
Proceedings on Privacy Enhancing Technologies ; 2016 (1):20–33

Oleksii Starov, Phillipa Gill, and Nick Nikiforakis
Are You Sure You Want to Contact Us? Quantifying the
Leakage of PII via Website Contact Forms
Abstract: The majority of commercial websites provide
users the ability to contact them via dedicated contact
pages. In these pages, users are typically requested to
provide their names, email addresses, and reason for
contacting the website. This effectively makes contact
pages a gateway from being anonymous or pseudony-
mous, i.e., identified via stateful and stateless identifiers,
to being eponymous. As such, the environment where
users provide their personally identifiable information
(PII) has to be trusted and free from intentional and
unintentional information leaks. In this paper, we report
on the first large-scale study of PII leakage via contact
pages of the 100,000 most popular sites of the web. We
develop a reliable methodology for identifying and in-
teracting with contact forms as well as techniques that
allow us to discover the leakage of PII towards third-
parties, even when that information is obfuscated. Us-
ing these methods, we witness the leakage of PII towards
third-parties in a wide range of ways, including the leak-
age through third-party form submissions, third-party
scripts that collect PII information from a first-party
page, and unintended leakage through a browser’s Ref-
erer header. To recover the lost control of users over
their PII, we design and develop Formlock, a browser
extension that warns the user when contact forms are
using PII-leaking practices, and provides the ability to
comprehensively lock-down a form so that a user’s de-
tails cannot be, neither accidentally, nor intentionally,
leaked to third parties.

Keywords: privacy, tracking, Personally Identifiable In-
formation, HTTP Referer

DOI 10.1515/popets-2015-0028
Received 2015-04-15; revised 2015-07-15; accepted 2015-07-15.

Oleksii Starov: Department of Computer Science, Stony
Brook University, E-mail: ostarov@cs.stonybrook.edu
Phillipa Gill: Department of Computer Science, Stony Brook
University, E-mail: phillipa@cs.stonybrook.edu
Nick Nikiforakis: Department of Computer Science, Stony
Brook University, E-mail: nick@cs.stonybrook.edu

1 Introduction
The rise of extremely popular online services offered at
no fiscal cost to users has given rise to a rich online
ecosystem of third party trackers and online advertisers.
Indeed, this phenomenon has been studied extensively
on generic websites [16], online social networks [6, 17],
and in mobile applications [8, 13]. It has also raised the
ire of online privacy advocates [38] who highlight the
potential of tracking to compromise user privacy. On-
line service providers counter that tracking is based on
non-personally identifiable information [27], and in the
absence of user willingness to pay for online services, it
seems unlikely this practice will cease any time soon,
even though users find tracking unwanted and intru-
sive [40].

In this paper, we focus on third party tracking that
occurs on the contact page of popular web pages. Track-
ing on contact pages is particularly concerning, as these
are pages where users may enter in personally identifi-
able information (e.g., contact information) to initiate
contact with the given website. Unfortunately for users,
as we show in this paper, their PII that is intended for
the website they would like to contact, may be shared
with third parties, even before they click on the “Sub-
mit” button on the form. Our work sheds light on an
underexplored area in online tracking, online tracking
that occurs on contact forms. We expose a rich ecosys-
tem of third parties that primarily exist in the context of
contact forms (e.g., web leads companies, form builders)
and are in a good position to obtain a user’s PII.

Part of our goal in this paper is to understand third
party tracking on contact pages at scale. This required
surmounting obstacles not present in prior studies of
online tracking. Specifically, we needed to automate in-
teraction with the web page to (1) located the contact
form, (2) fill in the contact form with the appropriate
inputs, and (3) detect PII leakage from the contact for-
m/the page embedding it. To surmount these challenges
we design a custom crawler that is able to locate and
fill out contact forms automatically. This crawler allows
us to scale our study to the top 100,000 websites, as
listed by Alexa. We also design a fuzzing methodology
that allows us to identify PII leakage, even when the
leaked information is encoded or obfuscated. Using this

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 21

methodology we study PII leakage to third parties on
contact form pages along three axes:

– What is the potential for leakage? We consider
the potential for leakage by quantifying differences
in third-party JavaScript scripts included on con-
tact form pages. We show that 29% of the sites with
contact forms have more third-party JavaScript in-
clusions on their contact pages than on their main
pages. Moreover, we categorize the actual leakage
into two categories, accidental and intentional.

– Which third parties obtain PII that is acci-
dentally leaked by contact forms? We discover
that 2.5% of contact forms accidentally leak a user’s
PII to a total of 3,573 unique remote domains and
we discuss the privacy ramifications of this acciden-
tal leakage.

– Which third parties obtain PII that is inten-
tionally leaked by contact forms? In addition
to accidental PII leakage, we show that 6.1% of all
submitted contact forms are intentionally leaking a
user’s PII to third parties, mostly through the use
of third-party form builders and marketing tools.

Motivated by our findings, we design and implement
Formlock, a browser extension that warns users about
leaky forms and protects a user’s PII against client-side
leakage, as it is entered into contact forms. Instead of
relying on blacklists, Formlock uses a combination of
temporary third-party request blocking, browser cookies
and cache rollback, and removal of sensitive parameters
from a page’s URL, going above and beyond generic
anti-tracking extensions.

2 Data Collection
The web is a platform where the intended end-client is
a human user. While browsers are used to render the
incoming HTML content and relay the user’s desires
through HTTP requests, it is the user’s responsibility
to identify the rendered elements on a page and interact
with them. This has allowed immense flexibility in the
design of web pages where there can be near infinite
different HTML and CSS arrangements that result in
the same visual result.

For this reason, the web still resists reliable and
generic automation. Consider, for instance, an HTML
page rendered in an iframe and the same page rendered

in a 5-level nested iframe. As far as the user is con-
cerned, the two pages look identical and can be inter-
acted with, in the exact same way. A crawler, however,
needs to identify the iframe, switch contexts, and decide
on a maximum number of nested iframes that it is will-
ing to explore before moving on. In fact, there are many
ways that pages can purposefully or accidentally trap
naive crawlers in infinite loops, such as through the use
of unbounded in-page calendars and an infinite number
of dynamically generated links that always point to the
same page.

For the purposes of this project, we need to be
able to autonomously locate contact pages, successfully
identify the expected type of input for each contact-
form field, fill-in the appropriate details, and submit
the forms. At the same time, we look for the accidental
leakage of PII information via HTTP requests as well
as the presence of active third-party content that is, or
could be, exfiltrating a user’s PII either in the clear or
through the use of obfuscation. We opine that building
a crawler that can reliably find one specific page (i.e.,
the contact page) and successfully interact with it, is a
harder task than finding any page and merely indexing
it, as typical crawlers do.

