
Proceedings on Privacy Enhancing Technologies ; 2016 (2):115–134

Albert Kwon*, David Lazar, Srinivas Devadas, and Bryan Ford
Riffle
An Efficient Communication System With Strong Anonymity

Abstract: Existing anonymity systems sacrifice
anonymity for efficient communication or vice-versa.
Onion-routing achieves low latency, high bandwidth,
and scalable anonymous communication, but is sus-
ceptible to traffic analysis attacks. Designs based on
DC-Nets, on the other hand, protect the users against
traffic analysis attacks, but sacrifice bandwidth. Ver-
ifiable mixnets maintain strong anonymity with low
bandwidth overhead, but suffer from high computation
overhead instead.
In this paper, we present Riffle, a bandwidth and com-
putation efficient communication system with strong
anonymity. Riffle consists of a small set of anonymity
servers and a large number of users, and guarantees
anonymity among all honest clients as long as there
exists at least one honest server. Riffle uses a new
hybrid verifiable shuffle technique and private informa-
tion retrieval for bandwidth- and computation-efficient
anonymous communication. Our evaluation of Riffle in
file sharing and microblogging applications shows that
Riffle can achieve a bandwidth of over 100KB/s per
user in an anonymity set of 200 users in the case of file
sharing, and handle over 100,000 users with less than
10 second latency in the case of microblogging.

Keywords: anonymous communication; verifiable shuf-
fle; private information retrieval

DOI 10.1515/popets-2016-0008
Received 2015-08-31; revised 2015-12-02; accepted 2015-12-02.

1 Introduction
The right to remain anonymous is a fundamental right
in a democratic society and is crucial for freedom of
speech [49]. Anonymizing networks based on relays such
as Tor [26] have been gaining popularity as a practi-
cal privacy enhancing technology among users seeking

*Corresponding Author: Albert Kwon: MIT, E-mail:
kwonal@mit.edu
David Lazar: MIT, E-mail: lazard@mit.edu
Srinivas Devadas: MIT, E-mail: devadas@mit.edu
Bryan Ford: EPFL, E-mail: bryan.ford@epfl.ch

higher levels of privacy. However, such systems are sus-
ceptible to traffic analysis attacks [36, 43] by powerful
adversaries such as an authoritarian government or a
state controlled ISP, and have recently been attacked
by even weaker adversaries monitoring only the users’
traffic [14, 32, 39, 51].

There are two major branches of work that offer
traffic analysis resistance even in the presence of a pow-
erful adversary. The first is Dining-Cryptographer Net-
works (DC-Nets) [16], which offer information theoreti-
cally secure anonymous communication for users as long
as one other participant is honest. Dissent [53] improved
upon DC-Nets by moving to the anytrust model, where
the network is organized as servers and clients, and
guarantees anonymity as long as there exists one hon-
est server. The second is verifiable mixnets, based on
mix networks [18]. In this design, the mixes use a veri-
fiable shuffle [7, 13, 28, 37] to permute the ciphertexts,
and produce a third-party verifiable proof of the cor-
rectness of the shuffle without revealing the actual per-
mutation. Similar to DC-Net based systems, verifiable
mixnets guarantee anonymity as long as one mix in the
network is honest.

Both designs, however, suffer from serious draw-
backs. DC-Nets and DC-Net based systems, by design,
implement a broadcast channel. That is, they were pri-
marily designed for the case where one client messages
everyone in the network. Thus, when multiple users
wish to communicate simultaneously, every user must
transfer a message of size proportional to the number of
clients who wish to communicate. As a result, DC-Net
based designs suffer from a large bandwidth overhead,
and only scale to a few thousand clients [23, 53]. Ver-
ifiable mixnets, on the other hand, allow the clients to
send messages of size proportional only to their own
messages, and thus can be bandwidth efficient. How-
ever, the high computation overhead of verifiable shuf-
fles has prevented verifiable mixnets from supporting
high bandwidth communication.

In this paper, we present Riffle, a system for
bandwidth- and computation-efficient anonymous com-
munication. Riffle addresses the problems of DC-Nets
and verifiable mixnets, while offering the same level of
anonymity. At a high level, Riffle is organized as servers
and clients, similar to previous works [21, 23, 53]. Rif-



Riffle 116

fle focuses on minimizing the bandwidth consumption
of the clients, who may be connecting from bandwidth-
constrained environments such as their mobile phones,
and reducing the computation overhead on the servers
so they can support more clients. Specifically, the clients
in Riffle consume upstream bandwidth proportional
only to the size of their messages rather than the number
of clients, and the server computation only involves fast
symmetric key cryptography in the common case. This
allows the users to exchange messages efficiently, making
it suitable for applications like file sharing that no ex-
isting strong anonymity system can support well. More-
over, Riffle provides strong anonymity for all clients as
long as one of the servers is honest.

Riffle achieves bandwidth and computation effi-
ciency by employing two privacy primitives: a new
hybrid verifiable shuffle for upstream communication,
and private information retrieval (PIR) [20] for down-
stream communication. Our novel hybrid verifiable shuf-
fle scheme avoids using an expensive verifiable shuffle in
the critical path, and employs authenticated encryption
to improve both bandwidth and computation overhead
of the shuffle without losing verifiability. We also pro-
pose a novel application of private information retrieval
in the anytrust setting. Previous strong anonymity sys-
tems made a trade-off between computation and band-
width by either broadcasting all messages to all users
(low computation, high bandwidth) [21, 23, 53], or us-
ing computationally expensive PIR (high computation,
low bandwidth) [47]. In the anytrust model, we show
that PIR can minimize the download bandwidth with
minimal computation overhead.

We also develop a Riffle prototype and two appli-
cations. The first is an anonymous file sharing applica-
tion, where each message is large and is potentially of
interest to only a small number of users. Sharing large
files is a scenario that has not been considered care-
fully by previous strong anonymity systems [7, 21, 53];
we propose a new file sharing protocol that leverages
and illustrates Riffle’s bandwidth-efficiency. The second
application is for anonymous microblogging, similar to
applications studied in previous works [21, 53]. In this
setting, each user posts small messages to the server,
and each message is of interest to many users.

Our prototype demonstrates effectiveness for both
applications. In file sharing, the prototype achieves high
bandwidth (over 100KB/s) for more than 200 clients.
In microblogging, the prototype can support more than
10,000 clients with latency less than a second, or handle
more than 100,000 clients with latency of less than 10
seconds. We show that our results are orders of magni-

tude better in terms of both scalability and bandwidth
compared to previous systems offering traffic analysis
resistance [7, 48, 53] in comparable scenarios.

This paper makes the following contributions:
1. A hybrid verifiable shuffle that uses symmetric en-

cryption, and avoids expensive public key verifiable
shuffling [7, 13, 28, 37] in the common case.

2. A novel application of private information re-
trieval [20] in anytrust settings.

3. A bandwidth- and computation-efficient anonymous
communication system that is resilient against traf-
fic analysis attacks and malicious clients.

4. Evaluation of Riffle that demonstrates efficiency in
two contrasting applications.
In Section 2, we describe related work. In Section 3

and Section 4, we explain the threat model and deploy-
ment model of Riffle and describe the protocol in detail.
We then describe our file sharing protocol in Section 5,
and evaluate our prototype in Section 6. Finally, we dis-
cuss future work in Section 7, and conclude in Section 8.

2 Background and Related Work
In this section, we describe related work, focusing on
the trade-offs made by existing anonymity systems.

2.1 Proxy-Based Anonymity Systems

Tor [26] is a popular anonymity system that focuses on
scalability and low latency by routing users’ messages
through decentralized volunteer relays without delays or
cover traffic. While this design allows Tor to scale to mil-
lions of users [6], a powerful adversary who can observe
traffic going in and out of the relay network (e.g., a state
controlled ISP) can deanonymize users [36, 43]. One
recently-discovered attack enables even a local adver-
sary, observing only entry-relay traffic, to deanonymize
users with high probability [14, 32, 33, 39, 51].

Mix networks (mixnets) [18] and systems that build
on them [24, 27, 44–46] aim to prevent traffic anal-
ysis attacks by routing each user’s message through
a set of anonymity servers called mixes. Mixes collect
many users’ inputs and shuffle them before sending any
out, making it difficult to correlate inputs and the out-
puts even for a global adversary. Because the mixes
can be distributed and decentralized, mixnets can scale
to a large number of clients [45], and provide reason-
able latency and bandwidth when the mixes are well-



Riffle 117

provisioned. With malicious mixes in the network, how-
ever, mixnets fail to provide the level of anonymity re-
quired for sensitive activities like whistleblowing. Sev-
eral proposed attacks [38, 40, 41, 52] allow a malicious
mix to deanonymize users by dropping, modifying, or
duplicating input messages before sending them out.

Aqua [34] aims to provide low-latency and high-
bandwidth anonymity with traffic analysis resistance by
using Tor-like infrastructure with mixes. Aqua attaches
each client to exactly one mix called the edge mix, and
provides k-anonymity among the k honest clients con-
nected to the same edge mix. In its threat model, Aqua
assumes that the honest clients are connected to un-
compromised edge mixes, and that the adversary con-
trols the network and edge mix on only one end of the
path between two clients. Though Aqua provides traffic
analysis resistance in this model, these assumptions re-
sult in security problems similar to Tor: it is not readily
possible for clients to determine which edge mix is un-
compromised, and powerful adversaries controlling both
ends of the circuit can still deanonymize clients.

2.2 Anonymity versus Bandwidth

Unlike systems using anonymizing proxies, Dining
Cryptographer Networks (DC-Nets) [16] provide infor-
mation theoretic anonymity even in the face of global
adversaries as long as there exists at least one other
honest participant. However, they require communica-
tion between every user to broadcast one message from
a single user, and thus incur high bandwidth overhead.
As a result, systems that build on DC-Nets could not
scale to more than a few tens of clients [22, 30]. Recent
DC-Net based systems [23, 53] use the anytrust model,
where the network is organized as servers and clients,
and guarantee anonymity as long as one of the servers
is honest. The new model allowed these designs to scale
to a few thousand clients with strong anonymity, but
they still suffer from a bandwidth penalty proportional
to the number of clients and the message size.

