
Proceedings on Privacy Enhancing Technologies 2015; 2015 (2):115–134

Tarik Moataz*, Erik-Oliver Blass and Guevara Noubir

Recursive Trees for Practical ORAM
Abstract: We present a new, general data structure
that reduces the communication cost of recent tree-
based ORAMs. Contrary to ORAM trees with constant
height and path lengths, our new construction r-ORAM
allows for trees with varying shorter path length. Ac-
cessing an element in the ORAM tree results in different
communication costs depending on the location of the
element. The main idea behind r-ORAM is a recursive
ORAM tree structure, where nodes in the tree are roots
of other trees. While this approach results in a worst-
case access cost (tree height) at most as any recent tree-
based ORAM, we show that the average cost saving is
around 35% for recent binary tree ORAMs. Besides re-
ducing communication cost, r-ORAM also reduces stor-
age overhead on the server by 4% to 20% depending on
the ORAM’s client memory type. To prove r-ORAM’s
soundness, we conduct a detailed overflow analysis. r-
ORAM’s recursive approach is general in that it can be
applied to all recent tree ORAMs, both constant and
poly-log client memory ORAMs. Finally, we implement
and benchmark r-ORAM in a practical setting to back
up our theoretical claims.

Keywords: Oblivious RAM, cryptographic protocols

DOI 10.1515/popets-2015-0010
Received 2014-11-15; revised 2015-05-14; accepted 2015-05-15.

1 Introduction
Outsourcing data to external storage providers has be-
come a major trend in today’s IT landscape. Instead of
hosting their own data center, clients such as businesses
and governmental organizations can rent storage from,
e.g., cloud storage providers like Amazon or Google.
The advantage of this approach for clients is to use the

*Corresponding Author: Tarik Moataz: Dept.
of Computer Science, Colorado State University, Fort
Collins, CO , and IMT, Telecom Bretagne, France, E-mail:
tmoataz@cs.colostate.edu
Erik-Oliver Blass: Airbus Group Innovations, 81663 Mu-
nich, Germany, E-mail: erik-oliver.blass@airbus.com
Guevara Noubir: College of Computer and Informa-
tion Science, Northeastern University, Boston, MA, E-mail:
noubir@ccs.neu.edu

providers’ reliable and scalable storage, while benefiting
from flexible pricing and significant cost savings.

The drawback of outsourced storage is its potential
security implication. For various reasons, a client cannot
always fully trust a cloud storage provider. For example,
cloud providers are frequent targets of hacking attacks
and data theft [14, 15, 30]. While encryption of data at
rest is a standard technique for data protection, it is in
many cases not sufficient. For example, an “adversary”
might learn and deduce sensitive information just by
observing the clients’ access pattern to their data.

Oblivious RAM (ORAM) [10], a traditional tech-
nique to hide a client’s access pattern, has recently re-
ceived a revived interest. Its worst-cast communication
complexity, dominating the monetary cost in a cloud
scenario, has been reduced from being linear in the to-
tal number of data elementsN to being poly-logarithmic
in N [7, 8, 18, 20, 27–29]. With constant client memory
complexity, some results achieve O(log3N) communica-
tion complexity, e.g., Shi et al. [27] and derivatives, while
poly-logarithmic client memory allows for O(log2N)
communication complexity, e.g., Stefanov et al. [29].
Although poly-logarithmic communication complexity
renders ORAMs affordable, further reducing (mone-
tary) cost is still important in the real world. Unfor-
tunately, closing the gap between current ORAM tech-
niques and the theoretical lower-bound of Ω(logN) [10]
would require another major breakthrough.

Consequently, we focus on practicality of tree-based
ORAMs. In general, to access an element in a tree-based
ORAM, the client has to download the whole path of
nodes, from the root of the ORAM tree to a specific
leaf. Each node, also called a bucket, contains a certain
number of entries (blocks). In case of constant client
memory, there are O(logN) [27] entries per bucket, oth-
erwise there are a small constant z many entries, e.g.,
z = 5 [29]. In any case, downloading the whole path of
nodes is a costly operation, involving the download of
multiple data entries for each single element to be ac-
cessed. Communication cost primarily depends on the
height of the tree and, correlated, the number of entries
per tree node and the eviction mechanism.

Contrary to recent κ-ary tree ORAMs, in this pa-
per, we propose a new, different data structure called
recursive trees that reduces tree height and therewith
cost compared to regular trees. In addition to reducing
communication overhead, recursive trees also improve

Recursive Trees for Practical ORAM 116

storage overhead. Our new data structure r-ORAM of-
fers variable height and therefore variable communica-
tion complexity, introducing the notion of worst and best
cases for ORAM trees. r-ORAM is general in that it is
a flexible mechanism, applicable to all recent tree-based
ORAMs and possibly future variations thereof.

A second cost factor for a client is the total storage
required on the cloud provider to hold the ORAM con-
struction [21]. For an N element tree-based ORAM with
entries of size l bits, the total storage a client has to pay
for is at least (2N−1) · logN · l [27] or (2N−1) ·z · l [29].
In addition, a “map” translating ORAM addresses to
leaves in the tree needs to be stored, too.
Technical Highlights: We present a new data struc-
ture reducing the average or expected path length, there-
fore reducing the cost to access blocks. Our goal is
to support both constant and poly-log client mem-
ory ORAMs. Straightforward techniques to reduce the
tree height, e.g., by using κ-ary trees [8], require poly-
logarithmic client memory due to the more complex
eviction mechanism. The idea behind our technique
called r-ORAM is to store blocks in a recursive tree
structure. The proposed recursive data structure sub-
stitutes traditional κ-ary (κ ≥ 2) trees with better com-
munication. Starting from an outer tree, each node in
a tree is a root of another tree. After r trees, the re-
cursion stops in a leaf tree. The worst-case path length
of r-ORAM is equal to c · logN , with c = 0.78, yet
this worst-case situation occurs only rarely. Instead in
practice, the expected path length for the majority of op-
erations is c · logN , with c = 0.65 for binary trees. The
shortest paths in binary trees have length 0.4 · logN .
In addition to saving on communication, the r-ORAM
approach also saves up to 0.8 on storage due to fewer
nodes in the recursive trees. To support our theoretical
claims, we have also implemented r-ORAM and evalu-
ated its performance. The source code is available for
download [24].

r-ORAM is a general technique that can be used
as a building block to improve any recent tree-based
ORAM, both with O(1) client memory such as Shi et al.
[27], O(logN) client memory such as Stefanov et al.
[29], and O(log2N) client memory such as Gentry et al.
[8] – and variations of these ORAMs. In addition to
binary tree ORAM, r-ORAM can also be applied to κ-
ary trees. Targeting practicality, we abide from non-tree
based poly-log ORAMs, such as Kushilevitz et al. [18].
While they achieve O(log2 N

log logN) worst-cast communica-
tion cost, their approach induces a large constant ∼ 30.

2 Recursive Binary Trees
A Naive Approach: To motivate the rationale be-
hind r-ORAM, we start by describing a straightforward
attempt to reduce the path length and therewith com-
munication cost. Currently, data elements added to an
ORAM are inserted to a tree’s root and then percolate
down towards a randomly chosen leaf. As a consequence,
whenever a client needs to read an element, the whole
path from the tree’s root to a specific leaf needs to be
downloaded. This results in path lengths of logN .

A naive idea to reduce path lengths would be to
percolate elements to any node in the tree, not only
leaves, but also interior nodes. To cope with added ele-
ments destined to interior nodes, the size of nodes, i.e.,
the number of elements that can be stored in such buck-
ets, would need to be increased. At first glance, this re-
duces the path length. For example, the minimum path
length now becomes 1. However, the distribution of path
lengths with this approach is biased to its maximum
length of logN : for a tree of N nodes, roughly N

2 are at
the leaf level. Thus, the expected path length would be
≈ log(N)−1, resulting in negligible savings. This raises
the question whether a better technique exists, where
the distribution of path lengths can be “adjusted”.
r-ORAM Overview: We first give an overview about
the structure of our new recursive ORAM constructions.
In r-ORAM, parameter r denotes the recursion factor.
Informally, an r-ORAM comprises a single outer binary
tree, where each node (besides the root) is the root of
an inner binary tree. Recursively, a node in an inner
tree is the root of another inner tree, cf. Fig. 1. After
the outer tree and r − 1 inner trees, the recursion ends
in a binary leaf tree. That is, each node (besides the
root) in an (r− 1)th inner tree is the root of a leaf tree.
The fact that a root of a tree is never a (recursive) root
of another tree simply avoids infinite duplicate trees.

Let the outer tree have y leaves and height log y,
where y is a power of two and log the logarithm base
2. Also, inner trees have y leaves and height log y. Leaf
trees have x leaves, respectively, and height log x. The
number of elements N that can be stored in an r-ORAM
equals the total number of leaves in all leaf trees, simi-
larly to related work on tree-based ORAM [27].

2.1 Operations

First, r-ORAM is an ORAM tree height optimization,
applicable to any kind of tree-based ORAM scheme.

Recursive Trees for Practical ORAM 117

Fig. 1. Structure of an r-ORAM

r-ORAM follows the same semantics of previous tree-
based ORAMs [7, 8, 27, 29], i.e., it supports the oper-
ations Add, ReadAndRemove, and Evict. For a given
address a and a data block d, to simulate ORAM
Read(a) and Write(a, d), the client performs a ReadAn-
dRemove(a) followed by Add(a, d). For the correctness
of tree ORAM schemes, the client has to invoke an Evict
operation after every Add operation. Also, r-ORAM
uses the same strategy of address mapping as the one
defined in previous tree-based ORAMs – we detail this
in Section 2.6. For now, assume that every leaf in r-
ORAM has a unique identifier called tag. Every element
stored in an r-ORAM is uniquely defined by its address
a. We denote by P(t) the path (the sequence of nodes)
containing the set of buckets in r-ORAM starting from
the root of the outer tree to a leaf of a leaf tree identi-
fied by its tag t. If P(t) and P(t′) represent two paths
in r-ORAM, the least common ancestor, LCA(t, t′), is
uniquely defined as the deepest (from the root of the
outer tree) bucket in the intersection P(t)

⋂
P(t′). In

this paper, we use the terms node and bucket inter-
changeably. Each bucket comprises a set of z entries.
We start the description of r-ORAM by briefly explain-
ing Add, ReadAndRemove, and Evict operations.

Operations Add and ReadAndRemove are similar
to previous work, and details can be found in, e.g., Shi
et al. [27].

– Add(a, d): To add data d at address a in r-ORAM, the
client first downloads and decrypts the bucket ORAM
of the root of the outer tree from the server. The client
then chooses a uniformly random tag t for a. The tag t
uniquely identifies a leaf in r-ORAM where d will per-
colate to. The client writes d and t in an empty entry
of the bucket, IND-CPA encrypts the whole bucket,
and uploads the result to the root bucket. Finally,
the recursive map is updated, i.e., the address a is
mapped to t.