2.1 Crawler Setup

The workhorse module of our crawler is PhantomJS [32],
a JavaScript-enabled, headless browser based on We-
bkit. All traffic to and from PhantomJS is prox-
ied through BrowserMob [5], a scriptable proxy with
MitM capabilities, where it is analyzed for PII leak-
age. Through the use of the GhostDriver bindings [20],
we implemented the logic of our contact-form-sensitive
crawler in the Java language. In the following para-
graphs, we outline the process with which we first iden-
tify and then interact with contact forms.

Finding the page containing a contact form

We argue that if websites want to encourage users to
contact them, links to pages containing contact forms
should be easy to find from the website’s main page.
Thus, for every website, we assume that there exists
a separate page with a contact form, linked from the
website’s main page which the crawler can detect by the
word “contact” appearing in the text associated with
that link.

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 22

Locating the contact form within a page

Once the crawler has identified a page that could in-
clude a contact form it searches for an HTML form
element that satisfies certain criteria. That is, precau-
tionary steps must be taken to ensure that the crawler
interacts with a contact form and not with other types
of forms, such as, login forms and search forms. Thus,
we exclude forms that are i) invisible or whose rendered
dimensions are below a certain threshold, or ii) have
less than two input fields (i.e., one for a user’s email
address and one for the message itself). For these rea-
sons, we do not attempt to identify forms implemented
using different web technologies, such as, Flash or Java.

Filling and submitting forms

Even though one could attempt to fill-in all input fields
with random text and press the submit button, we ar-
gue that this would not result in successful form sub-
missions for a significant fraction of the web. Websites
typically employ JavaScript functions that are triggered
upon submission and inspect whether the text of each
input field matches the expected format, e.g., ensuring
that the value typed in a telephone input field only con-
tains numbers and dashes. As such, our crawler looks
for textual cues in order to identify what information
to fill-in in any given textbox. When the type of an
input field cannot be reliably determined, we opted to
retype our control email address (i.e., the email address
created for our crawling experiments), since the lexical
structure of email addresses have the capacity to satisfy
many different input fields. We locate the form submis-
sion button by its input type, as well as its placement
in relation to other input fields. Note that we chose not
to attempt to break CAPTCHAs and thus any website
requiring a CAPTCHA for a successful contact form
submission is not represented in our results. Our deci-
sion was motivated by the difficulty of breaking mod-
ern CAPTCHAs using computer vision, and our unwill-
ingness to support human-powered, CAPTCHA-solving
sweatshops [25]. We argue that this decision does not
change the take-away messages of our work, since all of
our findings are already lower bounds. As such, if we
would be able to support CAPTCHAs, the percentage
of discovered PII-leaking forms could only increase.

We consider a form to be successfully submitted
when a website redirects us to a new page that con-
tains phrases indicative of a successful form submission,
such as, “thank you” or “successfully submitted.”

Detecting PII leakage

PII is the information about users that can later be
used to trace users back to their real identity. In the
context of contact forms, this information typically in-
cludes the users’ first names and last names, their email
addresses and their phone numbers. To track the dis-
persion of PII once it is submitted in a contact form,
we always populated forms with the same first name
and last name of a made-up persona, an email address
created for the purposes of this experiment, and the
universal contact message “I want to ask a couple of
questions, how can I call you?”. We consider PII to be
leaked when it is sent to a third-party domain, that is,
a domain other than the one present in a browser’s ad-
dress bar. In addition, we quantify the potential leakage
through remote JavaScript providers, by tracking the
dynamically-loaded, third-party JavaScript libraries lo-
cated on a contact page which could, if they wanted to,
obtain the user’s information as that is being entered
into a contact form.

2.2 Identifying PII in HTTP traffic

A detail that is missing from the above description is
how exactly we identify a user’s PII in HTTP requests.
While one can straightforwardly search for PII being
transmitted in the clear, this method will not be able to
account for leaks that use various encoding or obfusca-
tion techniques to hide the PII in the outgoing traffic.
To account for these schemes, we devised the following
methodology:
– We execute the crawl three times to have three

clearly separate submissions per website contact
form. In the first two submissions we use the same
email address, while we choose a second control
email address in the third submission.

– Third-party requests during each submission of the
same contact form are matched by URL (including
path) to obtain request triples in the form of:

(ri1, ri2, ri3)∀i ∈ R

where R is the set of third-party requests occurring
during and after the submission of a given contact
form. Afterwards, for each request, we extract all
sent parameters and their values, including param-
eters from the query string, cookies, headers, post
data or multipart data.

– We compare the extracted parameters and values
within each triple. If one of the request parameters

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 23

was the same during our first two form submissions
(when the same email address was used), but was
different in the third one (when we used a differ-
ent email address), we mark this form as one that
is potentially leaking user PII and requires manual
analysis.

Even though this method cannot be used to automati-
cally mark forms as suspicious when the requests result-
ing from a form submission vary significantly from the
previous submissions of the same form, (such as in the
case of modern encryption algorithms where the same
plaintext is transformed into different ciphertexts), it
can be used to automatically detect cases of encod-
ing and obfuscation on otherwise stable forms of leak-
age. That is, our fuzzing method will be able to detect
requests which carry parameters whose values change
when the input data changes.

2.3 Crawler Results

To measure the leakage of PII on popular websites, we
used our contact-form-sensitive crawler on the 100,000
most popular websites, according to Alexa [3]. The crawl
was executed on a 16-core server located in the US, in
January 2015.

The results of our crawl are as follows: Our crawler
identified a contact page on 29.6% of the 100K websites.
Due to the presence of contact pages with just email
addresses or ones implemented using Flash or Java, our
crawler successfully located contact forms on 17% of the
original 100K websites. We were able to complete and
successfully submit approximately 82.5% of the discov-
ered forms. The distribution of the ranks of the websites
where we were successful in identifying and submitting
contact forms was uniform, i.e., the accuracy and reli-
ability of our contact-page-sensitive crawler is not de-
pendent on a site’s popularity.

3 Analysis of crawler-collected
data

In this section, we report on our analysis of the data
collected from locating and submitting contact forms in
the web’s most popular 100K websites. The PII leakage
is analyzed according to the road map presented in Fig-
ure 1. First, in Section 3.1, we discuss the cases of poten-
tial PII leakage, where websites give third parties access

Potential (3.1)

Actual (3.2)

Accidental

Intentional

PII Leaks

Fig. 1. Covered Variations of PII Leakage

to user PII by including remote JavaScript libraries on
contact pages. Even though not all JavaScript libraries
will try to maliciously exfiltrate a user’s PII, any single
one can, at any point in time, abuse its privileged posi-
tion to do so. Second, in Section 3.2, we present the dis-
covered cases of actual PII leakage, where a user’s PII is
visibly leaked to third parties via third-party scripts and
content. We further categorize this actual PII leakage
into accidental and intentional. For the former, we wit-
ness how poor coding practices are responsible for leak-
ing user PII to thousands of third-party domains. For
the latter, we discover that website owners intention-
ally leak a user’s PII to third parties, typically through
the outsourcing of contact forms and the use of various
marketing tools.

