized to read, including the presence
and status of their friends, is compromised. Thus, presence pri-
vacy seems inevitably more fragile than end-to-end encryption
for which perfect forward secrecy can be achieved, but rather
similar to group private communications, or long-term infor-
mational leakage on social networks.

6.4 Protecting availability

Ensuring availability against malicious clients, servers, and
third parties is especially important for protocols supporting
privacy, as traditional approaches, such as logging, blacklist-
ing, or auditing may not be applicable.

The first challenge is to ensure the presence database re-
mains small, by preventing malicious clients from adding a
large number of entries. If the channels are authenticated, only
the confidentiality of who is friends with whom is maintained
(but not the privacy of when Alice is online). In that case, tradi-
tional authentication can be used to ensure Alice only updates
once per long-term and short-term epoch. In case Alice uses an
anonymous channel, requiring authentication would compro-
mise anonymity. In this case, an n-periodic anonymous ticket-
ing scheme, such as the one proposed by Camenisch et al. [11]
may be used to anonymously limit registrations per user.

A second challenge is to ensure that the registration
servers do not drop entries. To ensure that Alice’s entries have
been added to an epoch Alice may add herself to her friend
list, and check that her record is correctly returned by the
servers. We note that due to the cryptographic properties of
our scheme it is infeasible for the registration service or the
lookup services to selectively drop entries for specific friends
of Alice’s, since they are indistinguishable. This mechanism
may be turned into a robust auditing framework by request-
ing signed receipts from servers for registration and lookups—
since the database is public, this allows any third party to ver-
ify a claim that they did not include or serve a specific chal-
lenge record. Finally, lookup servers may modify the database
to drop records. We use robust PIR [20] that ensures that a
malicious server would be detected. Preventing DoS requires
at least ¢ + 2 honest servers, where ¢ is the maximum number

of servers that the threat model allows to collude to determine
the query.

6.5 Implementation lessons

Implementing and measuring the DP5 protocols provides us
with some insights on how to improve this type of protocol in
the future; we attempt to share these insights in this section.

The DP5 design provides for a public presence key that is
generated and communicated between friends at each long-
term epoch, and then subsequently used in the short-term
epochs. While this provides forward secrecy, it also creates
a sequential dependency between the long-term protocols and
the short-term protocols. As a result, all online clients must
successfully query the long-term friendship database before
even attempting to query the first epoch of short-term epoch
database. This creates a significant amount of congestion and
delay. It is preferable to only require the long-term friendship
database to be updated when the friendship graph changes,
and provide a mechanism for clients to only retrieve the dif-
ferences, which should be small (we call this design a delta
database, but do not explore it further in this work).

Congestion becomes a problem in protocols that require
each client to query each of the epochs at least once, as the
number of clients increases. The current design of DP5 is not
responsive to such congestion, and clients will keep retrying to
query overloaded servers effectively performing an unwitting
denial of service attack. It is clear that a control loop is neces-
sary to regulate the length of an epoch, given the degree of con-
gestion experienced by the lookup servers—the most loaded in
the design. There is surprisingly little prior work on how to de-
sign secure control loops: if an adversary is able to modulate
the load on the servers by performing multiple queries, or sim-
ply lies about their load, a naive control loop would increase
the epoch length and as a result degrade forward secrecy prop-
erties or increase the latency of revocation events. Thus secure
load monitoring would be needed to implement secure control
loops, which is beyond the scope of DPS5.

7 Related work

A possible design for private presence consists of simply run-
ning a conventional presence system, or even a full chat server,
with clients accessing it through an anonymous channel, such
as Tor [25]. It is noteworthy that all such anonymous chan-
nels rely on third parties for their security properties, as does
the IT-PIR scheme DP5 uses. This mechanism allows users
to hide their identities behind pseudonyms. However, the re-

DP5: A Private Presence Service —— 16

lations between pseudonyms are revealed to the presence ser-
vice. The revealed relationship graph between pseudonyms is
isomorphic to the one between users, and thus users may be
re-identified using some side information and standard tech-
niques [36].

Another possible design uses Tor hidden services, which
provide anonymity to both clients and servers. In this case,
Bob could run a presence service that Alice and his other
friends could query whenever they wish to query whether he is
online. Note that Alice must use a separate anonymous chan-
nel (called a circuit in Tor) to connect to each of her friends’
presence services, creating a far greater number of circuits
than the one assumed by current anonymity systems, such as
Tor, that re-use circuits for some time. Besides the perfor-
mance problems, anonymous communication channels, be it
mixes or onion routers, are susceptible to long-term intersec-
tion attacks; in Tor, realistic adversaries are likely to learn a
relationship after a few months of repeated connection pat-
terns [32].7

DP5 does not suffer from any traffic analysis attacks, and
leaks no information about the relationship graph. The use of
an IT-PIR scheme allows operators to increase the security of
a DP5 deployment by adding additional servers; in contrast, an
onion routing system does not provide such a security parame-
ter: increasing the length of circuits does not improve security
due to the end-to-end correlation attack [39]. Higher-latency
mix-based anonymity systems also rely on a threshold security
assumption of at least one honest mix, similar to the IT-PIR
threat model, but such systems are slower and also subject to
intersection attacks.