Riposte [21] is a recent system optimized for anony-
mous microblogging. Each client in Riposte uses a novel
“private information storage” technique to write into a
shared database maintained by multiple servers. It fol-
lows a threat model similar to Dissent, where anonymity
is guaranteed as long as one server is honest, and of-
fers good throughput for small messages. However, each
Riposte client must submit a message proportional to
the square root of the size of the whole database (i.e.,

collection of all clients’ data), making it unsuitable for
sharing large messages among many clients.

2.3 Anonymity versus Computation

The classic mixnets approach described earlier may be
strengthened against malicious mixes by using verifiable
shuffles [7, 13, 28, 37]. In this design, when a mix shuf-
fles the inputs, it also generates a zero-knowledge proof
that the outputs form a valid permutation of the input
ciphertexts, while hiding the permutation itself.1 Using
the proof and the ciphertexts, other parties can verify
that the mix did not tamper with any message, while
learning nothing about the permutation. Assuming at
least one of the mixes is honest, a verifiable mixnet is se-
cure even with compromised mixes in the network: The
honest mix alone shuffles inputs sufficiently to thwart
traffic analysis attacks, and malicious mixes cannot tam-
per with messages without generating a bad proof. How-
ever, generation and verification of such proofs is com-
putationally expensive, resulting in high latency and
low bandwidth. The state-of-the-art verifiable shuffle by
Bayer and Groth [7], for instance, takes 2 minutes to
prove and verify a shuffle of 100,000 short messages.

Another privacy primitive that trades computa-
tion for anonymity is private information retrieval
(PIR) [20]. While most anonymity systems mentioned
previously focus on protecting the senders’ anonymity,
PIR protects the privacy of the receiver. In PIR, a client
accesses some data in a database managed by a server
or a collection of servers, and the goal is to hide which
data was accessed. There are variants of PIR for differ-
ent settings [19, 20, 29], but many schemes have complex
formulation, and incur significant overheads in compu-
tation. On the other hand, the original PIR scheme pro-
posed by Chor et al. [20] is efficient in terms of both
computation and bandwidth, but has a weaker threat
and usage model than other schemes: it requires mul-
tiple servers each with a copy of the database, and at
least one of the servers needs to be honest. However,
this is precisely the setting of anytrust, and we show
that efficient PIR can be used in a practical system to
minimize the downstream bandwidth overhead.

1 Inputs to a verifiable shuffle are probabilistically encrypted
and re-randomized by the mix, preventing attackers from asso-
ciating inputs with outputs to learn the permutation.



Riffle 118

Table 1. Notations used.

Terminology Description
C Set of Riffle clients
n Number of clients
S Set of Riffle servers
m Number of servers
b Size of a message
λ Security parameter

3 Models and Assumptions
This section presents the system and threat models of
Riffle, and its assumptions. We also briefly define its
security properties. Table 1 summarizes notations used.

3.1 System Model and Goals

A Riffle system consists of clients and servers, as illus-
trated in Figure 1. The clients form the anonymity set of
individuals who wish to communicate anonymously, and
the servers collectively form an anonymity provider. For
deployment, we assume that each server is run by sep-
arately administered entities, such as different commer-
cial or non-profit anonymity providers. Each client in a
Riffle group is connected to his or her preferred server
called primary server, chosen based on factors such as
location, hosting organization, etc. This paper focuses
on supporting anonymous intra-group communication
among clients in the same group, as in a chatroom or
file-sharing group, and not on Tor-like anonymous com-
munication with other groups or the Internet at large.
Section 7 discusses other possible usage models.

We assume that the most precious resource in
Riffle’s setting is the bandwidth between clients and
servers. Provisioning a high-bandwidth network be-
tween a small number of servers is feasible and already
common (e.g., between data centers, large companies,
etc). However, we cannot expect all clients to have high-
bandwidth connections to the servers due to clients con-
necting from locations with poor infrastructure, expen-
sive mobile connections, etc. Therefore, Riffle focuses on
minimizing client-server bandwidth requirements. We
discuss the impact of the bandwidth between servers
in Sections 6 and 7.

This paper assumes that a Riffle group is already
established, focusing on the operation of a single group.
That is, we do not consider how the clients select
the servers to ensure presence of an honest server,
or how each client determines the appropriate group

Fig. 1. Deployment model of Riffle

(anonymity set) size. Previous works [30, 48] have ex-
plored these problems in detail, and their solutions are
applicable to Riffle as well.

Finally, Riffle aims to prevent traffic analysis at-
tacks. To do so, communication in Riffle is carried out
in rounds, similar to previous designs with traffic analy-
sis resistance [21, 53]. In each round, every client sends
and receives a message, even if he or she does not wish
to communicate that round.

3.2 Threat Model

Riffle assumes an anytrust model for its threat
model [21, 53]. Riffle does not depend on a fraction of
the servers, or even a particular server, being honest to
guarantee anonymity. We rely only on the assumption
that there exists an honest server. In particular, despite
the clients being connected to only one server, we guar-
antee anonymity of all honest clients in a group as long
as there exists an honest server in the group. Apart from
having one honest server, we do not limit the adversary’s
power: we allow the adversary to control any number of
servers and all but k clients for any k ≥ 2. Riffle aims
to provide anonymity among the k honest clients, even
in the presence of many malicious clients and servers.

Riffle requires that all network communication be
done through authenticated and encrypted channels,
such as TLS. Moreover, variable-length messages must
be subdivided into fixed-length blocks and/or padded
to prevent privacy leakage through message size. We as-
sume this is done for all communication, and henceforth
omit this detail to simplify presentation. We also note
that our focus is on anonymity and not confidentiality
of the messages. If confidentiality is desired, then pub-
lic keys can be shared through a round of anonymous
communication, and end-to-end encryption can be used
in subsequent rounds.



Riffle 119

3.3 Security Properties

Riffle provides three main security properties. The first
is correctness, which guarantees that Riffle is a valid
communication system.

Definition 1. The protocol is correct if, after a success-
ful run of the protocol, every honest client’s messages
are available to all honest clients.

In addition to correctness, Riffle aims to provide two
anonymity properties: sender anonymity and receiver
anonymity. The first is crucial for users who share se-
curity critical information, such as whistleblowers and
protest organizers. For instance, a journalist uploading
a sensitive document exposing government corruption
would not want the post to be traceable back to him
or her. Informally, sender anonymity is the property
that no adversary described in Section 3.2 can deter-
mine which honest client sent which messages better
than guessing randomly.

Definition 2. The protocol provides sender anonymity
if, for every round of communication, the probability of
any efficient adversary successfully guessing the honest
client that sent a particular honestly generated message
is negligibly close (in the implicit security parameter) to
1
k where k is the number of honest clients.

Intuitively, this means that the adversary cannot
deanonymize an honest sender (i.e., link a message to a
client) better than guessing at random from the set of
honest clients. We formalize this further in Appendix A.

Receiver anonymity is the complementary property
to sender anonymity; for instance, a user downloading
documents exposing government corruption could face
prosecution for simply accessing the sensitive material.
The property states that no adversary can learn which
messages were downloaded by an honest client.

Definition 3. The protocol provides receiver
anonymity if, for every round of communication, the
probability of any efficient adversary successfully guess-
ing which of the n messages was received by any par-
ticular honest client is negligibly close (in the implicit
security parameter) to 1

n , where n is the number of
available messages.

The definition for receiver anonymity is with respect
to 1

n , where n is the total number of messages (which
is equal to the total number of malicious and hon-
est clients), instead of 1

k . For sending messages, hon-
est clients can only hide among the other honest clients
since the malicious clients’ messages are already known

to the adversary. For receiving, however, the clients do
not produce any new messages, and the only informa-
tion available to the adversary is the metadata, which
we aim to hide as much as possible. We thus would like
receiving messages to be as secure as all clients broad-
casting all messages, which hides as much metadata as
possible and limits the probability of the adversary suc-
cessfully learning which message an honest client was
actually receiving to 1

n .

4 Riffle Architecture
This section first starts with straw-man approaches that
fail to achieve our goals but illustrate the challenges, and
a baseline protocol that addresses the security problems
of the straw-man solutions with some inefficiency. We
then present the cryptographic primitives used in Rif-
fle and the final Riffle protocol. We also describe how to
hold a malicious client accountable, without any privacy
leakage and performance overhead during regular op-
eration. Finally, we analyze the asymptotic bandwidth
requirement, and provide a security argument for Riffle.

4.1 Straw-man Protocols

We outline two straw-man protocols: the first fails to
provide sender anonymity, while the second fails to pro-
vide receiver anonymity.

4.1.1 PIR-Only

We first consider a scheme that only uses PIR:
1. Clients upload their encrypted messages to the

servers. If a client has no message to send, then
he/she sends a random string.

2. The servers share all ciphertexts with each other.
3. All clients perform PIR to download a message at

a particular index. If a client has no message to
download, then he/she downloads a message at a
random index.
Though other details need to be specified (e.g.,

which key to use for message encryption, how to learn
the index of the message to perform PIR, etc.), any sim-
ple variant of this scheme where clients naively upload
messages cannot provide sender anonymity. When user i
uploads a message for user j, user j can collude with the
malicious servers to learn who uploaded the message.



Riffle 120

4.1.2 Shuffle-Only

We can also consider a scheme that only uses shuffling.
1. Clients download all public keys of the servers.
2. Clients upload onion-encrypted ciphertexts to the

servers.
3. The servers shuffle and onion-decrypt the cipher-

texts. The final server publishes the plaintext mes-
sages.

4. Each client downloads the block of interest.
There are several problems with this scheme. First,

if the shuffle is not verifiable, then this scheme does
not provide sender anonymity. For example, if the first
server is malicious, then it can duplicate an honest
client’s message and put it in place of a malicious client’s
message. When the plaintexts are revealed at the end,
the first server can see the duplicate messages. The
probability of the adversary correctly guessing the hon-
est client that sent the duplicated message is now 1, and
thus fails to provide sender anonymity.

