
Proceedings on Privacy Enhancing Technologies ; 2016 (2):175–192

Shuai Li* and Nicholas Hopper

Mailet: Instant Social Networking under
Censorship
Abstract: Social media websites are blocked in many
regimes where Internet censorship is applied. In this
paper, we introduce Mailet, an unobservable transport
proxy which enables the users to access social websites
by email applications. Without assuming the Mailet
servers are trustworthy, Mailet can support the ser-
vices requiring privileges without having the complete
credential. Particularly, the credential is split and dis-
tributed in two Mailet servers, and neither of them can
recover the credential alone. To recover the credential in
a TLS record message, we propose a highly efficient Ga-
lois/Counter Mode(GCM) based secure computation,
which can enable the two servers to conceal their sep-
arate credential copies in the computation. We imple-
mented a prototype for Twitter.com to demonstrate the
usability and security of Mailet.

Keywords: censorship resistance, secure computation

DOI 10.1515/popets-2016-0011
Received 2015-08-31; revised 2015-12-02; accepted 2015-12-02.

1 Introduction
Social Media websites such as Twitter and Facebook
have grown to play a prominent role not only in the
social lives of their users, but as an important source
of news about current events [21], communication hub
in emergencies [27], and a coordination mechanism for
social and political activism [26]. Correspondingly, gov-
ernments in many countries have either permanently or
temporarily blocked or threatened to block access to
these sites; for example the herdict.org censorship data
site reports at least 10 different countries blocking Face-
book at some point in 2014 and 11 blocking Twitter. In
response to this blocking, users in these countries often
turn to circumvention tools; one survey of circumven-
tion users found that accessing social media sites was

*Corresponding Author: Shuai Li: University of Min-
nesota, E-mail: shuai@cs.umn.edu
Nicholas Hopper: University of Minnesota, E-mail: hop-
per@cs.umn.edu

the second most common reason for using these tools,
with over 70% of respondents citing this intent [1].

In response to the popularity of some circumven-
tion tools, several nation states have deployed technol-
ogy that blocks access to these tools, through a combi-
nation of address blocking, protocol filtering based on
deep packet inspection (DPI) and active probing to re-
duce false positives. This has led researchers to engage
in an “arms race” of protocols and attacks for “un-
observable transport.” Steganographic “parrot” proto-
cols [24, 28, 30] attempt to imitate protocols the censor
will be reluctant to block, but many of these schemes
were shown to suffer from imitation flaws [15]. Decoy
Routing schemes [16, 20, 31, 32] use backbone routers
as proxies to imitate connections to arbitrary unblocked
hosts, but were shown to require impractically large and
targeted deployments in order to avoid availability at-
tacks [18, 25]. “Hide-within” systems [8, 17, 34] attempt
to hide both the true destination and the covert nature
of circumvention connections by tunnelling connections
through popular services such as email, VoIP, and cloud
storage. In addition to requiring high bandwidth over-
head, these schemes were shown to suffer from detection
and blocking attacks stemming from inconsistency be-
tween the data volume and loss tolerance of the proxy
and cover applications [14].

As a result of this arms race, it is unclear whether
there can be a single cover protocol that can handle
arbitrary Internet content. An alternative strategy is
to develop a small number of systems, each of which
is difficult to detect or block when carrying a specific
type of content. This strategy is supported by the find-
ing that in China, most circumvention use is motivated
by unfiltered search, unfiltered social media access, and
video sharing sites [1]. An example of this strategy is
Facet [22], which was designed to provide uncensored ac-
cess to YouTube, Vine and Vimeo by playing the videos
over an encrypted Skype call; since these videos are
content-consistent the attacks on other “hide-within”
schemes do not apply.

Given the important role of social media sites, find-
ing an unobservable and difficult to block transport pro-
tocol for these systems is an important next step. Note
that these services present several challenges not present

Mailet: Instant Social Networking under Censorship 176

in the social video context: they are not loss-tolerant, so
they cannot rely on voice or video-based channels; they
are authenticated, so the system should provide different
privileges to different users; and the content provided is
private, so it should be difficult for the circumvention to
access or modify the content without the user’s consent.

In this paper, we present Mailet, an unobservable
transport which provides unfiltered social website access
by using email applications. Mailet servers and clients
exchange the text content of a social media website via
email. Specifically, the client sends an email to an inbox
accessed by the server with the specified service details
included; and on behalf of the client, the Mailet server
communicates with the social website and emails back
the response text, if any. This design guarantees chan-
nel consistency and has no imitation flaws. This makes
Mailet immune to existing attacks. In addition, Mailet
has several desirable features:

Mailet is secure against untrustworthy prox-
ies. The Mailet design enables Mailet servers to provide
privileged services without learning the social media lo-
gin credentials of the client, using a threshold trust ap-
proach. In Mailet, the client is allowed to split and dis-
tribute the credential to a set of Mailet servers, and each
server holds a share of the secret. Without learning the
other shares, a single server can not recover the creden-
tial alone. When presenting the credential to the social
website, Mailet servers should combine the shares pri-
vately. However, existing social websites do not support
decentralized or privacy-preserving authentication, and
expect to interact with clients through a single TLS ses-
sion. Mailet solves this problem by proposing a highly ef-
ficient Galois/Counter Mode (GCM) based secure com-
putation to enable the servers to recover the creden-
tial without disclosing their separate credential copies
to each other. This computed TLS message contains
the complete credential and is consistent with the so-
cial website interface. Comparing with the conventional
secure two-party computation (2PC), which enables two
parties to evaluate a function without revealing their in-
puts to each other [19, 23, 33], our approach can achieve
a speedup of 120. This high efficiency can make a nor-
mal Mailet server to support up to 200 simultaneous
sessions with each service request being completed in
about 1 second.

