DE GRUYTER OPEN

Proceedings on Privacy Enhancing Technologies ; 2016 (2):82—-99

Payman Mohassel, Ostap Orobets, and Ben Riva

Efficient Server-Aided 2PC for Mobile Phones

Abstract: Secure Two-Party Computation (2PC) protocols
allow two parties to compute a function of their private inputs
without revealing any information besides the output of the
computation. There exist low cost general-purpose protocols
for semi-honest parties that can be efficiently executed even
on smartphones. However, for the case of malicious parties,
current 2PC protocols are significantly less efficient, limiting
their use to more resourceful devices. In this work we present
an efficient 2PC protocol that is secure against malicious par-
ties and is light enough to be used on mobile phones. The pro-
tocol is an adaptation of the protocol of Nielsen et al. (Crypto,
2012) to the Server-Aided setting, a natural relaxation of the
plain model for secure computation that allows the parties to
interact with a server (e.g., a cloud) who is assumed not to
collude with any of the parties. Our protocol has two stages:
In an offline stage — where no party knows which function
is to be computed, nor who else is participating — each party
interacts with the server and downloads a file. Later, in the on-
line stage, when two parties decide to execute a 2PC together,
they can use the files they have downloaded earlier to execute
the computation with cost that is lower than the currently best
semi-honest 2PC protocols. We show an implementation of
our protocol for Android mobile phones, discuss several opti-
mizations and report on its evaluation for various circuits. For
example, the online stage for evaluating a single AES circuit
requires only 2.5 seconds and can be further reduced to 1 sec-
ond (amortized time) with multiple executions.

Keywords: Secure Two-party Computation, Privacy on Mo-
biles, Server-Aided Secure Computation

DOI 10.1515/popets-2016-0006
Received 2015-08-31; revised 2015-12-02; accepted 2015-12-02.

1 Introduction

Consider a mobile application that can help two users find
common contacts, common friends on a social network, the
favourite movies they both like, or an available time slot in
their calendars for an upcoming meeting, all without revealing
more information than needed for the output; or a different ap-

Payman Mohassel: Yahoo Labs, pmohassel @yahoo-inc.com

Ostap Orobets: University of Calgary, oorobets @ucalgary.ca

Ben Riva: Google, benr.mail @ gmail.com. Work was done while at Bar-
Tlan University.

plication that allows users to determine which services or even
which friends are nearby without revealing their location to
others. These are just a few simple examples of privacy prob-
lems that can be solved using secure multiparty computation
(MPC) wherein multiple parties, each with their own private
input, want to compute a function of their inputs without re-
vealing extra information. In fact, in the last few years, a surge
of new protocols, techniques and implementations for MPC
have been presented, with major progress towards practical ef-
ficiency.

Increasingly, however, individuals use their smartphones
for the bulk of their daily activities and store on them their
personal or otherwise sensitive information (e.g. passwords,
financial info, emails, etc.). It is crucial for MPC protocols to
adapt themselves to this new computing environment, and for
new designs to deal with the computation, memory and band-
width limitations associated with the use of small devices. Pro-
tocols with semi-honest security (where players are assumed
to follow the steps of the protocol) are efficient enough to run
on smartphones. For example, the two seminal MPC construc-
tions of Yao’s garbled circuit [Yao86] and GMW [GMWS§7]
have been the subject of numerous implementations and opti-
mizations in the last few years [MNP04, HSS™ 10, HEKM11,
BHKR13, CHK 12, DSZ14].

But a graceful transition to security against the more re-
alistic malicious adversaries, and major reduction in band-
width and memory usage are two of the main challenges fac-
ing privacy-preserving computation on smartphones. In partic-
ular, secure computation of a boolean circuit using Yao’s pro-
tocol [Yao86] requires the exchange of tens of bytes per each
gate even in the semi-honest case, and to enhance security to
the malicious case, the best solutions increase the computation
and bandwidth by a multiplicative factor of 40 or more [Lin13]
making secure two-party computation impractical for use on
smartphones for most functions of interest. We also note that
recent work shows that when executing many instances of 2PC
it is possible to further reduce the multiplicative factor in the
amortized cost [LR14, HKK™14]. We discuss other alterna-
tives in Section 2.

Secure Computation on Mobiles. The research on secure
multiparty computation for smartphones is in a very early
stage with only a handful of work exploring the topic. Huang et
al. [HCE11] studied the feasibility of MPC for mobile devices
by implementing a semi-honest private set intersection proto-
col as an Android App. De Cristofaro et al. [DCFGT12] imple-
mented semi-honest privacy-preserving protocols for a num-
ber of genetic testing problems on a smartphone, while Henry

[®) ov-ne-np |

et al. [CADT14] advocate the use of homomorphic encryption
over garbled circuits for secure computation of some functions
on a smartphone, and [MLB12] studied efficiency of garbled
circuit generation on smartphones. To the best of our knowl-
edge, however, no prior work studies or implements MPC with
malicious security for smartphones and existing techniques for
transforming the semi-honest variants into maliciously secure
ones, are too inefficient to scale.

The Server-Aided Setting. To overcome this problem, we
consider a natural relaxation of the standard models for secure
computation called the Server-Aided model. In particular, we
add a third-party, i.e. a semi-honest server who does not col-
lude with the players. This server wishes to learn as much as
possible about the players’ inputs but has incentive to follow
the protocol and not cooperate in cheating. The server-aided
model is quite natural given the widespread use of cloud ser-
vices in today’s computing environment, and particularly well-
justified for small devices that often benefit from outsourcing
to remote servers due to limited resources. Note that there is
often little incentive for cloud providers to collude with cheat-
ing players whose business is not directly related to theirs,
while existence of audits and the fear of legal/finacial reper-
cussion or loss of reputation are additional motivation.

Server-aided MPC with two or more servers has been con-
sidered in the work of [DIOS, DIK*08] and even deployed
in practice [BCD109]. In case of single-server aided MPC,
currently two different approaches are considered: the first
is to combine fully-homomorphic encryption (FHE) [G09]
with a proof system [BG02, AJLA™12] but this is only of
theoretical interest (though achieving stronger security). The
second is using Yao’s garbled circuit technique [Yao86]. The
latter was proposed by Feige et al. [FKN94] in the semi-
honest model, formalized and extended to stronger models
by Kamara et al. in [KMR11], and optimized and imple-
mented in [KMR12, CMTB13, CLT14]. But even these pro-
tocols are not yet ready for prime time on mobile devices.
Huang [Hual2] also explores server-aided 2PC, but based on
the GMW construction[GMW87]. We discuss this work in
more detail in the related work section.

Our Contributions. We focus on constructing an efficient
2PC protocol in the server-aided setting, one which is se-
cure against malicious players and can still be executed on
today’s smartphones. Since smartphones usually have a very
low bandwidth Internet connection most of the time, we split
the protocol into two phases: In the first, each player interacts
on its own free time with the server, independently of future

Efficient Server-Aided 2PC for Mobile Phones —— 83

Token
server
Alice Bob
= n AND gates - n AND gates =
n tokens r 1 n tokens
A——— _—

Fig. 1. Offline Stage

invocations of 2PC! and receives a file that it stores. (The file
size is O(A|C/) bits where A is security parameter and |C| is
circuit size. Contrast this with cut-and-choose 2PC which re-
quires O(A|C]) ciphertexts.) We assume that in this phase the
players have a high bandwidth connection to the server. This
step can be done in bulk for multiple executions and hence
only needs to be done occasionally, for example when the user
has a high bandwidth Internet connection, or when the phone
is connected to a PC.

Later on, any two players who wish to run a secure com-
putation with their inputs need to send/receive a very short
message to/from the server, and then interact directly between
themselves, exchanging only a few bits per AND gate in the
circuit. (In terms of computation, a small number of pseudo-
random function calls are made per AND gate.) We stress that
the players (nor the server) do not know in advance who would
be the other player they would like to execute the secure com-
putation with. The nature of our setting is dynamic, allowing
players to choose their counterparts and the function to com-
pute only before starting the actual secure computation in the
online stage. Furthermore, the sever does not learn any infor-
mation about the function being computed except for an up-
perbound on the number of AND gates. See Figures 1 and 2
for a visual description of the setting.

Our protocol is builds on the protocol of [NNOBI12],
which also presents a protocol with two stages. However, our
protocol simplifies and transfers the heaviest parts of the pro-
tocol of [NNOBI12] to the server, by utilizing the fact that the
server is semi-honest. In addition, we modify the protocol so
that the parties can execute the offline stage without knowing
in advance which pairs of players would later wish to execute
the online stage together.

1 Not entirely independent as players do need to decide on the maximal
number of AND gates they will need in the actual computation. However,
players can pick several such bounds and choose to download several files
in the offline stage, leaving them the option to work later with variety of
computation types.

Token
server

1114

Alice

p
2

1) Circuit: C; Session: 123

4)2PC

A A

Fig. 2. Online Stage

In case a stronger security guarantee is required, in Sec-
tion 4.6 we show how to enhance security to handle a covert
server without any additional cost in the online stage. (Still,
requiring that either the server is corrupted or the players, but
not both.) In addition, we discuss how to achieve fairness in
Section 4.7.

We describe a prototype implementation of our proto-
col and evaluate its efficiency for several circuits. The pro-
totype is implemented in JAVA and works for Android mo-
bile phones. It uses Android’s Wi-Fi Peer-to-Peer feature that
allows a pair of mobile phones to connect directly to each
other via Wi-Fi without additional access point. The pro-
totype itself is optimized based on extensive experiments,
both communication-wise and computation-wise. For exam-
ple, since a mobile phone has only small memory (compared
to common desktops), we designed the prototype to be very
memory-aware, reusing allocated memory as possible to re-
duce the overhead of JAVA’s garbage collector. Similarly, the
prototype works on a layered representation of the circuit be-
ing evaluated. As a result, only intermediate wire values are
stored in memory, and the communication rounds are fewer.

Organization. Section 2 covers the related work. Section 3
outlines our setting and security definitions. Section 4 presents
the setting, our protocol description and a proof sketch. Sec-
tion 5 describes our implementation, the architecture used, var-
ious experimental results, and snapshots of the apps interface.

