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Scalable and Anonymous Group Communication with MTor
Abstract: This paper presents MTor, a low-latency anony-
mous group communication system. We construct MTor as
an extension to Tor, allowing the construction of multi-source
multicast trees on top of the existing Tor infrastructure. MTor
does not depend on an external service to broker the group
communication, and avoids central points of failure and trust.
MTor’s substantial bandwidth savings and graceful scalabil-
ity enable new classes of anonymous applications that are
currently too bandwidth-intensive to be viable through tradi-
tional unicast Tor communication—e.g., group file transfer,
collaborative editing, streaming video, and real-time audio
conferencing.

We detail the design of MTor and then analyze its performance
and anonymity. By simulating MTor in Shadow and TorPS us-
ing realistic models of the live Tor network’s topology and
recent consensus records from the live Tor network, we show
that MTor achieves a 29% savings in network bandwidth and
a 73% reduction in transmission time as compared to the base-
line approach for anonymous group communication among
20 group members. We also demonstrate that MTor scales
gracefully with the number of group participants, and allows
dynamic group composition over time. Importantly, as more
Tor users switch to group communication, we show that the
overall performance and utilization for group communication
improves. Finally, we discuss the anonymity implications of
MTor and measure its resistance to traffic correlation.
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1 Introduction

The increasing demand for practical anonymous group com-
munication has spurred a large crowd of commercial ven-
tures. Popular anonymous apps are available on iOS and An-
droid devices that allow users to gossip anonymously with
their friends [43], with nearby users [49], or with all users of
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the system [48]. Facebook recently unveiled its own anony-
mous app [42] to foster anonymous group discussion among
people with similar interests. However, these solutions intro-
duce a single point of trust, since one compromised server—or
one subpoena—can break users’ anonymity. This threat is not
merely academic: Whisper [48] was reported to silently track
their users’ locations [30].

Anonymous group communication can be straightfor-
wardly achieved using unicast anonymity networks (e.g.,
Tor [12]) and an external facilitator. Here, group members
anonymously send their messages to the facilitator, which
then “echoes” the messages to group members. While such
a design may offer stronger anonymity (depending upon the
underlying anonymity network), it incurs unnecessary band-
width and latency overheads and scales poorly with group size.
These bandwidth costs prohibit particularly interesting use-
cases for anonymous group communication, including single-
source streaming broadcasts and real-time group video confer-
encing.

This paper presents MTor, a practical anonymous group
communication system that supports dynamic group composi-
tion with scalable performance. We construct MTor as an ex-
tension of Tor, benefitting Tor’s large user base by enabling
new types of anonymous applications (e.g., multiparty con-
ferencing) while also benefitting from Tor’s network infras-
tructure and its mature design and implementation. MTor con-
structs multicast trees of Tor relays across group participants.
Any user can enter and leave the group communication with-
out global coordination by joining as leaves to these trees.

Group communication for Tor. MTor provides a group com-
munication primitive in which any member of a multicast
group may originate a message; such messages are tunneled
through anonymous Tor circuits to all other group members.
Our security goal, which we describe in more detail below, is
to prevent an adversary from (1) discerning the sender of the
message and (2) enumerating group members.

We envision that any number of such groups (including
zero) may exist on Tor at any given time. To participate in a
group, we assume that group members obtain a succinct group
descriptor document. The group descriptor contains sufficient
information to allow a client to join the multicast group, and
uses a key blinding signature scheme [32] to enforce access
controls over the group while providing unlinkability between
group sessions.

A significant advantage of MTor is that multicast allows
for aggregation of messages, which eliminates redundancy and
conserves bandwidth. To illustrate, Figure 1 shows an example
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Fig. 1. Example multicast tree. Solid lines indicate points of aggre-
gation (and bandwidth savings).

multicast tree constructed with MTor. Here, five clients (1-5)
construct three-hop Tor circuits to the MR. As with unicast
Tor circuits, clients begin their circuits with fixed guard re-
lays (G1-G4). In contrast to normal Tor communication, MTor
aggregates identical traffic that flows across a single connec-
tion between relays. For example, consider the case in which
client 3 sends a message to the group. The message is sent via
a Tor circuit to the MR, which then forwards it to its two neigh-
bors (relays “x” and “y”). Only one copy of the message is sent
for each connection. This preserves bandwidth, since x and y
are each servicing two downstream clients. Similarly, band-
width is again preserved when x forwards along the message
to G1, despite the presence of clients 1 and 2 on the multicast
tree.

Notably, MTor does not rely on exit relays—relays that
serve as egress points for the Tor network. In MTor, all traffic
is sent within Tor. Exit relays are unnecessary in MTor since
traffic never leaves the Tor network. In a mixed Tor network
that carries both unicast and multicast traffic, this is a desirable
feature: exit relays (which are valuable since they constitute
only approximately 1/3 of all relays in the live Tor network)
can be reserved for unicast traffic.

Challenges. MTor presents a number of scientific and en-
gineering challenges. First, while there is a large body of
existing work that attempts to quantify sender and receiver
anonymity for unicast messaging [10, 20, 36, 41, 44, 45],
methods for measuring anonymity in a group setting are
less well-defined.1 We adapt previously proposed human-
understandable anonymity metrics [29] to our group commu-
nication setting.

Second, MTor runs atop of the Tor network, and hence
inherits many aspects of Tor’s design, some of which pose in-
teresting challenges for multicast communication. In particu-

1 Indeed, anonymous group communication even lacks a coherent defi-
nition. For example, anonymous group messaging schemes such as DC-
Nets [5], Dissent [7], Verdict [8], and Group OTR messaging [31] conceal
which party sent a message, while assuming that the identities of group
members are public; in contrast, MTor and M2 [38] (see Section 3) ac-
tively attempt to hide the identity of a message’s sender, group members’
network locations, and the members of the anonymous group.

lar, Tor currently uses TCP between all relays, which presents
potential bottlenecks for multicast traffic. We introduce sim-
ple congestion techniques for achieving performant multicast
communication, even when TCP is used as the underlying
transport mechanism.

Finally, Tor is a highly distributed system used by hun-
dreds of thousands [19] of geographically diverse [46] users.
Tor requires only loosely synchronized clocks, which com-
bined with the diversity of connection quality that is available
to its user base, increases the complexity of decentralized algo-
rithms for forming multicast trees. MTor mitigates clock skew
and client networking issues through a robust multicast tree
formation algorithm.

Summary of results. We evaluate MTor using Shadow [24], a
high-fidelity discrete-event simulator that runs actual Tor code
on a synthetic network topology. Shadow has recently been
used to evaluate Tor’s circuit scheduling algorithms [24, 27],
its vulnerability to traffic correlation attacks [29], and pro-
posed performance enhancements [16, 26]. By simulating
MTor’s path selection algorithm using historical records of
Tor’s consensus documents, we evaluate the bandwidth con-
sumption and anonymity of MTor. Our results are encour-
aging: for large sized groups, MTor achieves a 63% savings
in network bandwidth as compared to vanilla Tor; even for
smaller-sized group of 20 clients, MTor achieves 29% savings
in network bandwidth and provides a significantly improved
client experience, decreasing the median transmission time of
message delivery by as much as 73%. We also demonstrate
that including middle relays in multicast trees helps achieve
a better trade-off between bandwidth consumption and trans-
mission time performance.

2 Threat model

We adopt Tor’s threat model in which an adversary monitors
or controls some fraction of the network [12]. For example,
the adversary may operate Tor relays, or may monitor or con-
trol some portion of the underlying Internet. We assume the
adversary cannot monitor all communication, since Tor is not
designed to protect against global adversaries [12]. Finally,
we conservatively assume that the adversary has access to the
group descriptor document and can join any multicast group.

Tor is known to be vulnerable to an adversary who can ob-
serve and correlate traffic entering and exiting the anonymity
network. This type of traffic correlation attack is arguably the
most serious known de-anonymization attack against Tor [20,
47] and studies have demonstrated that even a moderately pro-
visioned adversary can de-anonymize most Tor users within
a few months [29]. In this paper, we focus on traffic correla-
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tion attacks since, when successful, they identify a communi-
cation’s endpoints and defeat Tor’s anonymity goals.