Laurie’s Apres [33] was the first to suggest a privacy-
friendly protocol to achieve presence. Apres introduces the
notion of epochs (and calls them ID du jour) and the basic
scheme by which presence information is unlinkable between
epochs (through hashing) to prevent traffic analysis. Apres
also considers how presence is an essential mechanism to en-
able further efficient communication, a feature that DP5 aims
to preserve. A specific system making use of an Apres-like
presence mechanism to facilitate real-time communication is
Drac [19], which proposes a simplified presence mechanism
based on hashing.

DP5 provides an important additional security property
compared with Apres (and Drac that builds on it): it hides the
topology of the “friend” graph within each epoch, revealed
by Apres. Since Apres was proposed, a body of work has
demonstrated that merely providing unlikability of identifiers
between epochs does not prevent de-anonymization of social

7 In fact, a recent attack on Tor specifically focused on learning over time
which users were interested in which hidden services [24].

network graphs if their topology remains the same [36]. This is
true even if graphs between epochs are not completely isomor-
phic due to missing edges or vertices. The DP5 protocol elim-
inates this de-anonymization possibility by splitting presence
into registration and lookups—whereas Apres was confound-
ing the two—and ensuring no topology information leaks.

Dissent [43] and Riposte [17] are anonymous broadcast
messaging systems that are also immune from traffic analy-
sis; Dissent is based on DC-nets [13], while Riposte uses a
PIR-like mechanism to allow clients to write to a private loca-
tion in a per-epoch database. Riposte in particular can scale to
millions of users under the assumption that only a small frac-
tion of users write to the database, and that epochs are several
hours in length. The broadcast nature of these systems imposes
significantly higher communication costs on the users as com-
pared with DP5.

The Tor Project is in the process of redesigning the Hid-
den Services mechanism [25], which includes a few mecha-
nisms related to the goals of DP5. Current thinking around
hidden services allows for services with secret addresses. To
preserve this secrecy, queries for the hidden service to hidden
directory services are obscured through blinding their secret
“public key” with a key derived from itself and an epoch. The
core of this rendezvous mechanism is similar to the goals of
the DP5 protocol, and has influenced our ideas around forward
secrecy.

Presence is related to naming security. DNSSec [2] and
DNSCurve [6] provide reliable mapping between names and
low-level Internet protocol addresses. DNSSec has been engi-
neered to facilitate offline signatures, and is therefore not ap-
propriate to translate names to very dynamic information like
presence and status. On the other hand, DNSCurve does sup-
port dynamic binding of names to addresses, through stronger
channel security. It protects presence against network adver-
saries and limited traffic analysis protection due to potential
local caching, but is not immune to traffic analysis as DP5 is.

The GNU Name System [41] and a proposal by Tan and
Sherr [40] use a Distributed Hash Table (DHT) maintained
by users to mirror all peers’ name records and mappings ren-
dezvous points. DHTs, however, do not provide strong privacy
protections; extensions that add anonymity to DHTs [3, 42]
generally rely on strong assumptions such as the absence of
Sybil attacks [26] and provide only loose probabilistic guaran-
tees for a single query, and unknown protection against long-
term traffic analysis.

Proposals for privacy-friendly social networking proto-
cols, such as Diaspora,8 are related to the DP5 effort but pro-
vide privacy within a very different threat model. Users of such

8 https://joindiaspora.com/

DP5: A Private Presence Service =—— 17

systems share their information with small local providers that
federate to provide a global social network. Thus single points
of trust exist that an adversary could corrupt or compel to re-
veal some people’s social graph. Even cryptographically so-
phisticated designs, such as Persona [4], only protect the so-
cial network content, but not the social graph or presence
against traffic analysis attacks. Building decentralized designs
immune to long-term traffic analysis remains an open research
problem.

8 Conclusion

We present DP5, the first private presence mechanism to leak
no information about the topology of a contact list network.
We show that the service can be realized while relying only on
ephemeral secrets on a set of distributed infrastructure servers.
Thus, querying the status of friends cannot be used in the fu-
ture to trace them or de-anonymize the users. Furthermore, we
have carefully designed a protocol that may be used when
users are known to the infrastructure, but also when users
are anonymous—without leaking any additional information
about their identities.

Overall, the protocols are scalable to small deployments
of a few thousands, to tens of thousands of concurrent clients, a
size suitable for small NGOs or cooperative service providers
that care about users’ privacy. The key scalability bottleneck
is the private information retrieval scheme, and any improve-
ment in PIR would directly translate to an improvement in the
performance and scalability of DP5.

Finally, DP5 supports real-time presence, but its latency
is determined by the length of the short-term epochs. It is an
open problem, and a challenge to the research community, to
devise protocols that could reduce this latency radically, while
requiring overall low bandwidth.

Acknowledgments

The authors would like to thank Claudia Diaz and Roger Din-
gledine for key discussions relating to the design of DP5, and
Schloss Dagstuhl seminars for hosting those important design
discussions. We also thank Harry Halpin and Elijah Sparrow
for their feedback on presence requirements, Microsoft Re-
search Cambridge for hosting two of the authors, Daniel J.
Bernstein and Tanja Lange for suggesting that a pairing-free
variant of the protocol should be possible, and the anonymous
reviewers for their helpful feedback. This material is based
upon work supported by the National Science Foundation un-
der Grant No. 0953655, and by NSERC, ORF, The Tor Project

and EPSRC Grant EP/M013286/1. This work benefited from
the use of the CrySP RIPPLE Facility at the University of Wa-
terloo.