2 Related Work

Previous General 2PC Protocols. [Yao86] and [GMW&87]
presented the first 2PC protocols for semi-honest players. The
case of malicious players is more complicated and less effi-
cient, and has been the subject of extensive research in the
recent few years. Based on ideas from [Yao86], the work of

Efficient Server-Aided 2PC for Mobile Phones —— 84

[JS07,NO09] show malicious 2PC protocols that require O(1)
exponentiations per gate of the circuit. However, since expo-
nentiation is rather expensive, these protocol are not efficient
enough to be used in practice. [MF06, LP07, LP11, SS11,
Linl13, MR13, SS13] use the cut-and-choose method which
requires O(\) symmetric encryptions per gate of the circuit
(and additional overhead for handling the inputs), where A
is a statistical security parameter such that if a malicious
player tries to cheat, it will get caught with probability at
least 1 — 277, Despite this linear overhead, several work
demonstrate that this approach is relatively practical (e.g.,
[PSSW09, SS11, KSS12]). [IPS08, IKO™11] suggest a dif-
ferent approach for constructing malicious 2PC protocols that
are asymptotically more efficient than the above mentioned
protocols, however, their concrete efficiency is unknown since
no implementation exits, and it seems that for concrete secu-
rity parameters the complexity would be worse than that of
the above protocols. Last, [NNOB12] presents a very efficient
protocol that is based on [GMW87]. We discuss this protocol
further below.

2PC protocols with external assistance. Many protocols
modify the execution setting by adding some external party
who assists with the execution of the protocol. Here we only
mention a few recent works which are the most related to ours.

[KMR12, CMTB13, MGBF14] show how to outsource
some of the expensive steps of cut-and-choose based 2PC
protocols (e.g., oblivious transfers). However, in those works,
some of the parties are still required to work hard (e.g., gen-
erate O(\) garbled circuits). [DSZ14] presents a protocol in
which the parties have access to small trusted hardware to-
kens, and assumes that the parties are semi-honest. An out-
line of how to modify their protocol to work with malicious
parties is presented in the full version of [DSZ14] but it is
not fully described or implemented. The setting of [DSZ14]
and ours are very close, and indeed, the protocols are quite
similar. We note that our work was done concurrently to the
work of [DSZ14], and for the specific setting we described.
[Hual2] shows a protocol in which the parties have access to
a trusted third-party who generates correlated randomness for
them. This is essentially the same service we need from the
server. However, the protocol of [Hual2] requires the server
to know in the offline stage who are the pairs of parties that
wish to execute the online stage later. In our setting, the offline
stage is independent of those pairs, and resembles a more natu-
ral “registration” setting. In Section 5 and after describing our
experimental results, we provide more concrete comparisons
with the above-mentioned work.

Possible Alternatives to Our Protocol. We note that in our
protocol, players do not need to know each other or the func-
tion they wish to evaluate in the offline stage. Those properties

cannot be directly achieved using protocols that use garbled
circuits without sending at least one garbled circuit in the on-
line stage. E.g., one alternative is to ask the server to send a
garbled circuit to one of the parties in the online stage and
have the second party send the labels for its input. If the com-
munication between the parties and the server in the online
stage is slow, this alternative would be impractical. A second
alternative would be for the server to send the garbled circuit
in the offline stage when the parties have high-speed connec-
tion to the server. However, this requires fixing the function to
be evaluated in the offline stage. Both solutions, however, let
the server learn the function being computed, which we can
avoid in our solution.

Last, the alternative of having one of the parties gener-
ate the garbled circuit requires a mechanism (such as cut-and-
choose) for verifying correctness of the circuits, which leads to
generating/checking/ evaluating O () garbled circuit by both
parties. In contrast to these options, our protocol requires send-
ing only several bits per AND gate of the circuit in the online
stage, and the function to be evaluated is decided only in the
online stage.2

We base our protocol on the protocol of [NNOB12] that
has a highly efficient online stage. However, the offline stage
of [NNOB12] cannot be delegated to the server as is without
knowing who would be the parties that will execute the online
stage later. This is the main modification we make to the proto-
col of [NNOBI12]. In addition, we change the steps needed for
evaluating an AND gate so the number of rounds are half of
that needed in the protocol of [NNOB12]. Note that our proto-
col does not require running any oblivious-transfers, or use of
combiners as needed in [NNOB12], mainly because we work
in the server-aided setting.

3 Preliminaries and Security
Model

Notations. Throughout this work we use A to denote a statis-
tical security parameter and x to denote a computational one.

3.1 MAC with Homomorphism
Similar to [NNOB12], we use a stateful message authentica-

tion code (MAC) with a homomorphic property to authenticate
message bits.

2 Note, however, that our protocol does require fixing some bound on the
size of the function in use in the offline stage.

Efficient Server-Aided 2PC for Mobile Phones —— 85

— MacGen(1*): Generates a uniformly random A-bit string
A and stores it.

— MAC(id, b): Picks a uniformly random \-bit MAC-base
BASE, stores the record (id, BASE) and returns the tag
TAG = BASE @ bA and id, where bA = Aifb =1
and 0 otherwise. (Note that without knowing BASE or A,
TAG is A-bit random. id is just an identifier known to all
players.)

— MacAdd(id1,idz, id3): If (id1, BASE1) and (id2, BASE2)
are stored, stores (id3, BASE1 @ BASE2); Otherwise out-
puts error.

— MacVerify(id, b, TAG): If (id, BASE) is stored, verifies
that TAG = BASE @ bA and returns 1; Otherwise outputs
error.

In our usage of the MAC, all the algorithms above are per-
formed by the same party who holds the secret key A and
keeps the “secret" state.

Homomorphic Property. Other participants can only perform
addition on tags. In particular, given a tag TAG; for bit by with
idy and a tag TAG2 for bit by with id2, one can compute a
valid tag for the bit b1 @ bz by computing TAG; @ TAG2. The
homomorphic property of the MAC guarantees that after run-
ning MacAdd(id1, ida, ids), MacVerify(ids, b1 @ bz, TAG1 &
TAG2) will return 1.

3.2 The Setting and Adversary Model

The Parties. We have a server S who provides a service for
running efficient secure two-party computation on mobiles.
Any player can register, even anonymously, to the server, pro-
viding it with a bound on the maximal number of AND gates
it will need in the online stage, and then receive a commodity
file that is stored on the mobile device. Later, any two players
who have downloaded such commodity files can execute the
secure computation using their mobiles.

We assume that the server is reasonably powerful, e.g.,
a standard desktop/server PC, while the players are much
weaker mobile devices with restricted computing and memory

resources.

The communication model. We assume that the players have
high-bandwidth connection to the server in the offline stage.
(Recall that a player can connect to the server at its conve-
nience as there is no dependency to other players.) Later, in
the online stage, the players have a low-bandwidth connection
to the server but have a direct connection between themselves.
We assume that the communication of the online stage is visi-
ble only to the players who run it.

The Adversary model. The adversary can control a subset
of the participants causing them to behave maliciously, both
in the offline stage and the online stage. (We consider static
adversaries and not adversaries who choose which players to
corrupt during the protocol execution.)

Our definition of security is in the standard ideal/real-
world paradigm and follows the definitions typically used for
secure MPC.

The main two differences with standard definitions are
that, (i) in our setting, we do not allow the adversary to si-
multaneously corrupt the server S and a (non-server) party.
As discussed above, this captures a form of non-collusion be-
tween the server and the parties, and (ii) while there is a pool
of parties, not all of them have inputs to the function being
computed, and it is the adversary in the real execution that de-
cides who the two input-contributors are. This is to capture the
fact that the two online participants need not be known in the
offline stage when commodity files are downloaded, and the
adversary can dynamically make this decision.

In the definition that follows, the corrupted parties could
be malicious, covert or semi-honest, but in our constructions,
we only consider a semi-honest or a covert server.

Real-model execution. The real-model execution of protocol
., Py), the
server S and an adversary A that is allowed to corrupt an ad-
missible subset of the parties. An admissible subset of parties
can either be { S} or any subset of {P1,--- , P }.

At the beginning of the execution, the adversary A re-

IT takes place between a subset of parties (P, ..

ceives an admissible set I that indicates which parties it cor-
rupts. Parties then interact with each other and the server ac-
cording to the offline stage of the protocol (no real inputs yet).
Denote party P;’s input by x;, its random coins by r; and its
auxiliary inputs by z;. The server .S only has a set of random
coins rs and an auxiliary input zs.

Eventually, two parties a and b decide to compute a func-
tion of their joint-inputs. Note that only P, and P, will have
inputs to the function f, and that f will be chosen by them.

For an honest party participating in the online phase,
its output is the output of computation and for a corrupted
party, its output is chosen by the adversary. Note that the non-
participating players do not have an output if they are hon-
est but can have output if they are corrupted. We let hon-
est servers’ output be (a,b) capturing the fact that the server
learns the two participants in the online stage. We denote P;’s
output by OUT; and Server’s output by OUT,.

The output of the real-model execution of II between par-

ties (P1,. .., Py, .S) in the presence of an adversary A is de-
fined as:
REALr Ak, F, X, Z, R) = {outy,...,ouT,, oUT,},

Efficient Server-Aided 2PC for Mobile Phones —— 86

where X =
(7"1, ..
players to evaluate.

(z1,...yxn)y Z = (21,...,2n,25), R =

.yTn,Ts), and F' is the set of functions chosen by the

Ideal-model execution. The ideal-model execution, the par-
ties have access to a trusted party . Honest parties interact
with F directly and output the output they receive from it. The
messages of the corrupted parties to F are chosen by the ad-
versary, as well as their outputs at the end of the execution.
As before, the simulator receives an admissible set I that indi-
cates which parties it corrupts. It is allowed to either corrupt S
or any subset of the players.

The trusted party F implements the following function-
ality: Any player P; can send to the trusted party the mes-
sage (f, Pi, Pj, z;, bit) where bit is a bit. (This bit determines
whose input is the first.) Once the trusted party has two mes-
sages (f, Pa, Py, xq,0) and (f, Py, Pa, xp, 1), it sends (a, b)
to the server and computes f(zq,), sends it to the adver-
sary A if one of the players is corrupted, aborts if was re-
quested to (as in standard 2PC security definitions), or else
sends f(xq, zp) to the honest players; If both players are hon-
est, it simply sends the outputs to both parties. This suffices if
we only consider a semi-honest server. For a covert server, we
need a small modification.