– ReadAndRemove(a): To read an element at address
a, the client fetches its tag t from the recursive map
which identify a unique leaf in r-ORAM. The client
then downloads and decrypts the path P(t). This al-
gorithm outputs d, the data associated to a, or ⊥ if
the element is not found.

We apply r-ORAM to two different ORAM cate-
gories. The first one is a “memoryless setting”, where
the client has constant size (in N) memory available.
The second one, “with memory”, assumes that the client
has a local memory storage that is poly-log in N . For
each category, we use different eviction techniques that
we present in the following two paragraphs.

Constant Client Memory: The eviction operation
is directly performed after an Add operation. Let us
denote by t the leaf tag and by χ the eviction rate.

Evict(χ, t): Let S = {P, such that |P| = |−→Rt|} be
the set of all paths from the root R of the outer tree, to
any leaf of a leaf tree that have the same length than
the path from R to the leaf tagged with t. We call the
distance from a node on a path in S its level L.

For each level L, 1 ≤ L ≤ |
−→
Rt|, the client chooses

from all nodes that are on the same level L, respectively,
random subsets of χ ∈ N nodes. For every chosen node,
the client randomly selects a single block and evicts it
to one of its children. The client write dummy elements
to all other children to stay oblivious.

Poly-Log Client Memory: For the case of poly-log
client memory, the eviction operation follows that of
Gentry et al. [8] and Stefanov et al. [29]:

Evict(t): Let P(t) denote the path from the root of
the outer tree R to the leaf with tag t. Every element
of a node in P(t) is defined by its data and unique tag
t′. For eviction, the client pushes every element in the
nodes in the path P(t), which are tagged with leaf t′, to
the bucket LCA(t, t′).

The eviction operation is performed at the same
time as an Add operation. Instead of storing the ele-
ment in the root bucket during the Add operation, the
client performs an Evict. Thus, they store, and at the
same time evict, all elements as far as possible “down”
on the path. Eviction can be deterministic [8] or ran-
domized [29].

2.2 Security Definition

As in any ORAM construction, r-ORAM should meet
the typical obliviousness requirement, re-stated below.

Recursive Trees for Practical ORAM 118

Definition 2.1. Let −→a = {(op1, d1, a1), (op2, d2, a2),
. . . , (opM , dM , aM)} be a sequence of M accesses (opi,
di, ai), where opi denotes a ReadAndRemove or an Add
operation, ai the address of the block, and di the data
to be written if opi = Add and di = ⊥ if opi =
ReadAndRemove.

Let A(−→a) be the access pattern induced by sequence
−→a , sp is a security parameter, and ε(sp) negligible in
sp. We say that r-ORAM is secure iff, for any PPT
adversary D and any two same-length sequences −→a and−→
b , access patterns A(−→a) and A(

−→
b), |Pr[D(A(−→a)) =

1]− Pr[D(A(
−→
b)) = 1]| ≤ ε(sp).

As standard in ORAM, all blocks are IND-CPA en-
crypted. Every time a block is accessed by any type
of operation, its bucket is re-encrypted.

2.3 Storage Cost

For a total number of N elements, we have N corre-
sponding leaves in r-ORAM. To compute the total num-
ber of nodes ν, we start by counting the number of leaf
trees in r-ORAM. For the outer tree, we have 2y − 2
possible nodes which are the root for another recursive
inner tree. Each inner tree has also 2y − 2 nodes, and
since we have r − 1 levels of recursion aside from the
outer tree, the following equality holds:

N = (2y − 2) · (2y − 2)r−1 · x = (2y − 2)r · x (1)
= 2r · x · (y − 1)r. (2)

Each of the nodes in an r-ORAM is a bucket ORAM
of size z, where z is a security parameter, e.g., z =
O(logN) [27]. The total number of nodes ν, with N

leaves, in an r-ORAM (main tree) is the sum of all nodes
of all leaf trees plus the nodes of all inner trees, the outer
tree, and its root, i.e.,

ν(N) = (2y − 2)r · (2x− 2) +
r∑
i=0

(2y − 2)i

(1)= (2N − 2 · N
x

) + (2y − 2)r+1 − 1
(2y − 2)− 1

= 2N + (2y − 2
2y − 3 − 2) · N

x
− 1

2y − 3 .

Thus, the total storage cost for r-ORAM is ν(N)·z ·l
with blocks (bucket entries) of size l bits. This storage
does not take into account the position map. The total
storage of the entire r-ORAM structure equals ν(N) ·z ·

l+
∑d logN

log β e−1
i=1 z ·ν(Nβi) · log N

βi−1 , where β is the position
map factor. For l = ω(log2N) the sum in the storage
complexity is negligible. The total storage then equals
ν(N) · z · l.

For appropriate choices of x and y, discussed in the
next section, r-ORAM reduces the storage cost in com-
parison with the (2N − 1) · z · l bits of storage of related
work. So for example, with x = 2 and y = 4, the stor-
age is equal to 8N

5 resulting in a reduction by 20% of
the number of nodes compared to existing tree-based
ORAMs. However, this does not mean the same reduc-
tion for storage overhead. In fact, Section 4 will show
that the size of the bucket can be reduced for Shi et al.
[27]’s ORAM and increased for Path ORAM. Conse-
quently, our storage saving varies between 4% to 20%
depending on the ORAM r-ORAM.

As of Eq. (2), for a given number of elements N ,
r-ORAM depends on three parameters: recursion factor
r, the number of leaves of an inner/outer tree y, and
the number of leaves of a leaf tree x. We will now de-
scribe how these parameters must be chosen to achieve
maximum communication savings.

2.4 Communication Cost

In ORAM, the “communication cost” is the number of
bits transferred between client and server. We now de-
termine the communication cost of reading an element
in r-ORAM, e.g., during a ReadAndRemove operation.
Reading an element implies reading the entire path of
nodes, each comprising of z entries, and each entry of
size l bits. In related work, any element requires the
client to read a fixed number of logN · l · z bits. For
the sake of clarity in the text below, we only compute
the number of nodes read by the client, i.e., without
multiplying by the number of entries z and the size of
each entry l. Since the main data tree and the position
map have different block sizes, computing the height of
r-ORAM independently of the block size enable us to
tackle both cases at the same time. At the end, to com-
pute the exact communication complexity of any access
we can just multiply the height with the appropriate
block sizes, see Section 2.7.

A path going over a node on the ith level in the
outer tree requires reading one bucket ORAM less than
a path going over a node on the (i + 1)th level in the
outer tree. Consequently with r-ORAM, we need to an-
alyze its best-case communication cost (shortest path),

Recursive Trees for Practical ORAM 119

worst-case cost (longest path), and most importantly
the average-case cost (average length).

The worst-case cost to read an element in r-ORAM
occurs when the path comprises nodes of the full height
of every inner tree until its leaf level, before finally read-
ing the corresponding leaf tree. The worst-case cost C
equals

C(r, x, y) = r · log y + log x. (3)

The best-case occurs when the path comprises one
node of every inner tree before reading the leaf tree. The
best-case cost B equals

B = r + log x. (4)

The worst-case cost in this setting is a function of
three parameters that must be carefully chosen to mini-
mize worst- and best-case cost. Theorem 2.1 summarizes
how the recursion factor r, the number of leaves y in in-
ner trees, and the number of leaves in leaf trees x have
to be selected.

Minimizing the worst-case path length is crucially
important, as it also determines the average path-
length. We will see later that the distribution of paths’
lengths (and therewith the cost) follows a normal dis-
tribution. That is, minimizing the worst case also leads
to a minimal expected case and therewith the best con-
figuration for r-ORAM. Similarly, as the paths’ lengths
follow a normal distribution, average and median cost
are equivalent.

A client can use the minimal worst-case parameters
to achieve the “cheapest configuration” for a r-ORAM
structure storing a given number of elements N .

Theorem 2.1. If r = log((N2)
1

2.7), x = 2, and y =
1
2 · (

N
2)

1
r + 1, the worst-case cost C is minimized and

equals

C = 1 + 2.08 · log((N2)
1

2.7) ≈ 0.78 · logN.

The best-case cost B is

B = 1 + log((N2)
1

2.7) ≈ 0.4 · logN.

We refer the reader to Appendix A.1 for the proof.

2.5 Average-Case Cost

While the parameters for a minimal worst-case cost also
lead to a minimal average-case cost, we still have to
compute the average-case cost. The cost of reading an
element ranges from B, the best-case cost, to C, the

worst-case cost. Also, due to the recursive structure of
the r-ORAM, the average-case cost of accessing a path
is not uniformly distributed.

In order to determine the average-case cost, we
count, for each path length i, the number of leaves that
can be reached. That is, we compute the distribution of
leaves in an r-ORAM with respect to their path length
starting from the root of the outer tree. Let non-negative
integer i ∈ (B,B + 1, . . . , C) be the path length and
therewith communication cost. We compute N (i), the
number of leaves in a leaf tree that can be reached by
a path of length i. Thus, the average cost, Av can be

written as Av =

C∑
i=B

i·N (i)

N , where N is the total number
of elements and therefore leaves in the r-ORAM.

Theorem 2.2. For:

N (i) = 2i ·
r∑
j=0

(−1)j
(
r

j

)(
i− log(x)− j · log(y)− 1

r − 1

)
,

the average cost of a r-ORAM access is Av =

C∑
i=B

i·N (i)

N .

Proof. Counting the number of leaves for a path of
length i is equivalent to counting the number of dif-
ferent paths of length i. The intuition behind our proof
below is that the number of different paths of length i
can be computed by the number of different paths in
the r recursive trees R(i) times the number of different
paths in the leaf tree, N (i) = R(i) · W(i).

As stated earlier, the leaf tree has x leaves, W(i) =
2log x = x.

To compute R(i), we introduce an array Ar of
r elements. For a path P of length i, element Ar[j],
1 ≤ j ≤ r, stores the number of nodes in the jth

inner tree that have to be read, i.e., the maximum
level in the jth tree that P covers. For a path P of
length i, we have i =

∑r
j=1Ar[j] + log(x). For all j,

1 ≤ Ar[j] ≤ log (y). For any path P of length i, we
can generate 2i−log(x) other possible paths covering ex-
actly the same number of nodes in every recursive inner
tree, but taking different routes on each of them. For
illustration, let path P go through two levels in the sec-
ond inner tree – this means that there are actually 22

other paths that go through the same number of nodes.
Therefore, if we denote the possible number of original
paths of length i by K(i), the total number of paths
equals R(i) = 2i−log(x) · K(i), for any integer i ∈ {B,
. . . , C}. We compute K(i), by computing the number of

Recursive Trees for Practical ORAM 120

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 15 20 25 30 35

A
c
c
e

s
s
 P

ro
b

a
b

ili
ty

Path Length

N=2
32

Average

N=2
42

Average

Fig. 2. r-ORAM path length distribution

solutions of equation

Ar[1] +Ar[2] + · · ·+Ar[r] = i− log x
⇔

(Ar[1]− 1) + · · ·+ (Ar[r]− 1) = i− r − log x. (5)

Computing the number of solutions of Eq. (5) is
equivalent to counting the number of solutions of pack-
ing i−r−log x (indistinguishable) balls in r (distinguish-
able) bins, where each bin has a finite capacity equal to
log(y)−1. Here, Ar[j]−1 denotes the size of the bin. This
can be counted using the stars-and-bars method lead-
ing to K(i) =

∑r
j=0(−1)j

(
r
j

)(
i−log(x)−j·log(y)−1

r−1
)
. With

N (i) = 2i · K(i), we conclude our proof.