We would like to emphasize that by “intentional
leakage” we merely mean that a website, through the
conscious use of third-party tools that receive user PII,
is leaking a user’s private information to third parties,
who may or may not capitalize on that information in an
abusive and opaque way. We do not mean that a website
is, capriciously or maliciously, compromising the PII of
its users.

3.1 Potential PII Leakage

JavaScript has emerged as the defacto client-side pro-
gramming language of the web. The vast majority of
modern websites use JavaScript to dynamically manip-
ulate a page’s DOM, enrich user experience through
asynchronous requests and responses, and off-load non-
critical, server functionality to the client.

As with any programming language, one can de-
velop complex libraries using JavaScript and make di-
verse functionality available through well-defined APIs.
In fact, programmers of web applications have come to
rely on external third-party libraries to implement an-
alytics (e.g. Google Analytics), interface enhancements
(e.g. jQuery), and social-network integration (e.g. Face-

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 24

Fig. 2. Number of remote domains trusted for JavaScript on a
website’s main page versus its contact page.

book Like and Share). These libraries are loaded, on-
demand, by a user’s browser and incorporated into the
origin of the including website. As such, in the ab-
sence of explicit isolating done through complicated,
non-standard mechanisms, the providers of externally
loaded JavaScript libraries have, by default, full control
over the content of the webpage in which they are in-
cluded. The remotely-included, third-party code can in-
spect and modify everything that a local JavaScript file
can. For this reason, researchers have conducted mea-
surements studies mapping the trust relationships be-
tween websites and the servers from where they include
remote JavaScript code, showing the dangers of careless
remote JavaScript inclusions [28, 41].

For our purposes, we are interested mostly in the
JavaScript libraries included in contact pages and how
these libraries differ in respect to the ones loaded on
the main page of a website. Figure 2 shows a scatter-
plot of the number of unique third-party domains associ-
ated with the included JavaScript libraries on the main
page of each website, versus the number of unique third-
party domains associated with libraries on the contact
page of the same site. The full lines are the regression
lines for the top 1K, 10K and 100K domains, whereas
the dotted line represents the y = x which allows one
to easily distinguish the websites including JavaScript
from more unique domains on their contact page than
on their main page (points above the dotted line). Based
on Figure 2, we make the following observations:
– As prior studies have shown, popular websites in-

clude remote JavaScript sources from tens of remote

unique domains. If any one of these remote domains
gets compromised, the attacker can abuse the exist-
ing trust relationship to serve malicious code to the
most popular websites of the Internet.

– Fortunately, most web administrators understand
that a contact page is more sensitive that the main
page of a website and thus choose to include less re-
mote libraries on it. At the same time, 29% of pop-
ular websites do the exact opposite, with the worst
offender including code from 20 times as many re-
mote domains on their contact page, than on their
main page.

– Inclusions of remote JavaScript code increase as we
move towards less popular sites, both on the main
page of a website as well as on its contact page.

Every single one of the remote JavaScript libraries
present on a contact form can, with relative ease, read
the user’s PII as it is typed by the user, through the use
of appropriate key-pressed event handlers. As such, we
consider the excessive use of remote JavaScript libraries
on contact forms to be potential PII leakage.

Due to the popularity of certain remote JavaScript
providers (over all website pages), it is hard to observe
the change of remote inclusions for smaller players in
the contact form ecosystem. For this reason, in Table 1,
we show the top remote code providers in terms of rela-
tive increase. For instance, zndsk.com was seen 54 times
more on a contact page, than on a main page. One can
see many entries that offer contact-form-handling ser-
vices like zndsk.com (used by zendesk.com), desk.com
and wufoo.com, as well as visitor tracking services like
crazyegg.com. Finally, Oracle uses the rnengage.com do-
main for its RightNow software that also provides per-
sonalized communication with customers.

3.2 Actual PII Leakage

In this section, we turn our attention to actual PII leak-
age captured by our proxy, i.e., contact forms leaking a
user’s personally identifiable information to third par-
ties. We categorize the leakage as either accidental, or
intentional, depending on the way that a user’s informa-
tion is handled and our analysis of each case of leakage.

Accidental leakage

A common vector for actual PII leakage is through the
well-understood practice of exposing sensitive informa-

zndsk.com
zndsk.com
zendesk.com
desk.com
wufoo.com
crazyegg.com
rnengage.com

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 25

Table 1. Remote JavaScript providers that appear much more on
contact pages than on main pages.

Domain Main Contact Times
More on Contacts

zndsk.com 1 54 54
amikay.com 3 90 30
desk.com 4 89 22
wufoo.com 14 193 14
nr-data.net 27 372 14

rnengage.com 10 113 11
ooh.li 7 58 8

gwallet.com 19 117 6
ezakus.net 20 108 5
r1-cdn.net 28 122 4

Just on Contacts
prfct.co 0 291 -

crazyegg.com 0 196 -
hrblock.com 0 175 -
zdassets.com 0 147 -

tion in URLs. For our study, we measure the number
of contact forms that expose the user’s PII by sub-
mitting them to the server using the GET method.
For instance, if example.com has a contact form that
uses the GET method to submit a user’s contact data
to www.example.com/submit, the user’s browser will
eventually create a request such as www.example.com/
submit?fname=John&lname=Doe&msg=[...].
The web server will respond with a page containing
some sort of acknowledgement and, in a typical web
page, references to multiple remote resources. Thus,
if, for instance, the acknowledgment page is using the
Google analytics platform, the browser will request
the appropriate JavaScript library from the google-
analytics.com domain. That request, will also contain
the Referer header (i.e., the URL containing the form
parameters) which will essentially be volunteering to
Google the user’s first name, last name, and any other
contact details provided by the user on the contact form.
Note that the Referer header is emitted with any re-
quest for a remote resource, thus a user’s PII will also
be leaked in requests for remote images, cascading style
sheets, pages for iframes, SWF files, etc.

In our study, we discovered that 423 forms i.e. 2.5%
of the total number of contact forms which our crawler
submitted, leaked the user’s PII through the URL query
string. The data leaked to a total of 3,573 unique third-
party domains with an average of 8 third-party domains
receiving the user’s PII per GET-submitting form. For
our purposes, a third-party domain is either a domain
name whose Public-Suffix+1 is different than the first-

party domain (e.g. server.ads.com receiving PII via the
Referer header of www.example.com), or a subdomain
of the main domain whose IP address is registered to
a different autonomous system (AS) than the IP ad-
dress of the first-party website. We chose to broaden
the notion of a remote domain since certain tracking and
analytics companies bypass third-party restrictions im-
posed by the user by mapping a subdomain of the main
first-party domain, e.g., tracking.example.com, directly
to their remote servers [33]. Table 2 shows the 15 most
popular third-party domains that ended up receiving
our PII through the browser’s Referer header. One can
straightforwardly recognize popular companies offering
libraries for analytics, social networks, advertising, and
market research.