Security against covert [AL10] adversaries guarantees
that a cheating adversary that diverts from the specified pro-
tocol is caught (deterred to cheat) by the honest parties with
some probability, which is called deterrence factor. If the de-
terrence factor is one, then any cheating adversary is always
detected. In order to handle a covert server we need to slightly
modify the above ideal execution. For each pair of players who
ask to compute f, the server/adversary can ask F to cheat.
Then, the trusted party will flip a bias coin that is head with
probability 1/¢ and is tail otherwise. If the coin turns up head
it allows the adversary pick a function f’ which will be used
instead of f. Else, F sends a server cheated message to the
two players instead of the output of f.

For all honest parties P;, let OUT; denote the output re-
turned to P; by the trusted party. For all corrupted parties let
OUT; be some value output by .A. The output of an ideal-model
execution between parties (P, ..., Py, S) in the presence of
an adversary Sim is defined as

de
IDEALZ 1 sim(k, F, X, Z, R) &= {outy,...,ouT,, oUT,}
where X = (z1,...,2n), Z = (21,...,2n,25), R =
(r1,...,7mn,7s) and F is the set of functions chosen by the

players to evaluate.

We now present our formal definition of security which,
intuitively, guarantees that an execution of protocol II in the
real model is indistinguishable from an execution in an ideal
model with a trusted party F.

Definition 3.1 (Security). An n-player sever-aided secure
computation protocol 11 is secure if for all polynomial-size ad-
versaries A corrupting an admissible subset of the parties I,
there exists a polynomial-size adversary Sim such that

{REALH,,VA(k,F, X, Z, R)} ~
k

{IDEAL]:,LSim(k, F X, Z, R)}
k

forall X, Z, and where R is chosen uniformly at random, and

for all sets of functions F

4 Our Protocol

Let Alice and Bob be the two players that wish to execute
a secure computation, and let S be the service provider. We
describe the protocol in three phases, starting with a simple
protocol that is only secure against semi-honest player. We
then show how to protect against malicious players, and fi-
nally present our main protocol removing the assumption that
the server knows the two players a priori.

4.1 A Semi-honest Protocol

In the simplest variant of the protocol, we assume that Alice
and Bob follow the steps of the protocol and hence behave
semi-honestly. We also assume that the server S knows the
two players from the very beginning.

The protocol is a natural combination of the GMW pro-
tocol [GMWS87] and Beaver’s multiplication triplets [Bea92].
Lets begin by reviewing the GMW protocol. In this protocol,
players jointly evaluate the circuit, gate by gate, where at each
step of the evaluation, the players start with secret-shares of
the input wires to the gate and end with secret-shares of the
output wire of the gate. At the very end, parties reconstruct the
values of the output wires in order to learn the output of the
circuit.

Let’s denote Alice’s XOR shares of the input wires to gate
g by a1, a2 and Bob’s shares by by, b2. Our goal is to compute
the shares a3, bz such that az ® bz = g(a1 @ b1, a2 @ b2) such
that Alice learns a3 and Bob learns bs.

First, note that a NOT gate can be easily implemented by
flipping the share of one of the players, and thus we focus only
on how to compute XOR and AND gates throughout this pa-
per.

In case g is an XOR gate, the computation is rather sim-
ple: the players locally compute the values az = a1 @ a2 and
bz = b1 B be. Indeed, a3 B b3 = a1 P az © b1 D b2 as required.

Efficient Server-Aided 2PC for Mobile Phones —— 87

However, for AND gates, the evaluation is more involved. In
the original GMW protocol without preprocessing, to evaluate
AND gates, players execute a short protocol that uses oblivi-
ous transfer.

[Bea92] showed that if in an offline phase, players ob-
tain shares of three bits u, v, w such that uv = w (so that
Alice knows the shares u1, v1, w; and Bob knows the shares
u2, V2, w2), in the online phase the evaluation of the gate can
be performed without any oblivious transfers as follows: Al-
ice sends p1 = a1 D ui,q1 =
b1 @ u2,q2 = bz & va. Then, they both locally compute the
values p = p1 & p2 = a1 Dbi Guandq = g1 B q2 =
a2 @ by @ v. Alice sets a3 = pqg D qui P pv1 ® wi and Bob
sets bz = qua @ pv2 B wa. Observe that as expected,

a2 @ vi. Bob sends p2 =

a3 @by = pqg® qui @ pvr O wi D quz O prz O w2
= (a1PbiBu)(az® b2 B v)® (az B b2 B v)us
®(a1 ® b1 B u)vi ® w1 & (a2 B b G v)ug
®(a1 ® b1 ®u)v2 ® we
= (a1 Db1®u)(a2®b2Dv) D (a2 ® b2 D v)u
S(a1 b1 D u)v dw
= (a1 ®bi)(az @ b2).

To summarize, the semi-honest protocol works as follows.
In the offline phase, the semi-honest server S generates n ran-
dom Beaver triplet shares for the n non-XOR gates in the cir-
cuit. It then sends each parties’ shares to them. In the online
phase, parties first share their inputs to the circuit and then
evaluate the circuit gate-by-gate using the Beaver triplets for
evaluating AND gates as described above. At the end of the
protocol, parties reveal their shares of the output wires to the
circuit for each party to learn its output.

It is easy to show that this protocol is secure as long as .S
is semi-honest and Alice and Bob are also semi-honest. The
protocol is very efficient with only 4 bits communicated per
AND gate in the circuit.

4.2 A Malicious Protocol

The protocol described above is secure only against semi-
honest players. For example, a corrupted Alice may send an
incorrect p1, g1, or cheat in its local computation leading to
incorrect values for output wires. These behaviors would all
go undetected. Forcing the players to behave honestly can be
done using generic zero-knowledge proofs, however, the ef-
ficiency of the resulting protocol in this case would become
impractical.

[NNOB12] proposed a different approach for handling
malicious players; The main idea is to authenticate all the

bits that are sent during the protocol in a very efficient way,
specifically, using a message authentication code (MAC) that
supports simple homomorphic operations. In the offline stage,
Alice and Bob generate many Beaver triplets (as described
above) that are also authenticated using the MAC scheme de-
scribed earlier. Later, during the online stage, all the bits that
are transferred have a tag associated with them that prove they
were computed correctly. Since all the operations that the play-
ers do for evaluating the gates require only XOR operations,
the derived MACs can be computed using homomorphic XOR
operations only.
We now describe the resulting protocol in more detail.

Offline Stage. In our setting, the server S performs the offline
stage and sends to each party its part of the commodity file. In
particular, S generates two MAC keys Aq, Ay. It sends A, to
Bob, and Ay to Alice.

For each of Alice’s input wires, S generates a random bit
u, and a random base BASE,,. It then sends u and TAG, =
BASE, @ uA, to Alice and BASE,, to Bob. Symmetrically, he
repeats the same process for Bob’s input wires using Ay.

Then, for each AND gate it generates the triplet shares
(u1,v1, uz, vz, w1, ws) such that (u1 Guz)(viHv2) = (W1
wa). It also generates random MAC bases BASEy,,BASE,,,
BASEy,;. It then sends to Alice wi,v1, w1 and the corre-
sponding MAC tags TAGy,,TAGy, ,TAGy,, (Where TAG,, =
BASEy, @ u1l,, etc.), and sends to Bob the MAC bases
BASEy, ,BASEy,, BASE,,, . Symmetrically, it sends uz, v2, w2
along with the corresponding MAC tags TAGy, , TAGy, , TAGuy,
to Bob, and the corresponding mac bases to Alice.

Online Stage. The players initialize their inputs as follows.
For Alice’s input bit a, Alice picks one of the authenticated
random bits a’ and the corresponding tag TAG,: she received
from the server. She sends to Bob the value b = a®a’ and sets
TAG, = TAG, . Bob who holds BASE, computes BASE, =
BASE, @ bA,. Now, Alice’s authenticated share of her input
bit is a, TAG, while Bob holds the corresponding base BASE,.
Bob’s authenticated share will simply be the bit 0 and the tag
0* while Alice sets the corresponding base to be Ay. It is easy
to check that both shares are correctly authenticated. Parties
follow these steps for all of Alice’s input bits, and similarly
for Bob’s input bits with the roles switched.

We proceed to describing how to evaluate a gate given
shares of its inputs. Let Alice hold XOR shares of the in-
put wires to gate g, i.e., a1, a2 and the corresponding tags
TAGq,, TAGq,, and let Bob hold the bases for those i.e.
BASEq,, BASEg,. Similarly for Bob’s input shares he holds
b1, b2, TAGy, , TAGy, while Alice holds BASE;, , BASEy,. The
invariant we want to keep after evaluating each gate is that
Alice holds her share of the output wire a3, the tag TAGq, and
the base for Bob’s tag BASEy,, and similarly for Bob.

Efficient Server-Aided 2PC for Mobile Phones —— 88

If g is an XOR gate, Alice simply computes a3 = a1
a2 and lets TAGq, = TAGq, @ TAGg,. Bob runs MacAdd to
compute BASEq,. A similar process is performed for b3 with
the roles switched.

If g is an AND gate, Alice and Bob will use the authenti-
cated triplets. In particular, Alice sends p1 = a1 ® u1,q1 =
a2 @ v1 to Bob, and the corresponding tags TAG,, = TAGq, P
TAGuy, , TAGq, = TAGq, D TAGy, . Bob runs MacAdd to calcu-
late BASEp,, BASE,, and uses them to check that TAG,, and
TAG, are valid tags of p1 and ¢q1. Parties repeat similar steps
where Bob sends p2 = b1 @ u2, g2 = b2 @ v2 along with their
tags, and Alice verifies them.

Alice and Bob locally compute the values p = p1 & p2 =
a1 @b ®uand g = q1 D g2 = a2 D by ® v. Alice sets
a3 = pq P qui P pvi Dwi and Bob sets bs = qua B pva D wa.
Alice lets TAGq; = qTAGy,; @ PTAG,, @ TAG,, and Bob lets
BASEq, = pqAq @ gBASEy, & PBASE,, @ BASE,,. (Note
that here we let Alice’s tag for pg be 0™ and let Bob compute
the corresponding base pgA,). Similar steps are repeated for
Bob’s share b3.