The average as formalized in the previous theorem does
not give any intuition about the behavior of the aver-
age cost. For illustration, we plot the exact combinato-
rial behavior of the distribution of the leaf nodes. We
present two cases that show the behavior of the leaf den-
sity, i.e., the probability to access a leaf in a given level
in r-ORAM. We compute as well the average cost of
accessing r-ORAM in two different cases, for N = 232

and N = 242, see Fig. 2.
We can simplify our average-case equation. The

number of possibilities K of indistinguishable balls pack-
ing in distinguishable bins can be approximated by a
normal distribution [2, 3]. For a given level i ∈ {B, · · · ,
C} we have

K(i) ≈ A

s
√

2π
· e−

(i−r−log(x)− c2)2

2s2 , (6)

where c = r ·(log(y)−1), s =
c
2 +1
$, A = r · log(y), and $

being the solution of the equation $ ·e−
$2

2 =
√

2π·(c2 +1)
A .

Since the number of leaves in the ith level of r-
ORAM (over 2i) follows a normal distribution with a

mean c
2 , which roughly equals the worst case over 2.

The average case is the mean of the Gaussian distribu-
tion, therefore minimizing the worst case is equivalent
to minimizing the average case. Thus, we can use the
same parameters obtained in Th. 2.1 to compute the
minimal value of the average case.

As both best- and worst-case path lengths are in
O(logN), the average-case length is in Θ(log(N)). Fur-
ther simplification of the average cost will result in very
loose bounds. Targeting practical settings, we calculate
the average page lengths for various configurations and
compare it to related work in Table 1. While this table is
based on our theoretical results, the actual experimental
results of r-ORAM height are presented in Fig. 7.

Notice that our structure is a generalization of a
binary tree for x = 1 and y = 2. Throughout this paper,
the values x, y, and r equal the resulting optimal values
given by Theorem 2.1.

2.6 r-ORAM Map addressing

In order to access a leaf in the r-ORAM structure, we
have to create an encoding which uniquely maps to ev-
ery leaf. This will enable us to retrieve the path from
the root to the corresponding leaf node. The encoding is
similar to the existing ones in [8, 27, 29]. The main dif-
ference is the introduction of the new recursion, which
we have to take into account. Every node in the outer
or inner trees can have either two children in the same
inner tree or/and two other children as a consequence of
the recursion. Consequently, we need two bits to encode
every possible choice for each node from the root of the
outer tree to a leaf. For the non-recursive leaf trees, one
bit is sufficient to encode each choice.

For tree-based ORAM constructions with full
binary-trees, to mapN addresses, a logN bit size encod-
ing is sufficient for this purpose. This encoding defines
the leaf tag to which the real element is associated.

In r-ORAM, we define a vector v composed of two
parts, a variable-size part vv and a constant-size part
vc, such that v = (vv, vc). For the encoding, we will
associate to every node in the outer and inner trees two
bits. For every node in the leaf tree only one bit. Above,
we have shown that the shortest path to a leaf node
has length r + log(x) while the longest path has length
r · log(y) + log(x). Consequently, for the variable-size
vector vv, we need to reserve at least 2 · r bits and up
to 2 · r · log(y) bits for the worst case.

The total size of the mapping vector v, |v| = |vv|+
|vc|, is bound by 2r+ log(x) ≤ |v| ≤ 2r · log(y) + log(x),

Recursive Trees for Practical ORAM 121

Fig. 3. r-ORAM Map addressing

which is in Θ(log(N)). Figure 3 shows an address map-
ping example for two leaf nodes. The size of the block in
the r-ORAM position map is upper bounded by 2·logN
bits. Finally, the mapping is stored in a position map
structure following the recursive construction in [29]. To
access the position map, the communication cost has, as
in r-ORAM, a best-case cost of O(B · log2(n) · z) bits
and worst-case cost of O(C · log2(n) · z) bits, where z is
the number of entries. This complexity is in term of bits,
not blocks. For larger blocks, we can neglect the position
map. In Path ORAM or Shi et al. constructions, the size
to access the position map is in O(z · log3N) which is
the result of accessing a path containing logN buckets
a logN number of time. Each bucket has z blocks where
each has size equal to O(logN).

2.7 Communication complexity

First, we briefly formalize that the height can be seen as
a multiplicative factor over all the recursion steps taking
into consideration the eviction. Let N be the number of
elements in the ORAM, denote by z the size of a bucket,
β the position map factor, h the tree-structure height,
l the block size and χ ≥ 1 the number of eviction, then
for all tree-based ORAM the communication complexity
CT can be formulated as follows:

CT = O(χ · z · h · l︸ ︷︷ ︸
Data access

+β · z · h · χ · logN︸ ︷︷ ︸
Recursion

)

Reducing the height h decreases the entire communica-
tion overhead.

In this section, we are interested on comput-
ing the exact communication complexity (download-
ing/uploading) to access one block of size l. We will use
for our computation the average height which is equal to
≈ 0.65 · logN , see Table 1. In the following, we compute
the communication complexities C1,r of r-ORAM over
Path ORAM [29] and C2,r for r-ORAM over Shi et al.
[27]. We denote the communication complexity for one

access of Path ORAM and Shi et al. [27] by Cp and Cs.
For an access, we download the entire path and upload it
again. For Path ORAM, the eviction occurs at the same
time when writing back the path. There is no additional
overhead in the eviction. In the following equations, we
take into consideration the variation of the bucket size.
We later show in Section 4 that the size of r-ORAM
applied to Path ORAM buckets increases by a factor of
1.2, while it expectedly decreases by 30% if applied to
Shi et al. [27]. The variation of the bucket size impacts
the height reduction in both cases as follows:

C1,r ≈ 2 · 0.65 · logN · l · z1,r +
∑d logN

log β e−1
i=1 2 · 0.65 ·

z1,r · log N
βi · log N

βi−1 ≈ 0.65 · z1,r
zp
· Cp = 0.78 · Cp.

For Shi et al. [27]’s ORAM, for an eviction rate equal
to 2, we are downloading 6 paths, plus the first one from
which we have accessed the information. Thus, for each
access, one has to download a total of 7 paths.

C2,r ≈ 2 · 0.65 · 7 · logN · l · z2,r +
∑d logN

log β e−1
i=1 2 · 0.65 ·

7 · z2,r · log N
βi · log N

βi−1 ≈ 0.65 · z2,r
zs
· Cs ≈ 0.5Cs.

In this result, we make use of an approximation
due to the size of the position map. In Section 2.6, we
have shown that that to map an element, approximately
2 · logN bits is needed instead of logN . We will show
that these results match the experimental results in Sec-
tion 5.

3 κ-ary Trees
So far, we have used a binary tree for the recursion in r-
ORAM, i.e., leaf and inner trees are full binary trees. In
this section, we extend r-ORAM to κ-ary trees, cf. Gen-
try et al. [8]. Generally, the usage of κ-ary trees reduces
the height by a multiplicative factor equal to 1

ln(κ) . For
example, if we choose a branching factor κ = logN , the
communication complexity decreases by a multiplica-
tive factor equal to log (logN). We will now show that
applying r-ORAM to a κ-ary tree will further decrease
the communication complexity compared to the original
κ-ary construction.

For parameters x and y defined above, the num-
ber of elements N can be computed by calculating the
number of nodes in the outer and inner κ-ary tree fora
recursion factor r:

N = (
logκ y∑
i=0

κi − 1)r · x = (1− κ1+logκ y

1− κ − 1)r · x

= (κ

κ− 1 · (y − 1))r · x (7)

Recursive Trees for Practical ORAM 122

Th. 3.1 shows how one should choose the recursion
factor r, the height of the inner trees log y and leaf trees
log x to minimize the cost of reading a path of κ-ary r-
ORAM structure. In section 2.7, we have shown that the
height factors over the total communication overhead
reduction. Thus, any reduction applies for the the entire
communication overhead computation. Also, we show in
Section 4 based on our security analysis that r-ORAM’s
bucket size over Gentry et al. [8]’s ORAM decreases,
thereby decreasing communication cost even more.

Theorem 3.1. Let f(κ) > 1 be a decreasing function in
κ. If r = logκ((Nκ)

1
f(κ)), x = 2, and y = κ−1

κ · (
N
κ)

1
r + 1,

the optimum values for the best and worst-case cost equal

C = 1 + logκ((N
κ

)
1

f(κ)) · logκ((κ− 1) · κf(κ)−1 + 1), and

B = 1 + 1
f(κ) · logκ(N

κ
).

The decreasing function f depends on the choice of κ,
the branching factor. For κ = 4, f(4) ≈ 2, while for κ =
16, f(16) ≈ 1.6. The proof of the Theorem 3.1 is similar
to the proof of Theorem 2.1, so we will only provide a
sketch, highlighting the differences, see Appendix A.2.
Example: For κ = 4, the optimal values for the best
and worst-case cost respectively equal B ≈ 0.55 · logκN
and C ≈ 0.95 · logκN .

4 Security Analysis

4.1 Privacy Analysis

Theorem 4.1. r-ORAM is a secure ORAM following
Definition 2.1, if every node (bucket) is a secure ORAM.

Proof (Sketch). If the ORAM buckets are secure
ORAMs, we only need to show that two access pat-
terns induced by two same-length sequences −→a and

−→
b

are indistinguishable. To prove this, we borrow the idea
from Stefanov et al. [29] and show that the sequence of
tags t in an access pattern is indistinguishable from a
sequence of random strings of the same length.

To store a set of N elements, r-ORAM will com-
prise N leaves and N different paths. During Add and
ReadAndRemove ORAM operations, tags are chosen
uniformly and independently from each other. Since the
access pattern A(−→a) induced by sequence −→a consists
of the sequence of tags (leaves) “touched” during each
access, an adversary observes only a sequence of strings
of size logN , chosen uniformly from random. The nodes

in r-ORAM are bucket ORAMs, i.e., for an ORAM op-
erations they are downloaded as a whole, IND-CPA re-
encrypted, and uploaded exactly as in related work, they
are secure ORAMs.