References

(1]

(6]

(8]

0]

(10]

(1]

(2]

Diego F. Aranha and Conrado Porto Lopes Gouvéa. RELIC
is an Efficient Llbrary for Cryptography. https://github.com/
relic-toolkit/relic, 2015.

Roy Arends, Rob Austein, Matt Larson, Dan Massey, and
Scott Rose. DNS security introduction and requirements.
RFC 40383, http://www.ietf.org/rfc/rfc4033.ixt, 2005.

Michael Backes, lan Goldberg, Aniket Kate, and Tomas Toft.
Adding query privacy to robust DHTs. In Heung Youl Youm
and Yoojae Won, editors, 7th ACM Symposium on Informa-
tion, Computer and Communications Security (ASIACCS),
pages 30-31. ACM, 2012.

Randolph Baden, Adam Bender, Neil Spring, Bobby Bhat-
tacharjee, and Daniel Starin. Persona: an online social net-
work with user-defined privacy. In Pablo Rodriguez, Ernst W.
Biersack, Konstantina Papagiannaki, and Luigi Rizzo, editors,
ACM SIGCOMM Conference on Data Communication, pages
135-146. ACM, 2009.

Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed
records. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and
Tal Malkin, editors, Public Key Cryptography, volume 3958
of Lecture Notes in Computer Science, pages 207-228.
Springer, 2006.

Daniel J. Bernstein. DNSCurve: Usable security for DNS.
http://dnscurve.org/, 2009.

Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe,
and Bo-Yin Yang. High-speed high-security signatures.
Journal of Cryptographic Engineering, 2(2):77-89, 2012.
Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham.
Aggregate and verifiably encrypted signatures from bilin-
ear maps. In Eli Biham, editor, Advances in Cryptology —
EUROCRYPT, number 2656 in Lecture Notes in Computer
Science, pages 416—432. Springer, January 2003.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signa-
tures from the Weil pairing. In Colin Boyd, editor, Advances
in Cryptology—ASIACRYPT, number 2248 in Lecture Notes
in Computer Science, pages 514-532. Springer, January
2001.

Philippe Boucher, Adam Shostack, and lan Goldberg. Free-
dom systems 2.0 architecture. White paper, Zero Knowledge
Systems, Inc., December 2000.

Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss,
Anna Lysyanskaya, and Mira Meyerovich. How to win the
clonewars: efficient periodic n-times anonymous authentica-
tion. In Ari Juels, Rebecca N. Wright, and Sabrina De Capi-
tani di Vimercati, editors, ACM Conference on Computer and
Communications Security, pages 201-210. ACM, 2006.
Sanjit Chatterjee, Darrel Hankerson, Edward Knapp, and
Alfred Menezes. Comparing two pairing-based aggregate
signature schemes. Designs, Codes and Cryptography,
55(2-3):141-167, May 2010.

(13]

[14]

[13]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

DP5: A Private Presence Service —— 18

David Chaum. The dining cryptographers problem: Un-
conditional sender and recipient untraceability. Journal of
Cryptology, 1(1):65—75, 1988.

Benny Chor, Niv Gilboa, and Moni Naor. Private information
retrieval by keywords. Technical Report 1998/003, IACR,
1998. http://eprint.iacr.org/1998/003.ps.

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu
Sudan. Private information retrieval. In 36th Annual Sym-
posium on the Foundations of Computer Science (FOCS),
pages 41-50, Oct 1995.

David Cole. We kill people based on metadata. New York
Review of Books, May 10 2014.

Henry Corrigan-Gibbs, Dan Boneh, and David Mazieres.
Riposte: An anonymous messaging system handling millions
of users. In 36th IEEE Symposium on Security and Privacy,
May 2015.

Joan Daemen and Vincent Rijmen. The Design of Rijndael:
AES—The Advanced Encryption Standard. Springer, 2002.
George Danezis, Claudia Diaz, Carmela Troncoso, and Ben
Laurie. Drac: An architecture for anonymous low-volume
communications. In Privacy Enhancing Technologies, pages
202—-219. Springer, 2010.

Caset Devet, Nadia Heninger, and lan Goldberg. Optimally
robust private information retrieval. In 21st USENIX Security
Symposium, Aug 2012.

Casey Devet and lan Goldberg. The best of both worlds:
Combining information-theoretic and computational pir for
communication efficiency. In 14th Privacy Enhancing Tech-
nologies Symposium, pages 63-82, July 2014.

T. Dierks and E. Rescorla. The transport layer security (TLS)
protocol version 1.2. RFC 5246 (Proposed Standard), August
2008.

Whitfield Diffie and Martin E. Hellman. New directions in
cryptography. IEEE Transactions on Information Theory,
22(6):644—654, 1976.

Roger Dingledine. Tor security advisory: “relay early” traf-
fic confirmation attack. https://blog.torproject.org/blog/tor-
security-advisory-relay-early-traffic-confirmation-attack, July
2014.

Roger Dingledine, Nick Mathewson, and Paul F. Syverson.
Tor: The second-generation onion router. In USENIX Secu-
rity Symposium, pages 303-320. USENIX, 2004.

John R. Douceur. The Sybil attack. In Peter Druschel, Frans
Kaashoek, and Antony Rowstron, editors, Peer-to-Peer Sys-
tems, volume 2429 of Lecture Notes in Computer Science,
pages 251-260. Springer, 2002.