Note that the naive way of checking correctness of p;, g;
bits that parties send/receive is to do it on-the-fly by asking
them to send the corresponding tags and have the recipient
verify the tags. But this would require O(k) bits of commu-
nication per AND gate. So instead, each party computes the
tags itself and adds it to a hash chain it maintains locally. i.e.,
both Alice and Bob add their version of TAGy,, TAGg, , TAGp,,
TAG, they compute to their local hash chain and parties test
equality of their final hash chain at the end of the protocol,
hence only exchanging O(k) bits for the whole circuit.

For example, Bob can compute TAG,, on his own by let-
ting TAGp, = BASEp, @ p1A, and add it to his version of the
hash chain. If the value of TAG,, Alice computed above is not
the same, the parties’ hash chains would be different and final
equality check would detect this.

This protocol is secure agaisnt malicious players (we do
not prove this as we will prove security for our main protocol),
and it only requires communicating 4 bits for each AND gate
(similar to the semi-honest case).

But note that for the above protocol to work, the server
must know in the offline phase who the two online players
are, in order to generate the correlated triplets consistently. An
important goal of our main construction is to remove this re-
quirement.

4.3 The Main Construction

In the previous protocol, S sent to each party its part of the au-
thenticated triplets. But in our desired setting, when S is gen-
erating the commodity file for Alice, Bob is not yet in the pic-

ture. A naive way of addressing this issue is to have S generate
the authenticated triplet shares as before, send Alice’s portion
to her, and store Bob’s portion on the server side. In the on-
line phase, when Bob is identified, S can send his portion of
the commodity file to him. This approach’s main drawbacks
is that it require O(k) communications per gate between the
server and Bob in the online phase, making the online phase
expensive. It also requires the server to allocated additional
storage for Bob’s portion of the commodity until it is used in
the future.

Decoupling the offline stage. Our main idea is to ensure that

Bob’s portion of the commodities can all be generated using a

single random PRF key K. If so, to send Bob’s commod-

ity file to him, we only need to send him the key K,. To
achieve this, we change how the authenticated bit triplets are
generated. Lets assume that each triplet has a unique public
identifier ¢d where the idea is to generate Bob’s portion using

PRF¥,(id o ¢) where c is an increasing counter and o is the

string concatenation operator. (We require ¢d o c to be unique

and so we realize this by having ¢d be a unique string of a fixed
length.)

Initially, Alice requests a commodity file from S. At this
stage, the online Bob is not determined. S generates two MAC
keys Aq, Ay, and a PRF key K. S then generates each triplet
share as follows:

— The server sets u2|Uz < PRFg, (id o 1), va|Va «
PRFg, (id o 2), and w2|W> < PRFk, (id o 3). The bits
u2, v2, w2 Will be Bob’s shares in the triplet and the A-bit
strings Us, Vo, W5 are the tags associated with those bits.
This allows one to generate all of Bob’s triplet shares and
the associated tags given K.

— It then picks Alice’s shares ui,v; at random and sets
w1 = (u1 @ uz)(v1 G v2) ® wa.

— It sets the MAC-bases for Alice’s shares to be BASE,,, =
PRFk, (id 0 4), BASE,, = PRFk, (id 0 5), BASEy, =
PRFk, (id o 6), and computes the corresponding tags us-
ing these bases, e.g., TAGy, = BASEqy, @ u1l,.

— It sets the MAC-bases for uz, v2 and wa to be BASEy, =
Us @ uay, BASE,, = Vo & v2\y, and BASEy, =
Wao @ w2Ay. In other words, the bases are chosen such
that Usa, V2, W5 are the correct tag values for uz, v2, w2,
respectively.

Now, the server sends Ay, all of Alice’s authenticated shares,
and all the MAC-bases for Bob’s shares to Alice. (That con-
stitutes Alice’s commodity files.) Later, when Alice and Bob
meet and want to evaluate the circuit, Bob contacts the server
and asks for K, and A,. It uses K, to regenerate its authen-
ticated shares and all the MAC-bases of Alice’s shares. Then,
they evaluate the circuit as described in Section 4.2.

Efficient Server-Aided 2PC for Mobile Phones —— 89

So far we have decoupled Bob from the processing
stage, and only require Alice to participate in the of-
fline/preprocessing stage. In fact, neither the server nor Alice
need to know who is Bob in the preprocessing stage. Also ob-
serve that the online stage is quite efficient, as it only requires
exchanging 4 bits and computing a small number of PRF out-
puts by Bob, per AND gate in the circuit.

Making the protocol symmetric. The only drawback of the
above solution is that it is not symmetric with respect to the
two players (Alice and Bob). Bob’s online computation is
higher while Alice’s storage requirements are more since she
needs to store her commodity file. Our last modification is to
allow Alice and Bob to both participate in the preprocessing
stage, each downloading a file that corresponds to half of the
circuit i.e. n/2 AND gates, and later run the online stage with
those files, allowing them to evaluate n AND gates. The chal-
lenge is that the two commodity files will be generated using
different and unrelated keys (since it is not known who would
be the online 2PC participant), and hence we need an efficient
way of making the keys consistent in the online stage.

The idea is as follows. When the server generates Alice’s
commodity file, it uses two random MAC keys A, and A/,
(A, is used in place of A above). It does the same with Bob’s
commodity file, using two random keys A;, and A} (A} re-
placing A, in commodity generation). The rest of the com-
modity file generation process remains the same.

In the online stage, when the server knows who the play-
ers are, it sends to Alice the value A, ® Aj and to Bob the
value Ay @ A/ In addition, it sends the values K, to Bob
and K, to Alice. Note that now, Bob can use A, @ Al to
adjust its MAC tags so they use the key Ay. It can do the
same for shares/tags derived from K, e.g., it sets TAGy, to
be Uz @ uz(Ayp & AL). At the end of this process, all the au-
thenticated bits the players have are authenticated using A,
and Ay, no matter which commodity file they were associated
with.

This concludes description of the main ideas behind the
protocol. A complete description follows.

4.4 Detailed Protocol Description

The Offline Stage: Generating Commodity Files

Let n be the maximal number of AND gates in the circuit to
be computed, [be the maximal input length, and let PRF be a
pseudorandom function, represnted as a random oracle, and let
H be a collision-resistant hash function represented as a ran-
dom oracle. We explain the commodity file generation process
for Alice, but an identical algorithm can be used to generate
the commodity for Bob as well. In particular, Alice and Bob

can alternate roles from one AND gate to another, hence only

receiving commodities corresponding to n/2 AND gates. We

stress that at this stage the server does not know that Alice and

Bob want to talk to each other and hence their commodity files

are not correlated in any way.

1. Server S generates a random identification number 1D,
identifying the file and writes I D, to the file. This number
should be random and unpredictable so it can be used as a
form of authentication. Conveniently, we assume that the
identification numbers are random strings of A-bit length.
In practice, they can be derived from PRF,,x (i), where
mk is a private master-key of length « that belongs to the
sever and ¢ is an increasing index.

2. S picks three keys Aq, A, € {0,1}* and K, € {0,1}".
Al is used as the “offline" key for MACing the shares
for Alice’s online counterpart; A, is the key for MACing
Alice’s shares herself, and K, is used as a key to PRF and
for example will be used to generate new MAC-bases for
Alice’s tags. Le., MAC(id, b) = PRFg, (id) @ bA,.

3. Fori=1tol:

— Authenticated random bit (ARB): S picks a ran-
dom bit r and writes to Alice’s file r and the tag for r
i.e. TAG, = MAC(i00, r), where o is a concatenation
operator that treats the first input as a log({+1+2n)-
bit string (padded with zeros if needed) to prevent
collisions (i.e., i o w = i’ o w’ such that i # i’). Note
that the use of 0 is arbitrary and any distinct value can
be used instead.

4. Fori=I1l+1tol+1+n/2:

— Authenticated shared-AND triplet (ASAT): S gen-

erates six random bits w1, v1, u2, v2, w1, w2 satisfy-
ing the equation (u1 @ u2)(vi ® v2) = w1 H w2 in
the following way: It sets uz|Us < PRFg_ (i o 1),
V2 |V2 < PRFg, (iOQ), and w2 |W2 + PRFg, (2'03)
where u;, v;, w; are bits and U;, V;, W; are strings of
A bits. It then picks w1, v1 at random and sets w1 =
(u1Bu2) (v1Bv2)Bws. S writes to the file w1, v1, w1
and their tags TAG,, = MAC(i o 4,u1), TAG,, =
MAC(i 0 5,v1), TAGyw, = MAC(% 0 6, w1).
It also writes MAC-bases for u2,v2 and w2 to Al-
ice’s file, i.e. BASEy, = Uz @ uaA\l, BASE,, =
Vo @ v2AL, and BASE,, = Wa @ waAl. (Alice
will use these base values and Ay to check the other
player’s MACs in the online phase. Note that neither
Alice nor the server know she is talking to Bob yet
and hence this connection needs to be made in the
online stage where the parties adjust things so that
Ay is used instead of A/,.)

5. S sends the commodity file to Alice and stores the tuple
(IDg, Ko, Aa, AL) locally. Note that the server needs to
store only these keys, and not the files it generates.

Efficient Server-Aided 2PC for Mobile Phones —— 90

The same process is repeated for Bob where fresh new random
keys Ay, K, and Aj are used to generate Bob’s commodity
file. (Recall that there are actually three options: (1) Only Alice
gets a commodity file for > n AND gates; (2) Only Bob gets a
file; (3) Both players get files for which the sum of AND gates
is > n. We focus on the third option here.)

The Online Stage: Alice and Bob Interacting

Alice has I D, and its associated commodity file, and Bob has

1Dy and its associated commodity file.