4.2 Overflow probability

To show that our optimization is a general technique for
tree-based ORAMs, we compute the overflow probabil-
ities of buckets and stash for both constant and poly-
logarithmic client memory schemes. Specifically, we an-
alyze r-ORAM for the constructions by Shi et al. [27],
Gentry et al. [8], and Stefanov et al. [29]. Surprisingly,
for the first scheme, we are able to show in Theorem 4.4
that r-ORAM will reduce the bucket size while main-
taining the exact same overflow probability. This is sig-
nificant from a storage and communication perspective:
it shows that r-ORAM can improve storage and com-
munication overhead not only due to a reduction of the
number of nodes (as shown in Section 2.3 and 2.7), but
also by reducing the number of entries in every bucket.

For the second scheme which uses a “temporary”
poly-log stash during eviction (needed to compute the
least common ancestor), we show in Theorem 4.6 that
r-ORAM offers improved communication complexities
and a slightly better bucket size.

Finally for Path ORAM, we prove that the stash
size increases only minimally and remains small. In The-
orem 4.8, we show that this small increase is outweighed
by smaller tree height.

We now determine the ORAM overflow probabil-
ity for two cases, (1) r-ORAM applied to the constant
client memory approach, and (2) to the poly-log client
memory approach. For the first case, we consider an
eviction similar to the one used by Shi et al. [27]. That
is, for every level, we will evict χ buckets towards the
leaves, where χ is called the eviction rate. For the second
case, we consider a deterministic reverse-lexicographic
eviction similar to Gentry et al. [8] and Fletcher et al.
[7]. In particular, for the poly-logarithmic setting, we
investigate the application of r-ORAM over two differ-
ent schemes. The first case consists of the application
of r-ORAM over the scheme by Gentry et al. [8]. For
this, we study the overflow probability of the buckets
and we show that the recursive structure offers better
bucket size bounds. The second case represents the ap-
plication of r-ORAM over Path ORAM. We determine
the overflow probability of the memory, dubbed stash,
where each bucket in r-ORAM has a constant number
of entries z. Using deterministic reverse-lexicographic

Recursive Trees for Practical ORAM 123

eviction greatly simplifies the proof while insuring the
same bounds as the ones in randomized eviction [29].

To sum up, we are studying three different cases.
(1) r-ORAM over Shi et al. [27] construction, (2) r-
ORAM over Gentry et al. [8] construction and (3) r-
ORAM over Path ORAM [29]. For the first two, we
have to quantify the bucket size while for the third one
we have to quantify the stash size and the size of the
bucket as well. For each setting, an asymptotic value of
the number of entries z is provided. The main difference
between the computation of the overflow probability in
r-ORAM and related work is the irregularity of path
lengths of our recursive trees. To better understand the
differences, we start by presenting a different model of
our construction in 2-dimensions.

Description: A 2-dimensional representation of r-
ORAM consists of putting all the recursive inner trees
as well as the leaf trees in the same dimension as the
outer tree. Consequently, the outer tree, the recursive
inner trees, as well as the leaf trees will together con-
stitute only one single tree we call the general tree. The
main difficulty of this representation is to determine to
which level a given recursive inner tree is mapped to in
the general tree.

The general tree, by definition, will have leaves in
different levels. This can be understood as a direct con-
sequence of the recursion, i.e., some leaves will be ac-
cessed with shorter paths compared to others. Moreover,
the nodes of the recursive trees will be considered as in-
terior nodes of the general tree with either 4 children or
2 children. Any interior node of an inner or outer tree is
a root for a recursive inner tree which means that any
given interior node of an inner/outer tree has 2 children
related to the recursion as well as another 2 children
related to its inner/outer tree. These 4 children belong
to the same level in our general tree.

Also, leaf nodes of inner or outer trees have only 2
children. Ultimately, we will have different distributions
of interior nodes as well as leave nodes throughout the
general tree. In the following, we will use the term of
interior node as well as a leaf node in the proofs of our
theorems to denote an interior or leaf node of the general
tree. Figure 4 illustrates the topology of the general tree
model of r-ORAM.

In the ith level, we may have leaf nodes as well as
interior nodes. Also, the leaf/interior nodes reside in
different levels with different non-uniform probabilities.
Therefore, we will first approximate the distribution of
the nodes in a given level of the r-ORAM structure by
finding a relation between the leaf nodes and interior

Fig. 4. Structure of an r-ORAM

nodes of any level of r-ORAM. Then, we compute the
relation between the number of nodes in the ith and
(i+1)th level. This last step will help us to compute the
expected value of number of nodes in any interior nodes
in poly-log client memory scenarios. Finally we will con-
clude with the overflow theorems and their proofs for
each scenario.

We present a relation between I(i), the number of
interior nodes, and N (i), the number of leaf nodes, for a
level i > r, where r is the recursion factor. Notice that,
for other levels i ≤ r, there cannot be leaf nodes. Also,
the leaves of the general tree are the leaves of the leaf
trees. The maximum value of i equals the worst case C.

Lemma 4.2. Let f(r, x, y) = 1+r log(y)−r−2 log(x)
2s2 and

s > 0. For any i > r, e−f(r,x,y) ≤ I(i)
N (i) ≤ 2− log(x) · r.

The proof of the lemma is in Appendix A.3.
We will now show that, once we have a relation be-

tween leaves and interior nodes of the same level, finding
the relation between any nodes of two different levels
will be straightforward. We write the number of nodes
as a sum of leaf nodes and interior nodes, such that
L(i) = N (i) + I(i). Recall that for i ≤ r, we have
N (i) = 0. We write µ = L(i+1)

L(i) (this will represent the
expected value of the number of real elements in any
interior nodes in Theorem 4.6). We present our result
in the following lemma.

Lemma 4.3. Let µ = L(i+1)
L(i) and X(i) = 1− N (i)

L(i) . For
1 ≤ i ≤ C, µ is bounded by 2 ·X(i) ≤ µ ≤ 4 ·X(i).

We refer the reader to the Appendix A.4 for the proof.
From this result, for i ≤ r, we have 2 ≤ µ ≤ 4, as

N (i) = 0.
We are now ready to present our three main theo-

rems: the first one will tackle the constant client memory
setting, and we compute the overflow probability of in-
terior nodes. The overflow probability computation for
leaf nodes, either for constant client memory or with
poly-log client memory, is similar to the one presented
by Shi et al. [27], based on a standard balls-into-bins ar-

Recursive Trees for Practical ORAM 124

gument. We omit details for this specific case. The last
two theorems tackle tree Based ORAM constructions
with memory.

Constant client memory: First, we compute the
overflow probability of interior nodes. Then, a corollary
underscoring the number of entries z will be presented.

Theorem 4.4. For eviction rate χ, if the number of
entries in an interior node is equal to z, the overflow
probability of an interior node in the ith level is at most
θzi , where, for i ≤ r and s = dlog4(χ)e, θi = 2s

2χ ,

and for i > r : θi = 2s
2χ · (

1
1+ x

r
)i−r.

We refer the reader to Appendix A.5 for the proof.
In practice, the eviction rate χ equals 2. So, s is

then equal to 1. In this case, the number of entries z in
each bucket has the following size.

Corollary 4.5. r-ORAM with N elements overflows
with a probability at most ω � 1 if the size of each
interior bucket z in the ith level equals log N

ω for i ≤ r

and z ≈ 1
i−r+1 · log N

ω for i > r.

Sketch. By applying the union bound over the entire r-
ORAM interior buckets, the probability of overflow is at
most N · θzi . Setting this value to the target overflow ω

gives us the results for both underlined cases in Th. 4.4.
For the second equality, the approximation follows from
the remark log (1 + x

r) < 1, since x ≤ r in our optimal
setting of Th. 2.1.

The size of the internal buckets in r-ORAM are smaller
compared to those of Shi et al. [27] by a multiplicative
factor of approximately 1

i−r+1 for i > r.
For ω = 2−64, N = 220, and r = 7, the size of the

bucket equals 84 blocks for i ≤ 7 while for, e.g., i = 11,
the bucket size equals ≈ 17 blocks. For i ≤ r, the bucket
size is equal to the constant client memory construction,
i.e., in O(log N

ω).

Poly-logarithmic client memory: Let us now tackle
the case where r-ORAM is applied over tree ORAMs
with poly-logarithmic client memory. For this, we con-
sider two scenarios. The first deals with r-ORAM ap-
plied over Gentry et al. [8]’s ORAM. The second one
deals with r-ORAM over Path ORAM. In both cases,
our overflow analysis is based on a deterministic reverse
lexicographic eviction.

Th. 4.6 determines the overflow probability of buck-
ets in r-ORAM over Gentry et al. [8] scheme. For each
access, the eviction is done deterministically indepen-
dently of the accessed path. We show that the over-

flow probability varies for buckets in different levels due
to the interior/leaf node distribution. The parameter δ
represents the unknown that should be determined for
a given (negligible) overflow probability.

Theorem 4.6. Let f(r, x, y) = 1+r log(y)−r−2 log(x)
c , and

c > 0. For any δ > 0, for any interior node v, the
probability that a bucket has size at least equal to (1 +
δ) · µ is at most e−

δ2·µ
2+δ , where F1 ≤ µ ≤ F2.

For i ≤ r: F1 = 2 and F2 = 4,
for i > r:

F1 = 4·(1− 1
1 + 2− log(x) · r

) and F2 = 2·(1− 1
1 + e−f(x,y,r)),

We refer the reader to Appendix A.6 for the proof.

Corollary 4.7. Le µi be the expected size of buckets in
the ith level. r-ORAM with N elements overflows with a
probability at most ω, if the size of each interior bucket
z in the ith level equals µi + ln N

ω for F1 ≤ µi ≤ F2.

Proof (Sketch). By using the union bound, the proba-
bility that the system overflows equals ω = N · e−

δ2·µ
2+δ .

This is a quadratic equation in δ that has one valid root
(non-negative) approximately equal to 1

µi
· ln N

w , where
µi is the expected value of ith level. The size of the
bucket in this case equals z = (1+δ)·µi = µi+ln N

ω .

For r-ORAM over Path ORAM [29] with a determinis-
tic reverse-lexicographic eviction [7], Theorem 4.8 calcu-
lates the probability of stash overflow for a fixed bucket
size. The goal of this theorem is to determine the opti-
mal bucket size and therefore the stash size for a fixed
overflow probability.

Theorem 4.8. For buckets of size z = 6 and tree height
L = dlogNe, the stash overflow probability computes to

Pr(st(r-ORAM6
L) > R) ≤ 1.17 · 0.88R · (1− 0.54N).