Donald Eastlake and Paul Jones. US Secure Hash Algorithm
1 (SHA1). RFC 3174, September 2001.

Steven D. Galbraith, Kenneth G. Paterson, and Nigel P.
Smart. Pairings for cryptographers. Discrete Applied Mathe-
matics, 156(16):3113-3121, September 2008.

James Glanz, Jeff Larson, and Andrew W. Lehren. Spy
agencies tap data streaming from phone apps, January 27
2014.

lan Goldberg. Improving the robustness of private informa-
tion retrieval. In IEEE Symposium on Security and Privacy,
pages 131-148. IEEE Computer Society, 2007.

lan Goldberg, Casey Devet, Wouter Lueks, Ann Yang, Paul
Hendry, and Ryan Henry. Percy++ project on SourceForge,
October 2014. http://percy.sourceforge.net/.

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
http://www.ietf.org/rfc/rfc4033.txt
http://dnscurve.org/
http://eprint.iacr.org/1998/003.ps
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
http://percy.sourceforge.net/

[32] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and
Paul Syverson. Users get routed: Traffic correlation on Tor by
realistic adversaries. In 20th ACM Conference on Computer
and Communications Security (CCS), November 2013.

Ben Laurie. Apres—a system for anonymous presence.
http://www.apache-ssl.org/apres.pdf, 2004. Technical report.
[84] Wouter Lueks and lan Goldberg. Sublinear scaling for multi-
client private information retrieval. In 19th International
Conference on Financial Cryptography and Data Security,
January 2015.

David A McGrew and John Viega. The security and per-
formance of the Galois/Counter Mode (GCM) of operation.

In Progress in Cryptology-INDOCRYPT, pages 343—-355.
Springer, 2005.

[386] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing so-
cial networks. In IEEE Symposium on Security and Privacy,
pages 173-187. IEEE Computer Society, 2009.

Dominic Rushe. Lavabit founder refused FBI order to hand
over email encryption keys. The Guardian, October 3 2013.

(33]

(35]

[37]

[38]
The Definitive Guide: Building Real-Time Applications with
Jabber Technologies. O'Reilly Media, 1st edition, 2009.

Paul F. Syverson, Gene Tsudik, Michael G. Reed, and

Carl E. Landwehr. Towards an analysis of onion routing se-
curity. In Hannes Federrath, editor, Workshop on Design Is-
sues in Anonymity and Unobservability, volume 2009 of Lec-
ture Notes in Computer Science, pages 96—114. Springer,
2000.

Henry Tan and Micah Sherr. Censorship resistance as a
side-effect. In Security Protocols Workshop, 2014.

Matthias Wachs, Martin Schanzenbach, and Christian
Grothoff. On the feasibility of a censorship resistant de-
centralized name system. In 6th International Symposium on
Foundations & Practice of Security (FPS), 2013.

[42] Qiyan Wang and Nikita Borisov. Octopus: A secure and
anonymous DHT lookup. In Xavier Defago and Wang-Chien
Lee, editors, 32nd IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), pages 325334, June
2012.

David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford,
and Aaron Johnson. Dissent in numbers: Making strong
anonymity scale. In 10th USENIX Symposium on Operat-
ing Systems Design and Implementation, pages 179—-182.
USENIX, 2012.

(39]

[40]

[41]

[43]

A DP5 without pairings

The short-term DPS5 registration and update protocols make
use of public key primitives over pairing-friendly curves. This
is necessary for Alice and Bob to compute a signed short-
term epoch dependent tag to detect Alice’s presence and data.
The signature prevents any third party, or even friend of Al-
ice, from forging her presence status. Daniel J. Bernstein and
Tanja Lange noted that these properties can be achieved with-
out the use of pairing-friendly curves, but instead conventional

Peter Saint-Andre, Kevin Smith, and Remko TronCon. XMPP:

DP5: A Private Presence Service —— 19

elliptic curves that support secure digital signatures such as
Ed25519 [7], as described next.

As part of the long-term registration, Alice stores in her
status auxiliary data a public presence key Pl = g” that is a
point on an appropriate elliptic curve. During short-term epoch
t each friend of Alice derives a variant of the public key as
P,{’ = P,{ . gH4(PiZ ”i), where H, is a secure hash function.
Only Alice and friends of Alice can derive this public key
since it requires knowledge of the public presence key Pi;
furthermore, those public keys are unlikable across short-term
epochs. Alice can construct the private key corresponding to
this public key, which is z; = x + H4(Pg ||2). Both Alice and
her friends can also derive a symmetric key K = Hs(P1]|i)
to protect the confidentiality of auxiliary data.

To perform the short-term registration protocol, Alice
stores in the database the tuple (Péj,AEAD%i (mt)). Fur-
thermore, Alice sends to the registration server a signature of
the tuple under the key z;. The registration server checks that
the signature verifies under the verification key included as the
first element of the tuple, and then includes the tuple in the
database. The full list of tuples and signatures is made avail-
able to the lookup servers for auditing purposes.

Finally, Bob can use the short-term epoch public keys of
his friends—P;j in the case of Alice—to look up their records
in the database. The auxiliary data can be decrypted using the
symmetric key K.