1. Pairing devices for secure computation: Alice and Bob
decide on the circuit C' they wish to evaluate and agree
on a session identifier 1 D,. Alice sends (I Dq, IDs) to
the server while Bob sends (I Dy, ID;). S verifies that
ID,, and 1D are stored in its database (and otherwise
reports an error to the players and aborts the protocol). S
sends Ky, Ap, and A} @ A, to Alice, and K, Ay, and
Al @ Ay to Bob. (Note that this can even be done with a
single SMS since these messages are only 2\ + « bits.)

2. Initializing hash chains: Both players initialize hash
chains for checking all the MAC tags at the end of the
protocol. Specifically, both players set ch, = chy, = 07.
During the protocol, each player will update both ch,, and
chy, privately, and at the end of the protocol, Alice would
send ch, to prove her messages, and Bob would send chy,
to prove his.

3. Preparing input wires: Let a be Alice’s input bit for the
input wire ¢ < [. (Same process is done for Bob’s inputs.)
Alice reads the ith ARB a’ and its tag TAG,/ from her
commodity file and sends b = a ® a’ to Bob. She stores
the tuple (¢, a, TAG,’). Bob stores the pair (i, PRF g, (i o
0) @ bA,). (As discussed earlier, note that Bob flips the
MAC based on the value of b, while Alice now has the tag
of a’ for authenticating her actual input bit a.) Bob also
stores his share of the bit, which is simply 0 and the tag
0. Alice stores A as the corresponding base for this bit.

4. Evaluating an XOR gate: Let’s assume Alice’s inputs to
the gate are a1, a2, TAGq, ; TAGq,, BASEy, , BASEp, while
Bob’s inputs are b1, b2, TAGp, , TAGp,, BASEq, , BASEq,.
The goal is for Alice to learn c,, TAG, , BASE., and for
Bob to learn ¢, TAG, , BASE., wWhere

ca®cp= (a1 ®az b1 @ ba)

Each party XORs his own inputs and the corresponding
tags/MAC-bases locally. Le. Alice learns ¢, = (a1 ®
a2), TAGe, = (TAGq, DTAGq,) and BASE., = (BASEp, &
BASEy,), while Bob does the same using his own inputs.
5. Evaluating an AND gate: Lets assume the parties are
computing the ith AND gate in the circuit, and we
are using Alice’s commodities to evaluated this gate.

Set 7 = | 4+ 1 4+ 4. Alice’s inputs to the gate are
a1, a2, TAGq, , TAGq,, BASEy, , BASEp, while Bob’s in-
puts are b1, bz, TAGp, , TAGp, , BASEq, , BASE,,. The goal
is for Alice to learn cq, TAGc,, BASE., and for Bob to
learn ¢, TAGc, , BASE,, such that

ca ®cp = (a1 @ b1)(az @ be)

(a) Alice reads the ith ASAT wi,vi,w1 and

TAGuy, , TAGy, , TAGy, , and BASE,,, , BASEy, , BASE,.

Bob does not read any commodities, but computes the
following online uz|Us < PRFk, (i 0 1), v2|Va «+
PRFg, (i o 2), and w2|W2 < PRFg, (i o 3),
and TAGy, = Uz @ u2(AL ® Ay), TAGy, =
Vo & ’UQ(A& D Ab), TAGyw, = Wy @ wz(A; D Ab).

(b) Alice sends p1 = a1 & u1 and g1 = a2 @ v1 to Bob.
She then computes TAG,, = TAGq, @D TAG,, and
TAGgq, = TAGq, ® TAGy,, and updates her hash chain
by computing chq = H(cha|TAGy, |TAG,).

(c) Bob sets BASE,, = PRFkg, (i o 4), BASE,, =
PRFg, (i o 5) and BASE,,, = PRFg,_(i o 6). He
computes TAGp, = BASEq, @ BASEy, & p1l.
and TAG;, = BASEq, @ BASE,; ® q1Ag, and up-
dates his hash chain by computing ch, = H(chy|
TAGp, |[TAGg,).

(d) Bob sends p2 = b1 ® u2 and g2 = b2 P v2 to Al-
ice. He then computes TAG,, = TAGp, @ TAGy, and
TAGg, = TAGy, ® TAG.,, and updates his hash chain
by computing chy, = H(chy|TAGy, |TAG,).

(e) Alice computes TAGp, = BASE,, @ BASEy, @
p2Ap and TAGq, = BASEp, @ BASEy, © ¢4y,
and updates her hash chain by computing ch, =
H(chq|TAGp, |TAG,).

(f) Alice and Bob individually compute p1 & p2, g1 B q2
and TAG, = TAGp, BTAGp,, TAG; = TAGy, DTAGy,.

(g) Alice sets ¢, = pq @ qui & pv1 @ wi, and TAG., =
QqTAGy, @ PTAGy, @D TAGy,. Bob lets BASE., =
PqAg O GBASEy, @ PBASEy, @ BASEy,.

(h) Bobsets ¢, = quo®pv2@w2 and TAGe, = qTAGy, D
PTAGy, @D TAGy,. Alice sets BASE., = gBASEy, @
PBASEy, @ BASEqy,.

Checking MACs: Alice sends her ch, (used to verify her

messages), and Bob checks that it is equal to the version

of chg, it computed locally. Similarly, Bob sends his chy, to

Alice who compares it against the version of chy, it com-

puted locally. Parties abort if the check fails.

Revealing output: Each party reveals its share of the out-

put wires and the corresponding tag. (If there is a problem

with the MACs, the other party aborts.)

Efficient Server-Aided 2PC for Mobile Phones —— 91

4.5 Security Analysis

Before starting the proof, we note that while we use PRFy(-)
using the notation for a pseudorandom function in the proto-
col, to prove security of our protocol when the adversary dy-
namically chooses the online participants, we need PRFy (")
to behave like a random oracle. If the online participants are
fixed by the adversary a priori, then a PRF property would be
sufficient. We focus on the proof of security for the stronger
adversary model.

Theorem 4.1. If the pseudo random function PRFy,(-) and the
collision-resistant hash function H are implemented using a
random oracle, then the protocol of Section 4.4 is secure in
the presence of a semi-honest server or any subset of malicious
players.

We need to consider two main cases in order to cover all ad-
missible adversaries. The first case is when the adversary cor-
rupts the server (who is semi-honest) while other players are
honest, and the second case is when either the adversary has
corrupted exactly one of Alice or Bob (who can be malicious)
but the other party and the server are honest, or when both Al-
ice and Bob are corrupted by the adversary. Note that the ad-
versary may corrupt a set of players but only needs to decide
in the online phase which ones participate in the protocol.

First Case - Adversary Corrupts the Server. Recall that in
this case, the server is semi-honest and thus does not deviate
from the protocol specifications. For any adversary A corrupt-
ing the server in the real world, the simulator Sim in the ideal
world runs A internally. Sim receives commodity files for all
players from A in the offline phase. It also obtains identities of
the two participating parties (Alice and Bob) from the trusted
party. The only message sent to A is the IDs for Alice’s and
Bob’s commodity files in the beginning of the online phase.
Sim sends the same IDs he received in the offline phase as
the honest parties would do. Sim then outputs whatever A
outputs. It is trivially the case that A’s view in the real and
ideal world are identical. Given that the server is semi-honest,
parties learn the correct output due to correctness of the proto-
col in presence of honest parties. Hence the REAL and IDEAL
distributions are identical.

Second case - Adversary Corrupts a Subset of Players. For
any adversary A in the real protocol, the simulator Sim in
the ideal world runs A internally. In the very beginning, Sim
needs to emulate the server. It generates the commodity files
similar to how the honest server would do, except that when-
ever PRF(+) is used to generate randomness, Sim uses a uni-
formly random string instead. In the online phase, the adver-
sary A announces which one of the parties in its list will partic-

ipate in the online phase. If both Alice and Bob are corrupted,
then the rest of the simulation is simple: Sim sends the appro-
priate IDs, As for both parties, chooses random K, K} and
sends them to .A. Sim then responds to all queries to the or-
acles PRF, (+), PRFk, (+) such that they are consistent with
the commodity files it generated earlier. It outputs whatever A
does.

The more involved case is when only one party is cor-
rupted. Without loss of generality we assume it is Bob. Sim
sends the appropriate values 1Dy, Ay, A}, generates a ran-
dom K and sends it to A as well. As before, we assume
that PRF, (+) is a random oracle (e.g. H(Kj, -) where H is
hash function model as a random oracle). Sim responds to all
queries to this oracle, keeping them consistent with the com-
modity files he had generated offline.

During the input-preparation step of the online stage, A
sends a one-time pad encrypted ciphertext for each bit of Bob’s
input. Sim, who knows the encryption pads (since it gener-
ated the commodity files), decrypts them to learn Bob’s input
xp and sends it to the trusted party to receive the output of the
computation z = f (x4, xp). Sim also emulates honest Alice
using a random input x},, following the exact steps of the pro-
tocol until the very end where the output gates are computed.
For the output gates, Sim adjusts Alice’s shares so the output
wires open to the correct value z. To be more precise, the ad-
justment is f(z},, Ty) ® 2. Sim also needs to adjust the MAC
tags before adding them to the hash chain it is compiling. But it
can do so since it knows the MAC keys, and the corresponding
bases.

If A aborts at any stage during the protocol, Sim aborts
as well outputting whatever A outputs. Also if the chain chy
generated by A is not equal to the one Sim generated itself, it
will emulate honest Alice aborting and outputs whatever .A.

We now show that the ideal execution describe above is
indistinguishable from a real execution. We describe the se-
quence of hybrids needed for the second case where only one
corrupted party participates, and simply note that the Hybrid
2 below is identical to the ideal execution for the case where
both Alice and Bob are corrupted, hence Hybrids 3, 4 and 5
are not necessary in that case.

Hybrid 0: This world is the real execution were both Al-
ice and Bob use their real inputs, and interact with the real
server.

Hybrid 1: We replace the real server with the Sim doing
exactly what the real server does. The Hybrid 0 and Hybrid 1
are identical.

Hybrid 2: In this hybrid, Sim behaves as prescribed in
the simulation above in generating the commodity files, i.e.
instead of using PRFy, it generates random strings on its own
for computing the commodity files offline. It follows the real
server’s behaviors otherwise.

Efficient Server-Aided 2PC for Mobile Phones —— 92

Probability of distinguishing Hybrids 1 and 2 is less than
advantage of an adversary in breaking the random oracle
PRF;, (i.e. distinguishing it from a random function) which
is negligible.