We do not consider attacks that enumerate the relays in-
volved in anonymous communication, since merely discover-
ing which Tor relays were involved in an anonymous com-
munication does not by itself reveal the participants of that
communication. We emphasize that such “path discovery” at-
tacks are trivially achievable in vanilla Tor by an adversary
who operates a Tor relay and is chosen as the middle relay in
an anonymous circuit; here, the malicious relay immediately
learns its neighbors (i.e., the guard and the exit) and thus dis-
covers the entire anonymous path. Importantly, learning the
relays involved in an anonymous path does not by itself iden-
tify the network locations of the Tor client or the destination
and thus does not break anonymity. This is in contrast to traffic
correlation attacks—the focus of our security analysis—which
do reveal the communicating parties.

Since, in MTor, messages may have multiple recipients,
we consider two variants of a traffic correlation attack: We
consider an adversary’s ability to determine whether a given
client is participating in a multicast group. If the adversary
can monitor that client’s (encrypted) communication with its
guard, then we assume that the adversary can apply traffic
analysis techniques to determine that the client is a subscriber
of the group. Second, we consider attacks in which the adver-
sary is able to identify both the receiver and sender of a mul-
ticast message; here, the adversary must monitor both clients’
communications to correlate traffic.

Since MTor uses Tor as its backbone, we additionally as-
sume that Tor’s existing transport protocol is secure (e.g., that
keys are randomly generated, that ciphers are strong and used
correctly, that the implementation is correct, etc.). MTor does
not impose any restrictions on the “last mile” connection be-
tween the client and the first relay (i.e., a guard or bridge)
and is compatible with Tor pluggable transports and obfus-
cated bridges. We therefore consider local eavesdropping at-
tacks such as website fingerprinting [2, 21, 37] orthogonal to
this work, since solutions [2] and mitigations [40] intended for
vanilla Tor are also applicable to MTor.

In addition to achieving anonymity against passive at-
tacks, MTor is also designed to avoid introducing work-
amplification and DoS attacks. For example, a malicious client
may create a multicast group and join it many times from many
Sybil identities. MTor’s protections mitigate such attacks by
requiring that the Sybils receive traffic that is proportional to
the amount of bandwidth they are adding to the MTor network.
An active adversary may also attempt to inject spurious mes-
sages into group communication. Although active adversaries
may inject useless messages in an open multicast group, MTor
supports private group messaging that permits restricting the
set of potential senders.

3 Related Work

Multicast. IP multicast [9] provides efficient group commu-
nication at the network layer by reducing message duplication
on physical links. However, it requires router support and adds
complexity by requiring routers to maintain per group state.
Multicast is susceptible to DoS, since by design, it amplifies
messages. As a result, IP multicast is not widely deployed.

Unlike IP multicast, overlay multicast provides multicast
service at the application layer. It does not rely on router sup-
port and allows multicast functionality to be incrementally de-
ployed as more nodes join the network. The key concern re-
garding overlay multicast is the performance penalty involved
in disseminating data using overlays rather than native IP mul-
ticast. A number of systems have been proposed to provide ef-
ficient overlay multicast, including Scribe [3], SplitStream [4],
Narada [6], Overcast [23], and Yoid [15]. In comparison to
these existing efforts, MTor uses an existing overlay network
(Tor) and provides anonymity.

Anonymous multicast. A number of existing anony-
mous multicast schemes provide provable (unconditional)
anonymity guarantees, but at the cost of limited performance
or requiring that the group’s composition be static. Classic
DC-nets [5, 8] provides provable anonymity even against traf-
fic analysis. But communication and computation costs have
in practice limited its performance and anonymity set size.
Herbivore [18] supports mass participation by securely divid-
ing large networks into smaller DC-net groups, but guaran-
tees anonymity only within each group, showing only scal-
ability to 40-node groups. Dissent [7] significantly improves
the scalability and performance of DC-nets by switching to
a client/server architecture. But Dissent’s protocol halts com-
pletely if even a single server goes offline, and its group com-
position cannot change after the initial setup. Furthermore,
Dissent’s performance relies heavily on a small set of phys-
ically co-located servers with high-bandwidth and low-latency
communication among them, which reduces performance for
geographically distributed clients. In contrast, MTor provides
wide-area anonymous group communication with dynamic
group composition and achieves performance greater than that
offered by Tor.

There is also related work that examines multicast for
low-latency anonymity networks. M2 [38] offers receiver
anonymity for one-to-many multicast communication. How-
ever, M2 assumes mutually-trusting receivers, and does not
protect the identity of the sender. It is thus not useful for many-
to-many anonymous communication.
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4 Design

MTor constructs a multicast tree at the application-layer using
Tor relays as the internal nodes of the tree. The leaves of the
tree are clients, who connect through their guard relays—i.e.,
the clients’ guards are the parents of the clients in the tree.
MTor does not use IP multicast and instead uses Tor’s existing
TLS transport mechanism between relays to provide link-level
authentication and confidentiality. The multicast tree is con-
structed in a dynamic and decentralized fashion, and does not
require global coordination.

For a given communication group, a single multicast tree
is used for the duration of a session. After each session, a new
multicast tree is established. As described below, we use a key
blinding scheme [32] to provide partial unlinkability between
sessions.

4.1 Group Descriptors

Before a client can participate in a group communication, it
needs to obtain a group descriptor for that group. We envi-
sion that the group descriptor could be communicated through
some out-of-band mechanism (e.g., emails or a distributed
key-value store) and retrieved anonymously using vanilla Tor.

The group descriptor contains the following attributes:

– Bandwidth. The bandwidth attribute specifies a mini-
mum bandwidth that relays must support to be a member
of the multicast tree. A conservative estimate prevents mes-
sage loss, which is possible when there are bottlenecks in
the multicast tree.

– Master key(s). MTor makes use of a key blinding scheme
similar to Tor’s next-generation hidden services [32]. A
master keypair consists of a master public and private key
(pk and sk, respectively). Mathewson [32] introduces a key
generation algorithm that given a nonce n and pk (resp.
sk), can generate a blinded key pkn (resp. skn) such that:
〈pkn, skn〉 is a public key pair (and hence suitable for sign-
ing and verifying messages); without knowing pk, one can-
not derive pkn; without knowing sk, one cannot compute
skn; and an adversary that observes blinded public keys and
signatures cannot determine which signatures and blinded
keys were derived from the same master keypair. The secu-
rity of this scheme using Bernstein et al.’s Ed25519 signa-
tures [1] was later proved by Hopper [22].
An MTor group descriptor contains pk, the master public
key, which as explained in Section 4.4, provides unlinkabil-
ity between different communication sessions of the same

group. Here, unlinkability is achieved with respect to adver-
saries that are not members of the group and do not possess
the group descriptor. We note that this is the strongest such
guarantee possible, since adversaries that can join the group
(i.e., obtain the group descriptor) can trivially link group
sessions—by design, all group members must be able to link
group sessions to ensure undisturbed communication.
MTor allows both open and closed groups, where the former
allows anyone with the group descriptor to send and receive
messages; the latter permits a smaller subset of group mem-
bers to be senders. For open groups, the group descriptor
contains both the master public and private keys, pk and
sk, respectively. In a closed group setting, the descriptor
contains only pk; users must have knowledge of sk through
some outside means to send to the group. We envision that
the initiator of the group communication can delegate the
authority to send messages (i.e., share sk) to parties that it
trusts.

– Session length. The session length attribute specifies the
length (in seconds) of a communication session. It allows
group participants to periodically change their blinded keys
to make it more difficult for an outside (non-group-member)
adversary to identify participants of the same group. A long
session length reduces tree construction overhead and com-
munication disruption, whereas a short session length pro-
vides greater unlinkability.

– Number of candidate middle relays. This attribute
specifies the maximum number of candidate relays that may
be selected as middle relays in the path selection in a given
session. The parameter provides a way to balance the trade-
off between bandwidth savings and transmission time per-
formance. A small number of candidate middle relays in-
creases the opportunity of message aggregation (and hence
bandwidth savings), whereas a lower number may decrease
transmission time for message delivery.