We refer the reader to Appendix A.7 for the proof.
Discussion: The probability is negligible in R (since
0.88 <1 and 1 − 0.54N ∞−→ 1). So, for a fixed overflow
probability ω � 1, we have to define the corresponding
value of R by solving the equation ω = 1.17 ·0.88R · (1−
0.54N). An r-ORAM stash with N elements overflows
with probability at most ω � 1, if the size of each bucket
is 6, and the stash has size R = 1

ln 0.88 · ln
ω

1.17·(1−0.54N) .
For large values of N , R ∈ Ω(ln(ω−1)).

We have made a number of approximations in our
proof that slightly bias the choice of the bucket size and
round the upper bound. We could improve our upper
bound by a more accurate approximation of the num-

Recursive Trees for Practical ORAM 125

ber of subtrees in r-ORAM. Also, we assume the worst
expected value for each bucket on all levels which is 4.
Theorem 4.8 is valid for any bucket size z ≥ 6.

5 Performance Analysis
We now analyze the behavior of r-ORAM when applied
to different tree-based ORAMs. As a start, we com-
pute the communication complexity of r-ORAM access,
based on the average height, and estimate the mone-
tary cost of access with r-ORAM on Amazon S3 cloud
storage infrastructure. This first part is based on our
r-ORAM theoretical results above. For all previous bi-
nary tree-based ORAMs, the communication complex-
ity for a number of elements is always constant for fixed
N . With previous ORAMs, you must always download
an entire path. Following our theoretical estimates, we
go on to present our r-ORAM implementation results
and compare with Path ORAM [29]. We compare both
the average height and the resulting communication im-
provements, and, finally, also evaluate the behavior of
the stash.

5.1 Theoretical Results

Even if the worst-case complexity is in O(logN), the
underlying constants gained with r-ORAM are signifi-
cant. Table 1 compares between the height of a binary
tree as with [7, 20, 27, 29] and the height of r-ORAM.
Also, we compare r-ORAM on κ-ary trees, instead of
binary ones, and we show that the recursive κ-ary tree
r-ORAM gives better performances in terms of height
access and communication cost.

Table 1 has been generated using parameters from
Theorems 2.1 and 3.1. This table compares only the
complexity of accessing an element in the tree, i.e., go-
ing from the root to the leaf. It does not take the com-
munication overhead of accessing the position map into
account which we will deal with later. Moreover, Ta-
ble 1 computes only the number and not the size of
nodes accessed. The overall communication complexi-
ties will vary from one scheme to the other, and we
detail costs below, too. Table 2 shows the gain (in %)
of r-ORAM applied to binary trees ORAM, not dis-
tinguishing whether a scheme has constant or poly-log
memory complexity.

As shown in Table 2, we improve on average 35%
when r-ORAM is applied to any binary tree ORAM and

Table 1. Tree height comparison

Number of elements

210 220 240 260

Binary
10 20 40 60ORAM trees

[7, 20, 27, 29]

Binary
r-ORAM tree

Best case 5 8 16 23
Average case 6 14 26 40
Worst case 8 16 31 47

4-ary
5 10 20 30ORAM tree

[7, 8, 29]

4-ary
r-ORAM tree

Best case 3 6 11 16
Average case 5 8 16 24
Worst case 5 10 19 28

Table 2. Tree-based ORAM gain

Gain in %
Best-case Average-case Worst-case

Binary
ORAM trees
[7, 20, 27, 29]

60 35 22.5

4-ary
ORAM trees
[7, 8, 29]

45 20 5

20% when applied to 4-ary ORAM trees. Compared to
binary trees, the gain for κ-ary trees is smaller due to
the reduction of the height of the tree. Trees are already
“flat”, so the benefit of recursion diminishes.

We present the total communication overhead com-
parison and a monetary comparison of communica-
tion overhead between tree-based ORAM constructions
(with constant and poly-log client memory). For this,
we use blocks with size 1 KByte. The number of entries
(blocks) in every node varies depeding on the scheme.
We apply the result of Theorem 4.4 and Theorem 4.6 to
vary the size of the buckets accordingly. For the poly-
logarythmic client memory, the size of the buckets of
r-ORAM over Path ORAM are set to z = 6 based on
Theorem 4.8. We take communication and storage over-
head of the position map into account as well as the
overhead induced by eviction (eviction rate equal to 2
for the constant client memory case).

Figure 5 depicts the communication cost per ac-
cess, i.e., the number of bits transmitted between the
client and the server for any read or write operation.
The graph shows that r-ORAM applied to Path ORAM
(z = 6) gives the smallest communication overhead. For
example, with a dataset of 1 GByte, an access will cost
100 KByte in total. Moreover, if we set the number of

Recursive Trees for Practical ORAM 126

entries z to 3 instead of 6, see [7], communication costs
are divided by 2.

The storage overhead of tree-based ORAMs is still
significant. Poly-log client memory ORAMs perform
better, but still induce roughly a factor of 10. r-ORAM
reduces this overhead down to a factor of 9.6, i.e., a re-
duction by 4%. For r-ORAM over Shi et al. [27] scheme,
the saving is greater than 50% since we are reducing not
only the height but also the size of the bucket.

Finally, we calculate the cost in US Dollar (USD)
associated with every access, cf. Fig. 6. As we obtain
smallest communication overhead by using r-ORAM on
top of Path ORAM, one would naïvely expect this to be
the cheapest construction. However, Amazon S3 pric-
ing is based not only on communication in terms of
transferred bits (Up to 10 TB/month, 0.090 USD per
GBytes), but also on the number of HTTP operations
performed (GETs and PUTs), 0.005 USD per 1,000 re-
quests for PUT and 0.004 USD per 10,000 requests per
month for GET. Surprisingly, the construction by Gen-
try et al. [8] with branching factor κ = log(N) is cheaper
as it involves fewer HTTP operations compared to Path
ORAM (however, in practice, the branching factor can-
not be large since it will increase the size of the bucket).

5.2 Experimental Results

For a real-world comparison, we have implemented Path
ORAM and r-ORAM including the position map in
Python. Our source code is available for download [24].
Experiments were performed on a 64 bit laptop with
2.8 GHz CPU and 16 GByte RAM running Fedora
Linux. For each graph, we have simulated 1015 ran-
dom access operations. The standard deviation of the
r-ORAM height (communication complexity) was low
at 0.015. The relative standard deviation for the average
height (communication complexity) for 93312≈ 216.5 el-
ements equals to 0.125.

The experiments begin with an empty ORAM. We
randomly insert the corresponding number of elements.
This step represents the initialization phase. After-
wards, we run multiple random accesses to analyze the
height behavior and the stash size for r-ORAM over
Path ORAM.

Fig. 7 shows three curves: the height of binary tree
ORAM (Path ORAM) from one hand and r-ORAM av-
erage and worst case height from the other hand. The
height curves for r-ORAM are the result of 1015 accesses
with a standard deviation of 0.015.

Our second comparison tackles communication in-
cluding the recursion induced by the position map as
well as the eviction per single access for different bucket
sizes, see Fig. 8. Figures 12 and 13 show that r-ORAM
improves communication even with larger block size, see
Appendix B. The eviction in r-ORAM is performed at
the same time the path is written back. Also, we con-
sider both the upload/download phases. For example,
with N = 214 and 4096 Bytes block size, the client has
to download/upload 438 KByte with r-ORAM, instead
of 640 KByte with Path ORAM, a ratio corresponding
to the ratio of average heights, i.e., 31% of cost sav-
ing. Moreover, if we compare the curves associated to
the minimum theoretical bounds for r-ORAM and Path
ORAM, i.e., z = 6 and z = 5, the saving in terms of
communication complexity is 20%. These curves repre-
sent the average of 1015 random accesses.

Finally, we measure r-ORAM’s stash size for a num-
ber of random accesses between 210 and 220. The num-
ber of operations represent a security parameter for
our scenario, the more operations we perform the more
likely the stash size increases. The upper bound of
Th. 4.8 depends of the number of elements N , however
for N > 2 the stash will have the same size indepen-
dently of N because 1− 0.54N ≈ 1 for larger N . Thus,
the stash in r-ORAM over Path ORAM has a logarith-
mic behavior in function of the security parameter, see
Theorem 4.8.

Our experimental results confirm the upper bound
given by Theorem 4.8, namely R = 1

ln 0.88 ·
ln ω

1.17·(1−0.54N) ≈
1

ln 0.88 ·ln
ω

1.17 . For example, for a prob-
ability of overflow equal to ω = 2−20,the security param-
eter here equals 20, the theoretical stash size R equals
∼110 blocks for any N > 10. In Fig. 9, you can see
that, for bucket size z = 6 (See Appendix B for larger
bucket size), we have exactly a logarithmic behavior as
shown in the theorem. This figure shows the stash be-
havior based on the maximum, minimum, and median
values. For a confidence level of 95%, the margin error
is around 1.25. For 220 operations, the maximum stash
value equals 40 which is smaller than 110, the theo-
retical value, which is not surprising since some loose
bounds have been used in the proof. For z = 5, see Ap-
pendix B. The stash seems to increase logarithmically
with the number of operations. However, theoretically
the stash size behavior is not bounded. The graphs are
logarithmic in the number of operations. In Fig. 10, we
show the average behavior of the stash size, to also in-
dicate its logarithmic behavior.

Recursive Trees for Practical ORAM 127

10
4

10
5

10
6

10
7

10
8

10 10
2

10
3

10
4

10
5

10
6

10
7

C
o
m

m
u
n
ic

a
ti
o
n
 i
n
 B

y
te

s

Number of elements N

Shi et al.
Shi-r-ORAM
Gentry et al.

Gentry-r-ORAM
Path ORAM

Path-r-ORAM

Fig. 5. Communication per access

0.001

0.01

0.1

1

10 10
2

10
3

10
4

10
5

10
6

10
7

C
o
s
t
in

 (
U

S
D

)

Number of elements N

Shi et al.
Shi-r-ORAM
Gentry et al.

Gentry-r-ORAM
Path ORAM

Path-r-ORAM

Fig. 6. Communication cost per 100 accesses

 2

 4

 8

 16

 32

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

H
e

ig
h

t

Number of elements N

Binary trees ORAM
r-ORAM average

r-ORAM worst case

Fig. 7. Average height comparison

2
14

2
15

2
16

2
17

2
18

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

C
o
m

m
u
n
ic

a
ti
o
n
 i
n
 B

y
te

s

Number of elements N

Path ORAM Z=4
Path ORAM Z=5

r-ORAM Z=5
r-ORAM Z=6

Fig. 8. Communication per access, block 512 Bytes

Compared to Path ORAM with a similar bucket
size, r-ORAM’s stash requires up to 10 blocks more.
This will not have any repercussion on the communica-
tion complexity. One might argue that the overall client
memory size M has to be larger. However, the client
memory size is defined as the stash plus the downloaded
path during the operation such thatM = R+P whereR
is the stash size and P the number of blocks downloaded
for a given path p. We have P = z · |p| blocks where
|p| = logN for Path ORAM and |p| ≈ 0.78 · logN for r-
ORAM (worst-case). For a number of elements N = 220

and a bucket size z = 5, Path ORAM has to have 20
more blocks than r-ORAM and this will increase for
greater number of elements.