This variant of the DP5 protocol has the advantage that
is does not require any pairings, and thus the clients require
fewer security assumptions, and fewer dependencies on cryp-
tographic libraries. It also allows for the auxiliary data to be
signed by Alice, and therefore it is unforgeable subject to the
security of the auditing mechanism. On the downside, this
mechanism requires an additional signature on the data, which
in the original DPS5 is integrated with the tag generation. This
overhead increases the size of the short-term database, which
linearly increases the cost of each PIR query over it.

B Details of the PIR subprotocol

A basic PIR primitive is to consider a database of r blocks,
each b bits in size, where the client knows the exact index
of the block she wishes to retrieve. When using IT-PIR, the
client information-theoretically splits her query across the set
of Npirmax servers, and combines their responses in order to re-
construct the data in question. A non-triviality requirement is
that the amount of data transferred in the protocol is sublinear
in the total size of the database (rb bits).

Probably the simplest such scheme is due to Chor et
al. [15]. This simple scheme sends r bits to, and receives

http://www.apache-ssl.org/apres.pdf

b bits from, each server, for a total communication cost of
Npirmax - (7 + b) bits. However, this scheme is not robust: if
one of the servers fails to respond, or responds incorrectly, the
client will fail to reconstruct her data, and indeed will be un-
able to identify the server(s) that responded incorrectly.

Goldberg [30] demonstrated a PIR protocol with only
marginally larger communication costs: Npirmax - (Tw + b) bits,
where w is the bitlength of the underlying finite field (typically
w = 8). This protocol, however, is able to handle offline and
malicious servers. Devet et al. [20] further extended the robust-
ness of this protocol, enabling reconstruction of the requested
data, and identification of the misbehaving servers, when only
t+2 servers are behaving honestly. (Here, ¢ is the privacy level:
any collusion of up to ¢ servers learns no information about
the query.) This protocol is implemented in the open-source
Percy++ library [31], which we use in our implementation of
DPs.

Our situation is not quite as simple as the above proto-
cols provide for, however. Our databases are dictionaries of
(key,value) pairs—the keys are arbitrary ID strings of some
fixed length, and the values are fixed-length ciphertexts C'—
and our goal is to retrieve the values corresponding to a list of
given dictionary keys, rather than a particular block index. To
do this, we build upon the block-retrieval PIR primitive above,
using an extension to Chor et al.’s hash-based PERKY pro-
tocol [14, §5.3]. This extension works as follows: Let s be the
8) of one (key,value)
pair, and let there be n such pairs ready to be inserted into a

(fixed) size (in bytes, as we use w =

database at the start of a short-term or long-term epoch. The
high-level idea is that we will create r = [y/ns] buckets, and
use a hash function on the keys to hash the (key,value) pairs
into the buckets. The expected size of each bucket is then
data items, or %s bytes, and using Chernoff bounds, it is easy
to see that the probability of one bucket containing more than
T+ \/%T data items is negligible. In practice, we select the
hash function by picking ten random PRF keys for a PRF e
with codomain {1, ..., 7}, using each to hash all n keys in the
database, and find the largest number m of records hashed into
any one bucket. We then keep the PRF key « that yielded the
smallest such largest bucket. The database we will query via
PIR then consists of 7 blocks, each of size m - s bytes, where
block j is the concatenation of all of the (ID;, C;) pairs for
which TI{"” (ID;) = j (padded to m - s bytes if there are fewer
than m of them), sorted by ID;.

This hash variant is more suitable for our purposes than
the perfect hash in PERKY, as our (key,value) records are
small in comparison to the number of such records, so we want
to have many records in a single PIR database block in or-
der to balance the sending and receiving communication cost.
PERKY, on the other hand, uses perfect hashing to put zero
or one keys (they do not consider associated values, but this

DP5: A Private Presence Service —— 20

is a trivial extension) into each PIR block, and uses n? blocks
of size s bytes to accomplish this, while we use 7 ~ /ns
blocks of size about (2 + /Z) - s &~ y/ns + V/ns? bytes.
As the underlying PIR protocol we use transmits a number
of bytes equal to the number of records plus the size of each
record, and the computation cost is proportional to the num-
ber of records times the size of each record, our hash-based
protocol is preferable to that of PERIY in our environment.
The complete PIRLOOKUP protocol is then as follows:

— Client input: Epoch identifier 7, list of dictionary keys
(ID1,...,IDy)

— Each server input: One dictionary of (ID,C)) pairs for
each long-term and short-term epoch (each server has a
copy of the same dictionary for each epoch)

— Client to each server: 7

— Each server to client: r, m, k corresponding to database T

— The responses from each server should be identical, so the
client takes the majority response and stops talking to any
server that deviated.

— Foreach 1 <4 < k, the client uses a robust IT-PIR proto-
col to query the servers for block 11" (ID;), of size m - s
bytes (sent as a single message from the client to each
server).

— Each server computes its response according to the IT-PIR
protocol being used. Some PIR protocols support batch
queries [34], which reduces the computation cost of reply-
ing to the £ simultaneous queries per client, and indeed to
multiple simultaneous clients.

— The client receives the servers’ responses, and combine
them to recover the requested blocks. Foreach 1 < i < k,
binary search block 1) (ID;) for the presence of a pair
whose key is ID;. If it is present, set C; to the correspond-
ing value. Otherwise, set C; to L.

— Return the list (C1, . . ., C}) to the client.