– Cipher identifiers, confidentiality key, and MAC key.
In contrast to unicast Tor, MTor does not by default offer
any end-to-end confidentiality guarantees. This is necessary
to allow bandwidth savings via link aggregation and mes-
sage de-duplication. However, it also implies that any relay
who is part of the group’s multicast tree can eavesdrop on
the communication. These optional cipher attributes provide
a simple mechanism for secure end-to-end communication.
However, confidentiality relies on the secure dissemination
of the group descriptor file. Users who have access to the
descriptor can protect the confidentiality of their messages
by encrypting them with the symmetric confidentiality key
and appending a MAC. Eavesdroppers who do not have ac-
cess to the descriptor cannot learn the plaintext of the group
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messages. These confidentiality extensions are used only at
the endpoints (to encrypt and decrypt) and therefore do not
incur any additional computational costs at Tor relays.

Each group session is uniquely identified by an integer n

calculated from the session length and the current time, i.e.,
n = d t

l e where t is the UNIX/epoch time and l is the session
length. At the beginning of a session, a new blinded keypair
〈pkn, skn〉 is generated.

Each MTor group has a group identifier (GIDn) that
uniquely and concisely identifies a session for that group.
Specifically, the GIDn for a group during session n is calcu-
lated as:

GIDn = h(bandwidth|session length|pkn)

where h is a cryptographic hash function and | denotes con-
catenation. For each Tor cell being sent via multicast to a
group, we include the group identifier that uniquely identifies
its corresponding group, which is used by relays to determine
and aggregate flows of the same group.2 The group identi-
fier is also used to select a multicast root (MR) for the group,
which is described in more detail in Section 4.2.

GID binding proofs. The construction of the GID allows for
a GID binding proof, where a prover provides the GID, band-
width, session length, and blinded public key. Importantly, the
GID binding proof does not reveal master keypairs to relays.
The verifier computes the GID from the provided inputs and
verifies that the computed GID matches the provided GID.
(We operate in the random oracle model and assume an ideal
hash function, which we approximate in our implementation
using SHA hashes.) GID binding proofs are used to bind the
bandwidth and the public blinded key to a GID, and enable au-
thenticated group communication, as described in Section 4.4.

4.2 MR Selection

To enable group communication, MTor forms multicast trees
over the Tor relays. Clients join a group by forming circuits
to the root of the desired group’s multicast tree—i.e., the mul-
ticast root (MR). Thus, MTor requires a mechanism for en-
suring that clients who wish to join the same group select the
identical MR. More concretely, the MR selection algorithm
should meet the following criteria: 1) correctness: all clients
in a given group must agree on the same MR regardless of their
startup time and location, to ensure the multicast tree spans

2 Although assigning GIDs per relay (as opposed to per session) may
provide stronger anonymity properties, it eliminates the possibility of ag-
gregating message schemes, thus reducing the benefits of MTor.

Algorithm. SelectMR(min bw,GID):
1. cur hour ←get current hour()
2. fetch the cons from cache/directory server such that:

cons ← argmin{get valid after(cons) | cons ∈ get recent cons() and
cons get valid after(cons) ≥ cur hour}

3. for relay ∈ cons: /* construct ring */
3.1 if is stable(relay) and is fast(relay) and get bandwidth(relay)≥min bw:
3.1.1 relaypos ← hash(relaydigest +GID + cons) mod 2160

3.1.2 put relay on the ring at relaypos
4. beginpos ← hash(GID) mod 2160

5. relay ← find next(beginpos, ring)
6. while true: /* search for the first active relay */
6.1 if create circuit to mr(relay) == success:
6.1.1 return relay
6.2 relay ← find next(relay, ring)

Fig. 2. MR selection algorithm. find_next(X, ring) returns the
relay on the ring whose identifier is the least greatest than X,
modulo 2160.

across all clients during group communication; 2) anonymity:
clients should select the MR without disclosing their network
location; and 3) efficiency: MR selection should introduce lit-
tle overhead to the Tor network, be stable enough for persistent
group communication, and choose a relay that has sufficient
bandwidth to not be the bottleneck for group communication.

One straightforward solution is for the group initiator to
register MR information in a lookup service that all other Tor
clients can access, in much the same way that Tor hidden ser-
vices register and advertise their introduction point [33]. This
solution is easy to deploy and does not introduce any overhead
to the Tor network. However, this requires exactly one client
to be designated to monitor and update the MR throughout the
group communication. We desire a more flexible approach that
allows for MR-migration (i.e., switching the MR from one re-
lay to another) and does not require the client that originated
the group session to stay online for the session’s duration.

MTor uses an alternative design that leverages Tor’s exist-
ing infrastructure. In Tor, clients periodically retrieve a con-
sensus document that lists the available relays, their public
keys, network addresses, exit policy, status, and other infor-
mation. These documents are polled either from authoritative
directories—which undergo a voting protocol to form the (dig-
itally signed) consensus—or directory caches. In either case,
clients authenticate the consensus document by verifying that
it has been signed by a majority of the directory authorities.
As its name implies, the consensus document should be ap-
proximately consistent among all clients. To mitigate edge
cases (e.g., in which a client retrieves the consensus moments
before the directory authorities generate a new consensus),
MTor selects MR from the oldest available consensus whose
valid-after attribute is larger than the current hour time.

In MTor, clients independently select the MR using a local
variant of consistent hashing. Since a bad MR will slow down
or disrupt the communication of the entire group, MTor first
applies a filtering process to weed out undesirable relays. Only
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relays that have earned the STABLE and FAST flags (respec-
tively indicators of stability and performance) and can provide
at least the bandwidth specified in the group descriptor’s band-
width field are considered. The remaining Tor relays are then
logically organized in a ring over [0, 2160), with each relay’s
value in the ring being equal to a hash over its digest (a finger-
print of the relay’s public key), GID, and consensus document
used for the MR selection. The GID is included to evenly dis-
tribute the multicast roots of different groups across relays.
These rings are computed locally for each client using only lo-
cal knowledge and a cached copy of the consensus. The client
selects the MR by finding the relay whose value in the ring is
the least greater (modulo 2160) than the GID. The client then
attempts to create a unicast Tor circuit to the MR (the mech-
anism for selecting relays in this circuit is described in Sec-
tion 4.3). If it is unsuccessful, then the next closest value in
the ring is considered the MR, and this process repeats until a
live candidate relay is discovered. The complete MR selection
algorithm is presented in Figure 2.

4.3 Tree Formation

A client joins a multicast group by constructing a Tor circuit to
the group’s MR. The procedure for building a circuit is similar
to normal circuit construction in Tor, with the exceptions that
the (1) MR is used in place of an exit relay; (2) to prevent
certain deadlock conditions and to improve performance, we
restrict the set of candidate middle relays; (3) each relay on
the circuit must provide at least the bandwidth specified in the
group descriptor; and (4) if a chosen relay is already in the
tree (e.g., selected by other group members), the client stops
circuit construction and uses whatever is upstream from that
relay.

Relay selection. A client who wishes to use group com-
munication first either establishes a new group by creating a
new group descriptor or obtains an existing group descriptor
through some out-of-band mechanism. Next, the client selects
a 3-hop circuit, consisting of one of its guard relays, followed
by a middle relay, and ending with the MR. All three relays
should provide at least the bandwidth specified in group de-
scriptor. The guard relay is selected using Tor’s default band-
width weighting strategy. The MR is selected following the
algorithm described in Section 4.2.

Middle relay selection is parameterized by the bandwidth
and number of candidate middle relays values specified in
group descriptors. Specifically, each client independently de-
termines a random set of candidate middle relays of the spec-
ified number of relays from Tor’s available relays, such that
each candidate relay does not have the GUARD flag and pro-

vides at least the specified bandwidth. The no-GUARD con-
straint prevents our distributed tree construction algorithm
from running into deadlock. As an example, consider the case
where client A selects path x → y → MR and client B se-
lects path y → x → MR. The algorithm might deadlock if
the two clients begin path construction at roughly the same
time. This set of relays are randomly selected using the GIDn

and consensus documents as random seeds to ensure that each
client will select the same set of candidate relays. The middle
relay is then selected from this set using Tor’s default band-
width weighting strategy.