Even if the shuffle is verifiable, this scheme fails
to provide receiver anonymity: the servers immediately
learn which message each client downloaded.

4.2 First Attempt: Baseline Protocol

We now propose a naive solution that will serve as the
basis for the full Riffle protocol. To avoid the shortcom-
ings of the straw-man solutions, we use both verifiable
shuffle and broadcast for communication. This protocol
is carried out in epochs, each of which consist of two
phases: setup and communication. The setup phase is
used to share keys and happens only once at the begin-
ning of an epoch. The communication phase consists of
multiple rounds, and clients upload and download mes-
sages to and from the servers in each round, as discussed
in Section 3.

During the setup phase, every server Si generates a
public key pi, and all keys are published to the clients
and servers in the group. Each round in the commu-
nication phase consists of three stages: (1) upload, (2)
shuffle, and (3) download. In the upload stage, client Cj
onion-encrypts his or her message with all public keys
{pi : i ∈ [1,m]}, and uploads the ciphertext to his or
her primary server. Once all ciphertexts are uploaded,
the first server S1 collects the ciphertexts.

In the shuffle stage, starting with S1, the servers per-
form a verifiable shuffle and verifiable decryption. Each
server sends the proof of decryption and shuffle along
with the decrypted ciphertexts to all other servers, who

will then verify the proofs. Decryption, shuffling, and
verification of proofs are repeated until the last server
finally reveals all plaintexts to the servers.

Finally, in the download stage, all plaintext mes-
sages are broadcast to all clients through the clients’
primary servers. Though the download bandwidth over-
head grows linearly with the number of clients due to
broadcast, this design significantly reduces the upload
bandwidth overhead between the clients and the servers
compared to DC-Net based designs, as the ciphertext
each client uploads is proportional only to the actual
message.

4.3 Hybrid Verifiable Shuffle

Despite significant bandwidth savings, the computa-
tional overhead of verifiable shuffles makes the baseline
protocol unsuitable for high bandwidth communication.
As a concrete example, the state-of-the-art verifiable
shuffle proposed by Bayer and Groth [7] takes more than
2 minutes to shuffle 100,000 ElGamal ciphertexts, each
of which corresponds to a small message (e.g., a sym-
metric key). Furthermore, randomized public key en-
cryption schemes commonly used for verifiable shuffle,
such as ElGamal, often result in ciphertext expansion
of at least 2, which halves the effective bandwidth.

To address the issues of traditional verifiable shuf-
fles, we propose a new hybrid verifiable shuffle. In
a hybrid shuffle, a traditional verifiable shuffle, such
as [7, 13, 28, 37], is performed only once to share en-
cryption keys that are used throughout an epoch. In-
stead of public key cryptography, we then use authen-
ticated encryption with the shared keys, and verify the
shuffle through authenticating ciphertexts. Intuitively,
we are bootstrapping verifiablility from the initial veri-
fiable shuffle of keys.

The shuffle can be described as a protocol carried
out among three non-colluding parties: the client, the
prover, and the verifier. The goal is for the client to
send R sets of n messages to the verifier using the
prover, while satisfying two properties. First, the ver-
ifier does not learn the order of the messages in each set
(zero-knowledge property). Second, the verifier should
be able to check that the prover did not tamper or drop
any messages (verifiability of shuffles). The details of
the shuffle are presented in Algorithm 1, and the se-
curity properties of the hybrid shuffle are analyzed in
Section 4.8. We describe how we use the hybrid shuffle
in our protocol in Section 4.5; in Riffle, every server at



Riffle 121

Algorithm 1 Hybrid Shuffle
1. Share Keys: Prover P and verifier V generate

public-private key pairs (sP , pP ) and (sV , pV ), and
publish public keys pP and pV . Client C shares keys
{k′j}i∈[n] with P .

2. Shuffle Keys: C generates keys {kj}j∈[n] for veri-
fier V , and sends {EncpP (EncpV (kj))}j∈[n] to P and
V . P performs a verifiable decryption and verifiable
shuffle using a random permutation π, and sends
{EncpV (kπ(j))}j∈[n] to V . V verifies the shuffle and
decryption, and decrypts to learn {kπ(j)}j∈[n].

3. Send Messages: For r = 1, . . . , R,
(a) Shuffle: To send messages {Mr

j }j∈[n], C

onion-encrypts the messages and sends
{AEnck′

j
,r(AEnckj ,r(Mr

j ))}j∈[n] to P , where
AEnc is an authenticated encryption scheme
that uses r as the nonce. P decrypts a
layer of encryption using {k′j}j∈[n], per-
mutes them using the same π, and sends
{AEnckπ(j),r(M

r
π(j))}j∈[n] to V .

(b) Verify: V verifies the ciphertexts by checking
authenticity using the keys {kπ(j)}j∈[n] and r,
decrypts a layer, and learns {Mr

π(j)}j∈[n].

some point in the protocol behaves as the prover, and
the servers’ downstream server behaves as the verifier.

4.4 Private Information Retrieval in Riffle

There are situations where a client is not interested in
the majority of the messages. For example, consider two
clients chatting through Riffle. If the messages are shuf-
fled using the same permutation every round, the clients
can learn the expected location of the messages (i.e., the
index) after one round of communication, but the clients
are forced to download all available messages in case of
broadcast. Moreover, as we will see in Section 5, the in-
dices can sometimes be learned by downloading small
meta data which are asymptotically smaller than the
actual messages. In these scenarios, we can use multi-
server private information retrieval (PIR) proposed by
Chor et al. [20] to improve download efficiency. In this
PIR scheme, let Ij be the index (location) of the mes-
sage client Cj wants to download. To download the mes-
sage, Cj first generates m−1 random bit masks each of
length n, and computes a mask such that the XOR of all
m masks results in a bit mask with a 1 only at position
Ij . Each mask is sent to a server, and each server Si
XORs the messages at positions with 1 in the bit mask

to generate its response rij for Cj . Finally, Cj down-
loads all {rij}i∈[m] and XORs them together to learn
the plaintext message.

Although this scheme is fairly efficient, we can
further reduce the bandwidth overhead using pseudo-
random number generators (PRNGs). To avoid send-
ing masks to all servers every round, Cj shares an ini-
tial mask with all servers during the setup phase. Each
server then updates the mask internally using a PRNG
every round, and Cj only sends a mask to its primary
server Spj to ensure the XOR of all masks has a 1 only
in position Ij .

To avoid downloading a message from every server,
Cj can ask Spj to collect all responses and XOR them to-
gether. However, doing so naively results in Spj learning
the message Cj downloaded. To prevent this problem,
Cj shares another set of secrets with every server dur-
ing the setup, and each server XORs its secret into the
response. Spj can now collect the responses and XOR
them, while learning nothing about which message Cj
is interested in. Finally, Cj can download the response
from Spj (i.e., the message XORed with the shared se-
crets), and remove the secrets to recover the message.
Similar to the masks, the servers and the clients can
internally update the secrets using a PRNG. Since PIR
hides which data was accessed, the sharing of masks and
secrets need not be through a verifiable shuffle; we do
not need to hide which secret is associated with which
client. However, each client must perform PIR every
round to remain resistant to traffic analysis attacks even
if the client is not interested in any message. Algorithm 2
demonstrates the exact details of the optimized PIR.

4.5 Riffle Protocol

We now present the full Riffle protocol. During the setup
phase, the clients share three sets of pairwise secrets
with the servers: (1) {kij} using a verifiable shuffle (used
in the hybrid shuffle), and (2) {mij} and (3) {sij} using
simpler methods like Diffie-Hellman [25] (used in the
PIR). Each server generates permutations πi for ver-
ifiable shuffle, and retain them for future use during
the communication phase. Key kij will be at position
πi−1(. . . (π1(j)) . . .) in Si at the end of the setup.

In round r of the communication phase, the proto-
col uses hybrid shuffle for upload and PIR or broad-
cast for download. In the upload stage, each client
Cj onion-encrypts a message using {kij}i∈[m], and up-
loads the ciphertexts to S1 via Cj ’s primary server.
In the shuffle stage, starting with S1, each server



Riffle 122

Algorithm 2 Private Information Retrieval
1. Setup (Share Secrets): Each client Cj shares two

secrets mij and sij with each Si except for the pri-
mary server Spj it is connected to. This step hap-
pens only once per epoch.

2. Download:
(a) Mask Generation: Let index Ij be the index

of the message Cj wants to download. Cj gen-
erates mpjj such that

⊕
imij = eIj where eIj is

a bit mask with 1 only in slot Ij . Cj then sends
mpjj to Spj .

(b) Response Generation: Each server Si com-
putes the response rij for Cj by computing the
XOR sum of the messages at the positions of 1s
in the mij , and XORing the secret sij . Specif-
ically, response rij =

(⊕
`mij [`] ·M`

)
⊕ sij ,

where M` is the `th plaintext message. Then,
the servers send rij to Spj , and Spj computes
rj :

rj =
⊕
i

rij =

(⊕
i

⊕
`

mij [`]M`

)
⊕

(⊕
i

sij

)

= MIj ⊕

(⊕
i

sij

)

(c) Message Download: Cj downloads rj from
Spj , and XORs all {sij}i∈[m] to compute the
message of interest, MIj = rj ⊕

(⊕
i sij

)
.

(d) Update Secrets: Both C and S apply PRNG
to their masks and secrets to get fresh masks
and secrets.

Si authenticates and decrypts the ciphertexts using
the shared keys {kij}j∈[n], shuffles them using the
πi saved from the setup phase, and sends the re-
sult to the next server. This means in Si, ciphertext
AEnckij ,r(. . . (AEnckmj ,r(Mr

j )) . . . ) of Cj is at position
πi−1(. . . (π1(j)) . . .), which is where the matching key
kij is. The last server finally reveals the plaintext mes-
sages to all servers. We note that the final permutation
of the messages is π = πm(πm−1(. . . (π2(π1)) . . .)).

In the download stage, the clients either perform
PIR (Section 4.4) with the masks and the secrets, or
download all messages through broadcast. We will see a
concrete scenario where PIR is used instead of broadcast
in Section 5. The final Riffle protocol is described in
Algorithm 3.