C Security Definitions and
Proofs or Arguments

We present formal definitions of the security properties of
DP5. The system can be modeled by the following algorithms:

— GenParams(1*) — params: Generate system parame-
ters based on a security level A

— GenlLongTermKey(params, A) — (K a,ka): Generate
a public/private key pair for A’s long-term identity

DP5: A Private Presence Service —— 21

Go G1 Ga gs
cer {0,1} cegr {0,1} c€er{0,1} c€er{0,1}
Kaup, = pkyoe z€er |(g)| z €r [(9) Ry €g {0,1}"

J _ 0 X ; v n
Kb, = PRF, , (T5) K], = PRF(T]-) R; €r {0,1} R: €r {0,1}
D) , =PRFy (1)) o PREL_(T) D} , = PRFy: (Tj) CJ , =AEAD}, (; dc)

i _ 0 i acbe J i 0 i
cl o, = AEADKZCbC (ID , ;ds) | | el AEAD(IDach,dz)

C? . =AEAD? ; (D’ , ;df)
cbe K Qcbe

acbe

Fig. 4. Computing the challenge message for contact b, in successive games for the long-term protocol. n here is the length of the pub-

lic identifier.

— GenShortTermKey(params, A) — (K4, k's): Generate
a short-term public/private key pair for A.

— RegisterLongTerm(ka, T, K's, { Kb }ve buddies) —
regtoken: Register in the long-term database for the
epoch T}, making the short-term public key Ky avail-
able to all buddies. The result is the registration token that
is sent to the registration server.

— RegisterShortTerm(k/,, t;, D) — regtoken: Register in
the short-term database for epoch ¢;, using the short-term
keys and auxiliary data D.

— LongTermDB({regtoken;}) — DB. Generate a long-
term registration database for an epoch, taking a complete
set of registration transcripts for an epoch as an input
and producing a database that will be distributed to PIR
servers.

— ShortTermDB({regtoken,}) — DB. Generate a short-
term registration database.

— LongTermQuery(ka, Tj, { Kb }vebuddies) — {query,}.
Generate a set of lookup queries to look up a set of bud-
dies in the long-term database.

— ShortTermQuery(t;, { K} }vebuddaies) — {query;}.
Generate a set of lookup queries to look up a set of bud-
dies in the short-term database.

— PIRResponse(DB, query) — response. Process a PIR
query and produce a response using a particular database.

— LongTermResult({response;}) — {Ki| L} veouddies:
Process PIR responses to obtain the result of a long-term
query, returning each buddy’s short-term key or _L if that
buddy’s registration is missing.

— ShortTermResult({response;}) — {Dp|L}ocbuddies:
Process PIR responses to obtain the result of a short-term
query, returning the auxiliary data for online buddies and
L for offline ones.

We next define a series of games that will formalize the
security properties specified in Section 2.3. In each game, we
assume that the challenger generates long-term public and pri-

vate keys for a large number of identities in a set H, represent-
ing honest users and supplies the adversary with the public
keys for each of them. The challenger also generates short-
term public keys and private for users in H for each relevant
epoch T} but does not supply those to the adversary.

Game 1 (Long-term Registration Unlinkability). I. The
adversary supplies the challenger with:

— Two identities, Ay, A1 € H.
Two sets of friends By, B1 C H

— Two sets of short-term public keys, Kf%, Kgl

— An epoch T}

2. The challenger flips a coin to select a bit ¢ € {0,1}.

3. The challenger creates a registration token by running
RegisterLongTerm(ka,, T}, Ks_, Bc) and returns it to
the challenger.

4. The adversary may then query for registration messages
generated by any user v € H in an arbitrary epoch, with
arbitrary lists of contacts taken for H U C' and arbitrary
public/private keypairs, with the restriction that users Ao
and A1 cannot be asked to register again during the epoch
T;.

5. The adversary outputs its guess for the bit c.

‘We note that in addition to the unlinkability properties of long-
term registration, this property also guarantees the privacy
of (long-term) presence, since an adversary who could tell
whether, say, Ao is present in the long-term database would
be able to win this game.

Proof. We will first consider the case where |B;| = 1; i.e.,
the challenge registration includes a single contact, b;. We de-
fine the following sequence of games, in which the challenges
changes the way that the challenge message is computed, as
illustrated in Figure 4.
— Go is the game where the challenger behaves correctly.
— In Gy, the challenger replaces the shared key K, ;. with
g, for a uniformly chosen z, instead of the key com-

Go g1
cer{0,1} c€r{0.1}
_ 2 .
K= PR e)
ID = Ho (e (g1, H1 (t;)™)) K = PRF?

C = AEADY, (D,)

DP5: A Private Presence Service —— 22

G

cer {0,1}

K €ER {07 1}”

ID = Ho (e (g1, H1 (t;)%°))
C = AEADY, (D.)

(t5)

ID = Hy (e (g1, H1 (t;)™°))
C = AEADY (D.)

gs
cer {0,1}
K er{0,1}¥

ID = Hy (e (g1, H1 (£;)%°))

C = AEADY ()

o

cegr {0,1}
K er {0,1}"

- (oo [52))

C = AEADY, (Dy)

Fig. 5. Computing the challenge registration message (ID, C) in successive games for the short-term protocol.

puted by Diffie-Hellman. Note that any adversary .4 that
can distinguish between Gy and G; with advantage € can
be turned into an adversary A’ that solves the Decisional
Diffie-Hellman problem with the same advantage: given
a DDH triple (g%, g¥, g%), A’ runs the challenger algo-
rithm, using g“ as the public key for a., g¥ as the public
key for b, and g* as their shared key. (To compute the
shared secret between a. or b. and any other contact, the
challenger can make use of that contact’s secret key.) Ob-
serve that if z = xy, this is equivalent to Gy and if z is
random, this is equivalent to Gj.