Note that exit relays are not necessary here since all group
communication is carried over Tor’s TLS connections, and
never “exits” the anonymity network. Clients who use MTor
for group communication rather than constructing multiple
unicast circuits (each of which consumes bandwidth at exit
relays) are effectively saving valuable exit relay bandwidth for
non-group communication.

Tree construction. After the guard, middle, and MR relays
have been selected, the client starts constructing the circuit to
the MR by sending a CREATE cell with the GID and a GID
binding proof to its chosen guard. (In Tor, CREATE cells sig-
nal the creation or extension of an anonymous circuit.) The
circuit is similarly extended to the middle and then the MR by
tunneling additional CREATE cells, again including the group
identifier and a GID binding proof. However, if the chosen re-
lay is already in the multicast tree (e.g., selected by other group
members), the client stops circuit construction and uses what-
ever is upstream from that relay. Clients’ MTor circuits may
contain fewer than three hops if either the guard or middle re-
lay is already forwarding messages for that multicast group.

To support forwarding of multicast messages, each relay
maintains a local key-value store called the multicast forward-
ing table that is keyed on the group identifier (which is com-
municated through CREATE cells) and whose values contain
routing information for a group.

Upon receiving a CREATE cell, a relay looks up the in-
cluded group identifier in its multicast forwarding table, and
responds as follows:

– If the relay has not previously received a CREATE cell, it
replies with a CREATED cell, mirroring Tor’s default be-
havior. After receiving the CREATED cell, the client will
continue its path construction towards MR via this relay.

– If the relay has already received a CREATE cell from an-
other client, it replies with a HOLD cell, indicating that
tree construction is already under progress. After receiving
the HOLD cell, the client will wait for a BEGIN cell. The
BEGIN cell is described below; conceptually, it signals that
the tree has been created.
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– If the relay has already received a BEGIN cell, it replies
with a BEGIN cell, indicating that the tree construction is
completed. The client can now start group communication.

In all cases, the relay records in its multicast forwarding
table the previous hop from which it received the CREATE cell
and the next hop to which it forwards CREATE. This informa-
tion represents the relay’s parent and children in the multicast
tree. The table is later used to forward messages during group
communication.

Lastly, exactly one client will receive a CREATED cell
from MR. When that happens, the client informs the MR of
its role, which then multicasts a BEGIN cell across the mul-
ticast tree, informing all relays and clients on the tree to start
group communication.

4.4 Sending and Receiving

A client can begin sending and receiving group messages once
it has received the BEGIN cell. Outgoing messages are sent
via the client’s Tor circuit towards the MR. In MTor, messages
should traverse each edge in a multicast tree only once. When
a relay receives a message, it looks up its neighbors in the
tree by searching its multicast forwarding table for the records
that are keyed by the group identifier. The incoming message
is then forwarded to the relay’s adjacent edges, excluding the
message’s incoming edge. Group messages percolate down the
multicast tree, and are eventually delivered by guard relays to
the subscribed clients.

MTor has the potential to offer significant bandwidth sav-
ings over group communication that relies on unicast Tor cir-
cuits. Consider, for example, a Strawman Solution based on
vanilla Tor in which clients use an external service such as a
bulletin board, IRC server, or Google Hangouts to aid in group
communication. The service supports group communication
by “echoing” incoming messages to all connected clients (i.e.,
through their Tor connections). MTor uses significantly less
bandwidth than this unicast-based approach, since the former
(i) offers the possibility of message de-duplication by aggre-
gating data on shared links in the multicast tree, (ii) uses a sin-
gle multicast root rather than multiple exit relays, which both
frees up exit relay resources and reduces the number of relays
that are involved in the group communication, and (iii) avoids
the overhead of communicating with the external service. In
Section 5, we empirically measure these bandwidth savings
under realistic network conditions and workloads.

Message authenticity. MTor supports both open and closed
forms of group communication in which the sets of potential
senders are (respectively) unrestricted or restricted. Descrip-

tors for open groups contain both pk and sk; descriptors for
closed groups contain only pk.

A sender (who must possess sk and therefore be able to
derive skn in session n) generates a message and appends an
Ed25519 signature to its message. Relays that receive MTor
cells verify the cell’s signatures and drop messages that fail
this verification step—recall that they have knowledge of pkn

via the GID binding proofs. Similarly, clients verify the au-
thenticity of MTor cells using pkn. We evaluate the overhead
of signing and verifying in Section 5.5.

Message confidentiality. If the group descriptor contains a ci-
pher identifier and encryption key, then all group messages are
presumed to be encrypted by the messages’ senders. Receivers
use the decryption and MAC keys from the group descriptor to
decrypt and authenticate messages. Our design is purposefully
flexible and allows the creator of the group to specify the par-
ticular symmetric key cipher and MAC algorithm. Importantly,
this “end-to-end” encryption of group messages is transparent
to Tor relays, since messages are encrypted/decrypted only by
the group members.

4.5 Churn Handling

To effectively detect and recover from link or relay failures,
MTor maintains multicast tree states (i.e., its upstream and
downstream links) as soft-state in each relay. The MR periodi-
cally multicasts heartbeat cell across the tree. The relay receiv-
ing the heartbeat cell will reset its timer for the incoming link;
and the relay successfully sending the heartbeat message will
reset its timer corresponding to the outgoing link. If any relay
fails, timers of its downstream relays and clients will expire.
As a result of timer expiration, the relay will remove them-
selves from the multicast tree, while the client will re-construct
the path to MR as described in Section 4.3.

4.6 Flow Control and Message Loss

Tor uses TCP to transmit cells reliably between neighboring
relays. In MTor, when a multicast cell arrives at a relay, it is
duplicated and enqueued on the internal output queues associ-
ated with each of the next hops. If an output queue reaches its
capacity limit, incoming cells will be dropped on that queue; if
all output queues reach their limit, then the relay blocks receiv-
ing from its previous hop. Due to potential message dropping
at the application-layer, MTor offers best-effort, but potentially
lossy multicast messaging (as do most multicast schemes).
The use of the predetermined bandwidth attribute in the group
descriptor reduces the probability of loss, as relays are selected
based on their ability to handle the group’s predicted data rate.
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4.7 Security against Active Attacks

In this section, we describe how MTor mitigates active at-
tacks. Since MTor uses Tor as its backbone, many active at-
tacks [14, 28, 35] against Tor and solutions intended for Tor are
applicable to MTor as well. Therefore we identify and focus on
attacks that are made possible due to the following unique fea-
tures found in anonymous group communication: 1) a group
communication system is more vulnerable to DDoS because
it amplifies senders’ traffic; 2) flow control is far more diffi-
cult in anonymous group communication since the effects of a
single bottleneck are potentially magnified across the partici-
pating nodes; and 3) it is more difficult for clients to selectively
refuse messages from anonymous adversarial clients.

Un-authenticated message flooding. An adversary may at-
tempt to disrupt group communication by flooding the group
with spurious messages. To mitigate such DoS attacks, MTor
provides a weak form of authenticated multicast: only clients
that have knowledge of skn (or sk) may send messages.
(All other messages are quickly discarded by honest relays.)
Senders sign their cells, storing the signature and a timestamp
(to prevent replay) as an added field.

Recall that relays are given both the GID and a GID bind-
ing proof, and hence relays can extract pkn from the proof.
Relays enforce authentication by verifying received cells’ sig-
natures and dropping cells that fail verification. This mitigates
potential DoS against the Tor network by preventing both ma-
licious clients and relays from propagating unauthentic mes-
sages.

To reduce the bandwidth and computation overheads of
using the above scheme, we use Ed25519 [1], a high-speed
public key signature system, for authenticating cells. Ed25519
offers similar security to a 3072-bit RSA signature using only
a 512-bit signature. It therefore costs 12.5% of network band-
width to put one signature in each 512-byte cell.