Algorithm 3 Riffle Protocol
1. Setup:

(a) Shuffle Keys:
i. Each server Si generates public keys pairs,

and publishes the public key pi to the
clients. Si also generates permutation πi.

ii. Each client Cj generates key kij for Si, and
encrypts them with keys p1, . . . , pi for i =
1, . . . ,m. Cj submits m onion-encrypted
{kij}i∈[m] to S1 via the primary server.

iii. From S1 to Sm, Si verifiably decrypts the
encrypted keys. Si then retains {kij}j∈[n],
verifiably shuffles the other keys using πi,
and sends the shuffled keys to Si+1. The
servers verify the decryption and shuffle.

(b) Share Secrets: Every pair of Si and Cj gener-
ates pairwise secrets mij and sij , used for PIR
(Algorithm 2) in the download stage.

2. Communication: In round r,
(a) Upload: Cj onion-encrypts the message Mr

j

using authenticated encryption with {kij}i∈[m]
and r as a nonce: AEnc1,...,m(Mr

j ) =
AEnck1j ,r(. . . (AEnckmj ,r(Mr

j )) . . . ). Cj then
sends AEnc1,...,m(Mr

j ) to S1 via Cj ’s primary
server.

(b) Shuffle: From S1 to Sm, Si authenticates, de-
crypts, and shuffles ciphertexts using the πi,
and sends the shuffled {AEnci+1,...,m(Mr

j )}j∈[n]
to Si+1. Sm shares the final plaintext messages
with the all servers.

(c) Download: The clients download the plaintext
message(s) through PIR or broadcast.

4.6 Accusation

In DC-nets [16] or DC-net based designs [53], it is easy
for a malicious client to denial-of-service attack the
whole network. Namely, any client can XOR arbitrary
bits at any time to corrupt a message from any user.
This problem has led to complex, and often costly, so-
lutions to hold a client accountable, such as trap pro-
tocols [50], trap bits [53], and verifiable DC-nets [23],
or limited the size of the group to minimize the attack
surface [30].

Without any precautions, a similar attack is possi-
ble in Riffle as well: during upload, a malicious client
could send a mis-authenticated ciphertext, and the sys-
tem will come to a halt. However, unlike DC-nets, shuf-
fling does not allow one client’s input to corrupt others’
inputs. Leveraging this fact, Riffle provides an efficient



Riffle 123

way to hold a client accountable while introducing no
overhead during regular operation and leaking no pri-
vacy of honest clients: when a server Si detects that a
ciphertext at its position j is mis-authenticated, it be-
gins the accusation process by revealing j to Si−1. Si−1

then reveals j′ = π−1
i−1(j), and this continues until S1

reveals the client who sent the problem ciphertext.2

A malicious client, however, cannot perform a sim-
ilar attack during download. When the messages are
broadcast, there is nothing that a client can do to dis-
rupt the communication. When the clients use PIR
to download the message, there is no notion of mis-
authenticated ciphertexts or “illegal” messages to cause
the system to halt, as masks and secrets are random val-
ues. Moreover, similar to the upload stage, a malicious
client cannot corrupt other clients’ messages since every
client generates its own masks and secrets.

4.6.1 Accusation with Malicious Servers

Revealing the inverse permutation unconditionally,
however, could be abused by a malicious server: any
server could flag an error for any client, and that client
will be deanonymized since other servers have no way
to verify the claim. To prevent this problem, Riffle uses
the ciphertexts of the keys used during the setup phase
as the commitments of the keys for all server secrets.
We describe the commitment scheme in detail in Sec-
tion 4.6.2, and the accusation algorithm in Algorithm 4.
After each step of Algorithm 4, the party responsible for
the verification sends out the proof generated at each
step, signed with its private key, to all other servers. The
accusation continues if and only if every server agrees
that the proof is correct. Intuitively, the goal of this al-
gorithm, apart from successful accusation, is to ensure
no server misbehaves by checking that
1. The revealed keys are the ones that were shared

between the accused client and the servers.
2. The revealed ciphertexts are encryptions / decryp-

tions of each other, which shows that all of them
have originated from a single client.
When any step fails or times-out, or the accusa-

tion finishes, every server sends all the transcript of the

2 Any inadvertent transmission of a mis-authenticated cipher-
texts by an honest client should be handled at a level below
the Riffle protocol. For example, a network error should be han-
dled by the underlying TCP connection. We discuss a malicious
server tampering with messages in Section 4.8.3.

Algorithm 4 Accusation in Riffle
Server Si starts the accusation by revealing position j of
the potentially malicious client, the problem ciphertext
Eij , and the associated key kij . For ` = i− 1, . . . , 1,
1. S` verifies E`+1,j is the ciphertext at location j.
2. All servers verify the authenticity of E`+1,j using
k`+1,j .

3. All servers verify k`+1,j with the commitment (Sec-
tion 4.6.2).

4. S` reveals j′ = π−1
` (j), the corresponding secret k`j′ ,

and ciphertext E`j′ to all other servers.
5. All servers verify that decryption of E`j′ using k`j′

is E`+1,j . Set j = j′.
Each server sends the transcript of the above steps to
all clients once the accusation finishes.

accusation thus far (i.e., all the messages and proofs ex-
changed among the servers) to all clients. The clients
can now verify the accusation. If the transcript verifies,
then the group collectively removes the accused client. If
the transcript does not verify, then the clients determine
which server caused the failure using the transcript. The
clients and the other servers then kick out the server
that caused the failure from the group. In both cases, a
new Riffle group is formed after an accusation.

4.6.2 Key Commitments

Step 2 of Algorithm 4 requires the commitments of the
keys to be tied to the actual keys that were shared dur-
ing the setup phase. Otherwise, a malicious server may
commit a key k′ that is different from the key k it shared
with the client, reveal k′ for accusation (which matches
the commitment), and falsely accuse a client. Riffle thus
uses the ciphertexts from the setup as the commitment
for the keys, which have a proof, as part of the initial
verifiable shuffle, that they originated from the clients.

In general, checking that a ciphertext is an encryp-
tion of a plaintext either requires the randomness used
to encrypt the original message or the secret key. How-
ever, we can prove this without revealing either values
with a zero-knowledge proof if we use ElGamal encryp-
tion. The protocol is carried out between a prover and
a verifier, where the prover is the server revealing the
key for accusation, and the verifier is any other server
in the group. The prover has its secret key s, and the
prover and the verifier both have access to the plaintext
message k′ (the key revealed for accusation), a cipher-
text c = (gr, k · grs) for some random r (the ciphertext
from the setup phase), and the public key gs.



Riffle 124

The goal now is to prove that c is an encryption of
k′ (i.e., k = k′), which shows that the revealed k′ is the
key shared between the server and the accused client. To
do so, the verifier first independently computes k

k′ · grs.
The prover then generates the following two proofs:
1. Prover knows an s′ such that grs

′
= k

k′ · grs.
2. loggr ( kk′ · grs

′
) = logg(gs).

Proof 1 shows that k = k′ if s′ = s, and Proof 2 shows
that s′ = s. Therefore, the two proofs together form a
proof that k = k′, and that c is an encryption of k′. We
can use zero-knowledge proof-of-knowledge [15] for 1,
and Chaum-Pedersen proof [17] for 2.

4.7 Bandwidth Overhead

Riffle achieves near optimal bandwidth between a client
and a server when sending a message. A client only up-
loads a ciphertext of layered authenticated encryption
of size b + mλ, where b is the size of the message, m is
the number of servers, and λ is the size of the message
authentication codes (MACs) [8] used with the authen-
ticated encryption [9]. If the client is interested in only
one message and the index is known, then the only over-
head is sending the mask of size n, the number of clients,
to the primary server. The total upstream bandwidth is
then b+mλ+ n, and the total downstream bandwidth
is b per client per round. We note that even though up-
stream bandwidth grows linearly with n, it only requires
1 bit per client. In the general case where the index of
the message is not known, the download bandwidth is
nb per client due to the broadcast, but the upload band-
width decreases by n, the size of the mask.

The bandwidth requirement between the servers,
on the other hand, grows linearly with the number of
users. Every server must download n ciphertexts, and
upload n ciphertexts (with one removed layer) to the
next downstream server. The last server also needs to
send the plaintexts to all other servers as well. Fur-
thermore, though PIR reduces the download bandwidth
overhead of the clients, the server to server bandwidth
increases: with our optimizations, each server needs to
send ri to the clients’ primary servers. Therefore, the
servers also need (m−1)nb additional bandwidth for the
PIR responses. In total, the server to server bandwidth
requirement per round is approximately 3(m − 1)nb.
Even though the total grows linearly with the number of
clients, we note that this is asymptotically better than
previous anytrust systems. For example, Dissent [53] re-
quires m(m − 1)nb to perform a DC-Net among the
servers with all clients’ data.

4.8 Security Analysis

We first sketch an analysis of the security of the hybrid
shuffle. We then describe how Riffle provides the three
security properties from Section 3.3. Finally, we briefly
argue the security of the accusation mechanism.

4.8.1 Security of Hybrid Shuffle

We need to show two different properties of the shuffle:
(1) verifiability and (2) zero-knowledge. To show verifi-
ability, let us assume that the authenticated encryption
used by Riffle is secure against forgery, following the
proposal of [9]. Then, for prover P to tamper with the
inputs and not be detected by verifier V , P needs to
generate outputs such that some of the outputs are not
decryptions of the inputs, but still authenticate properly
under the keys of P . However, ciphertexts are unforge-
able and the keys of V are unknown since P only sees
the encrypted ki’s. Therefore, P cannot generate such
outputs. We also use the round number, which is pro-
vided internally by P , as the nonce to authenticated
encryption to guarantee the freshness of the data, and
stop replay attacks by P . Therefore, shuffle and decryp-
tion of P is valid if and only if V can authenticate all
output ciphertexts, and the shuffle can be verified.