In Go, the challenger proceeds as in G1, but replaces K ic b
with R; chosen uniformly at random. Any adversary who
can distinguish G; from G with advantage e can be turned
into an adversary who distinguishes PRF® from random
with the same advantage, since using a random function
instead of PRng in G turns it into G2. (Note that PRFSZ
is only ever evaluated in the computation of the challenge
message, except with a negligible probability.)

In g3, we likewise replace IDiC b with R2 chosen uni-
formly at random. As before, an adversary who can dis-
tinguish between G3 and Ga can be transformed into an
adversary who can distinguish PRF* from random.

In G3, the registration message is (R2, AEADY, (Ro;d.)).
Any adversary who has advantage € in G3 can be directly
translated into an IND-CPA adversary for the AEAD
function.

Forn > 1, we can iterate this sequence of games n times:
Go1 = Go,...,G31 = G3,G02 = G3.1,---,G3,2,...,G3n.
In a game G; ; we replace the keys / PRFs involving a. and
some b € B.. Therefore, if the advantage of any adversary in

solving DDH, PRF-IND, or IND-CPA is always negligible, the
advantage of any adversary in the full registration unlinkability

game will be likewise negligible. O

Note that the game here provides static security, with the ad-
versary declaring the users involved in the contact message
ahead of time. The proof can be extended to an adaptive ad-
versary who declares the challenge users after seeing some of
the users’ public keys by, in each game, having the challenger
guess which users will be chosen for ag/a1 and B and abort-
ing if the guess was wrong, at the cost of the reduction no
longer being tight.

Game 2 (Short-term Unlinkability).
plies the challenger with:

1. The adversary sup-

— Two usernames, Ao, A1 € H.

— Two pieces of auxiliary data, Do, D1

— An epoch t;
The challenger flips a coin to select a bit ¢ € {0, 1}.
The challenger produces a registration message
RegisterShortTerm (ks _, t;, D.) as shown in Figure 5,
game Go.
The adversary may perform a polynomial number of
queries to perform a short-term registration of users in
H, supplying the epoch and data, with the constraint that
neither Ao nor A1 can be asked to register in epoch t;
again.

5. The adversary outputs its guess for the bit c.

Note that, similar to the long-term unlinkability game, this
game also implies the privacy of (short-term) presence. Ad-

ditionally, since the adversary may choose the auxiliary data,
this game implies the privacy of the auxiliary data.

Proof. We start with Go, where the challenger behaves as de-
fined above, and make successive modifications to the com-
putation of the challenge message, as shown in Figure 5. In
G1, we replace H3(g7°) in the computation of the challenge
registration message with a random number R;. Note that
an adversary A cannot distinguish between Gy and G; un-
less it queries Hs with g7 as the input. If this happens with
a non-negligible probability, we can construct an adversary
A’ that will solve the computational Co-Diffie-Hellman (co-
CDH) problem [8] with the same probability. In the co-CDH
game, we are given ho, hy € G2 and hy € G1 and asked
to produce h$'. Our adversary A’ acts as a challenger for A,
by following the game G, setting g1 = h;. Instead of choos-
ing x. explicitly, it implicitly sets z. = «. During queries to
the random oracle Hi(ty), A’ chooses a random z;, and re-
turns Hi(ty) = h;’“. Therefore, whenever a registration mes-
sage needs to be computed for A., A’ computes Hi (t)"° as
(h$)?*. Additionally, for every query of Hsz(w), A’ checks
whether e(w, h2) = e(g1, h3). If so, then w = h{ = g7 and
it outputs it as the solution for the co-CDH problem.

In game Go, we generate K randomly; since in Gy it is the
output of a PRF with a random key, distinguishing G; from Go
with a non-negligible advantage produces an adversary with
the same advantage in the PRF-IND game.

In game 3, the challenger behaves as in Ga, but always
supplies Do to the AEAD encryption in the challenge mes-
sage. Any adversary that distinguishes between G3 and G2 with
advantage e can be turned into an adversary that wins the IND-
CPA game for the AEAD function with the same advantage.

Finally, in game G4, the challenger replaces Hi(t;)"
with a random element of G'2. Any adversary who can distin-
guish between Gz and G4 can be turned into an adversary who
wins the DDH game in G2: given a DDH triple (g5, g5, g5) it
sets H1(t;) to g5 and H; (¢;)° to g5. To be able to respond to
registration queries for A. in other epochs, the challenger sets
H(t};) = g5 for some random r, and uses (g3)" for H (t})".

Note that in game G4, the challenge message is computed
independently of ¢, and hence the adversary can guess c cor-
rectly with probability at most 1/2. O

Game 3 (Integrity of Presence). 1. The adversary submits
long-term registration requests for users in H, specify-
ing an epoch T and buddy lists in H U C the challenger
returns the corresponding registration tokens.