For single-source streaming multicast messages, this cost
may be amortized. Here, the sender may transmit special sig-
nature cells that contain a signed list of upcoming (yet-to-be-
received) cell hashes. After receiving a signature cell, a relay
verifies the signature over the hashes, and then verifies that the
cells it subsequently receives have those hash values. Since the
cost of verifying a forged packet is relatively low and an ad-
versary has a limited opportunity of finding a collision, MTor
can use truncated hash digests. For example, if hashes are trun-
cated to 40-bits, then a single 512-byte signature cell can hold
86 40-bit hashes, a 512-bit Ed25519 signature, plus an 18-byte
header, reducing the verification and storage cost by nearly
two orders of magnitude.

Message flooding in Sybil attacks. A multicast network is
potentially more vulnerable to flooding attacks than a uni-

cast network, since by definition, it amplifies the traffic of the
sender. To exhaust bandwidth resources in the network, an ad-
versary can create a multicast group and join it many times
from many Sybil identities.

MTor mitigates such a Sybil attack using the flow control
mechanism described in Section 4.6: if all downstream clients
of a relay want to jam the group communication by neglect-
ing to receive traffic, the relay will block receiving from the
upstream node to save bandwidth. If all but one client in the
group stop receiving traffic, the traffic block will be pushed all
the way from these clients to the guard of the client which is
sending traffic. This ensures that the adversary has to receive
traffic that is proportional to the load he imposes on MTor.

Message dropping at clients. A malicious client may inten-
tionally drop packets to disrupt group communication. How-
ever, MTor offers best-effort multicast messaging by dropping
messages on slow links. This ensures that a slow or malicious
client cannot exhaust the memory of intermediate relays (due
to message buffering) or slow down communication between
other members.

Message dropping at relays. A malicious relay may also in-
tentionally drop packets from upstream links to disrupt group
communication. To mitigate such attacks, as well as to reduce
the group’s vulnerability to slow relays, the periodic heart-
beat message described in Section 4.5 includes the count of
cells transmitted during the session, signed with the signing
key of the MR (signing keys are specified in Tor descriptor
documents). By comparing the received number of cells with
the advertised count in the heartbeat message, the downstream
clients can re-connect to the MR via a different path when the
packet loss rate exceeds a threshold.

5 Performance Evaluation

To provide an estimate of MTor bandwidth’s consumption on
the actual Tor network, we modified the Tor Path Simulator
(TorPS) [29] to simulate MTor tree construction over a one
month period of September 20143 , using historical records
of Tor consensus documents collected by the Tor Metrics
Project [46]. During the simulation the multicast tree is re-
constructed every hour. The bandwidth consumption is then
derived from the average size of the multicast tree. TorPS sim-
ulates the actual event of relays joining and leaving the Tor
network using real relay and consensus data from Tor’s histor-
ical records, and thus models the actual live Tor network as it

3 Using the September 2014 dataset, TorPS includes 6192 relays.
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existed at a specific past period in time. Using TorPS thus al-
lows us to obtain an accurate estimate of MTor’s performance
had it been deployed on the live Tor network.

TorPS also provides the ability to estimate the probability
of unreliability due to relay failure, as well as the resilience
of Tor and MTor communication against traffic correlation at-
tacks. In section 5.4, we define the probability of unreliability
and discuss MTor’s churn handling performance. In section 6,
we adapt the security analysis techniques introduced by Jansen
et al. [29] and measure the ability of a malicious adversary
who controls some fraction of relays on the Tor network to
de-anonymize group members.

To measure the network latency and transmission time as
experienced by group members using MTor, we have imple-
mented a prototype of MTor based on Tor version 0.2.3.254 .
We also simulated our prototype using Shadow [24] following
a standard Tor network modeling approach [25]. Shadow is a
discrete-event network simulator that runs actual Tor code us-
ing a synthetic network stack. Shadow allows us to simulate
large-scale Tor deployments and measure performance for dif-
ferent application scenarios. Shadow has recently been used
to evaluate Tor’s circuit scheduling [16, 24] and congestion
management algorithms [27], as well as its anonymity proper-
ties [29].

Because Shadow bypasses many OpenSSL encryption
functions in order to allow researchers to track cells, we do
not use authenticated group messages or end-to-end message
encryption. The Shadow experiments assume open groups that
anyone can join and send/receive messages. We separately
evaluate the overhead of MTor’s cryptographic operations us-
ing micro-benchmarks.

Experimental setup. We use Shadow to simulate a Tor net-
work of 455 relays, 1800 clients, and 500 client destinations
(which we generically refer to below as "servers"). Relay ca-
pacities, the geographic locations of the relays, and the link
latencies between the relays are configured according to the
configuration supplied with Shadow, which itself is config-
ured using data from the Tor Metrics Portal [46] following
Tor modeling best practices [25, 27]. Each server is assigned
100 MBps bandwidth and clients are assigned unlimited band-
width, which is much higher than relay capacities and thus
moves the performance bottleneck to the Tor network.

To model a loaded Tor network, we include 1800 clients
that fetch files from any of the 500 servers via unicast Tor cir-
cuits. To match existing studies of behavior on the live Tor net-

4 We chose version 0.2.3.25 because it is the latest version supported by
Shadow at the time of implementing MTor. While there may be changes
that affect performance, we expect these changes to affect MTor and Tor
alike, which reduces its impact on our comparison results.

work [34], 1350 clients behave as interactive web clients that
fetch files of 320KB in size, and sleep for up to one minute.
Additionally, 300 clients repeatedly fetch 50KB, 1MB or 5MB
files, sleeping one minute in between each fetch. These types
of clients continuously repeat a fetch-sleep cycle where they
fetch files from a randomly selected server. Finally, another
150 clients behave as bulk clients (e.g., file sharers) that con-
tinuously fetch data from a random server and switch to a dif-
ferent server after every 5MB data transmission.

We include an additional 20 group messaging clients in
our Shadow topology. To support our baseline comparison (see
below), we also add one additional server that serves as a facil-
itator to support group communication via traditional unicast
Tor circuits. To obtain a fair comparison with our baseline, the
group descriptor used in MTor does not impose a minimum
bandwidth constraint on the selected relays or limit the num-
ber of candidate middle relays.

Metrics. We consider four metrics: (1) the overall network
bandwidth that is consumed to transmit the data to all clients;
(2) the transmission time, which measures the time it takes for
a receiver to receive the sender’s complete message (time-to-
last-byte); (3) the packet loss rate due to a mismatch between
bandwidth capacity and the bandwidth requirements of real-
time communication applications; and (4) the probability of
unreliability due to relay failure.

5.1 Group Communication Applications

To evaluate MTor’s performance properties under different
communication scenarios, we model three types of group com-
munication applications. In all the MTor experiments, clients
communicate directly via the multicast tree.

– Single-source streaming. In the single-source streaming
application, a single non-anonymous server multicasts a file
(e.g., representing a video or document) of 10MB to a group
of 20 anonymous clients. In our baseline scenario, all clients
connect to and receive data from the server via unicast Tor
circuits. This scenario explores the transmission time im-
provement from using MTor in a typical initiator-responder
scenario, where many initiators request the same data at
around the same time.

– Multi-source group streaming. In the multi-source
streaming application, we consider a group of 20 anony-
mous clients communicating with each other.
When measuring the performance of MTor, the traffic is
transmitted via the multicast tree. Since vanilla Tor does
not support anonymous group communication, as a baseline
for comparison, we consider a scenario in which all clients
connect to an external service that “echoes” messages to all
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Fig. 3. Network bandwidth consumption by MTor and unicast Tor for groups of up to 20 clients (top) and groups of up to 1000 clients
(bottom) for the multi-source group streaming application. Bandwidth consumption is evaluated with respect to 1MB worth of group mes-
sages that are collectively transmitted by the group’s members. (a,d) The overall network bandwidth consumption for small and large
groups. (b,e) The average network bandwidth consumed per client, for small and large groups. (c,f) The network bandwidth consumption
ratio of MTor to Tor for small and large groups.

other connected clients. Tor clients connect to this exter-
nal service, which we call the facilitator, through unicast
Tor circuits. (This is effectively the Strawman Solution pro-
posed in Section 4.4.)