Even though one may be tempted to dismiss the
seriousness of this issue due to the small overall per-
centage of PII-leakage through the URL (2.5%), it is
important to recognize the cascading effects on a user’s
privacy, of even a single PII-including Referer header
towards a popular third-party. Any single one of the
3,573 unique remote hosts where the browser volun-
tarily leaks the user’s PII can now link the user’s con-
tact details, to whatever cross-domain tracking method
they are already employing, such as, third-party cook-
ies [34] or device fingerprinting [1, 2, 7, 26, 29]. Thus,
as the user keeps browsing the web, the popular third-
parties with a near-ubiquitous presence can now track
that user, by name, across websites. While we do not
know whether all 3,573 third parties make use of this ac-
cidentally leaked data, it is a safe assumption that some
do. This assumption is backed up by historical examples
where advertising companies do not hesitate to try any
method that gives them an advantage over the rest of
the competition [4, 12, 35, 36]. Finally, note that man-
ually disabling the transmission of the Referer header
does not fully solve the problem. While the providers of
passive remote resources (such as images and Cascad-
ing Style Sheets) will no longer receive a user’s PII, the
active remote resources can still inspect the URL of the
website in which they are included (e.g. inspecting the
window.location.href property through JavaScript)
which, in the cases of GET-submitted forms, will in-
clude a user’s PII.

Intentional leakage

After accounting for the potential PII leakage through
remote JavaScript inclusions and the actual, but acci-
dental, PII leakage due to poorly-coded HTML forms,

example.com
www.example.com/submit
www.example.com/submit?fname=John&lname=Doe&msg=[...]
www.example.com/submit?fname=John&lname=Doe&msg=[...]
google-analytics.com
google-analytics.com
server.ads.com
www.example.com
tracking.example.com

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 26

Table 2. Third-party domains that most frequently receive user
PII via the Referer header. The “Overall Presence” column shows
the presence of each third party over the 100K websites of our
study, thereby quantifying the cascading effects of accidental PII
leakage

Domain # of websites Overall Presence
google-analytics.com 260 63.9%

google.com 174 41.8%
facebook.com 156 38.2%
doubleclick.net 150 45.0%
twitter.com 85 20.8%

googlesyndication.com 69 24.6%
scorecardresearch.com 58 16.3%

googleapis.com 58 40.3%
adnxs.com 50 20.8%

googleadservices.com 46 22.6%
rlcdn.com 40 7.3%

cloudfront.net 35 14.1%
yahoo.com 33 15.2%

...
gstatic.com 22 25.9%

there is one last category of PII leakage related to con-
tact forms left to be discussed, namely, intentional PII
leakage.

By analyzing the results of our crawling experiment
and removing cases of accidental PII leakage we discov-
ered that 6.1% (1,035) of all submitted contact forms
leak a user’s PII to third parties. Even though the ex-
act nature of each third party is unique, one can, with-
out too much loss of precision, categorize them in two
broad categories, namely, form builders and marketing
solutions.

Form Builders. Form builders include solutions
that allow website administrators to deploy contact
forms without implementing them or hosting them.
Upon registering with a form builder, the form builder
provides to a website administrator, either an auto-
matically generated HTML form or a JavaScript snip-
pet which is responsible for dynamically creating and
styling a similar HTML contact form. In both cases,
while the contact form is situated within the first-party
website, the user’s contact details will be submitted to
the form builder. The form builder will then either for-
ward each user inquiry to the form-embedding adminis-
trator via an email, or provide a more sophisticated con-
trol panel for managing and replying to user inquiries.
Form builders are responsible for 3% of the total actual
and intentional PII leakage. We list some of the most
popular form builders in Table 3.

Even though form builders may initially appear
harmless, it is important to realize that they are es-
sentially invisible aggregators of user inquiries with the
ability to store and correlate PII from a multitude of
unrelated third-party domains. We classify them as in-
visible since there is no visual indication available to the
user to communicate the fact that while her details are
provided to what appears to be example.com they will,
in fact, be submitted to formbuilder.com. To the extent
that the submission of a contact form is analogous to the
sending of a letter, we argue that users expect that only
an intended recipient will be able to read their letters,
without middle men that can opaquely open, inspect,
and forward their letters. Note that, as shown in Ta-
ble 3, some form builders do not even wait for a user
to click “submit”, before reading and sending out their
PII.

Marketing solutions. Next to form builders, the
vast majority of third parties receiving a user’s PII from
web contact forms belong to the broad category of mar-
keting solutions whose aim is to capture, analyze and
manage a website’s target audience. These PII-handling
products are responsible for 3.65% of intentional PII
leakage over all submitted forms.1 It is more likely that
PII captured by those scripts will be shared with other
parties and used for targeted advertising, email mar-
keting, than other types of third parties, such as the
aforementioned form builders. Table 3 shows the most
popular marketing solutions that were the recipients of
intentionally leaked PII.

Even though no two marketing solutions are iden-
tical, the marketing solutions that were the most un-
expected, were web leads. Web leads are analytics plat-
forms that go beyond the traditional analytics in that
they try to identify users of interest, within the popula-
tion of users browsing a website at any given time. As
their name indicates, web leads platforms try to identify
users of high value so that a sales team with constrained
resources can focus their efforts on the users that are the
most likely to be beneficial to their company. For in-
stance, in the most straightforward, and least intrusive
type of web leads, collected email addresses are com-
bined with business information obtained by a combina-
tion reverse DNS-lookups on the visitors’ IP addresses,
and the augmenting of that information with data from

1 Note that the sum of these two categories is greater than
6.1% since some websites adopt either more than one marketing
solutions, or a combination of a marketing solution and a form
builder.

example.com
formbuilder.com

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 27

Website A

Website B

PageForm PII

Sends
PII

Found PII

Anon. Visitor

PagePage Visitor

Visits

PII

Captured PII

Webleads

</>

</>

A

B

User

Fig. 3. High-level view of hidden, server-side, PII sharing between
customers of specific web leads platforms

additional sources, such as LinkedIn. Thus, a sales agent
can focus on users belonging to companies that are the
most likely to become future customers. The captured
PII becomes part of the user’s tracked identity so that
a user who has identified herself (via a contact form) to
example.com, will be identified, by name, in all future
visits of example.com. While the exact tracking details
vary, we noticed that some companies, such as Active-
Conversion and Sirius Digit’M, go beyond the use of
stateful tracking, by using various fingerprinting tech-
niques.