6 Related Work
ORAM, first introduced by Goldreich and Ostrovsky
[10], recently received a revived interest from the re-
search community [1, 4, 5, 7–13, 18, 20, 23, 25, 27, 29,
31, 32]. The current state of the art on ORAM can be di-
vided into two main categories. The first one comprises

schemes where a client is restricted to constant local
memory, while the second allows the client (sub-linear)
local memory.

Constant client memory: Constant client-side mem-
ory schemes are very useful for scenarios with very lim-
ited memory devices such as embedded devices. Recent
works have been able to enhance amortized and worst-
case communication complexity [11, 12, 18, 20, 23, 25,
27]. Goodrich and Mitzenmacher [11] and Pinkas and
Reinman [25] introduce schemes with a poly-logarithmic
amortized cost in O(log2(N)). However, the worst-case
cost remains linear. Goodrich et al. [12] present a better
worst-case communication overhead, O(

√
N · log2(N)).

All schemes prior to the one by Shi et al. [27] dif-
ferentiate between worst-case and amortized-case over-
head. The worst-case scenario in these ORAM construc-
tions occurs when a reshuffling is performed. Shi et al.
[27] present a tree-based ORAM, where the nodes of
the tree are small bucket ORAMs, see also [10, 22]. Ac-
cessing an element in this structure implies accessing
a path of the tree. After each access, a partial reshuf-
fling, confined to only the path accessed in the tree,
is performed. The worst-case and amortized case over-

Recursive Trees for Practical ORAM 128

 0

 10

 20

 30

 40

 50

 10 12 14 16 18 20

N
u
m

b
e
r

o
f
b
lo

c
k
s

Number of operations

Z=6

Fig. 9. Stash size, z = 6, number of operations in log2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 12 14 16 18 20

N
u
m

b
e
r

o
f
b
lo

c
k
s

Number of operations

Z=5
Z=6
Z=7
Z=8

Fig. 10. Average stash size, operations in log2

head achieved with such construction are both equal
and poly-logarithmic, i.e., O(log3(N)).

Mayberry et al. [20] improve the complexity of
the tree-based ORAM by Shi et al. [27]. Instead of
using traditional ORAM bucket nodes in the tree, a
PIR [19] is used to retrieve a data element from a
specific node. Mayberry et al. [20] show that there-
with the worst-case communication complexity equals
O(log2(N)). Note that this complexity can be enhanced
by using a κ-ary tree instead of a binary tree.

Kushilevitz et al. [18] present a hierarchical solution
that enhances the asymptotic communication complex-
ity defined in previous works with a worst case equal
to O(log2(N)

log(log(N))). For large block sizes, the scheme is
in practice significantly less efficient compared to, e.g.,
[20, 27].

Recently, Devadas et al. [6] present a tree-based con-
struction with constant amortized communication com-
plexity. However, their block size is large with B =
Ω(log5(N)·log logN), and they require the server to per-
form computations. Note that our recursive tree struc-
ture can be applied to this ORAM, too, further reducing
communication costs.

Sub-linear client memory Past research with
O(
√
N) client-side memory [31, 32] has sub-linear amor-

tized communication complexity, but linear worst-case
complexity. Boneh et al. [1] improve the worst-case to be
in O(

√
N), however still with O(

√
N) client-side mem-

ory. Stefanov et al. [28] show how to reduce the amor-
tized cost to be poly-logarithmic in O(log2(N)), but still
with a large O(

√
N) client memory.

Gentry et al. [8] enhance previous tree-based ORAM
work by modifying the structure of the tree. Instead of
a binary tree, a multi-dimensional tree with a branch-
ing factor κ is used. If the number of data elements
stored in every node and the branching factor are

equal to O(logN), the worst-case communication over-
head is in log3(N)

log(log(N)) . Gentry et al. [8] also introduce
a reverse lexicographic eviction that is used in re-
cent poly-logarithmic client memory schemes. The poly-
logarithmic client memory in O(log2N) is due to its
eviction algorithm, where the client has to memorize
elements in order to percolate them towards the leaves.

Stefanov et al. [29] present Path ORAM, an-
other tree-based ORAM construction, requiring a client-
side memory stash of size O(log(N)). This results in
O(log2(N)) communication complexity. Fletcher et al.
[7] further optimized Path ORAM, reducing the com-
munication cost by 6 ∼ 7%. Similarly, Ren et al. [26]
improve upon Path ORAM and SSS ORAM [28], re-
sulting in better bandwidth parameters but still in
O(logN) and with O(

√
N) for large block sizes. Also

for this ORAM, our framework can enhance communi-
cation overhead even more.

7 Conclusion
r-ORAM is a general technique for tree-based ORAM
costs optimization. r-ORAM improves both communi-
cation cost as well as storage cost. We formally show
that r-ORAM preserves the same overflow probability
as related work. r-ORAM is general and can be applied
to any existing as well as future derivations of tree-based
ORAMs. For any binary tree-based ORAM, the average
cost is reduced by 35%, and storage cost is reduced by 4
to 20%. As future work, we plan to investigate the dy-
namics of r-ORAM, i.e., instead of considering constant
height for outer and inner trees, we aim at dynamically
varying the height, which has the potential of further
cost reductions.

Recursive Trees for Practical ORAM 129

Acknowledgement. This work was partially sup-
ported by NSF grant 1218197

References
[1] D. Boneh, D. Mazières, and R.A. Popa. Remote oblivi-

ous storage: Making oblivious RAM practical, 2011. http:
//dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-
CSAIL-TR-2011-018.pdf.

[2] K. Brown. Balls in bins with limited capacity, 2014. http:
//www.mathpages.com/home/kmath337.htm.

[3] G. Casella and R.L. Berger. Statistical inference. Duxbury
advanced series in statistics and decision sciences. Thomson
Learning, 2002. ISBN 9780534243128.

[4] K.-M. Chung and R. Pass. A Simple ORAM. IACR Cryptol-
ogy ePrint Archive, 2013:243, 2013.

[5] I. Damgård, S. Meldgaard, and J.B. Nielsen. Perfectly Se-
cure Oblivious RAM without Random Oracles. In Proceed-
ings of Theory of Cryptography Conference –TCC , pages
144–163, Providence, USA, March 2011.

[6] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher,
and Ling Ren. Onion ORAM: A constant bandwidth and
constant client storage ORAM (without FHE or SWHE).
IACR Cryptology ePrint Archive, 2015:5, 2015.

[7] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten
van Dijk, Emil Stefanov, and Srinivas Devadas. RAW Path
ORAM: A Low-Latency, Low-Area Hardware ORAM Con-
troller with Integrity Verification. IACR Cryptology ePrint
Archive, 2014:431, 2014.

[8] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S.
Jutla, Mariana Raykova, and Daniel Wichs. Optimizing
ORAM and Using It Efficiently for Secure Computation. In
Proceedings of Privacy Enhancing Technologies, pages 1–18,
2013.

[9] O. Goldreich. Towards a Theory of Software Protection and
Simulation by Oblivious RAMs. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing –STOC ,
pages 182–194, New York, USA, 1987.

[10] Oded Goldreich and Rafail Ostrovsky. Software protection
and simulation on oblivious rams. J. ACM, 43(3):431–473,
May 1996. ISSN 0004-5411. 10.1145/233551.233553. URL
http://doi.acm.org/10.1145/233551.233553.

[11] M.T. Goodrich and M. Mitzenmacher. Privacy-preserving
access of outsourced data via oblivious ram simulation. In
Proceedings of Automata, Languages and Programming
–ICALP, pages 576–587, Zurick, Switzerland, 2011.

[12] M.T. Goodrich, M. Mitzenmacher, Olga Ohrimenko, and
Roberto Tamassia. Oblivious ram simulation with efficient
worst-case access overhead. In Proceedings of the 3rd ACM
Cloud Computing Security Workshop –CCSW , pages 95–
100, Chicago, USA, 2011.

[13] M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Privacy-preserving group data access via
stateless oblivious RAM simulation. In Proceedings of the
Symposium on Discrete Algorithms –SODA, pages 157–167,
Kyoto, Japan, 2012.

[14] Google. A new approach to China, 2010. http://googleblog.
blogspot.com/2010/01/new-approach-to-china.html.

[15] D. Gross. 50 million compromised in Evernote hack, 2013.
http://www.cnn.com/2013/03/04/tech/web/evernote-
hacked/.

[16] J Hsu and P Burke. Behavior of tandem buffers with geo-
metric input and markovian output. Communications, IEEE
Transactions on, 24(3):358–361, 1976.

[17] L. Kleinrock. Theory, Volume 1, Queueing Systems. Wiley-
Interscience, 1975. ISBN 0471491101.

[18] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security
of hash-based oblivious ram and a new balancing scheme.
In Proceedings of the Symposium on Discrete Algorithms
–SODA, pages 143–156, Kyoto, Japan, 2012.

[19] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not
needed: Single database, computationally-private informa-
tion retrieval. In Proceedings of Foundations of Computer
Science –FOCS, pages 364–373, Miami Beach, USA, 1997.

[20] T. Mayberry, E.-O. Blass, and A.H. Chan. Path-pir: Lower
worst-case bounds by combining oram and pir. In Pro-
ceedings of the Network and Distributed System Security
Symposium, San Diego, USA, 2014.

[21] T. Moataz, T. Mayberry, E.-O. Blass, and A.H. Chan. Resiz-
able Tree-Based Oblivious RAM. In Proceedings of Financial
Cryptography and Data Security , Puerto Rico, USA, 2015.

[22] R. Ostrovsky. Efficient computation on oblivious rams. In
Proceedings of the Symposium on Theory of Computing
–STOC , pages 514–523, Baltimore, USA, 1990.

[23] R. Ostrovsky and V. Shoup. Private information storage
(extended abstract). In Proceedings of the Symposium on
Theory of Computing –STOC , pages 294–303, El Paso,
USA, 1997.

[24] PASMAC. r-ORAM source code, 2015. http://pasmac.ccs.
neu.edu/resources/r-ORAM.zip.

[25] B. Pinkas and T. Reinman. Oblivious ram revisited. In
Advances in Cryptology – CRYPTO, pages 502–519, Santa
Barbara, USA, 2010.

[26] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Ste-
fanov, Elaine Shi, Marten van Dijk, and Srinivas Devadas.
Ring ORAM: closing the gap between small and large client
storage oblivious RAM. IACR Cryptology ePrint Archive,
2014:997, 2014.