– Audio conferencing. Our third use-case considers a
group of 20 anonymous clients doing real-time voice-over-
IP communication. We assume VoIP is performed using In-
ternet Low Bit-rate codec (iLBC) [17] at 1666 Bps (iLBC is
a mandatory standard for VoIP over Cable and is also used
by Google Voice and Skype). Again, for our baseline con-
figuration, all clients that rely on vanilla Tor connect to a
facilitator using dedicated circuits.
To model audio conferencing as a real-time application,
each client queues a 1666-byte message per second for
transmission to other clients. Old messages are dropped if
they are not sent before the new message is queued. We sim-
ulate the audio conferencing for 30 minutes to measure the
message loss rate and transmission time distribution.

5.2 Bandwidth Consumption

MTor offers the potential for significant bandwidth savings
due to message de-duplication. To investigate how the Tor net-
work could benefit from these savings (i.e., by having to for-
ward less traffic), we focus in this section on the multi-source

group streaming scenario. Recall that in the baseline setup, ev-
ery client connects to an external service via unicast Tor cir-
cuits. We consider data transmissions from each client to every
other client in the group, and evaluate the resulting load on the
Tor network as a function of the group’s size. Our evaluation
is based on paths produced by our modified TorPS path sim-
ulator. We evaluate the bandwidth consumption when clients
collectively transmit 1MB of messages to the group members
(i.e., each client receives 1MB worth of message content); as
we show below, the overhead of sending 1MB to the group
varies considerably between vanilla Tor and MTor.

Figure 3 shows the network bandwidth consumption that
results from MTor and Tor as the number of clients increases
from 1 to 1000. Tor’s bandwidth consumption is derived theo-
retically as 4×client#×1MB, since 1MB data is transmitted
along 3-hop Tor circuits to the facilitator for each client in
the group. To measure MTor’s bandwidth costs, we simulate
tree construction 720 times and compute the average number
of links in the resulting multicast trees; the bandwidth is then
computed as the average number of links times 1MB. These
figures show the bandwidth savings MTor achieves for small
(top row) and large (bottom row) group sizes.

We make the following observations: bandwidth con-
sumption in Tor increases linearly with the number of clients
by a factor of 4, whereas in MTor bandwidth consumption is
sublinear. The advantage of using MTor increases with group
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size; MTor reduces the bandwidth cost by approximately 62%
over vanilla Tor for a large group with 1000 members (Fig-
ures 3a and 3d). The bandwidth savings in MTor are due to
two factors: (i) in MTor, clients’ paths are shorter (consisting
of two hops from the client to the MR) since they do not in-
clude links from exits to the sender; and (ii) MTor removes
unnecessary cell duplication when links are shared.

Figures 3b and 3e further highlight the benefits of cell
de-duplication. Here, the figures plot the bandwidth that is
consumed in the Tor network, averaged across the clients, as
the size of the group increases. For Tor, each group mem-
ber consumes a fixed amount of 4MB bandwidth for each
1MB data transmitted, since no de-duplication occurs and each
client receives the sender’s communication via its own 3-hop
Tor circuit. For MTor, when the size of group is 10, each client
consumes on average 2.8MB bandwidth for each 1MB data
transmitted. As the size of group increases to 1000, each client
consumes on average only 1.5MB bandwidth, much closer to
the theoretical lower bound of 1MB bandwidth necessary to
serve a client. This is a direct result of de-duplication: links in
the multicast tree are used by more than one client, providing
the opportunity for bandwidth savings. As more clients join
the group, these opportunities increase. For example, if a new
client joins and its guard is already part of the group’s multi-
cast tree, then the only additional bandwidth cost due to that
client is the cost of sending a copy of group messages from the
guard to the client.

Figures 3c and 3f plot the savings in network bandwidth
consumption when MTor is used in place of Tor for group
communication, and highlight our earlier results. MTor offers
increasingly efficient group communication as the size of the
group increases. The savings increase from 29% for a group
of 10 members to 63% for a group of 1000 members.

5.3 Impact to Client Performance

We next consider performance from the perspective of Tor
users. Here, we run Tor and MTor on top of the Shadow sim-
ulator. We use transmission time to capture the delay expe-
rienced by end users to receive a message, since it encom-
passes both network congestion as well as queueing delay
at the sender, receiver, and the intermediate relays. In other
words, transmission time is an intuitive notion of a user’s ex-
perience, which also captures the bandwidth capacity between
sender and receivers.

Figure 4 compares the transmission time distribution of-
fered by vanilla Tor (using our baseline configuration) and
MTor for each of our applications. We remark that the per-
formance improvement from using MTor is largely attributed
to reduced network congestion in the Tor network, instead of

performance bottlenecks at the server: although the server in
the baseline setup handles one order of magnitude more traffic
than clients, it is configured with 100 MBps bandwidth, much
higher than relays’ bandwidths.

Single-source streaming. Figure 4a shows the cumulative
distribution (CDF) of transmission time to transmit a 10MB
file from a single server to 20 clients. For both MTor and
Tor experiments, 20 files were received and their time-to-last-
byte were measured. Our Shadow experiments show that MTor
provides observably improved transmission time and a much
shorter tail than Tor.

MTor reduces the median transmission time by 22% from
86.7 seconds to 67.6 seconds. In the 99th percentile, the time is
reduced by 43% from 317.3 seconds to 183.9 seconds. Overall,
MTor reduces the latency for 55% of clients.

Multi-source group streaming. Figure 4b shows the CDF of
transmission time to transmit a 10MB file during anonymous
group communication. Since each client sends a copy of the
file to the other 19 clients, in total 380 file copies are received
by clients.

MTor significantly improves transmission time over
vanilla Tor for anonymous multi-source group communica-
tion. For a small group of 20 clients, MTor reduces the median
transmission time by 70% from 3482 seconds to 1032 seconds.
In the 99th percentile, the time is reduced by 70% from 6921
seconds to 2046 seconds. Overall, MTor reduces the latency
for 55% of clients.

In the baseline experiment, for every message that it re-
ceives, the external facilitator must transmit 19 copies (via 19
circuits) to the other group members. MTor improves perfor-
mance by using message de-duplication, avoiding potentially
congested exit relays, and eliminating the need to forward
messages through facilitators.

Audio conferencing. Figure 4c shows the cumulative distri-
bution of transmission times for the real-time audio confer-
encing application. Each client in the group attempts to send
a 1666-byte message per second. To deliver real-time audio
messages in a timely fashion, clients favor newer “audio sam-
ples” and drop unsent messages if a new 1666-byte message is
available.

We make the following observations: MTor successfully
delivers 100% of the messages, while vanilla Tor delivers only
93% of all messages. At the 50 percentile, MTor reduces the
transmission time by 73% from 1.1 to 0.3 seconds. The slowest
message takes 2.5 seconds to be delivered in MTor, whereas it
takes 53 seconds in Tor. The result shows that MTor enables
anonymous group communication with real-time delivery re-
quirements, while Tor’s message loss rate and long-tailed dis-
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Fig. 4. Cumulative distribution of transmission time (determined using Shadow) of (a) 10MB files from one sender to the group during
single-source streaming, (b) 10MB files from every client to the group during multi-source streaming, and (c) 1666-byte message per
second from each client to the group during audio conferencing.
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Fig. 5. Probability of unreliability

tribution of transmission times would considerably reduce the
user experience for these applications.

5.4 Churn Handling Evaluation

In this section we evaluate the efficiency of the churn handling
mechanism described in Section 4.5.

Suppose the heartbeat cell is sent by MR every h seconds,
the timer expires after t seconds if not refreshed by heartbeat
cell, and the construction of a new path from client to MR
takes p seconds. If any relay fails, the downstream clients will
be disconnected from MR for t+p seconds, during which each
client detects timer expiration and reconnects to MR via a 2-
hop circuit. Since each cell has 512 bytes, the heartbeat cells
will consume 512/t Bps of bandwidth per link.