While researching the exact workings of the iden-
tified web leads companies, we encountered companies
that use, what we consider to be, the most intrusive and
least transparent technique for deanonymizing users. In
this technique, as shown in Figure 3, all first party web-
sites that are customers of one specific web leads plat-
form share a common server-side PII database where
contact details captured on one website, are available
to all other websites. Specifically, the details that a user
provides in the contact form of one website are cap-
tured and associated with a third-party cookie belong-
ing to the domain of the web leads platform. This ef-
fectively means that thousands of sites that are cus-
tomers of the same web leads platform and with which
a user has never interacted, can suddenly deanonymize
a fraction of their visiting users. As more and more
websites participate in this “ring”, more and more
users can be effortlessly deanonymized. These compa-
nies, such as LeadLander [19] and the recently defunct
Relead, openly claim to provide such deanonymizing
functionality to their clients [18, 31] while users who
have happened to be contacted by a website that they
were browsing but never provided their details to, have
openly expressed their discomfort [37].

Table 3. Third-party domains belonging to marketing solutions
and form builders that capture user PII that is purposefully leaked
via a contact form. Shaded entries denote domains belonging to
companies offering marketing solutions. Note that some third-
party JavaScript libraries leak a user’s PII even before the user
submits the contact form.

Domain # of websites
On Submit

wufoo.com 159
marketo.com 77
salesforce.com 71
hubspot.com 71

list-manage.com 67
aweber.com 46

formstack.com 37
eloqua.com 34
zopim.com 33

infusionsoft.com 30
blogger.com 25
addthis.com 23
zendesk.com 21
omtrdc.net 21
bizible.com 21
foxyform.com 20

2o7.net 20
emailmeform.com 18

caspio.com 15
pardot.com 15

... ...
trackalyzer.com 9
bluekai.com 8

... ...
leadformix.com 4

Filling Out
sessioncam.com 5
veinteractive.com 3
hawksearch.com 1
kayako.com 1

onlinechatcenters.com 1
tendinc.com 1

hawksearch.info 1

Even though LeadLander has not achieved a high
market penetration in the Alexa top 100K websites (dis-
covered by our crawler on nine different websites as
trackalyzer.com), the same cannot be said for its adop-
tion by less popular websites. According to statistics
kindly provided to us by Ghostery [11], LeadLander has
been identified on more than 1,108 different domains.

Listing 4 shows a JavaScript snippet of LeadLan-
der’s PII capturing script, namely the part that is re-
sponsible for extracting a user’s email address from a
contact form. One can see that the script is trying to
automatically identify the element containing a user’s

example.com
example.com
trackalyzer.com

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 28

Table 4. Actual PII leakage by website category

Category % Forms % Accident % Purpose
Computers/Internet 18.5 2.0 8.5
Business/Economy 10.2 3.6 8.4

Shopping 7.4 2.3 5.3
Entertainment 4.9 2.5 3.7
News/Media 4.7 4.1 9.8

Blogs/Web Comm. 4.6 1.8 10.8
Education 3.1 2.7 5.6
Travel 3.0 3.5 2.5

Financial Services 2.8 1.9 3.0
Search/Portals 2.5 2.8 3.3

Games 2.4 2.2 3.1
Health 2.1 1.9 5.8
Sports 2.0 1.4 3.7

Pornography 1.9 0.9 2.7

email address by iteratively working through a long list
of commonly used element names. The code is triggered
on the form’s onSubmit JavaScript event and transmits
the captured input values to LeadLander via a track-
ing “pixel tag". This plug-and-play nature of the script
means that a website administrator can just include the
remote JavaScript library from the LeadLander plat-
form and become part of their “deanonymizing ring”
with little or no effort.

It is worthwhile pointing out that there may be
many more web leads platforms that behave in similar
ways. The unobservable, server-side sharing of PII in-
formation makes it, unfortunately, impossible to detect
this PII sharing from the client-side, barring, of course,
side-effects such as a user being contacted by a web-
site to which she did not provide her email address. To
obtain a rough approximation of this phenomenon, we
tracked the email responses that we received from the
contact forms submitted by our contact-form-sensitive
crawler. Our inquiry to all recipients was the, rather
universal, message “I want to ask a couple of questions,
how can I call you?". Over the duration of our experi-
ment we received 309 emails from third parties, that is,
domains which our crawler never contacted.

3.3 Categories of first-party websites

One may wonder whether certain categories of websites
are more prone to PII leakage than others. To investi-
gate this category-based leakage, we used TrendMicro’s
public website categorization engine [39] to categorize
the 16,981 websites on which our crawler was able to
discover a contact form. Due to the large number of dis-

var llelementemail = (document .forms[llformlooper2].
elements [llelementlooper]. name)

if ((llemailfound == false &&
(llelementemail ==’email123 ’)
|| (llelementemail ==’signup_t1 ’)
|| (llelementemail ==’Sender ’)
|| (llelementemail ==’jform[contact_email]’)
|| (llelementemail ==’web_form_1 [field_2]value ’

&& llfrmid ==23954)
|| (llelementemail ==’input_5 ’ && llfrmid ==25451)
|| (llelementemail ==’your -email ’

&& llfrmid ==19415)
|| (llelementemail ==’email ’)
|| (llelementemail ==’name ’ && llfrmid ==22344)
|| (llelementemail ==’Email ’)
|| (llelementemail ==’lldEmail ’)
|| (llelementemail ==’si_contact_email ’)
|| (llelementemail ==’Contact_Email ’)
|| (llelementemail ==’mail ’)
|| (llelementemail ==’e-mail ’)
|| (llelementemail ==’E-mail ’)
|| (llelementemail ==’E-Mail ’)
|| (llelementemail ==’e_mail ’)
|| (llelementemail ==’EMAIL ’)

...

Fig. 4. Snippet of LeadLander email-extracting JavaScript code.
Notice how the script tries to guess the name of the DOM ele-
ment contain a user’s email address.

covered categories (78), Table 4 shows the actual leakage
of the categories of websites which comprised at least 2%
of 16,981 websites.

While the leakage of each category varies signifi-
cantly, one can see certain patterns emerging. For in-
stance, websites categorized as News/Media are consis-
tently among the top sites that leak PII, in both ac-
cidental as well as intentional leakage. Moreover, the
range of leakage in the accidental-leakage category is
significantly smaller than the one in the intentional-
leakage category. This shows that while programming
mistakes and carelessness can appear in all websites,
some categories of websites are much more likely to in-
tentionally leak a user’s PII. Lastly, we were surprised
to see that sites related to pornography leak the least
amount of PII. One reasonable explanation is that users,
if they ever feel the need to contact an adult website,
are unlikely to reveal their true identities in the contact
forms. Thus any PII captured may be of little use to
marketers.

4 Countermeasures
As we showed in the previous section, a user’s PII, as
that is entered into the contact forms of first-party web-
sites, can land in the hands of third parties, either by
omission or by commission. While one could, in princi-

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 29

ple, inspect the HTML and JavaScript code of a contact
form before filling in their details, the technical skills re-
quired to do so are well outside the reach of everyday
users of the web.