In case both players are corrupted, the simulator programs
the random oracle so that once they adversary receives the PRF
keys, the commodity files will be consistent with the PRF out-
puts.

Hybrid 3: Similar to Hybrid 2, but output fail if the values
added to hash chain are not the same between Alice and Bob
but the output chain for both is the same. The probability of
distinguishing Hybrids 2 and 3 is less than advantage of an
adversary in finding collisions for the hash function H (which
is implemented using a random oracle).

Hybrid 4: Similar to Hybrid 3, except that if Bob’s hash
chain passes the final check but any intermediate bits ex-
changed or the final output bits are incorrect, the simulator
aborts. The probability of distinguishing Hybrids 3 and 4 is
less than probability of an adversary breaking the MAC since
Bob needs to forge a tag for the incorrect bit in order to pass
hash chain check.

Hybrid 5: the same as Hybrid 4, except that instead of
real inputs for Alice, we use random inputs for her. This is the
ideal execution described above.

Hybrids 4 and 5 are identically distributed, since all bits
received by Bob for intermediate gates are encrypted using a
one-time pad (due to the uniformly random pads in the com-
modity files), and their distribution in both hybrids is uni-
formly random. The bits sent for the output wires, on the other
hand, are distributed to yield the correct output 2z in both hy-
brids.

4.6 Handling A Covert Server

In some cases the assumption that the server is semi-honest is
plausible. However, in case the players wish to get a stronger
security guarantee from the server, then they can download
and validate several commodity files before using one for the
actual evaluation. We show that this approach provides secu-
rity in the presence of a covert server. (We stress that we still
allow the adversary to either corrupt the server or players, but
not both).

In more details, say that Alice wishes to verify that her
commodity file is correctly constructed with probability 1 — %
She asks the server for ¢ different commodity files, chooses
t — 1 of them at random and asks the server to open them.
Then, she uses the remaining commodity file in the protocol
from Section 4.4.

Unfortunately, this does not suffice. First, a corrupted
server can provide an invalid PRF key for the commodity file

in the online phase. (The above cut-and-choose only verifies
that the commodity files were generated properly in the of-
fline phase, but does not guarantee that Bob obtains the right
PRF key in the online phase.) This is resolved by adding to
the commodity file a commitment to the PRF keys. (This is
also checked if the commodity files is opened.) In the online
stage, Alice sends the commitment from her commodity file to
Bob, who then asks the server to decommit and prove that it
is indeed the PRF key Bob received. The rest of the protocol
remain as before and hence is not repeated here.

A second difficulty is regarding proving the protocol us-
ing simulation. This is resolved with standard techniques for
proving security of cut-and-choose based protocols: In the RO
model, Alice commits on the commodity file she wish to use
using the RO, so that the simulator can extract it. Then, the
server sends the ¢ files, along with commitments on their PRG
seeds, again, using the RO to allow extraction. Alice decom-
mits her choice, and the server opens the checked files as be-
fore (while Alice makes sure that the committed PRF keys
are consistent with the files). These steps allow the simula-
tor to extract Alice’s challenge before sending the commodity
files, and similarly, allow the simulator to learn how many files
are invalid before asking the server to open any of them. (A
slightly less efficient construction can be realized in the stan-
dard model using an extractable commitment.)

Theorem 4.2. [fthe pseudo random function PRF(-) and the
collision-resistant hash function H are implemented using a
random oracle, then the protocol outlined above is secure in
the presence of a covert server or any subset of malicious play-
ers.

Since we work in the random oracle model, the proof for the
case of malicious players is identical to that of previous pro-
tocol, and hence is not repeated here (we do not even need to
extract the player’s challenge as we can change the commod-
ity files by programming the random oracle). Next, we provide
the simulation for the case where the server is corrupted but the
players are honest.

For any adversary A corrupting the server in the real
world, the simulator Sim in the ideal world runs A. Sim re-
ceives ¢t commodity files for each player from A in the offline
phase. It extracts .A’s inputs to the RO and hence it learns the
opening for all £ commodity files for all players. We call a
commodity file bad if the opening of the secrets does not ex-
plain the commodity file or the commitments associated with
it.

Sim then obtains identities of the two participating par-
ties (Alice and Bob) from the trusted party. There are several
possibilities. (i) Either Alice or Bob receive more than one bad
commodity file. In this case, Sim sends a cheat message to the

Efficient Server-Aided 2PC for Mobile Phones —— 93

trusted party, and emulates that party catching the server cheat
and aborting, and outputs whatever A does. (ii) neither Alice
nor Bob receives any bad files. In this case, the rest of simu-
lation becomes identical to the semi-honest case above so we
do not repeat it here. (iii) Either Alice or Bob receives one bad
file but neither one receive two or more bad files. In this case,
Sim sends a corrupted message to the trusted party. The TTP
flips a 1/t-biased coin. If it turns up tail, it sends detected to
the simulator. Sim simulates the honest player catching the
server cheating and aborting, and outputs whatever A does. If
it turns up head, TTP sends undetected to Sim. Sim then
sends the function that receives the players inputs, runs the
online stage with the invalid commodity files and outputs the
result. (The commodity files are hardcoded in the function de-
scription.) Last, it outputs whatever .4 does. The outputs of this
simulated execution is identical to the one in the real world, as
the output is computed with the same inputs and invalid com-
modity files.

It is easy to see that in the random oracle model, the REAL
and IDEAL executions are identically distributed.

4.7 On Fairness

The protocol from Section 4.4 does not achieve fairness since
a corrupted player can abort after receiving the honest player’s
final message (which allows only the corrupted player to learn
the output of the computation). As shown in [KMR11], fair-
ness can be achieved in the server-aided setting. The crucial
observation in [KMR11] is that if the server is the party who
sends the last message to the players (i.e., the message that
allows learning the output), then fairness can be achieved.

‘We can achieve fairness in our protocol in a similar way as
well. We briefly review the modifications we need to make to
our protocol for this purpose. Instead of sending the shares and
MAC:s of the output wires to each other, the players send them
to the server, who checks the MACs and sends the output to
both players, and hence fairness is achieved. However, now the
server learns the output of the computation, so another mod-
ification is needed. Instead of sending the actual output bits,
the players agree on a random mask m, XOR the output of the
computation with m (which can be done for free using XOR
gates) and send the output to the server, which now learns the
output XORed by m.

However, in order to verify an output bit of Alice, Bob has
two send the two possible MACs to the server, which would re-
veal the value of her bit given its tag. (Recall that XORing the
output with m is done by XORing the MAC bases for Alice’s
bits with A,. Knowing the bases and the MAC tags would
reveal Alice’s bits.) Thus, in order to enable the server to ver-
ify the MACs of the shares without learning the actual MAC

bases/tags, the players agree on a random key £ and send to
the server the shares “encrypted” with a deterministic encryp-
tion using key k. (E.g., if Alice has an output bit b and its tag
TAGy, she sends b and an encryption of the tag AE Sk (TAGy),
while Bob sends two encryptions, one of the MAC for bit 0 and
one for bit 1. The server simply compares the shares without
knowing k.) Since the output is XORed with m, these steps
are needed only for the output bits of one of the players. The
resulting protocol is simple to perform and requires only 3 ad-
ditional encryptions per output bit.

A disadvantage of the above protocol is that now the com-
munication between the players and the server in the online
stage depends on the output length. First, it reveals the out-
put length to the server (though in most case, this is proba-
bly not too problematic). Second, in case the output is long,
this might be inefficient since we assumed the communica-
tion between the players and the server is limited in the on-
line phase (even though we need only one additional round
of communication). In theory, this can be solved by using
f'(ko, ko, z,1) = [Encryan, (f(xo0,z1)), ko @ k1] such that
Alice inputs a secret random key ko and her input x9, Bob
inputs a secret random key k; and his input x1, and Enc is
a deterministic encryption; The players learn the output of
Enci,qk, (f(xo, 1)) while the server learns ko @ k; and
sends it to both players. Note that now the communication be-
tween the players and the server is small and depends only
on the security parameter. However, this solution is much less
efficient since now the players must also evaluate the circuit
for Enc. We leave the question of designing a more efficient
solution without this drawback for future work.

5 Prototype Implementation and
Evaluation

We implemented a prototype of our protocol for Android
smartphones. In this section we briefly describe the architec-
ture of the prototype, and then show an extensive experimental
study of its running with different circuits.

5.1 Architecture and Optimizations

The Android application was written in JAVA. As a pseudo-
random function we use AES-128 in ECB mode (since inputs
to the PRF are at most 1 block long), and as the collision-
resistant hash function we use SHA-1. These primitives are
implemented using the JAVA Crypto and Security libraries.
(During the development we tested several other Android

Efficient Server-Aided 2PC for Mobile Phones —— 94

crypto libraries, such as SpongyCastle and Conceal. Our tests
showed that the JAVA standard library outperforms the other
libraries.) The mobile app is single-threaded.

For memory-saving purposes we use a binary format rep-
resentation of tokens and circuit files. We implemented a tool
that receives a human readable circuit representation (using
the format of [ST15]) and outputs the smaller binary format
our mobile app works with.

Our protocol requires transmitting only two bits per AND
gate. We use bit masking (multiple bits in a byte) for storing
those bits and for reducing the network communication size.
In addition, in order to reduce the number of communication
rounds, the AND gates are processed layer-by-layer instead of
gate-by-gate. Namely, we store the values to be transmitted for
all AND gates in the current layer and then send/receive them
all at once. This allows to us to avoid the TCP overheads. In-
formation regarding circuit layers, the number of AND gates
for each layer, etc. is obtained form the circuit file. In order to
save on heap memory usage and reduce the garbage collector
overheads, our app does not read the entire circuit and com-
modity files at once, but instead, it retrieves only information
about the next layer to be processed. While this approach in-
creases the number of I/O operations, the resulting reduction
of memory usage significantly improved performance. (Note
that during evaluation, the prototype keeps track only of live
wires. Values of wires that are not used in the rest of the eval-
uation are deleted.)