To quantify the unreliability due to network churn, we de-
fine the probability of unreliability as the percentage of the
time that any client in the group is disconnected from the MR.
We note that this is a conservative measure of unreliability,
since it assumes the disconnection of any one client will im-
pact all other clients in the group.

As part of our experimental setup, we assume that the
heartbeat cell is sent every h = 3 seconds, and the timer ex-
pires after t = 9 seconds. As evaluated using the Torflow util-

ity [39], the construction of a 3-hop path takes roughly p = 6
seconds. Under this setup, the heartbeat message consumes
only 170 Bps bandwidth per link. Figure 5 shows the prob-
ability of unreliability for groups of size 10 to 1000, estimated
via simulation in our TorPS variant over the one month period
of September 2014. Recall that TorPS uses historical data from
the live Tor network and captures relay churn. We remark that
for a group of size 1000, the probability of unreliability is only
0.37% — that is, less than 15 seconds of communication will
be disrupted during an hourlong communication.

5.5 Authentication Microbenchmarks

Neither Shadow nor TorPS allows us to measure the computa-
tional overhead of the message authentication scheme. As mi-
crobenchmarks, we use OpenSSL version 1.0.1’s speed test to
measure the cost of computing SHA2 hashes. And we derive
the overhead of signing and verifying 512-bit Ed25519 signa-
tures by dividing CPU frequency by number of cycles needed
for signing and verifying a signature – for Nehalem/Westmere-
based processors, it takes 87548 and 273364 cycles [1] to sign
a message and verify a signature, respectively.

Our “client” runs on a MacBook Pro with quad-core
2.2GHz Intel Core i7 processor and is able to generate 25K
signatures and 267K hashes per second. Measurements for our
“relay” are taken from a commodity server with a quad-core
2.67GHz Xeon X3450; the relay is able to verify 10K signa-
tures per second and can perform 375K hashes per second. All
measurements are pinned to a single core.

As described in Section 4.4, we can fit 86 hashes into a
single signature cell when the hashes are truncated to 40-bits.
Based on the above measurements, the client can send 240K
authenticated cells per second (equivalently 123 MBps). The
amortized verification rate for the relay is 262K cells per sec-
ond; it is able to forward authenticated group message data at
134 MBps.



Scalable and Anonymous Group Communication with MTor 34

0 1000 2000 3000 4000 5000
Candidate Middle Relays Number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
a
n
d
w

id
th

 C
o
n
s
u
m

p
ti
o
n
 p

e
r 

C
lie

n
t 
(M

B
)

20

50

100

Fig. 6. Network bandwidth consumption per client.
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Fig. 7. Maximum degree in the multicast tree.

5.6 Middle Relay Selection

Since anonymity in MTor is independent of middle relays, we
can bias the selection of middle relays to improve MTor’s per-
formance – middle relays can be sampled from a subset of all
relays to improve message aggregation. We can even remove
middle relays entirely from the path to the MR to save more
network bandwidth. To quantify the impact of these strategies,
we consider 1) network bandwidth consumption per client and
2) maximum degree in the multicast tree, as the number of
candidate middle relays varies.

Figure 6 shows network bandwidth consumption per
client when clients collectively transmit 1MB of messages to
the group members, as the number of candidate middle relays
increases from 0 to the total number of relays in Tor. Simi-
larly, Figure 7 shows the maximum degree in the network as
the number of candidate middle relays increases from 0 to the
number of relays in Tor. When the number of middle relays is
0, it denotes the case where middle relays are not used in tree
construction. Both metrics are evaluated for groups of 20, 50,
and 100 clients, respectively.

We make the following observations: when middle relays
are used in tree construction, both the bandwidth consumption
in MTor and maximum degree in the multicast tree increase
with the number of candidate middle relays. Therefore, it is
preferable to select middle relays from a subset rather than all
of the possible middle relays. On the other hand, removing
middle relays entirely from multicast trees (i.e., each client
uses a 2-hop circuit from its guard to the MR) reduces band-
width consumption at the cost of significantly increasing the
maximum degree in the multicast tree, which in turn increases

the transmission time needed to deliver a message. This is true
since the node with maximum degree in the multicast tree will
send most traffic among relays on the tree. This node will thus
become the bottleneck on the tree, and the time required to
deliver a message will therefore be proportional to the node’s
degree.

For a group of 100 clients, removing the middle relay re-
duces bandwidth consumption per client by 14% from 2.1MB
to 1.8MB, as compared to the case where 200 candidate mid-
dle relays are used in tree construction. However, it increases
the (average) maximum degree by 140% from 33.1 to 79.7.
Importantly, this increase in maximum degree, and thus the
transmission time performance, will be more significant as the
number of clients increases. Thus, enabling and selecting mid-
dle relays from a small subset of Tor relays helps achieve a rea-
sonable trade-off between bandwidth consumption and trans-
mission time performance.

6 Anonymity Analysis

We assume an adversary that runs relays in the Tor network
and uses these relays to observe traffic, correlate flows, and
de-anonymize users. We conservatively assume that an adver-
sary is able to perfectly correlate traffic—i.e., if it observes Tor
cells belonging to the same flow at two different points in the
network, then the adversary can discern with perfect accuracy
that those packets do indeed belong to the same Tor circuit.

We provision the adversary with an observed bandwidth
budget of 131MBps, 327MBps or 656MBps, which it may use
to operate one or more relays in the Tor network, such that the
combined bandwidth of his relays does not exceed his band-
width budget. The adversary must fix his selection of relays
and is not allowed to change which relays it controls during
the course of an experiment. As shown in Table 1, our band-
width budgets conservatively model adversaries that have up
to twice the observed bandwidth of the largest Tor families as
of September 30th, 2014. (A Tor family consists of relays that
report that they are administered by the same entity.) These
bandwidth budgets respectively correspond to 1%, 2.5%, and
5% of the total observed bandwidth reported by all relays as
of September 30th, 2014.

To carry out a traffic correlation attack in vanilla (uni-
cast) Tor, the adversary needs to control both sides of a circuit
(i.e., the guard and exit relay) to observe and later correlate
the source and destination of communication. The definition
of compromise in a group communication setting is less clear
since there are potentially many receivers for a given message.
In our anonymity evaluation, we consider two types of com-
promise due to traffic correlation:
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Rank Bandwidth (MBps) Largest family member
1 327 bolobolo1
2 207 torpidsUAitlas
3 190 PrivacyRepublic0019
4 189 orion
5 155 AccessNow14

Table 1. Tor families with the top observed bandwidth on
September 30th, 2014. The total observed bandwidth of all relays
is 13 GB/s

– Linkage. We say two clients in the same communication
group are linked if the adversary observes each of their
guard traffic simultaneously. Traffic belonging to the same
group in the same session may be identified by inspecting
the messages’ GID.

– Membership identification. A client’s membership in the
group is compromised if the adversary observes the client’s
guard traffic. By evaluating the probability of membership
identification, we find an upper bound on the probability
that the client is linked with any other client in the group.

We conservatively assume that the adversary’s guard re-
lay exhibits enough uptime to obtain the GUARD and STABLE

flags. We additionally assume that the adversary’s exit relay
does not have the GUARD flag but does have an exit policy
that allows communication to all addresses and ports; this in-
creases its chance of being selected as an exit. All of the ad-
versary’s relays have sufficient bandwidth to obtain the FAST

flag.
To measure susceptibility to traffic correlation attacks, we

adopt the following security metrics from Johnson et al. [29]
since we believe they are the most relevant to users of Tor:

– Compromise rate: the probability distribution on the frac-
tion of paths that are compromised (w.r.t. linkage or mem-
bership identification correlation attacks) for a given user
(in a given period);

– Time to first compromise: the probability distribution on
the time until the first path compromise (w.r.t. linkage or
membership identification correlation attacks).

6.1 Workloads

We envision that most users will continue to use vanilla Tor
as their primary means of anonymous communication: that is,
they will continue to use unicast communication to browse the
web, send emails, etc. Simultaneously, a smaller percentage of
Tor users will use MTor to participate in group communica-
tion.