To remedy this situation, in this section, we describe
the design and implementation of Formlock, a browser
extension that not only alerts users of “leaky” forms but
also protects the user’s PII from leakage, even if a user
decides, despite our warning, to utilize a leaky contact
form. In the following paragraphs, we describe the de-
tection of leaky forms and the steps that Formlock
takes in order to safeguard a user’s PII from client-side
leakage. Section 7 provides a non-tracked download link
for our Formlock extension for the Chrome browser.

Form Warning

Given the current specification of HTML, the method
of form submission (GET versus POST), the target of
a form (first party versus third-party website) and the
protocol of the submission (HTTP versus HTTPS), play
no role in the visualization of a form. For instance,
Moxie Marlinspike’s SSL stripping techniques, included
a MitM rewriting login forms converting them from sub-
mitting the user’s credentials over HTTPS to submit-
ting them over HTTP [21]. Marlinspike’s attack abused,
among others, the lack of any visual cues indicating the
secure or insecure submission of credentials, as that is
dictated by the protocol of the submitting form.

In the context of this paper, we argue that users
need to know that a contact form can endanger their
PII. To that extent, Formlock highlights contact forms
that either submit their inputs to third-party domains,
or submit their inputs using the GET method. These
form attributes are straightforwardly and reliably ex-
tractable from the contact form’s HTML code (see Fig-
ure 5), ensuring that users are not flooded with false
positives.

While not strictly necessary from a technical point
of view, in addition to the highlighting of forms, Form-
lock provides a context menu which the user can con-
sult in order to find out the explanation why Formlock
marked any given contact form as leaky.

Form Locking

Even though interacting with a leaky form is likely to
result in PII leakage, we expect that some users will
want to contact a remote website, despite our warn-

for (var f = 0; f < document .forms. length ; ++f) {
var curForm = document .forms[f];

var actionDomain = curForm . getAttribute (’action ’);
// Supporting functions
actionDomain = getHostname (actionDomain);
actionDomain = getRootDomain (actionDomain);

// tabDomain is provided upon injection
if (tabDomain !== actionDomain ||

curForm . method === "get") {
curForm .style. border = " medium solid red";

}
}

Fig. 5. Snippet of Formlock, responsible for identifying and
highlighting “leaky” contact forms

ings. Moreover, PII leakage may occur, not because of a
leaky form, but because of dynamic scripts that will ex-
filtrate user information as soon as that is typed into a
contact form. To accommodate these cases, Formlock
has a “Lock-Form” mode which the user can enable and
which attempts to lock-down the user’s browsing envi-
ronment so that the chance of leakage is reduced, if not
altogether eliminated. This lock down consists of the
following steps:
1. Upon the enabling of the “Lock-Form” mode,

Formlock temporarily blocks all requests towards
servers other than the first-party server and the
server that is denoted in the action parameter of
the contact form. This will stop the leakage of PII
by invasive scripts which extract a user’s details
while those are being typed or upon form submis-
sion, without hindering the originally intended sub-
mission of the contact form. Note that we cannot
stop the submission of a form towards a third-party
domain, as in the case of form builders, since if we
do, the user’s contact request will never reach its
intended destination.

2. Formlock records the timestamp of the lock-down
so that it can, upon releasing the lock (Step 4), re-
move all new browsing data, including cookies and
values in HTML5 storage. We included this feature
in order to defend against scripts which, upon dis-
covering that they cannot contact the outside world,
would “stash” the user’s PII in cookies and HTML5
storage, so that they can leak it after the submission
of the contact form, when their connectivity will be
restored.

3. If a form is expected to be submitted using the GET
method, Formlock cannot just change the proto-
col of the submission to POST since the server-side
code that is meant to receive the user’s details will
likely fail. Instead, Formlock allows the submis-

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 30

sion of the form using a GET request while all third-
party requests are blocked, and removes parameters
from the resulting URL before refreshing the page
and releasing the lock (Step 4). As such, the user’s
details will not leak via the Referer header or the
document.location.href property.

4. Once a form is successfully submitted, the user can
request from Formlock to go out of the “Lock-
form” mode. Upon that request, Formlock reloads
the page (essentially stopping all scripts that may be
constantly trying to leak the captured PII), restores
the cookies and HTML5 storage to their previously
stored state (Step 2), stops the temporary block-
ing of third-party requests, and reloads the contact
page, thereby fully restoring the functionality of the
original page.

Limitations

Since Formlock is a browser extension, it is, by def-
inition, only able to stop client-side leakage, occuring
through third-party requests which leak PII using head-
ers and parameters. This leakage is stopped by Form-
lock through the temporary blocking of all third-party
requests and the rollback of client-side state. If, however,
a first party colludes with a third party to leak informa-
tion from the server-side of the first party to the third
party, then Formlock will not be able to stop this kind
of PII leakage.

Future work

We intend to extend Formlock in order to add crowd-
sourcing capabilities, where an extension, after receiv-
ing a user’s explicit opt-in, will report to our servers
the websites where leaky forms were discovered, with-
out, of course, reporting the user’s PII. This will allow
us to expand our understanding past Alexa’s top 100K
websites, and particularly to smaller and more regional
websites which tend to evade investigation due to their
absence from the lists of popular websites provided by
Alexa and Quantcast. Similar crowdsourcing techniques
have been used both by researchers [24] as well as com-
mercial extensions [11] and have allowed them to quan-
tify phenomena of interest at a scale which would never
be realizable via active crawling. We will further investi-
gate the exact architecture of Formlock’s crowdsourcing
features, to provide as much privacy as possible to the
participating users.

5 Related Work
To the best of our knowledge, there has been no study
of intended and unindented PII leakage through HTML
contact forms that is of comparable breadth to our work.

Referer-based studies

Krishnamurthy et al. manually investigate the PII leak-
age of 120 popular websites that occurs during sign-
up and normal interaction due to GET-submitting
forms [15]. The authors discovered that 48% of these
sites leaked a user identifier to a third-party website.
Using a similar methodology, Mayer signed-up and in-
teracted with 250 websites while recording all requests
with the FourthParty measurement platform [10], find-
ing that 61% of the tested websites leaked a user’s PII
to third parties [22].

Krishnamurthy and Wills performed a separate
study for online social networks (OSNs) where they
manually interacted with 12 OSNs finding cases where
the PII that a user entrusted to an OSN would un-
intentionally find its way to third parties [17]. Chaa-
bane et al. recently investigated the leakage of user
PII via OSN applications by automatically interacting
with more than 1,200 OSN applications on two different
OSNs [6]. The authors discovered that 22% of Facebook
applications and 69% of RenRen applications leak, in-
tentionally (via an HTTP request) or unintentionally
(via the Referer header), a user’s PII to forth-parties,
that is, parties other than the third-parties who serve
the OSN application. In our study, we opted for a more
fine-grained analysis of intentional and accidental leak-
age since we observed that many generic trackers send
to third-parties the URL of their hosting page. As de-
scribed in Section 3.2, when the current URL is a result
of a GET-submitted form, it will include PII which will
be accidentally sent towards third-parties and thus, in
the methodology of Chaabane et al., will be counted as
intentional leakage.