To show zero-knowledge, let us assume that the en-
cryption scheme is semantically secure [31], as assumed
by [9]. This means that V learns only negligible informa-
tion by observing the input ciphertexts and the output
ciphertexts of P . Then, V can simulate P ’s responses
by encrypting random values with the keys stored on
V : the keys are stored in the same permutation as the
expected output of P , and the ciphertexts output by P
are indistinguishable from encryption of random values
if the encryption is semantically secure. Finally, the keys
in V do not leak the permutation of P since the veri-
fiable shuffle used to share the keys is zero-knowledge.
Therefore, the hybrid shuffle is also zero-knowledge3.

3 It does reveal one bit of information that indicates if the per-
mutation used for hybrid shuffle is the same as the permutation
used to shuffle keys during setup: if a different permutation is
used, the messages will not authenticate correctly. However, the
shuffle only reveals this bit, and is zero-knowledge with respect
to the actual permutation.



Riffle 125

4.8.2 Security of Riffle

Correctness. If the protocol is carried out faith-
fully, then the servers will simply shuffle the messages
and the final server publishes all plaintext messages to
every server. The messages are also available to the
clients via PIR or broadcast. Thus, Riffle satisfies the
correctness property.

Sender Anonymity. Sender anonymity relies on
the verifiability and zero-knowledge property of the ver-
ifiable and hybrid shuffle. During the upload and shuffle
stages of the protocol, Si, an upstream server, is the
prover P , and Si+1, a downstream server, is the verifier
V of the hybrid shuffle. Intuitively, verifiability ensures
that the protocol is carried out faithfully; otherwise the
honest server will flag an error. Moreover, since the shuf-
fle is zero-knowledge, the honest server’s permutation
πH is unknown to the adversary. Thus, the final permu-
tation of the messages is also unknown to the adversary,
and no malicious client or server can link a message to
a honest client. We defer the detailed security argument
to Appendices A and B.

We note that though the shuffle is now only verifi-
able by the next downstream server, this does not result
in privacy leakage. Any messages that pass through the
honest server will be valid, and the downstream ma-
licious servers can only denial-of-service the clients by
tampering with the messages rather than deanonymiz-
ing them since the honest server’s permutation is un-
known to them. Moreover, even though Riffle uses the
same permutation every round, the adversary can only
learn that two messages were sent by the same client,
but can never learn which client sent the messages.

Receiver Anonymity. The anonymity of the
downloads depends on the security of PIR and PRNGs.
The security of PIR used in Riffle was proven by Chor
et al. [20]. Intuitively, if the masks are generated at ran-
dom, then the mth mask cannot be inferred from the
other m − 1 masks. The optimization to reduce mask
sharing is secure if the PRNG is cryptographically se-
cure, which says that the masks cannot be distinguished
from truly random masks. Finally, collecting the re-
sponses at one server is also secure as long as not all
secrets are known to the malicious servers. Therefore,
the adversary cannot learn the index of the downloaded
message for any honest client.

4.8.3 Security of Accusation

If no server misbehaves, then the accusation will reveal
only the malicious client: every step of Algorithm 4 will
verify successfully, and the servers reveals inverse per-
mutations related only to the accused client.

In the case with malicious servers, let Si be the first
misbehaving server, and let SH be the honest server.
We first note that the transcripts from all servers remove
the possibility of clients being incorrectly convinced that
SH is malicious, thereby removing SH from the group.
There are two cases: (1) i > H (malicious downstream
server), or (2) i < H (malicious upstream server).

In the first case, eventually the honest server SH will
see all ciphertexts EH+1, . . . , Ei flagged by the down-
stream servers along with the associated secrets. SH
first checks the commitments; since the commitments
are the ciphertexts of the keys used during setup, the
servers cannot use a different key than the key shared
with the client. SH also checks the validity of the cipher-
texts by (1) confirming EH+1 is the ciphertext given to
SH+1 and (2) checking that the decryptions of EH+1

matches EH+2, . . . , Ei. If SH finds any mismatching ci-
phertexts, it will not reveal the permutation, thus pre-
serving anonymity. If the commitment is binding and a
ciphertext cannot decrypt to two different values using
one key, then the malicious servers cannot generate cor-
rect decryptions of EH+1 that are different from the ex-
pected EH+2, . . . , Ei. Therefore, no downstream server
can misbehave without getting caught.

In the second case (i < H), there are three scenar-
ios. First, Si starts the accusation. Here, SH would not
reveal its permutation, and preserves anonymity of all
clients. Second, Si misbehaves during an accusation but
does not start it. In this scenario, there is a real misbe-
having client (since Si is the first misbehaving server),
and SH only reveals the inverse permutation of the mali-
cious client. Thus, either the malicious client is revealed,
or the transcript reveals that Si is malicious.

In the last scenario, SH−1 sends a mis-authenticated
ciphertext and tricks SH into starting a (false) accusa-
tion, thereby deanonymizing one client. Since the key
used by the malicious server is not revealed yet, SH has
no way of stopping this attack the first time. However,
after the accusation, SH and the clients will check the
accusation transcript and remove Si from the group.
Moreover, since πH is unknown, Si cannot target any
particular client, and can only do this for a random
honest client. We believe that these two properties will
sufficiently disincentivize a malicious server from carry-
ing out this attack.



Riffle 126

(a) Setup: Clients share the
torrent files anonymously.

(b) Request: Each client re-
quests a file by uploading the
hash of the file using Riffle.

(c) Upload: Each client uploads
an encrypted file based on the
requests using Riffle.

(d) Download: Each client
downloads the file he or she
requested using PIR.

Fig. 2. Anonymous File Sharing Protocol

5 Anonymous File Sharing
The efficiency of Riffle makes it suitable for bandwidth-
intensive applications like file sharing. In this section, we
describe in detail a new anonymous file sharing protocol
using Riffle as the underlying mechanism.

5.1 File Sharing Protocol

File sharing within a Riffle group is similar to that
of BitTorrent [2], despite the differences in the system
model (client-server in Riffle versus peer-to-peer in Bit-
Torrent). When a client wants to share a file, he or she
generates a torrent file, which contains the hashes of
all blocks (the smallest unit used for file sharing) of the
file. Then, using Riffle, the client uploads the torrent
file to the servers. The servers play the role of torrent
trackers in BitTorrent, and manage all available files in
that group. In the simplest design, the file descriptors
are broadcast to all connected clients, and clients can
locally choose a file to download. Since the torrent files
are fairly small even for large files (only a few 100KB
in practice) and sharing them is a one-time cost, we
assume broadcasting them is inexpensive and focus on
sharing blocks.

With the torrent files distributed, the clients can
now share files anonymously using Riffle. There are
three major steps:
1. Requesting Blocks: Each Cj identifies a file F of

interest, and the hashes of the blocks of the file ~HF

via its torrent file. Cj then requests a block of F
by uploading the hash of the block Hj ∈ ~HF to Spj
using Riffle. When a client has no blocks to request,
he or she sends a random value as a (non-)request
to remain traffic analysis resistant. All requests ~Hπ

are broadcast to the clients at the end of this step.

2. Uploading Blocks: Each Cj checks if it possesses
any requested block by checking the hashes of the
blocks it owns with ~Hπ. If a matching block Mj is
found, then Cj uploads Mj using Riffle. Once the
plaintext blocks are available to the servers, each
server broadcasts the hashes of the available blocks
~H ′π.

3. Downloading Blocks: From Hj and ~H ′π, Cj
learns the index Ij of the block Cj requested. Using
PIR, Cj downloads the block.

The rounds can (and should) be pipelined for perfor-
mance since each request is independent. That is, we
allow many outstanding requests. Figure 2 summarizes
our file sharing protocol. We note that though an ad-
versary can learn which files a client is interested in due
to the same permutation used in each round, the clients
still remain anonymous.

5.2 Bandwidth Overhead in File Sharing

To share a block among users in peer-to-peer file sharing
such as BitTorrent [2], each client only needs to request
and download a block. The client also may need to up-
load a file if it receives a request. If each request is of
size h, each client consumes h+ b of upload bandwidth
(assuming it has a block to upload to another client),
and b of download bandwidth. In Riffle with PIR, there
are three sources of bandwidth overhead for a client: (1)
downloading the requests, (2) uploading MACs of au-
thenticated encryption, and (3) the mask uploaded to
the primary server. Thus, the total bandwidth between
a client and a server is h+ b+ n+ 2mλ of upload, and
b + 2hn of download. We note that even though both
bandwidths grow with the number of clients, n and 2hn
are much smaller than b in file sharing scenarios for a
reasonable number of clients and block size.



Riffle 127

Fig. 3. Testbed topology.

6 Prototype Evaluation
In this section, we describe our prototype implementa-
tion, and evaluation.

6.1 Implementation

We have implemented a Riffle prototype in Go using
Go’s native crypto library along with the DeDiS Ad-
vanced Crypto library [1]. We used ElGamal encryp-
tion using Curve25519 [11] and Neff’s shuffle [37] with
Chaum-Pederson proofs [17] for the verifiable shuffle
and decryption. For authenticated encryption, we use
Go’s Secretbox implementation [4, 5], which internally
uses Salsa20 [12] for encryption and Poly1305 [10] for
authentication. For the pseudo-random number gener-
ator used to update the masks and the secrets needed
for PIR, we used keyed AES.

Our prototype supports two different modes of op-
eration: (1) file sharing, and (2) microblogging. File
sharing mode implements the protocol described in Sec-
tion 5. Microblogging mode implements the Riffle pro-
tocol without PIR: each client submits a small message
per round, and the plaintext messages are broadcast to
all clients. We use broadcast because we assume that
the users in microblogging scenarios are interested in
many messages posted by different users.

6.2 Evaluation

To evaluate our system, we used the Emulab [3] testbed.
Emulab provided a stable environment to test our proto-
type, while allowing us to easily vary the group topology
and server configurations. The servers were connected to
each other via a shared LAN, and the clients were dis-

tributed evenly among all servers. The clients connected
to their primary server using one shared 100 Mbps link
with 20ms delay, and the servers were connected to each
other through a 1 Gbps link with 10ms delay. Due to re-
source and time constraints, we used 50 physical nodes
to simulate all clients. Each server was equipped with
an 8-core Intel Xeon E5530 Nehalem processor4, and
the majority of the client nodes were using a dual core
Intel Pentium 4 processor. As shown in the next sec-
tions, we have found that the “outdated” processors did
not impact our results much. Figure 3 shows the testbed
topology used for the majority of our experiments.