0.5 0.6 0.7 0.8 0.9 1.0
Fraction of 100 MiBps allocated to guard

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Prob. of guard & exit compromise

Prob. of guard compromise

Prob. of exit compromise

Avg. guard compromise rate

Avg. exit compromise rate

Fig. 8. Probability of observing traffic (y-axis) for various band-
width allocation strategies between the guard and exit (x-axis),
using Tor consensus data from April 2014 through September
2014.

For the unicast Tor users, we adopt the user models in-
troduced by Johnson et al. [29] that are intended to reflect the
behavior of actual users of the live Tor network. These user
models consist of a sequence of Tor streams and the times at
which they occur. Here, streams include DNS resolution re-
quests in addition to TCP connections to specific destinations.
Johnson et al. construct these models by using client applica-
tions on the live Tor network and tracing the behavior of the
local Tor client. We use models consisting of Tor users who
use (i) Gmail/Google Chat, (ii) Google Calendar/Docs, (iii)
Facebook, and (iv) perform web searches.

For MTor clients, we consider a large “webcasting” sce-
nario in which 5000 MTor clients participate in the same group
and receive multicasted messages from a single sender. These
webcasting sessions last for an hour, after which time the
clients all leave the group and join a new group webcasting
session with (w.h.p.) a new MR. This process repeats for the
duration of the simulation.

6.2 TorPS Results

Attacker configurations. We first determine the bandwidth
allocation between guard and exit relays that maximizes the
adversary’s ability to de-anonymize ordinary unicast Tor users.
We tested guard-to-exit bandwidth ratios of 1:1, 2:1, 5:1, 10:1
and 50:1 using the TorPS path simulator. Figure 8 shows the
compromise rate with varying bandwidth allocation ratios be-
tween guard and exit relays. A 5:1 ratio maximizes the proba-
bility of compromising both sides of at least one stream during
the simulation period (blue line), which we adopt in the rest of
this section. This confirms an earlier result by [29].
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Since exit relays are not used by MTor, adversaries who
attempt to de-anonymize group communication will spend
their entire bandwidth budget in controlling guard relays. Re-
call that an adversary succeeds in linkage and membership
identification correlation attacks by controlling the guard re-
lay(s) used by a group’s clients.

Simulation results. For both unicast and MTor clients, we
use TorPS to conduct 5000 Monte Carlo simulations of six
months of client activity spanning the period from April 2014
to September 2014. We use the output of these simulations to
evaluate the compromise rate and time to first compromise for
Tor and MTor, for the linkage and membership identification
attacks described above.

The adversary’s ability to perform membership identifi-
cation in MTor is depicted in Figure 9. The figure shows the
cumulative distribution over the fraction of streams that an ad-
versary is able to compromise (i.e., determine that the client
is a member of the group). Our results indicate that an ad-
versary who continually contributes 131MBps of guard band-
width to the network fails to identify more than 58% of the
MTor clients during the simulation’s six-month window. For
90% of the clients, the adversary is able to successfully de-
termine group membership for only approximately 12% of
the clients’ multicast groups. MTor fares worse against even
more well-provisioned adversaries, although we note that even
against an adversary who would constitute the largest contrib-
utor to Tor (the 327MBps case), 70% of clients have fewer
than 12% of their streams compromised.

Figure 9 plots the cumulative distribution of the time to
first compromise for MTor and Tor. A direct comparison be-
tween MTor and Tor is not possible, since the latter uses
unicast workloads (web browsing, etc.) while the former is
based on group communication. Generally, however, we ex-
pect MTor to provide greater resistance to linkage attacks than
vanilla Tor for most clients: In vanilla Tor, exit relays are cho-
sen independently for each new circuit, while the choice of
guard relays persists across circuits.5 An adversary who con-
trols an exit relay can therefore wait until his relay is chosen.
In contrast, MTor avoids the use of exit relays, requiring the
adversary to control the guard relays of the two clients it is at-
tempting to directly link. Adversaries who are not sufficiently
lucky to operate the guards must wait potentially months be-
fore clients select other guards. This trend is observable in Fig-
ure 9 for all tested attacker strengths: albeit with different un-
derlying workloads, the adversary is more quickly able to per-

5 The Tor Project is currently investigating how often Tor guard relays
should be rotated [11, 13]. In the current version of Tor, a client rotates
guards between 30 and 60 days (uniformly chosen).

form linkage correlation attacks against Tor than it is against
MTor.

Against our 131MBps adversary, approximately 68% of
clients were not identified as being a group member within 100
days. Against an adversary who would constitute the largest
contributor to Tor (the 327MBps case), roughly 42% of clients
were not identified. These results should be considered con-
servative measures of MTor’s anonymity since, in practice,
most users would presumably not continuously participate in
a group for such a long duration.

In Figure 9, we observe that the time to first compromise
increases roughly linearly with the adversary’s provisioned
bandwidth budget, for both membership and linkage attacks.
This is due to Tor’s bandwidth-weighted relay selection pol-
icy: clients choose relays proportional to how much bandwidth
they contribute to the network, thus increasing the adversary’s
bandwidth budget by a constant factor also increases the prob-
ability that clients will select its relays by roughly the same
factor.

7 Discussion and Limitations

Incremental deployment. MTor requires changes to both Tor
clients and relays. Importantly, however, since MTor works
alongside standard unicast Tor, it does not require that all
clients and relays support anonymous multicast communica-
tion. A straightforward approach to incrementally deploying
MTor involves the introduction of a new Tor flag, MTOR,
that is assigned to relays by the Tor directories if those re-
lays support group communication. Once a sufficiently large
number of relays advertise the MTOR flag in their descrip-
tors (hence offering diverse options for relay selection), MTor-
capable clients can then choose amongst those relays when se-
lecting and building a path to the MR.

Growth of the Tor network. MTor offers bandwidth savings
due in part to its de-duplication of messages. If the Tor network
expands to include more relays with the STABLE and FAST

flags, then the probability that clients using MTor will select
the same relays in their paths to the MR will decrease, thus
providing fewer opportunities for de-duplication. One possi-
ble approach to counter this effect is to adopt the MTOR flag
described above, and assign it only to a fixed number of re-
lays such that the opportunities for de-duplication also remain
fixed.

Fortunately, our TorPS simulation using recent consensus
data from the live Tor network indicates that opportunities for
de-duplication do exist in current Tor (see Section 5.2). And,
independent of de-duplication, MTor offers other bandwidth
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Fig. 9. Fraction of compromised streams (top) and time to first compromise (bottom) with an adversary budget of (left) 131MBps, (middle)
327MBps, and (right) 656MBps.

savings. Since it handles message distribution within the Tor
network, MTor (i) eliminates the need to burden exit relays
and, more importantly, (ii) reduces network consumption by
removing at least two hops between clients in the same group.

Susceptibility to traffic correlation attacks. In MTor, all
traffic is sent within the Tor network. MTor does not use exit
policies since exit relays are not used, and thus selecting the
relay path to the MR is not affected by the group members’
choice of application. This is in contrast to standard unicast
Tor where the choice of application (or really, the destination
port) influences relay selection since a compatible exit relay
must be chosen. This has an interesting effect on anonymity:
unlike vanilla Tor, MTor’s susceptibility to traffic correlation
attacks is independent of its users’ choice of application.

8 Conclusion

This paper presents the design and implementation of MTor,
which to the best of our knowledge is the first system that
provides low-latency anonymous group communication with a
decentralized trust infrastructure. MTor gracefully scales with
the size of the communication group by constructing multicast
trees on top of the Tor overlay network, and allows dynamic
group composition without relying on global coordination.

We performed comprehensive analyses of MTor’s band-
width, latency, unreliability, and anonymity using recently pro-
posed simulation techniques with realistic models of the Tor
topology and historical datasets of Tor relay information. Our
results are encouraging: the bandwidth consumption and la-

tency performance scale gracefully as additional clients join
the group communication. We show that MTor achieves sig-
nificant performance improvements that enable new forms
of anonymous group communication (e.g., anonymous VoIP)
while providing anonymity that is comparable to that provided
by vanilla Tor.
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