The user-interface of the mobile app is simple to use:
The user can see the currently stored commodity files and
their properties (e.g., number of AND gates supported). He
can download new commodity files from the server and store
them locally by specifying the number of AND gates/inputs or
choosing a circuit file for which the commodity is to be gener-
ated. The app includes several circuits for testing purposes but
allows for adding circuits of your own or downloading them
from the server. When the user wishes to execute the online
stage with another mobile, it chooses the circuit they wish to
evaluate, interact with the server to get the required keys, etc.,
and then execute the online protocol. Figure 3 includes several
snapshots of the user interface of the app.

5.2 Evaluation

Setup. For our experiments we used as the server, a machine
with an Intel Core-i5 3570 3.4 GHz processor, and 8GB RAM,
which was running Windows 7 (x64). One player was a Sam-
sung Galaxy S3 with dual-core Snapdragon S4 1.5Ghz CPU,
1.5Gb RAM memory (OS Android 4.4.2 KitKat), and another
player was a Galaxy S2 with dual-core Snapdragon S3 1.5Ghz,

T E A

W Secure Com putation

ABOUT

Welc

New Tokens New Functions

Choose existing tokens:
comAES DES

You can compute:

Millionaire HammingDistance

Millionaire

Pairing Devices

Request Keys

ABOUT

Use input field:

Enter your input

Ready for MPC!
Use current settings.

Start Computation

Input will be taken from file

Input size

Download

Fig. 3. Application screenshots. The first three screenshots are of
the offline stage and the next ones are of the online stage.

Efficient Server-Aided 2PC for Mobile Phones —— 95

TTTT T T T T T T T T
15 | *
g 10 n
Py
B
=~
5, —|
0, -
(| [[
10 10° 10°
Layers

Fig. 4. The effect of the circuit depth on the online running time.
The blue dots are for circuit size 100000 gates, the red are for size
10000 gates, and the green are for size 1000 gates.

788Mb RAM (OS Android 4.1.2 JellyBean). Communication
with server was done via public Wi-Fi (with TLS as the un-
derlying protocol), while communication between the mobile
phones was done through Wi-Fi Direct.

We measured energy consumption during the setup phase
using PowerTutor. Our application consumed about 2.6 W*s
when downloading 2" tokens (as compared to 1.25 Ws of
[DSZ14], though our tokens are larger since we deal also with
malicious players).

Synthetic Tests. It is clear that the performance of the online
protocol depends on the depth of the circuit being evaluated.
Therefore, we generated synthetic circuits consisting of only
AND gates, with different depths and sizes.

See Figure 4 for the performance of the online stage for
those circuits. Note that the depth has a similar effect on the
running time regardless of the total size of the circuit. (The
large gap between the blue and the red lines is mostly because
of memory issues, as the larger circuit requires much more
memory than the smaller one.)

Applications. We tested our prototype with several circuits
that compute more useful functionalities. First, we evaluated
it with AES, SHA1 and SHA256 which have become stan-
dard circuits for evaluating secure two-party protocols. In the
SHA-1/SHA-256 circuits, Alice has the first half of the in-
put and Bob has the second half. Second, we generated three
circuits using the PCF framework of [KMSB13]: Millionaire,
which receives two 32 bit integers and outputs which is larger;
Scheduling, which receives two 32 bit integers and outputs
their AND (this can be used to implement the scheduling
functionality of [DSZ14]); and, Hamming Distance, which re-
ceives two 32 bit integers and outputs their hamming distance.
(We note that these circuits are not optimized to be shallow,

Circuit # ANDs | Depth | Offline | Pre-Online | Online
AES 6800 204 450 35 2.5

SHA-1 37300 | 10445 1400 120 69.5
SHA-256 90825 8071 3600 250 66.8
Millionaire 97 97 250 5 0.59
Scheduling 32 1 240 5 0.07
Hamming- 8194 8194 574 30 47.8
Distance

Fig. 5. The running times of the different steps. Offline and Pre-
Online are in milliseconds, and Online is in seconds.

thus performance of the online stage is not optimal.) We also
tested with synthetic circuits with various depths and sizes to
better study the behaviour of our construction as seen in Fig-
ure 4.

The results are in Figure 5. We measured three different
times: Offline time is the time it takes a player and the server to
run the offline stage of the protocol from Section 4. At the end
of this stage, the player has the commodity file on its phone.
Pre-online time is the time it takes the phone to parse the com-
modity file (and the circuit specification file) and construct its
internal structures. This can be done before the players meet.
Last, we measure the time it takes the two players to run the
online stage of the protocol from Section 4 (given they both
already finished the pre-online stage). Note that in this stage,
the communication channel is quite slow and thus the majority
of the time is spent in communication.

Better Amortized Efficiency. As discussed earlier, the depth
of the circuit heavily influences the running time of the online
stage. If the players are interested in evaluating the circuit with
different inputs, then the overhead caused by the depth can be
amortized so that the cost per each evaluation is much smaller
than in the single case. The idea is to run all evaluations in par-
allel, so that the ith layer of all circuits is evaluated in parallel,
resulting in the same number of rounds as in the single evalu-
ation case. (The same idea was used also in [NNOB12].) We
note that one can actually use different circuits (and not the
same one several times). Currently, our prototype only sup-
ports running the same circuit many times in parallel.

In Figures 6 and 7 we show the effect of the amortization
technique for the evaluation of AES and SHA-1. We can see
that when we use even only two evaluations in parallel, perfor-
mance is about 40% better. When the number of parallel eval-
uations is larger, the improvement is even larger. For example,
evaluating AES five times in parallel requires 1.01 seconds per
evaluation, while evaluating AES in the single evaluation case
requires 2.5 seconds. Or, evaluating SHA-1 six times in par-
allel requires 28.3 seconds per evaluation, while in the single
evaluation case it requires 69.5 seconds. (Recall that once we
increase the number of gates per layer, our mobile app needs

Efficient Server-Aided 2PC for Mobile Phones —— 96

25 .
s 2f —
=
H
el
(5]
s
5 15| |
£
<
1, |
| | | | |
0 2 4 6 8 10

Number of Parallel Invocations

Fig. 6. The amortized (online) time required for computing a single
AES circuit.

70 - :

g 60| 8
Py
£

= 50 :
=
hS|

g 40 .
<

30| :

| | | | | |
0 1 2 3 4 5 6 7

Number of Parallel Invocations

Fig. 7. The amortized (online) time required for computing a single
SHA-1 circuit.

more memory for storing the values of the intermediate wires.
This is the reason we see cases where using more evaluations
in parallel actually hurts performance.)

Comparison with Related Work. See [DSZ14] for a compre-
hensive review of related work. Here we repeat only the works
that are most relevant to ours.

[HCE11] evaluates semi-honest gc-based secure two-
party computation on smartphones. Going from semi-honest
2PC to fully-secure 2PC based on garbled circuits (i.e., using
cut-and-choose) is still very expensive and currently seems im-
practical for running on smartphones. [KMR12] designs and
evaluates new protocols in the server-aided setting. They show
that AES can be evaluated in about 9 seconds, assuming the
server and one of the players can communicate via fast net-
work connection. Note that the goal of [KMR12] is to reduce
the work of the players, whereas we would like to reduce their
work, but rely on a slow network connection (as is often the

case with smartphones). In addition, in [KMR12] the server
knows the circuit being evaluated, whereas in our setting it
does not.

[Hual2] presents a protocol that is based on the ideas of
[NNOB12] and a trusted server that generates commodity ran-
domness as in our setting. As we follow the same ideas, our
protocol is similar to theirs. However, in our setting the play-
ers do not have to know in the offline stage, whom would be
the other player they will interact with in the online stage.
([Hual2] focuses on standard 2PC setting.) In addition, our
prototype is designed for mobile phones, whereas the pro-
totype of [Hual2] runs on desktops. In fact, our prototype
achieves similar speed to that of [Hual2] even though it runs
on mobile phones. (E.g., evaluating AES takes about 3 seconds
for both prototypes.)

Last, [DSZ14] considers a setting in which one of the mo-
bile phones is connected to a trusted smartcard that can gen-
erate correlated randomness for the players. As long as the
smartcard is not tampered by its user, the protocol of [DSZ14]
is secure against semi-honest players. The use of the smartcard
allows to significantly reduce the cost of the GMW protocol,
similar to our use of the server. It is hard to compare our re-
sults to theirs as we use different circuits and different settings.
Still, we can provide a rough comparison for our scheduling
circuit: The circuit of [DSZ14] has 56 gates whereas ours has
32. [DSZ14] requires about 1.6 seconds (in total) for evaluat-
ing those 56 gates, while our prototype requires about 1 second
for evaluating 32 gates. Note that our protocol is secure against
malicious players, while their implementation only achieves
semi-honest security.

Acknowledgement. We would like to thank the Jonathan Katz
and the anonymous reviewers for very helpful comments on
the paper.

References

[AJLAT12] Gilad Asharov, Abhishek Jain, Adriana Lopez-Alt,
Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low commu-
nication, computation and interaction via threshold
fhe. In Advances in Cryptology—EUROCRYPT 2012,
pages 483-501. Springer, 2012.

[AL10] Yonatan Aumann and Yehuda Lindell. Security
against covert adversaries: Efficient protocols for
realistic adversaries. J. Cryptol., 23(2):281-343, April
2010.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, lvan

Damgard, Martin Geisler, Thomas Jakobsen, Mikkel
Kroigaard, Janus Dam Nielsen, Jesper Buus Nielsen,
Kurt Nielsen, Jakob Pagter, et al. Secure multiparty
computation goes live. In Financial Cryptography and

Efficient Server-Aided 2PC for Mobile Phones —— 97

[Bea92]

[BGO2]

[BHKR13]

[CADT14]

[CHK*12]

[CLT14]

[CMTB13]

[DCFGT12]

[DI05]

[DIK+08]

[DSZ14]

[FKN94]

Data Security, pages 325-343. Springer, 2009.
Donald Beaver. Efficient multiparty protocols using
circuit randomization. In Proceedings of the 11th
Annual International Cryptology Conference on Ad-
vances in Cryptology, CRYPTO '91, pages 420432,
London, UK, UK, 1992. Springer-Verlag.