6.2.1 File sharing

We implemented the file sharing application described
in Section 5, including the optimizations to PIR. We
simulated users sharing large files by first creating a pool
of files, each of which was 300MB. From the pool, each
client chose one file to request and one file to share, and
each file was divided into 256KB blocks, similar to Bit-
Torrent’s typical block size [42]. We have experimented
with different block sizes, and found that the block size
changed the effective bandwidth by less than 5% in all
experiments as we varied it from 128KB to 1MB.

Figure 4 shows the total time spent and the effective
bandwidth (the size of the shared file over the total time
spent) when sharing a 300MB file. We also plotted the
“ideal” Riffle, where we computed the expected time to
share a 300MB file based on our analytic bandwidth
model (Section 5.2), assuming computation is free and
network bandwidth is perfect. We have created a similar
model for Dissent [53] as well for comparison.

In the experiments, Riffle provides good perfor-
mance for up to 200 clients, supporting 100KB/s of ef-
fective bandwidth per client. Our prototype matches the
analytical model fairly closely, showing that the amount
of computation is minimal, and the primary limitation
is the server to server bandwidth. If the servers were
connected through 10 Gbps connections, we expect the
effective bandwidth to improve by an order of magni-
tude. The discrepancy between the idealized model and
the prototype for larger numbers of clients is due to two
factors: first, the ideal model ignores cost of computa-
tion, which increases linearly with the number of clients.
Though symmetric decryption is inexpensive, the cost

4 The most powerful machines with Sandy Bridge Xeon with
10 Gigabit Ethernet were not readily available.



Riffle 128

Fig. 4. Average time taken to share a 300MB file and effective
bandwidth for varying numbers of clients with 3 servers. Note
that the y-axis of the time graph is in log scale to properly dis-
play the time taken for Dissent [53].

Fig. 5. Average time taken to share a 300MB file and effective
bandwidth for 200 clients with varying numbers of servers. The
y-axis of the time graph is in log scale.

becomes non-negligible when the number of clients is
large. Second, the effective bandwidth per client de-
creases since we are sharing a 100 Mbps link among
a few hundred clients.

Figure 4 also depicts performance of other anony-
mous communication solutions: the two straw-man solu-
tions (Section 4.1), PIR-only and shuffle only (Mixnet),
and the ideal model of Dissent [53]. PIR-only models
the situation where there are 3 servers with replicated
data, and clients upload to their primary servers, the
servers share all ciphertexts, and download using PIR.
The Mixnet here consists of 3 mixes, and implements
a point-to-point connection; that is, the final plaintexts
are not broadcast, but sent to their intended destina-
tions by the final mix. Though it is hard to compare
directly to Aqua [34], the performance of Mixnet is sim-
ilar to that of Aqua, assuming all clients have similar

Fig. 6. Breakdown of the total time taken to share a 10MB file
for varying numbers of clients with 3 servers. Sharing a 10MB file
consists of 40 rounds with 256KB blocks.

Fig. 7. Breakdown of the total time taken to share a 300MB file
for varying numbers of clients with 3 servers. Sharing a 300MB
file consists of 1200 rounds with 256KB blocks.

transfer rate. We note that Mixnet here has a similar
threat model as Aqua: as long as the first mix is honest,
this should provide sender anonymity.

When comparing to Dissent, we see an order of mag-
nitude speed up. This is expected since the client-server
bandwidth overhead in Dissent grows linearly with the
number of clients, and each client only has access to a
small amount of bandwidth. Riffle also performs com-
parably to the two straw-man designs: PIR-only and
Mixnet can support up to 400 and 300 clients while
Riffle can support up to 200 clients with bandwidth of
100KB/s. Though Riffle is not as efficient as the straw-
man solutions, Riffle provides anonymity in a stronger
threat model: we provide sender and receiver anonymity
as long as any of the servers is honest, while PIR-only
fails to provide sender anonymity, and Mixnet and Aqua
require the first mix to be honest to provide anonymity.

We also tested the impact of different server config-
urations on performance. Figure 5 shows the effective
bandwidth of 200 clients sharing 300MB files as we var-



Riffle 129

ied the number of servers. As observed in our analyti-
cal model (Section 5.2), the server to server bandwidth
requirement grows with the number of servers, so the
average bandwidth of the clients drops as we increase
the number of servers.

Finally, we evaluated the full system performance
of Riffle, including the setup phase of an epoch. Fig-
ure 6 and Figure 7 present the breakdown of the time
spent to share a 10MB file and a 300MB file for differ-
ent numbers of clients. Specifically, the graph shows the
time spent in the setup phase (verifiable shuffle of keys,
and sharing secrets for PIR), and the three steps of file
sharing rounds (request, upload, and download). When
sharing a 10MB file, the verifiable shuffle took more than
half of the total time, proving to be quite costly. How-
ever, as demonstrated by Figure 7, the verifiable shuffle
is a one-time operation at the beginning of an epoch,
and the cost becomes less significant for longer epochs.
Moreover, the verifiable shuffle used by the Riffle pro-
totype [37] is not the most efficient shuffle, and we can
reduce the setup time if we implement faster verifiable
shuffles [7]. We also note that with more powerful ma-
chines, the verifiable shuffle should be much faster, as
computation dominates the overhead for shuffles.

6.2.2 Microblogging

We simulated a microblogging scenario by creating tens
to hundreds of thousands of clients each of whom sub-
mitted a small message (160 byte or 320 byte) per
round, and broadcasting the messages at the end of each
round. Due to resource limitation, we created hundreds
to thousands of “super” clients, each of which submit-
ted hundreds of messages to simulate a large number
of users. For this experiment, we fixed the number of
servers at 3 as we varied the number of clients.

Figure 8 shows the average latency of posting one
message. For latency sensitive microblogging, we can
support up to 10,000 users with less than one second
latency with 160 byte messages. If the messages can
tolerate some delay, we can support more than 100,000
users with less than 10 seconds of latency. This figure
also demonstrates the ability of Riffle to exchange la-
tency for message size: if we reduce the message size,
the latency also decreases proportionally. Because Riffle
is bandwidth and computation efficient, the latency is
determined solely by the total number of bits of the mes-
sages in a round. This makes it easy to make a consci-
entious trade-off between the latency, the message size,
and the number of clients.

Fig. 8. Average latency to share a microblogging post for differ-
ent message sizes. The number of servers here was fixed at 3.

Riffle can support an order of magnitude more
clients compared to Dissent [53] for latency sensitive mi-
croblogging (10,000 in Riffle vs. 1,000 in Dissent). For
a large number of clients, Riffle outperforms previous
works [7, 53] by orders of magnitude. For instance, it
takes 2 minutes just to verifiably shuffle messages of
100,000 users [7], ignoring network communication. In
Riffle, it takes a fraction of a second to shuffle and verify,
and takes less than 10 seconds in total for 100,000 users,
including the time spent in the network. Finally, though
it is hard to compare Riffle to Riposte [21] due to lack
of a database in Riffle, we expect Riffle to perform bet-
ter as the database of microblog posts grows larger: the
bandwidth requirement of Riposte clients grows with
the size of the database, while the bandwidth require-
ment of Riffle clients remains the same.

7 Discussion and Future Work
In this section, we discuss a few limitations and some
aspects of Riffle we did not consider in the paper, and
how they could be addressed in future work.

Alternate usage model. In this paper, we have
assumed that the clients want to communicate with oth-
ers in the same group. However, the clients may also
want to interact with (1) clients in other Riffle groups,
or (2) the general Internet. In the first setting, we can
use ideas from Herbivore [30], and connect the servers
of different groups to each other. The clients can then
communicate with any client in any group through the
network of servers. In the second setting, we could use
the Riffle servers as “exit” nodes: each client can sub-
mit his or her message for someone outside the group
through Riffle, and the servers interact with the Inter-
net on the client’s behalf. For example, each client up-



Riffle 130

loads a BitTorrent request for a file to the servers. The
servers then participate in a regular BitTorrent protocol
in the open Internet, and the clients can use PIR to se-
curely download their files. Moreover, the servers could
use a highly scalable anonymity system with a large
anonymity set (e.g., Tor [26]) to expand the anonymity
set of the clients beyond just one Riffle group.

Malicious Servers. Verifiability and zero-
knowledge properties of the hybrid shuffle (Section 4.8)
prevent any malicious server from deanonymizing a
client, and make it possible for an honest server to re-
veal a malicious server. However, since the identity of
the honest server is unknown, the clients cannot rely on
the claims of the servers. Concretely, there is no mech-
anism to prevent m− 1 malicious servers from claiming
that the one honest server is malicious. Though this sce-
nario should be rare with independently administered
servers, we hope to provide a mechanism to prevent
such an attack in the future.

Server to server bandwidth. As noted in our
bandwidth analysis and evaluation, the server to server
bandwidth requirement grows linearly with the number
of clients. This quickly became the bottleneck of Riffle,
and limited the effective throughput (Section 6). One
potential solution is for each provider to manage a “su-
per” server that consists of smaller servers, and each
smaller server handles a fraction of the traffic. Essen-
tially, we can increase the server to server bandwidth
by replicating the connections.

Though we hope to lower the actual overhead in fu-
ture work, we believe that some of the cost is fundamen-
tal to the anytrust model assumed by Riffle. Namely, if
there is only one honest server and the identity of the
honest server is unknown, it seems necessary for all data
to pass through all servers.

Network churn and group changes. In a real-
istic network, different clients can have drastically dif-
ferent connection speeds, and clients can leave or join
the group dynamically. The default Riffle protocol re-
quires that everyone in a group submit a message every
round to maintain anonymity, which makes the overall
latency as bad as the worst individual latency. Worse,
any changes in the group require Riffle to perform an
expensive verifiable shuffle to create a new permutation
for the new set of active clients.