Nikiforakis et al. investigated the referer-
anonymizing services that some websites use to hide
their presence from linked websites [30]. The authors
found that the use of such services sacrifices the privacy
of users in order to protect the privacy of the original
website, since advertisers who are present on these ser-
vices can link a user across more websites than they
could, had the user transited directly from the linking
site to the linked one.

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 31

JavaScript-based studies

More than one study has established that the ease of
dynamic inclusions of remote JavaScript code does not
come without a cost. From a security perspective, in-
cluding remote code that can change without notice
opens up websites to attacks where an attacker, instead
of attacking a website directly, attacks the servers that
are trusted for JavaScript code and alters the served
JavaScript scripts [28, 41]. In fact, there have been many
real-world examples of such attacks, with a recent one
being the Syrian Electronic Army redirecting visitors of
Reuters by actually compromising one of the advertising
networks that Reuters was trusting for ads (via the use
of remote JavaScript inclusions) [14]. We suspect that,
due to the lack of visual changes, a similar attack where
a remotely-included JavaScript library would be mali-
ciously modified to exfiltrate a user’s PII, would remain
undetected for a substantial amount of time.

From a privacy perspective, the ease of includ-
ing remote JavaScript code has enabled the increased
adoption of tracking technologies [16, 23], where web-
sites can now receive detailed tracking information
about their users by simply adding a small snippet of
JavaScript in their pages. Recent studies have shown
that next to traditional stateful, cookie-based track-
ing [9, 34, 35], many websites are now tracking their
users using stateless tracking techniques, which typi-
cally involve the fingerprinting of a user’s browsing en-
vironment [1, 2, 7, 26, 29]. As described in Section 3.2,
some of the marketing solutions that we discovered on
the contact pages that intentionally leaked user PII are
also making use of fingerprinting techniques.

6 Conclusion
In this paper, we conducted the first large-scale study
quantifying the leakage of personally identifiable in-
formation from the contact forms of websites. Con-
tact forms are where users are asked to give up their
anonymity and communicate, by name, with a website.
As such, the pages that host these forms must respect
their users and not leak, either by accident or inten-
tionally, a user’s PII to third parties. By designing a
custom crawler that can autonomously identify and fill-
in forms while monitoring browser requests, we were
able to characterize the PII leakage on the 100,000 most
popular websites of the web. By analyzing the crawler-
collected data, we discovered that, apart from having

their details intentionally leaked to third parties, users
are requested to enter their details in pages laden with
third-party content and poorly-coded HTML forms, re-
sulting in thousands of third-party domains receiving
user PII, without the user’s knowledge, or consent.

Instead of merely measuring the problem and rely-
ing on web programmers and browser vendors to take
steps to decrease the discovered PII leakage, we de-
signed and implemented Formlock, a browser exten-
sion that warns the user of leaky forms and has the
ability to temporarily lock-down a page so that a user’s
PII can be protected, both against accidental as well
as intentional client-side leakage. We hope that this
study can educate developers about the privacy con-
sequences of sloppy programming practices on the web,
raise awareness of the presence and practices of certain
intrusive online marketing platforms, and equip users
with the technology to reclaim the lost control over the
dissemination of their PII.

Acknowledgments: We thank the anonymous review-
ers and our shepherd Erman Ayday for their valuable
input. We also thank Ghostery and Evidon for sharing
with us data about the presence of specific web leads
companies outside of the Alexa top 100K webpages.
Some of the described experiments were conducted on
virtual servers kindly provided to us by Linode. This
work was supported by NSF grant CNS-1527086.

7 Availability
The prototype of the Formlock Chrome extension is
available via the following code repository:

https://github.com/ostarov/Formlock

References
[1] G. Acar, C. Eubank, S. Englehardt, M. Juarez,

A. Narayanan, and C. Diaz. The Web never forgets: Per-
sistent tracking mechanisms in the wild. In Proceedings of
the 21st ACM Conference on Computer and Communica-
tions Security (CCS), 2014.

[2] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses,
F. Piessens, and B. Preneel. FPDetective: Dusting the Web
for fingerprinters. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2013.

[3] Alexa. Top 1 million websites. http://s3.amazonaws.com/
alexa-static/top-1m.csv.zip.

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 32

[4] J. Angwin. Meet the Online Tracking Device That is
Virtually Impossible to Block. http://www.propublica.
org/article/meet-the-online- tracking-device-that-is-
virtually-impossible- to-block, 2014.

[5] BrowserMob Proxy. http://bmp.lightbody.net/.
[6] A. Chaabane, Y. Ding, R. Dey, M. Ali Kaafar, and K. Ross.

A Closer Look at Third-Party OSN Applications: Are They
Leaking Your Personal Information? In Passive and Ac-
tive Measurement conference (2014), Los Angeles, United
States, Mar. 2014. Springer.

[7] P. Eckersley. How Unique Is Your Browser? In Proceedings
of the Privacy Enhancing Technologies Symposium (PETS),
pages 1–17, 2010.

[8] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun,
L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taint-
droid: an information-flow tracking system for realtime pri-
vacy monitoring on smartphones. ACM Transactions on
Computer Systems (TOCS), 32(2):5, 2014.

[9] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman,
J. Mayer, A. Narayanan, and E. W. Felten. Cookies that
give you away: The surveillance implications of web track-
ing. In Proceedings of the 24th International Conference on
World Wide Web (WWW), pages 289–299, 2014.

[10] FourthParty: Web Measurement Platform. http://www.
fourthparty.info.

[11] Ghostery. https://www.ghostery.com.
[12] J. HOFFMAN-ANDREWS. Verizon Injecting Perma-Cookies

to Track Mobile Customers, Bypassing Privacy Controls.
https://www.eff.org/deeplinks/2014/11/verizon-x-uidh,
2014.

[13] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wether-
all. These aren’t the droids you’re looking for: retrofitting
android to protect data from imperious applications. In
Proceedings of the 18th ACM conference on Computer and
communications security, pages 639–652. ACM, 2011.

[14] F. Jacobs. How Reuters got compromised by the Syrian
Electronic Army. https://medium.com/@FredericJacobs/
the-reuters-compromise-by-the-syrian- electronic-army-
6bf570e1a85b, 2014.

[15] B. Krishnamurthy, K. Naryshkin, and C. E. Wills. Privacy
leakage vs. protection measures: the growing disconnect. In
Web 2.0 Security and Privacy Workshop, 2011.

[16] B. Krishnamurthy and C. Wills. Privacy diffusion on the
web: A longitudinal perspective. In Proceedings of the 18th
International Conference on World Wide Web, WWW ’09,
pages 541–550, New York, NY, USA, 2009. ACM.