Boaz Barak and Oded Goldreich. Universal argu-
ments and their applications. In Computational
Complexity, 2002. Proceedings. 17th IEEE Annual
Conference on, pages 162—171. IEEE, 2002.

Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi,
and Phillip Rogaway. Efficient garbling from a fixed-
key blockcipher. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 478-492. |[EEE, 2013.
Henry Carter, Chaitrali Amrutkar, Italo Dacosta, and
Patrick Traynor. For your phone only: custom proto-
cols for efficient secure function evaluation on mobile
devices. Security and Communication Networks,
7(7):1165—-1176, 2014.

Seung Geol Choi, Kyung-Wook Hwang, Jonathan
Katz, Tal Malkin, and Dan Rubenstein. Secure multi-
party computation of boolean circuits with applica-
tions to privacy in on-line marketplaces. In Topics in
Cryptology—CT-RSA 2012, pages 416—432. Springer,
2012.

Henry Carter, Charles Lever, and Patrick Traynor.
Whitewash: Outsourcing garbled circuit generation
for mobile devices. In Proceedings of the 30th Annual
Computer Security Applications Conference, pages
266-275. ACM, 2014.

Henry Carter, Benjamin Mood, Patrick Traynor, and
Kevin Butler. Secure outsourced garbled circuit eval-
uation for mobile devices. In Presented as part of
the 22nd USENIX Security Symposium (USENIX Se-
curity 13), pages 289-304, Washington, D.C., 2013.
USENIX.

Emiliano De Cristofaro, Sky Faber, Paolo Gasti, and
Gene Tsudik. Genodroid: are privacy-preserving ge-
nomic tests ready for prime time? In Proceedings of
the 2012 ACM workshop on Privacy in the electronic
society, pages 97-108. ACM, 2012.

Ivan Damgard and Yuval Ishai. Constant-round mul-
tiparty computation using a black-box pseudorandom
generator. In Advances in Cryptology—CRYPTO
2005, pages 378-394. Springer, 2005.

I. Damgard, Y. Ishai, M. Krgigaard, J.-B. Nielsen,
and A. Smith. Scalable multiparty computation with
nearly optimal work and resilience. In Advances in
Cryptology - CRYPTO 2008, pages 241-261, 2008.
Daniel Demmler, Thomas Schneider, and Michael
Zohner. Ad-hoc secure two-party computation on
mobile devices using hardware tokens. In 23rd
USENIX Security Symposium (USENIX Security
14), pages 893—-908, San Diego, CA, August 2014.
USENIX Association.

Uri Feige, Joe Killian, and Moni Naor. A minimal
model for secure computation. In Proceedings of the
twenty-sixth annual ACM symposium on Theory of
computing, pages 554—563. ACM, 1994.

[G+09]

[GMW87]

[HCE11]

[HEKM11]

[HKK+14]

[HSS*10]

[Hua12]

[IKO*11]

[IPSO08]

[JS07]

[KMR11]

[KMR12]

[KMSB13]

Craig Gentry et al. Fully homomorphic encryption
using ideal lattices. In STOC, volume 9, pages 169—
178, 2009.

O. Goldreich, S. Micali, and A. Wigderson. How

to play any mental game. In Proceedings of the
nineteenth annual ACM symposium on Theory of
computing, STOC ’87, pages 218-229, New York,
NY, USA, 1987. ACM.

Yan Huang, Peter Chapman, and David Evans.
Privacy-preserving applications on smartphones. In
USENIX Workshop on Hot Topics in Security, 2011.
Yan Huang, David Evans, Jonathan Katz, and Lior
Malka. Faster secure two-party computation us-

ing garbled circuits. In Proceedings of the 20th
USENIX conference on Security, SEC’11, pages
35-35, Berkeley, CA, USA, 2011. USENIX Associa-
tion.

Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ran-
jit Kumaresan, and Alex J Malozemoff. Amortizing
garbled circuits. In Advances in Cryptology—CRYPTO
2014, pages 458-475. Springer, 2014.

Wilko Henecka, Ahmad-Reza Sadeghi, Thomas
Schneider, Immo Wehrenberg, et al. Tasty: tool for
automating secure two-party computations. In Pro-
ceedings of the 17th ACM conference on Computer
and communications security, pages 451-462. ACM,
2010.

Yan Huang. Practical Secure Two-Party Computation.
PhD thesis, University of Virginia, 2012.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky,

Manoj Prabhakaran, and Amit Sahai. Efficient non-
interactive secure computation. In Kenneth G. Pa-
terson, editor, EUROCRYPT, volume 6632 of Lec-
ture Notes in Computer Science, pages 406—425.
Springer, 2011.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai.
Founding cryptography on oblivious transfer — effi-
ciently. In Proceedings of the 28th Annual conference
on Cryptology: Advances in Cryptology, CRYPTO
2008, pages 572-591, Berlin, Heidelberg, 2008.
Springer-Verlag.

Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-
party secure computation on committed inputs. In
Proceedings of the 26th annual international confer-
ence on Advances in Cryptology, EUROCRYPT 07,
pages 97—114, Berlin, Heidelberg, 2007. Springer-
Verlag.

S. Kamara, P. Mohassel, and M. Raykova. Out-
sourcing multi-party comptuation. Technical Report
2011/272, IACR ePrint Cryptography Archive, 2011.
http://eprint.iacr.org/2011/272.

Seny Kamara, Payman Mohassel, and Ben Riva.
Salus: a system for server-aided secure function
evaluation. In Proceedings of the 2012 ACM con-
ference on Computer and communications security,
pages 797-808. ACM, 2012.

Ben Kreuter, Benjamin Mood, Abhi Shelat, and Kevin
Butler. Pcf: A portable circuit format for scalable
two-party secure computation. In Proceedings of
the 22Nd USENIX Conference on Security, SEC’13,

Efficient Server-Aided 2PC for Mobile Phones —— 98

[KSS12]

[Lin13]

[LPO7]

[LP11]

[LR14]

[MF06]

IMGBF14]

[MLB12]

[MNP+04]

[MR13]

INNOB12]

[NO09]

pages 321-336, Berkeley, CA, USA, 2013. USENIX
Association.

Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen.
Billion-gate secure computation with malicious ad-
versaries. In Proceedings of the 21st USENIX con-
ference on Security symposium, Security’12, pages
14—14, Berkeley, CA, USA, 2012. USENIX Associa-
tion.

Yehuda Lindell. Fast cut-and-choose based protocols
for malicious and covert adversaries. In CRYPTO,
pages 1-17, 2013.

Yehuda Lindell and Benny Pinkas. An efficient proto-
col for secure two-party computation in the presence
of malicious adversaries. In Moni Naor, editor, EU-
ROCRYPT, volume 4515 of Lecture Notes in Com-
puter Science, pages 52—78. Springer, 2007.
Yehuda Lindell and Benny Pinkas. Secure two-party
computation via cut-and-choose oblivious transfer.

In Yuval Ishai, editor, TCC, volume 6597 of Lec-

ture Notes in Computer Science, pages 329-346.
Springer, 2011.

Yehuda Lindell and Ben Riva. Cut-and-choose yao-
based secure computation in the online/offline and
batch settings. In Advances in Cryptology—CRYPTO
2014, pages 476—494. Springer, 2014.

Payman Mohassel and Matthew K. Franklin. Effi-
ciency tradeoffs for malicious two-party computation.
In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and
Tal Malkin, editors, Public Key Cryptography, volume
3958 of Lecture Notes in Computer Science, pages
458-473. Springer, 2006.

Benjamin Mood, Debayan Gupta, Kevin Butler, and
Joan Feigenbaum. Reuse it or lose it: More efficient
secure computation through reuse of encrypted val-
ues. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 582-596. ACM, 2014.

Benjamin Mood, Lara Letaw, and Kevin Butler.
Memory-efficient garbled circuit generation for mo-
bile devices. In Financial Cryptography and Data
Security, pages 254—268. Springer, 2012.

Dahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron
Sella, et al. Fairplay-secure two-party computation
system. In USENIX Security Symposium, volume 4.
San Diego, CA, USA, 2004.

Payman Mohassel and Ben Riva. Garbled circuits
checking garbled circuits: More efficient and secure
two-party computation. In CRYPTO, pages 36-53,
2013.

Jesper Buus Nielsen, Peter Sebastian Nordholt,
Claudio Orlandi, and Sai Sheshank Burra. A new
approach to practical active-secure two-party com-
putation. In Advances in Cryptology - Crypto 2012,
volume 7417 of Lecture Notes in Computer Science,
pages 681-700. Springer, 2012.

Jesper Buus Nielsen and Claudio Orlandi. Lego for
two-party secure computation. In Proceedings of the
6th Theory of Cryptography Conference on Theory
of Cryptography, TCC '09, pages 368—-386, Berlin,
Heidelberg, 2009. Springer-Verlag.

http://eprint.iacr.org/2011/272

[PSSWO09]

[SS11]

[SS13]

[ST15]

[Yao86]

Benny Pinkas, Thomas Schneider, Nigel P. Smart,
and Stephen C. Williams. Secure two-party compu-
tation is practical. In Proceedings of the 15th Inter-
national Conference on the Theory and Application
of Cryptology and Information Security: Advances in
Cryptology, ASIACRYPT ’09, pages 250-267, Berlin,
Heidelberg, 2009. Springer-Verlag.

Abhi Shelat and Chih-Hao Shen. Two-output se-
cure computation with malicious adversaries. In
Kenneth G. Paterson, editor, EUROCRYPT, volume
6632 of Lecture Notes in Computer Science, pages
386—405. Springer, 2011.

Abhi Shelat and Chih-hao Shen. Fast two-party
secure computation with minimal assumptions. In
CCS, pages 523-534. ACM, 2013.

Nigel Smart and Stefan Tillich. Circuits of basic
functions suitable for MPC and FHE. http://www.cs.
bris.ac.uk/Research/CryptographySecurity/MPC/,
2015.

Andrew Chi-Chih Yao. How to generate and ex-
change secrets. In Proceedings of the 27th Annual
Symposium on Foundations of Computer Science,
SFCS '86, pages 162—167, Washington, DC, USA,
1986. IEEE Computer Society.

Efficient Server-Aided 2PC for Mobile Phones —— 99

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