[27] E. Shi, T.-H.H. Chan, E. Stefanov, and M. Li. Oblivious
RAM with O(log3(N)) Worst-Case Cost. In Proceedings
of Advances in Cryptology – ASIACRYPT , pages 197–214,
Seoul, South Korea, 2011. ISBN 978-3-642-25384-3.

[28] E. Stefanov, E. Shi, and D.X. Song. Towards practical obliv-
ious ram. In Proceedings of the Network and Distributed
System Security Symposium, San Diego, USA, 2012. The
Internet Society.

[29] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W.
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path ORAM: an extremely simple oblivious RAM protocol.
In ACM Conference on Computer and Communications Se-
curity , pages 299–310, 2013.

[30] Techcrunch. Google Confirms That It Fired Engineer For
Breaking Internal Privacy Policies, 2010. http://techcrunch.
com/2010/09/14/google-engineer-spying-fired/.

[31] P. Williams and R. Sion. Usable pir. In Proceedings of the
Network and Distributed System Security Symposium, San

http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
 http://www.mathpages.com/home/kmath337.htm
 http://www.mathpages.com/home/kmath337.htm
http://dx.doi.org/10.1145/233551.233553
http://doi.acm.org/10.1145/233551.233553
http://googleblog.blogspot.com/2010/01/new-approach-to-china.html
http://googleblog.blogspot.com/2010/01/new-approach-to-china.html
http://www.cnn.com/2013/03/04/tech/web/evernote-hacked/
http://www.cnn.com/2013/03/04/tech/web/evernote-hacked/
http://pasmac.ccs.neu.edu/resources/r-ORAM.zip
http://pasmac.ccs.neu.edu/resources/r-ORAM.zip
http://techcrunch.com/2010/09/14/google-engineer-spying-fired/
http://techcrunch.com/2010/09/14/google-engineer-spying-fired/

Recursive Trees for Practical ORAM 130

Diego, USA, 2008.
[32] P. Williams, R. Sion, and B. Carbunar. Building castles out

of mud: practical access pattern privacy and correctness on
untrusted storage. In ACM Conference on Computer and
Communications Security , pages 139–148, Alexandra, USA,
2008.

A Proofs

A.1 Proof of Theoram 2.1

Proof. Function C depends on three variables that we
can reduce to two by substituting Eq. (2) into Eq. (3).
From Eq. (2), we have log x = log(N)−r−r · log(y−1).
The worst-case cost then computes to

C(r, y) = log(N)− r + r · log(y

y − 1). (8)

By fixing r > 0, the worst-case cost is a non-increasing
function in y, since y 7→ log(y

y−1) is a non-increasing
function for y > 1. Thus, for any non-negative r, the
minimum value of the worst cost is smaller for larger
values of y.

Also, with x ≥ 2, the number of the leaves of inner
trees y is upper bounded: N ≥ 2 · (2y − 2)r ⇒ y ≤
1
2 · (

N
2)

1
r + 1.

For small x, we therewith get a larger upper bound
for y. Therefore, we have to fix x to its minimum value
which equals 2. This could not be inferred from Eq. 3
while not decreasing the number of variables of the lin-
ear system. The optimum number of leaves for the inner
trees then equals y = 1

2 · (
N
2)

1
r + 1. Putting these val-

ues back in Eq. (8), results in C depending on only one
variable r, the recursion factor:

C(r) = 1 + r · log(1
2 .(

N

2)
1
r + 1) (9)

Finally, we derive the minimum of the worst-case
cost by computing the first derivative of the convex
function C(r). The derivative is dC

dr (r) = log(1
2 · (

N
2)

1
r +

1)− ln(N2)·(N2)
1
r

2r·(1
2 ·(

N
2)

1
r +1)

.

We achieve dC
dr (r) ≈ 0 for r′ ≈ log((N2)

1
2.7). Since

C(r) is convex, the value of r′ is the minimum for any
r ≤ log(N) − 1. Replacing r′ in equations (4) and (9)
gives the worst-case and best-case costs of the theorem,
therefore completing the proof.

Careful readers will notice that we have bounded x to be
at least equal to 2 in our theorem’s proof. If we consider
that x = 1, we do not therefore have any leaf tree at the

end. Thus, there are some nodes in the last recursion
that will behave as leaves and interior buckets at the
same time. This will have some critical issues in term
of security proofs. Considering a node as interior and
leaf node at the same time will basically double the
size (because in the analysis we have to consider the
disjunction of both events). Fixing x = 1, seems a good
idea that simplifies greatly the analysis, however it will
not help in optimizing the communication overhead. In
fact, the size, in bits, to download a path will be equal to
the same path with x = 2 with two times more elements.

A.2 Proof of Theorem 3.1

(Sketch). The first step in the proof is to represent
the number of leaves x as a function of N , y, r, and
κ the branching factor. That is, we reduce the num-
ber of variables in our optimization problem by one.
Taking the logarithm of Eq. (7) leads to logκ(x) =
logκ(κ−1

κ N) − r · logκ(y − 1). Since our first goal is
the minimization of the worst-case cost, we substitute
logκ(x) in the worst-case cost Eq. (3) by the value com-
puted in the above equation and minimize the new ex-
pression. Note that the logarithm is base κ instead of 2
in the worst-case cost formula.

For simplicity, we consider the branching factor as
a (given) constant, as it has an impact on the over-
flow probability. So, we assume a fixed branching factor
matching a given bucket size. Finally, we follow the same
steps as the proof of Theorem 2.1 to find the optimal
recursive factor r, the number of leaf tree leaves x, and
the number of inner/outer tree leaves y.

A.3 Proof of Lemma 4.2

Proof. First, we determine the number of interior nodes
for i > r. In the same spirit as the proof of Theorem 2.2,
we denote by Aj an array of j ∈ [r] positions that has all
positions initialized to zero. Aj represents the number of
possible paths to a given level. The difference between
counting the number of leaves and the number of in-
terior nodes consists of the fact that an interior node
may exist in any level without going through all recur-
sions, i.e., it may happen that we reach a level without
going through the last level of recursions. This means
that elements of the array are equal to zero.

Counting of interior nodes boils down to divide
Eq. (5) of Theorem 2.2 in r sub-equations, where each
will count the number of ways to reach a specific level

Recursive Trees for Practical ORAM 131

while all the positions of the array are still equal to
1. Therefore, the set of solutions of the following sub-
equations has an empty set intersection.

A1[1]− 1 = i− 1− log(x),
(A2[1]− 1) + (A2[2]− 1) = i− 2− log(x),

· · ·
(Ar[1]− 1) + · · ·+ (Ar[r]− 1) = i− r − log(x),

where, for each j ∈ [r], we have 1 ≤ Aj [i] ≤ log(y).
Discussion: To have an intuition about these parti-
tions, consider an example where r = 4 and y = 16. We
have 4 sub-equations, where each represents the possi-
ble ways to reach an interior node in, e.g., the 4th level.
The first array has only one position that can take val-
ues from 1 to 4. The first sub-equation will count the
number of ways to get to an interior node at level 4
under the constraint that we have to stay in one re-
cursion. In this case, the array can have only one value
which is 4. For the second equation, we can have differ-
ent combinations such as (2, 2), (3, 1), etc., but we do
not have (4, 0), because it is already accounted for in
the first sub-equation. We follow the same reasoning for
the other sub-equations.

So, I(i) = S1+· · ·+Sr, the total number of solutions
of the sub-equations. Also, we have Sr ≥ Sj for any
j ∈ [r − 1], that is, I(i) ≤ r · Sr. From Theorem 2.2, we
know that the number of solutions for the last equation
Sr equals 2i−log x · K(i). Therefore, with the result of
Theorem 2.2, we can conclude that I(i) ≤ 2i−log(x) · r ·
K(i).

Also from Th. 2.2, the number of leaves N (i) = 2i ·
K(i). This leads to our first inequality I(i)

N (i) ≤ 2− log(x) ·r.
For our second inequality, notice that for any inte-

rior node of any level i > r, I(i) ≥ N (i+1)
2 . This follows

from the property that the ancestors of leaves in the
(i+ 1)th level are interior nodes in the upper level. Us-
ing equality N (i) = 2i · K(i),

I(i)
N (i) ≥ N (i+ 1)

2N (i)

= K(i+ 1)
K(i) .

We have previously shown that K can be approxi-
mated by a normal distribution, cf. Eq. (6). Using this
approximation, we obtain I(i)

N (i) ≥ e
− 1+2i−2r−2 log(x)−c

2s2 .

Finally, since c = r(log(y) − 1), we have for s > 0
I(i)
N (i) ≥ e−

1+r log(y)−r−2 log(x)
2s2 . This concludes our proof.

A.4 Proof of Lemma 4.3

Proof. This result follows from two observations. First,
the total number of interior nodes for the ith level is
always larger than the total number of nodes in the
(i + 1)th level divided by 4. The second observation is
that the total number of interior nodes for the ith level is
always smaller than the total number of nodes in (i+1)th

divided by 2. Consequently, L(i+1)
4 ≤ I(i) ≤ L(i+1)

2 .

The second inequality follows from r-ORAM’s
structure where every interior node v has at least 2 chil-
dren and at most 4 children. The recursion as previously
represented in a 2-dimensional plane where an interior
node in the outer or inner tree has 4 children, and every
leaf node has exactly 2 children. So, every level has at
least twice the number of interior nodes of the previous
level.

We bound µ by algebraic transformations:

L(i+ 1)
4 +N (i) ≤ L(i) ≤ L(i+ 1)

2 +N (i)

µ

4 + N (i)
L(i) ≤ 1 ≤ µ

2 + N (i)
L(i) .

Finally, 2 · (1− N (i)
L(i)) ≤ µ ≤ 4 · (1− N (i)

L(i)).

A.5 Proof of Theorem 4.4

Proof. The buckets of r-ORAM can be considered as
queues [16]. Every bucket at the ith level has its service
rate ηi and its arrival rate λi. The probability that the
bucket contains z elements is given by: p(z) = (1−ρi)·ρzi ,
where ρi = λi

ηi
. This is a result of M/M/1 queues [17].

The probability that the bucket will have strictly less
than z elements equals

∑k−1
i=0 p(i) = 1− ρzi . The proba-

bility to overflow (to have more than z elements) equals
ρzi . In the following, it suffices to compute ρi for every
level in our r-ORAM structure.

Consider eviction rates that are powers of 2. Then,
for i ≤ dlog4(χ)e, we have ηi = 1 and λi ≤ 1

2i (be-
cause for level 1 and deeper, buckets may have up to 4
children).

For i > dlog4(χ)e, the chance that a given bucket
will be evicted is equal to ηi = χ

I(i) , where I(i) is the
number of interior nodes in the ith level.