To handle the case of clients dropping out, we cur-
rently ask each client to submit some cover traffic to the
first server. When a client disconnects, we use the cover
traffic to carry on the rounds with the active clients,
and perform the verifiable shuffle in the background to
create a new permutation. This option has two signif-

icant problems. First, it wastes bandwidth, and does
not allow for dynamic growth of the group. The setup
phase needs to be run again when a new client joins the
group. Second, the first server can now choose to send
cover traffic instead of the real traffic. This means that
the first server can denial-of-service a subset of users.
However, the first server cannot manufacture cover traf-
fic, since it does not have the honest server’s symmetric
key for that user, and can only use the legitimate cover
message in place of a real message. It therefore cannot
deanonymize a client by creating fake cover traffic, and
checking where the fake cover traffic is in the final per-
mutation. Tolerating network churn and changes in the
group more effectively is deferred to future work.

Intersection attacks. A powerful adversary mon-
itoring clients and network over longer periods of time
can correlate the presence of some messages with the
online status of the clients [35]. For instance, if mes-
sages related to a protest are only posted when a par-
ticular client is online, then the adversary can link the
messages to the client. Though Riffle does not protect
against this class of attacks, it could benefit from prior
work on mitigating these attacks [54].

8 Conclusion
Riffle is an anonymous communication system that pro-
vides traffic analysis resistance and strong anonymity
while minimizing the bandwidth and computation over-
head. We achieved this by developing a new hybrid shuf-
fle, which avoids expensive verifiable shuffles in the crit-
ical path for uploading messages, and using private in-
formation retrieval for downloading messages. We have
also demonstrated through a prototype the effectiveness
of Riffle in anonymous file sharing and microblogging
scenarios, and that strong anonymity can indeed scale
to a large number of users with good bandwidth.

Acknowledgements
We would like to thank Ling Ren, Alin Tomescu, Chris
Fletcher, Charles Herder, and Marten Van Dijk for the
important discussions regarding some key aspects of this
system, and security of the hybrid shuffle. We also thank
the anonymous reviewers and our shepherd Jonathan
Katz for their helpful feedback and suggestions. This
material was supported by National Science Foundation
Frontier CNS-1413920.



Riffle 131

References
[1] Advanced crypto library for the go language.

https://github.com/DeDiS/crypto.
[2] Bittorrent. https://bittorrent.com.
[3] Emulab network emulation testbed.

http://www.emulab.net/.
[4] Secret-key authenticated encryption.

http://nacl.cr.yp.to/secretbox.html.
[5] Secretbox - godoc.

https://godoc.org/golang.org/x/crypto/nacl/secretbox.
[6] Tor metrics portal. https://metrics.torproject.org.
[7] S. Bayer and J. Groth. Efficient zero-knowledge argument

for correctness of a shuffle. In Proceedings of the 31st An-
nual International Conference on Theory and Applications
of Cryptographic Techniques, EUROCRYPT’12, pages 263–
280, Berlin, Heidelberg, 2012. Springer-Verlag.

[8] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash func-
tions for message authentication. pages 1–15. Springer-
Verlag, 1996.

[9] M. Bellare and C. Namprempre. Authenticated encryption:
Relations among notions and analysis of the generic compo-
sition paradigm. J. Cryptol., 21(4):469–491, Sept. 2008.

[10] D. Bernstein. The poly1305-aes message-authentication
code. In H. Gilbert and H. Handschuh, editors, Fast Soft-
ware Encryption, volume 3557 of Lecture Notes in Computer
Science, pages 32–49. Springer Berlin Heidelberg, 2005.

[11] D. J. Bernstein. Curve25519: new diffie-hellman speed
records. In In Public Key Cryptography (PKC), Springer-
Verlag LNCS 3958, page 2006, 2006.

[12] D. J. Bernstein. New stream cipher designs. chapter The
Salsa20 Family of Stream Ciphers, pages 84–97. Springer-
Verlag, Berlin, Heidelberg, 2008.

[13] J. Brickell and V. Shmatikov. Efficient anonymity-preserving
data collection. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’06, pages 76–85, New York, NY, USA, 2006.
ACM.

[14] X. Cai, X. Zhang, B. Joshi, and R. Johnson. Touching from
a distance: Website fingerprinting attacks and defenses. In
Proceedings of the 19th ACM conference on Computer and
Communications Security (CCS 2012), October 2012.

[15] J. Camenisch and M. Stadler. Proof systems for general
statements about discrete logarithms. Technical report,
1997.

[16] D. Chaum. The dining cryptographers problem: Uncon-
ditional sender and recipient untraceability. J. Cryptol.,
1(1):65–75, Mar. 1988.

[17] D. Chaum and T. P. Pedersen. Wallet databases with
observers. In Proceedings of the 12th Annual Interna-
tional Cryptology Conference on Advances in Cryptology,
CRYPTO ’92, pages 89–105, London, UK, UK, 1993.
Springer-Verlag.

[18] D. L. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Commun. ACM, 24(2):84–90, Feb.
1981.

[19] B. Chor and N. Gilboa. Computationally private informa-
tion retrieval (extended abstract). In Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Com-

puting, STOC ’97, pages 304–313, New York, NY, USA,
1997. ACM.

[20] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Pri-
vate information retrieval. J. ACM, 45(6):965–981, Nov.
1998.

[21] H. Corrigan-Gibbs, D. Boneh, and D. Mazieres. Riposte: An
Anonymous Messaging System Handling Millions of Users.
ArXiv e-prints, Mar. 2015.

[22] H. Corrigan-Gibbs and B. Ford. Dissent: Accountable anony-
mous group messaging. In Proceedings of the 17th ACM
Conference on Computer and Communications Security,
CCS ’10, pages 340–350, New York, NY, USA, 2010. ACM.

[23] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford. Proac-
tively accountable anonymous messaging in verdict. In Pre-
sented as part of the 22nd USENIX Security Symposium
(USENIX Security 13), pages 147–162, Washington, D.C.,
2013. USENIX.

[24] G. Danezis, R. Dingledine, D. Hopwood, and N. Mathew-
son. Mixminion: Design of a type iii anonymous remailer
protocol. In In Proceedings of the 2003 IEEE Symposium on
Security and Privacy, pages 2–15, 2003.

[25] W. Diffie and M. Hellman. New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654,
Nov 1976.

[26] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In Proceedings of the
13th USENIX Security Symposium, pages 303–320, August
2004.

[27] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer
anonymizing network layer. In Proceedings of the 9th ACM
Conference on Computer and Communications Security,
CCS ’02, pages 193–206, New York, NY, USA, 2002. ACM.

[28] J. Furukawa and K. Sako. An efficient scheme for proving
a shuffle. In In Proc. of CRYPTO ’01, pages 368–387.
Springer-Verlag, 2001.

[29] N. Gilboa and Y. Ishai. Distributed point functions and their
applications. In P. Nguyen and E. Oswald, editors, Advances
in Cryptology - EUROCRYPT 2014, volume 8441 of Lecture
Notes in Computer Science, pages 640–658. Springer Berlin
Heidelberg, 2014.

[30] S. Goel, M. Robson, M. Polte, and E. G. Sirer. Herbivore: A
Scalable and Efficient Protocol for Anonymous Communica-
tion. Technical Report 2003-1890, Cornell University, Ithaca,
NY, February 2003.

[31] S. Goldwasser and S. Micali. Probabilistic encryption; how
to play mental poker keeping secret all partial information.
In Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing, STOC ’82, pages 365–377, New
York, NY, USA, 1982. ACM.

[32] D. Herrmann, R. Wendolsky, and H. Federrath. Website
fingerprinting: Attacking popular privacy enhancing tech-
nologies with the multinomial naive-bayes classifier. In Pro-
ceedings of the 2009 ACM Workshop on Cloud Computing
Security, CCSW ’09, pages 31–42, New York, NY, USA,
2009. ACM.

[33] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and S. De-
vadas. Circuit fingerprinting attacks: Passive deanonymiza-
tion of tor hidden services. In 24th USENIX Security Sym-
posium (USENIX Security 15), pages 287–302, Washington,
D.C., Aug. 2015. USENIX Association.



Riffle 132

[34] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Ballani,
and P. Francis. Towards efficient traffic-analysis resistant
anonymity networks. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, pages 303–
314, New York, NY, USA, 2013. ACM.

[35] N. Mathewson and R. Dingledine. Practical traffic analysis:
extending and resisting statistical disclosure. In 4th Interna-
tional Workshop on Privacy Enhancing Technologies, May
2004.

[36] S. J. Murdoch and G. Danezis. Low-cost traffic analysis
of tor. In Proceedings of the 2005 IEEE Symposium on
Security and Privacy, SP ’05, pages 183–195, Washington,
DC, USA, 2005. IEEE Computer Society.

[37] C. A. Neff. A verifiable secret shuffle and its application
to e-voting. In Proceedings of the 8th ACM Conference on
Computer and Communications Security, CCS ’01, pages
116–125, New York, NY, USA, 2001. ACM.

[38] L. Nguyen and R. Safavi-naini. Breaking and mending re-
silient mix-nets. In Proc. PET’03, Springer-Verlag, LNCS
2760, pages 66–80. Springer-Verlag, LNCS, 2003.

[39] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Web-
site Fingerprinting in Onion Routing Based Anonymization
Networks. In Proceedings of the ACM Workshop on Privacy
in the Electronic Society (WPES), pages 103–114, October
2011.

[40] B. Pfitzmann. Breaking an efficient anonymous channel. In
In EUROCRYPT, pages 332–340. Springer-Verlag, 1995.

[41] B. Pfitzmann and A. Pfitzmann. How to break the direct
rsa-implementation of mixes. In Advances in Cryptology—
EUROCRYPT ’89 Proceedings, pages 373–381. Springer-
Verlag, 1990.

[42] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The
bittorrent p2p file-sharing system: Measurements and analy-
sis. In M. Castro and R. van Renesse, editors, Peer-to-Peer
Systems IV, volume 3640 of Lecture Notes in Computer
Science, pages 205–216. Springer Berlin Heidelberg, 2005.