[17] B. Krishnamurthy and C. E. Wills. On the leakage of per-
sonally identifiable information via online social networks.
In Proceedings of the 2nd ACM workshop on Online social
networks, pages 7–12. ACM, 2009.

[18] Who are these tracking companies? Meet LeadLander. http:
//www.abine.com/blog/2012/leadlander/, 2012.

[19] LeadLander. Website Visitor Analytics. http://www.
leadlander.com.

[20] I. D. Marino. Ghost Driver / PhantomJSDriver. https:
//github.com/detro/ghostdriver.

[21] M. Marlinspike. New Tricks for Defeating SSL in Practice.
In Proceedings of BlackHat 2009, DC, 2009.

[22] J. Mayer. Tracking the trackers: Where everybody knows
your username. http://cyberlaw.stanford.edu/node/6740,

2011.
[23] J. R. Mayer and J. C. Mitchell. Third-party web tracking:

Policy and technology. In IEEE Symposium on Security and
Privacy, pages 413–427. IEEE Computer Society, 2012.

[24] J. Mikians, L. Gyarmati, V. Erramilli, and N. Laoutaris.
Crowd-assisted Search for Price Discrimination in E-
Commerce: First results. In Proceedings of the 9th Inter-
national Conference on emerging Networking EXperiments
and Technologies (CoNEXT), 2013.

[25] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M.
Voelker, and S. Savage. Re: Captchas-understanding
captcha-solving services in an economic context. In USENIX
Security Symposium, volume 10, page 3, 2010.

[26] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting
canvas in HTML5. In Proceedings of the Workshop on
Web 2.0 Security and Privacy (W2SP). IEEE Computer
Society, May 2012.

[27] Network Advertising Initiative. Understanding Online Adver-
tising. https://www.networkadvertising.org/faq.

[28] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker,
W. Joosen, C. Kruegel, F. Piessens, and G. Vigna. You
are what you include: Large-scale evaluation of remote
javascript inclusions. In Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security, CCS
’12, pages 736–747, New York, NY, USA, 2012. ACM.

[29] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Exploring
the ecosystem of web-based device fingerprinting. In Pro-
ceedings of the 2013 IEEE Symposium on Security and Pri-
vacy, SP ’13, pages 541–555, Washington, DC, USA, 2013.
IEEE Computer Society.

[30] N. Nikiforakis, S. Van Acker, F. Piessens, and W. Joosen.
Exploring the Ecosystem of Referrer-Anonymizing Services.
In Proceedings of the 12th Privacy Enhancing Technology
Symposium (PETS), pages 259–278, 2012.

[31] D. Nix. You’re not anonymous. I know your name,
email, and company. https://web.archive.org/web/
20140103065932/http://blog.42floors.com/youre-not-
anonymous-i-know-your-name-email- and-company/, 2012.

[32] PhantomJS. Headless WebKit. http://phantomjs.org.
[33] E. Picard. We Don’t Need No Stinkin’ Third-Party Cookies.

http://adexchanger.com/data-driven-thinking/we-dont-
need-no-stinkin-third-party-cookies/, 2013.

[34] F. Roesner, T. Kohno, and D. Wetherall. Detecting and
defending against third-party tracking on the web. In Pro-
ceedings of the 9th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’12, pages 12–12,
Berkeley, CA, USA, 2012. USENIX Association.

[35] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoof-
nagle. Flash cookies and privacy. In AAAI Spring Sympo-
sium: Intelligent Information Privacy Management, 2010.

[36] E. Steel. A Web Pioneer Profiles Users
by Name. http://www.wsj.com/articles/
SB10001424052702304410504575560243259416072, 2010.

[37] S. Sunam. Google Plus post on December 8, 2012, (ac-
cessed February 23, 2015). https://plus.google.com/
+SumitSuman01/posts/2jLJ5B4yPYF.

[38] The Wall Street Journal. What They Know. http://www.
wsj.com/public/page/what-they-know-digital-privacy.html.

http://www.propublica.org/
http://www.propublica.org/
article/meet-the-online-
tracking-device-that-is-virtually-impossible-
tracking-device-that-is-virtually-impossible-
to-block
http://bmp.lightbody.net/
http://www.fourthparty.info
http://www.fourthparty.info
https://www.ghostery.com
https://www.eff.org/deeplinks/2014/11/verizon-x-uidh
https://medium.com/@FredericJacobs/the-reuters-compromise-by-the-syrian-
https://medium.com/@FredericJacobs/the-reuters-compromise-by-the-syrian-
electronic-army-6bf570e1a85b
electronic-army-6bf570e1a85b
http://www.abine.com/blog/2012/leadlander/
http://www.abine.com/blog/2012/leadlander/
http://www.leadlander.com
http://www.leadlander.com
https://github.com/detro/ghostdriver
https://github.com/detro/ghostdriver
http://cyberlaw.stanford.edu/node/6740
https://www.networkadvertising.org/faq
https://web.archive.org/web/20140103065932/http://blog.42floors.com/youre-not-anonymous-i-know-your-name-email-
https://web.archive.org/web/20140103065932/http://blog.42floors.com/youre-not-anonymous-i-know-your-name-email-
https://web.archive.org/web/20140103065932/http://blog.42floors.com/youre-not-anonymous-i-know-your-name-email-
and-company/
http://phantomjs.org
http://adexchanger.com/data-driven-thinking/we-dont-need-no-stinkin-third-party-cookies/
http://adexchanger.com/data-driven-thinking/we-dont-need-no-stinkin-third-party-cookies/
http://www.wsj.com/articles/SB10001424052702304410504575560243259416072
http://www.wsj.com/articles/SB10001424052702304410504575560243259416072
https://plus.google.com/+SumitSuman01/posts/2jLJ5B4yPYF
https://plus.google.com/+SumitSuman01/posts/2jLJ5B4yPYF
http://www.wsj.com/public/page/what-they-know-digital-privacy.html
http://www.wsj.com/public/page/what-they-know-digital-privacy.html

Are You Sure You Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms 33

[39] Trend Micro Site Safety Center. http://global.sitesafety.
trendmicro.com/.

[40] B. Ur, P. G. Leon, L. F. Cranor, R. Shay, and Y. Wang.
Smart, useful, scary, creepy: Perceptions of online behavioral
advertising. In Proceedings of the Eighth Symposium on
Usable Privacy and Security, SOUPS ’12, pages 4:1–4:15,
New York, NY, USA, 2012. ACM.

[41] C. Yue and H. Wang. Characterizing insecure javascript
practices on the web. In Proceedings of the 18th Interna-
tional Conference on World Wide Web, WWW ’09, pages
961–970, New York, NY, USA, 2009. ACM.

http://global.sitesafety.trendmicro.com/
http://global.sitesafety.trendmicro.com/