λi = I(i)
L(i+1) · Pr(parent gets selected) ·

Pr(parent is not empty), such that Pr(parent gets selected) =
ηi−1 and Pr(parent is not empty) = 1 − pi−1(0) =
ρi−1. The ratio I(i)

L(i+1) denotes the probability for

Recursive Trees for Practical ORAM 132

a real element to be evicted, in the case of a bi-
nary tree the ratio is equal to 1

2 . Then, we have
λi = I(i)

L(i+1) · λi−1. By induction, the arrival rate
equals λi = 1

L(i+1 ·
I(i)·I(i−1)···I(s+1)
L(i)·L(i−1)···L(s+1) · I(s) · λs, where

s = dlog4(χ)e. With λs ≤ 1
2s and I(s) ≤ 4s (because

we can have at most 4 children for every interior node),
this equation can be upper-bounded such that:

λi ≤
2s

L(i+ 1) ·
1

1 + N (i)
I(i)

· · · 1
1 + N (s+1)

I(s+1)

. (10)

We need to simplify the above inequality. First, no-
tice that for every s < i ≤ r

1
1 + N (i)

I(i)

= 1, (11)

because N (i) = 0 (there is no leaf node for i ≤ r).
For i > r, using the result of Lemma 4.2.

1
1 + N (i)

I(i)

≤ 1
1 + x

r

, (12)

where x is the number of leaves. For buckets at level
i > r, we plug the result of equations 11 and 12 in 10
and we divide by the service rate ηi such that ρi ≤
I(i)

L(i+1) · (
1

1+ x
r

)i−r · 2s
χ .

From Lemma 4.3, we have shown that I(i)
L(i+1) <

1
2 ,

because there are at least twice more nodes than in-
terior nodes in the upper level (they may be leaves or
interior nodes). Then ρi ≤ (1

1+ x
r

)i−r · 2s
2χ . In this case ρi

is upper-bounded by θi = (1
1+ x

r
)i−r · 2

s

2χ , and the overflow
probability is then equal to θzi .

For i ≤ r, there are no leaves (i.e. N (i) = 0), and
the arrival rate is always bounded from Eq. 10 such that
λi ≤ 2s

L(i+1) .

Consequently, dividing by ηi and using the result
of Lemma 4.3 I(i)

L(i+1) <
1
2 we get ρi ≤ 2s

2χ . Considering
θi = 2s

2χ for i ≤ r concludes our proof.

A.6 Proof of Theorem 4.6

Proof. Let us fix an interior node v in r-ORAM belong-
ing to the ith level. We are interested in the behavior
of the node’s load after a number of operations includ-
ing eviction and adding operations. Let L(i) denote the
number of nodes residing in the ith level of the r-ORAM
tree (these include the interior and the leaf nodes). Since
the eviction is reverse-lexicographic and deterministic,
we are sure that any element inserted before the time
interval T = [t − L(i + 1) + 1, · · · , t] has been evicted

from the ith level. Therefore, if we denote the number
of elements residing in the node v, St(v), we are sure
that St(v) = 0 just a step before the interval T . Conse-
quently, it remains to determine the load of the interior
node v for all the steps of the interval T , i.e., the load of
the node v in the (possible) presence of at most L(i+1)
elements in the ith level or above. Let us associate for ev-
ery element j in T a random indicator variable χj which
is equal to 1 if the element was assigned a path going
through the interior node v. All elements in T are i.i.d.
and their assignment probability is Pr(χj = 1) = 1

L(i) .
We have also St(v) ≤

∑
j∈[I(i+1)] χj , which follows from

the fact that all elements inserted in the interval T may
at most all of them be assigned paths that go through
v. In order to apply Chernoff’s bound, we calculate the
expected value of the sum of the indicator variables

E(
∑

j∈[L(i+1)]

χj) = µ = L(i+ 1)
L(i) .

The exact value cannot be determined without com-
puting the number of nodes existing in the ith level.
What we can do is computing a tight bound of the ex-
pected value and then apply the Chernoff bound. Note
that this expected value will be different from one level
to the other.

Lemma 4.3 gives a bound on the expected value.
This bound involves a relation between the leaf node
and the interior nodes of the given level that we have
computed in Lemma 4.2. For i ≤ r, from Lemma 4.3,
we know that 2 ≤ µ ≤ 4. For i > r, plug the first lemma
in the second:

2 · (1− 1
1 + e−f(x,y,r))︸ ︷︷ ︸
F1

≤ µ ≤ 4 · (1− 1
1 + 2− log(x) · r

)︸ ︷︷ ︸
F2

Now, wrapping up with Chernoff’s bound, for any
δ > 0 and for both cases Pr(St(v) ≥ (1 + δ) · µ) ≤
Pr(
∑

j∈[L(i+1)] χj ≥ (1+δ) ·µ) ≤ e−
δ2·µ
2+δ . This concludes

our proof.

To get an idea about the values of F1 and F2, we calcu-
late them for N = 232: F1 = 2

5 and F2 = 3.42. The theo-
rem above represents a general bound to understand the
overflow probability behavior. Since the expected value
µ varies depending on the level, buckets sizes vary on
every level. Consequently, fixing the expected value for
every level results in much better bounds. For example,
if for level i, µ = 1, then the the probability of overflow
with a bucket size equal to 64 = 1 + δ is at most 2−88,
while for µ = 4, the probability of overflow with the
same bucket size is equal to 2−82.

Recursive Trees for Practical ORAM 133

A.7 Proof of Theorem 4.8

Proof. To prove this theorem, we borrow two lemmas
from Stefanov et al. [29], namely their lemmas 1 and
2. We begin by giving a short overview over these two
lemmas. For details and proofs, we refer to [29]. The
first lemma underlines that the state of r-ORAMz

L is
equal to the state of r-ORAM∞L after post-processing
with a greedy algorithm G. r-ORAM∞L is r-ORAMz

L

with an infinite number of entries in each block. For
r-ORAM∞L , we do not need a stash, since buckets can
hold an infinite number of blocks. Algorithm G pro-
cess r-ORAM∞L to have the same bucket construction
as in regular r-ORAMz

L with deterministic reverse lex-
icographic eviction. Let X(T) be the number of real
blocks in some subtree T and η(T) the number of nodes
in subtree T . Now, Lemma 2 by Stefanov et al. [29]
states that st(r-ORAMz

L) > R, iff there exists a sub-
tree T such that X(T) > η(T) · z + R. Combining the
two lemmas results in

Pr(st(r-ORAMz
L) > R) = Pr(st(G(r-ORAM∞L)) > R) (13)

≤
∑

T∈r-ORAM∞
L

Pr(X(T) > η(T) · z +R)

<

N∑
i=1

4i max
{T |η(T)=i}

Pr(X(T) > i · z +R).

The second inequality follows from the fact that the
number of subtrees in a full binary tree of N elements
is upper bounder by the Catalan number Ci < 4i. The
upper bound in Th. 4.8 might be tighter if we consider
that r-ORAM contains fewer subtrees than the ones in
a full binary tree.

We now bound max{T |η(T)=i} Pr(X(T) > i · z +R).
First, to find an upper bound for Eq. 13, we compute

the expected value of X(T) for subtree T of r-ORAM∞z .
Note that E(X(T)) =

∑η(T)
i=1 E(|Bi|), where |Bi| is the

size of a bucket Bi in T . In r-ORAM∞L , the expected
value of buckets changes between levels, following a well-
defined distribution of interior nodes. For ease of expo-
sition, we now assume that all buckets have the worst
bucket load. To show this, we have to take into account
two cases.

(1) If a bucket is a leaf bucket, the load is binomially
distributed, such that E(|Bi|) = N · 2L = 1.

(2) For an interior bucket on level i, we have shown
in Th. 4.6 that E(|Bi|) = µ and F1 ≤ µ ≤ F2 (F2 is
equal to its maximal value 4).

For both cases, we can bound the expected value
of the bucket’s load: max{1, F1} ≤ E(Bi) ≤ 4. That

is, for any bucket in T , we obtain η(T) ·max{1, F1} ≤
E(X(T)) ≤ 4 · η(T).

Let Ψ = E((X(T)), η(T) = n, and ξ = n·z+R−Ψ
Ψ .

Applying Chernoff’s bound to X(T), we get

Pr(X(T) > n · z+R) = Pr(X(T) > (1 + ξ)Ψ) ≤ e
−ξ2
2+ξ ·Ψ.

With some algebraic computations, it is easy to see that
(n·(z−4)+R)2

Ψ ≤ ξ2 · Ψ and (n·(z−4+8)+R
Ψ)−1 ≤

(n·(z−4)+R+2Ψ
Ψ)−1 ≤ (2 + ξ)−1.

For z > 5, we have

1
8(n · (z − 4) +R) ≤ξ

2 ·Ψ
2 + ξ

(14)

e
−ξ2
2+ξ ·Ψ ≤0.88R · e−n·(z−4).

Combining Eq. 14 with Eq. 13 results in

Pr(st(r-ORAM6
L) > R) <0.88R ·

N∑
i=1

e−i(6−4−ln 4)

≈1.17 · 0.88R · (1− 0.54N)

B Experiments

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 12 14 16 18 20

N
u
m

b
e
r

o
f
b
lo

c
k
s

Number of operations

Z=5
Z=7
Z=8

Fig. 11. Stash size for z = 5, 7 and 8 with number of operations
in log2

Recursive Trees for Practical ORAM 134

2
15

2
16

2
17

2
18

2
19

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

C
o

m
m

u
n

ic
a

ti
o

n
 i
n

 B
y
te

s

Number of elements N

Path ORAM Z=4
Path ORAM Z=5

r-ORAM Z=5
r-ORAM Z=6

Fig. 12. Communication per access, block 1024 Bytes

2
17

2
18

2
19

2
20

2
21

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

C
o

m
m

u
n

ic
a

ti
o

n
 i
n

 B
y
te

s

Number of elements N

Path ORAM Z=4
Path ORAM Z=5

r-ORAM Z=5
r-ORAM Z=6

Fig. 13. Communication per access, block 4096 Bytes

	Recursive Trees for Practical ORAM
	1 Introduction
	2 Recursive Binary Trees
	2.1 Operations
	2.2 Security Definition
	2.3 Storage Cost
	2.4 Communication Cost
	2.5 Average-Case Cost
	2.6 r-ORAM Map addressing
	2.7 Communication complexity

	3 -ary Trees
	4 Security Analysis
	4.1 Privacy Analysis
	4.2 Overflow probability

	5 Performance Analysis
	5.1 Theoretical Results
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	A Proofs
	A.1 Proof of Theoram 2.1
	A.2 Proof of Theorem 3.1
	A.3 Proof of Lemma 4.2
	A.4 Proof of Lemma 4.3
	A.5 Proof of Theorem 4.4
	A.6 Proof of Theorem 4.6
	A.7 Proof of Theorem 4.8

	B Experiments