[43] J.-F. Raymond. Traffic Analysis: Protocols, Attacks, De-
sign Issues, and Open Problems. In H. Federrath, editor,
Proceedings of Designing Privacy Enhancing Technologies:
Workshop on Design Issues in Anonymity and Unobservabil-
ity, pages 10–29. Springer-Verlag, LNCS 2009, July 2000.

[44] M. K. Reiter and A. D. Rubin. Anonymous web transactions
with crowds. Commun. ACM, 42(2):32–48, Feb. 1999.

[45] M. Rennhard and B. Plattner. Introducing morphmix: Peer-
to-peer based anonymous internet usage with collusion de-
tection. In Proceedings of the 2002 ACM Workshop on
Privacy in the Electronic Society, WPES ’02, pages 91–102,
New York, NY, USA, 2002. ACM.

[46] L. Sassaman, B. Cohen, and N. Mathewson. The pynchon
gate: A secure method of pseudonymous mail retrieval. In
Proceedings of the 2005 ACM Workshop on Privacy in the
Electronic Society, WPES ’05, pages 1–9, New York, NY,
USA, 2005. ACM.

[47] R. Sion and B. Carbunar. On the computational practicality
of private information retrieval.

[48] E. G. Sirer, S. Goel, and M. Robson. Eluding carnivores: File
sharing with strong anonymity. In In Proc. of ACM SIGOPS
European Workshop, 2004.

[49] A. Teich, M. S. Frankel, R. Kling, and Y. Lee. Anonymous
communication policies for the internet: Results and recom-

mendations of the aaas conference. Information Society,
15(2), 1999.

[50] M. Waidner and B. Pfitzmann. The dining cryptographers
in the disco: Unconditional sender and recipient untrace-
ability with computationally secure serviceability. In Pro-
ceedings of the Workshop on the Theory and Application
of Cryptographic Techniques on Advances in Cryptology,
EUROCRYPT ’89, pages 690–, New York, NY, USA, 1990.
Springer-Verlag New York, Inc.

[51] T. Wang and I. Goldberg. Improved website fingerprinting
on tor. In Proceedings of the Workshop on Privacy in the
Electronic Society (WPES 2013). ACM, November 2013.

[52] D. Wikström. Four practical attacks for "optimistic mixing
for exit-polls", 2003.

[53] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. John-
son. Dissent in numbers: Making strong anonymity scale. In
Presented as part of the 10th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 12), pages
179–182, Hollywood, CA, 2012. USENIX.

[54] D. I. Wolinsky, E. Syta, and B. Ford. Hang with your bud-
dies to resist intersection attacks. In Proceedings of the
2013 ACM SIGSAC conference on Computer Communica-
tions Security, CCS ’13, pages 1153–1166, New York, NY,
USA, 2013. ACM.

A Sender Anonymity
Uploading in Riffle consists of the following algorithms:
– KeyUpload({kij}i∈[m], {pi}i∈[m])→ {cij}i∈[m].

Client Cj uses KeyUpload to generate the onion-
encryption of the symmetric keys. KeyUpload takes
the symmetric keys {kij}i∈[m] and the servers’ pub-
lic keys {pi}i∈[m], and produces the ciphertexts
{cij}i∈[m].

– KeyShuffle({~c`}`∈[i,m], si)→ (~ki, {~c`′}`∈[i+1,m], πi).
Server Si uses KeyShuffle to generate the (en-
crypted) keys that it sends to the next server.
KeyShuffle takes in the onion-encrypted keys and
a secret key si, and generates the keys for Si, en-
crypted keys to send to next server, and the permu-
tation used.

– Upload(Mj , {kij}i∈[m])→ uj .
Client Cj uses Upload to generate the value that it
sends to the servers. Upload takes the message Mj

and the symmetric keys {kij}, and generates the
upload value uj .

– Shuffle(~ui, ~ki, πi)→ ~ui+1.
Server Si uses Shuffle to generate the (encrypted)
messages that it sends to the next server. Shuffle
takes the vector of messages ~ui, the shared keys of Si
~ki, and the permutation πi. It generates an updated
vector of messages ~ui+1.



Riffle 133

We present the security game which models the Rif-
fle message sending protocol. The game is played be-
tween an adversary who controls a subset of servers and
clients, and a challenger.
1. The adversary selects a subset of servers SM ⊂ S

to be the set of malicious servers such that |SM | <
m. We denote the set of honest servers as SH (i.e.,
SH = S \ SM ). The adversary also selects a subset
of clients CM ⊂ C to be the set of malicious clients
such that |CM | ≤ m−2. We similarly denote CH to
be the set of honest clients.

2. The challenger and the adversary generate the
servers’ public keys in order:
* The challenger generates public and private

keys {pi}i:Si∈SH and {si}i:Si∈SH , and reveals
the {pi} to the adversary.

* The challenger generates public and private
keys {pi}i:Si∈SM and {si}i:Si∈SM , and reveals
the {pi} to the challenger.

3. The challenger and the adversary generate the
states for the clients in the following order.
* The challenger generates keys {kij}i∈[m], uses

KeyUpload to generate {cij}i∈[m] for Cj ∈ CH ,
and reveals the {cij} to the adversary.

* The adversary generates keys {kij}i∈[m] and
{cij}i∈[m] for Cj ∈ CM , and reveals the {cij}
to the adversary. The adversary may generate
them using a malicious strategy.

– The challenger and the adversary generate
{~c`}`∈[m].

* For i = 1, . . . ,m,
– If Si ∈ SH , then the challenger uses

KeyShuffle with {~c`}`∈[i,m] and si to gen-
erate {~c`}`∈[i+1,m] and reveals it to the ad-
versary. Si keeps ~ki and πi.
If Si ∈ SM , then the adversary generates
{~c`}`∈[i+1,m], and reveals it to the chal-
lenger. The adversary may generate it using
a malicious strategy given any the previous
states.

4. For rounds r = 1, . . . , R, where R is polynomial in
the security parameter, repeat the following:
* The challenger and the adversary generate the

upload values.
– The adversary sends CH and any states to

the client oracle.
– The client oracle sends the challenger the

messages for CH ; {Mi}i:Ci∈CH .

– The challenger generates {uj}j:Cj∈CH using
Upload and {Mi}i:Ci∈CH , and reveals the
{uj} to the adversary.

– The adversary picks messages {Mj}j:Cj∈CM
and generates {uj}j:Cj∈CM . The adversary
then reveals the {uj} to the challenger.

– The challenger and the adversary generate
~u1.

* For i = 1, . . . ,m,
– If Si ∈ SH , then the challenger uses Shuffle

and ui to generate ~ui+1, and reveals it to
the adversary.
If Si ∈ SM , then the adversary generates
~ui+1. The adversary again may generate it

using a malicious strategy given the previ-
ous messages and other states. The adver-
sary then reveals ~ui+1 to the challenger.

5. The adversary sends {πi}i:Si∈SM to the challenger.
The adversary then selects an I and I ′ such that
CI , CI′ ∈ CH and sends them to the challenger.

6. The challenger computes π = πm(. . . (π2(π1)) . . .).
The challenger then flips a coin b. If b = 1, then the
challenger sends the adversary π(I), the permuted
index of I. Otherwise, the challenger sends π(I ′).

7. The adversary makes a guess b′ for b. The adversary
wins the game if it guesses b correctly;

Note that any message the adversary sends need not be
generated using the algorithms described in this section.
We also model the clients via a client oracle because we
cannot stop a client from sending information reveal-
ing his or her identity. For instance, the adversary may
influence or fool an honest client into sending his or
her IP. Our goal is to show that the probability of the
adversary winning this game is no better than random
guessing for any messages sent by the client.

Let WI be the event that an adversary guesses π(I)
of an index I from π, where π is a unknown random per-
mutation on [k] and k is the number of honest clients.
Let WR be the event that an adversary successfully
deanonymizes a client (i.e., wins the security game). We
say that the protocol provides sender anonymity if the
probability of any real world adversary successfully at-
tacking the protocol is negligibly close Pr[WI ]. In other
words,

|Pr[WI ]− Pr[WR]| ≤ neg(λ) (1)



Riffle 134

where λ is the implicit security parameter. In other
words, the adversary cannot guess any client’s index in
the final permutation better than guessing at random5.

B Proof of Sender Anonymity
Anonymity of the uploads relies on the fact that both
the traditional and hybrid shuffles are verifiable and
zero-knowledge. The verifiability ensures that any ef-
ficient malicious server cannot deviate from the proto-
col without getting caught. Specifically, this forces the
adversaries to use KeyUpload, KeyShuffle, Upload and
Shuffle to generate all messages.

We now use a sequence of games argument to ana-
lyze the security game in Appendix A. First, with the
protocol being executed faithfully, the zero-knowledge
verifiable shuffle in the setup phase (i.e., key sharing)
ensures that the adversary learns only negligible infor-
mation about the secret keys and the permutations of
the honest server. Furthermore, πH , the honest server’s
permutation, is generated randomly independently of
all other permutations, and thus the final permutation
π = πm(πm−1(. . . (π1) . . .)) is also random. The adver-
sary then only has negligible probability of learning π.
We can now replace collective shuffling and decryption
Step 3 with a shuffle and decryption by a trusted party
that uses an unknown random permutation π, and in-
troduce only negligible change in the advantage of the
adversary.

Second, the zero-knowledge property of the hybrid
shuffle guarantees that any information gained from ob-
serving the outputs during the communication phase is
also negligible. After setup and polynomially many (in
the security parameter) rounds of communication, the
adversary has only negligible probability of learning the
permutation πH of the honest server SH . Using the same
arguments, we can again replace the collective shuffle
and decryption in Step 4 with a shuffle and decryption
by a trusted party.

With the two replacements, the adversary now wins
the game if it can guess an index from an unknown
random permutation of honest clients. Since we have

5 Here, we are assuming that the client oracle is not outputting
information that will give unfair advantage to the adversary. If
we do not make such an assumption, WI needs to be changed
to the adversary successfully guessing π(I) given the encrypted
messages from the client oracle and the permutation of the plain-
text messages (using π) from the client oracle.

only introduced negligible advantage to the adversary
when making these replacements, this probability of an
adversary winning the game satisfies Equation 1.