2. The adversary supplies the challenger with two users
A, B € H and an epoch T}, with the constraint that it

never sent a registration request for A in epoch T;. The

DP5: A Private Presence Service —— 23

challenger runs LongTermQuery(ka, T;{Kg}) and re-
turns the resulting queries to the adversary.

3. The adversary produces a set of PIR re-
sponses {response;}. The adversary
LongTermResult({response; }) # {L}.

wins if

Note that the adversary here performs all of the computation
of all the registration and PIR servers and thus this model cap-
tures a fully malicious infrastructure. The adversary has a neg-
ligible advantage in this game since the registration token con-
tains an identifier /D, produced using a Diffie-Hellman key
exchange using the private keys k4 and kg, neither of which
are available to the adversary. (Note that k4 and kp may be
used in other registration queries by the challenger, but the cor-
responding shared secret only serves as input to key-derivation
PRFs, and thus the adversary learns no information about the
private keys.)

We can define an analogous game for short-term presence.
A presence registration requires H (¢;)*, which is a BLS signa-
ture [9] on the epoch number ¢;. The security of BLS for Type-
3 curves was proven by Chatterjee et al. under an assumption
they call Co-DHP*, which they show to be equivalent to Co-
DHP [8] under a uniform generator assumption [12]. This sig-
nature is not, however, included in the PIR database, so the
game would need to require that A’s buddies are not com-
promised. (Alternatively, they may be compromised but the
registration server must be honest-but-curious.) A dishonest
registration server colluding with a compromised buddy will
be caught by the PIR servers, who check the signatures sepa-
rately.

Game 4 (Registration Buddy Privacy). 1. The
submits a long-term registration challenge: A €
H,Bo,B1 C H U C and an epoch T}, with the con-
straints that BN C = B1 N C.

2. The challenger flips a coin to obtain the chal-

adversary

lenge bit ¢ and computes the registration token
LongTermRegister(K 4, { Kt }vep.), returning it to the
adversary.

3. The adversary may further issue queries to obtain regis-
tration tokens for A’ € H,B' C H U C,T; with the
restriction that A’ # A or Ty # Tj.

4. The adversary outputs a guess for the challenge bit c

This game is similar to the registration unlinkability game, ex-
cept that here, Alice’s identity is kept fixed and the adversary
is allowed to compromise her buddies, yet the identity of the
uncompromised buddies remains hidden. The proof is similar
to that of the unlinkability game.

Game 5 (Lookup Buddy Privacy). 1. The adversary sub-
mits a short-term query challenge: A € H, Bo,B1 C
H U C and an epoch T}, with the constraints that By N
C=B1nC.

2. The challenger flips a coin to obtain the
challenge bit ¢ and computes the query
LongTermQuery(ka, T, {Kv}vep.). It returns a sub-
set of t queries to the adversary.

3. The adversary may further issue queries to obtain short-
and long-term registrations for A' € H'B' ¢ HUC
for any epoch without restriction. It may also obtain long-
and short-term queries for arbitrary sets of identities and
buddies, obtaining the full set of queries (i.e., not just t).

4. The adversary outputs a guess for the challenge bit c

The security of this game is a direct consequence of the se-
curity of the PIR protocol. Note that since each PIR instance
uses its own randomness, even giving the adversary oracle ac-
cess to PIR queries with the same parameters does not give the
adversary an advantage. This definition addresses long-term
lookups, short-term lookups can be defined analogously. To-
gether with registration buddy privacy, these games ensure that
the adversary does not learn part of the social graph.

Game 6 (Integrity of Auxiliary Data). 1. The adversary se-
lects an identity A € H and requests the chal-
lenger to compute the short-term registration token
RegisterShortTerm(k/y, t;, D)

2. The adversary additionally can request a number of other
short- and long-term registration tokens, with the con-
straints that:

— A cannot perform any other short-term registration
for the epoch t;

— A’s long-term registration for the epoch T} contain-
ing t; must only include buddies from H (i.e., the ad-
versary does not learn K'y for epoch T;)

3. The adversary supplies an identity B € H; the challenger
then computes ShortTermQuery(t;, { K }) and returns
the queries to the adversary.

4. The adversary then comes up with a set of responses
{response; }.

5. The adversary wins if Short TermResult({ response;}) ¢

D} {11}

Note that in this game, the adversary once again simulates the
actions of the registration and PIR servers. Importantly, the ad-
versary must not have compromised any of A’s buddies for the
corresponding long-term epoch, as the auxiliary data is pro-
tected using AEAD with a key that is known to all the buddies.

DP5: A Private Presence Service —— 24

	DP5: A Private Presence Service
	1 Introduction
	2 Design and Security Goals
	2.1 Presence features
	2.2 Threat model and security assumptions
	2.3 Security goals

	3 The DP5 Presence Protocol
	3.1 Protocol description
	3.2 DP5 setup
	3.3 PIR sub-protocol
	3.4 DP5 overview
	3.5 DP5 registration
	3.6 DP5 query
	3.7 Protocol details and options

	4 Security argument
	5 Evaluation
	5.1 Implementation
	5.2 Performance
	5.3 Scaling

	6 Discussion
	6.1 Channel anonymity
	6.2 Suspension, revocation, and pseudonyms
	6.3 Forward secrecy and hardware stores
	6.4 Protecting availability
	6.5 Implementation lessons

	7 Related work
	8 Conclusion
	A DP5 without pairings
	B Details of the PIR subprotocol
	C Security Definitions and Proofs or Arguments