Mailet users do not require additional soft-
ware. Users can access Mailet through any standard
mail client that supports starttls, or any standard
webmail service not controlled by the censor. This re-
solves the secure distribution or bootstrapping problem
common in circumvention software.

Mailet resists proxy enumeration. Users in-
teract with Mailet by sending email to mailboxes on
widely-used mail services. Even if the censor learns the
IP address of the Mailet servers, blocking direct connec-
tions is futile because users and servers never directly
communicate. Thus blocking access to Mailet involves
preventing users from sending and receiving email from
users of all of the popular email hosting services.

We have implemented the Mailet protocol for use
with Twitter. We describe this implementation, which
we release as open source software1, and evaluate its per-
formance and security as a circumvention tool both ex-
perimentally and analytically. We find its performance is
adequate and hope that other organizations will be will-
ing to deploy Mailet servers as well, providing stronger
security against server collusion and providing users
with a free and secure alternative circumvention tool.
Outline. The reminder of this paper is organized as fol-
lows. In section 2, the threat model and design goals are
clarified. In section 3, the architecture of Mailet is pre-
sented, and section 4 introduces the decentralized cre-
dential. Section 5 gives implementation. Section 6 gives
the security analysis, and in section 7 experimental re-
sults are presented. Section 8 gives the related works,
and in section 9, limitations and future works are pre-
sented. Section 10 concludes this paper.

2 Threat Model and Design Goals

2.1 Threat Model

The censor’s network. We assume a state-level cen-
sor that is trying to block inter-state connections related
to social websites. The censor can block the social web-
sites by static IP address filtering and keyword filtering,
and furthermore, the censor is assumed to be capable of
traffic analysis as a means of identifying the usage of cir-
cumvention tools. For example, the censor may monitor
connections originating within its borders to the POP3,
SMTP, and IMAP ports of popular email services, and
attempt to identify the circumvention traffic if the traf-
fic pattern deviates from normal email traffic. However,
we assume that the censor cannot break the encryption
used to protect traffic between email clients and servers,
and that some email services based outside the censored
network are not corrupted by the censor.

1 https://github.com/magicle/Mailet

Mailet: Instant Social Networking under Censorship 177

Mailet Servers. Similar to other circumventions sys-
tems like Tor [11], Mailet users select two servers out
of a larger set of possible servers, and rely on these
servers not to collude. This mitigates corruption of the
Mailet servers by ensuring that (if servers are selected
at random), an adversary that corrupts fraction ρ of
servers will have probability at most ρ2 of corrupting
both servers that represent a user. However, we must
still ensure that if a single server is corrupted, the user
is able to circumvent the censor without loss of privacy
or availability.

When modeling the actions of corrupted Mailet
servers when interacting with users and non-colluding
servers, we distinguish between two security goals:
– Credential Privacy: Mailet’s protocols are designed

to ensure that a single server engaging in arbitrary
malicious behavior may not compromise a user’s so-
cial networking credentials, either in the form of
passwords or other access tokens which are gener-
ated to enable a third-party application to represent
the user. The existence of the third-party social me-
dia Apps stealing users’ data [4] demonstrates the
necessity of this attack model.

– Interaction Integrity: Since the pair of Mailet servers
selected by a user must be capable of acting on her
behalf, a malicious Mailet server might seek to mod-
ify or drop some of these actions. (For example, reg-
ister additional applications in the user’s name, se-
lectively change the user’s status or tweets, or deny
service to the user) However, we assume that (sim-
ilar to systems like Tor) if a server’s attempts to
engage in these behaviors are detected, the server
will be removed from the system. Thus we model
servers as covert adversaries [7] that can be deterred
by mechanisms that detect malicious behavior with
respect to integrity, and design Mailet’s protocols to
ensure that modification of the user’s interactions
are detected with constant, high probability.

We note that in contrast to a service like Tor, compro-
mising the pair of servers representing a particular user
leads directly to compromise of the user’s social net-
work credentials; this may motivate system organizers
and users to take more care in selecting server opera-
tors than might otherwise be the case. Furthermore, we
provide users with the mechanism to choose the servers
that act on her behalf in case she has more detailed
knowledge of the threat she faces.

2.2 Design Goals

The requirements the Mailet design should satisfy are:
– Unblockable. The usage of the Mailet system can

not be detected by the censor, or blocked with-
out causing significant loss of service to innocent
email users. This requires that connections between
Mailet server and client should have characteristics
similar to that of ordinary email traffic.

– Real-time Service. The client can be served in
real-time without intolerable delays, as long as ordi-
nary email services also provide good performance.

– Low Client and Service Overhead. Neither the
user nor the social media site should incur high
bandwidth or computation costs when using Mailet.

– Credential Security. No single Mailet server
should be able to recover the client’s credentials
even though this information is necessary for the
system to complete the service.

– No Deployment at Client Side. It should not
require the user to install any circumvention tools.

3 Mailet Design
The Mailet system uses email channels to facilitate com-
munication between clients in a censored regime and so-
cial media websites. Instead of using email as a carrier
for TCP/IP [34], Mailet directly transmits application-
level content. This design reduces bandwidth require-
ments between clients and Mailet servers, while also
increasing resistance to traffic analysis and differential
channel attacks. The primary challenge associated with
this design is protecting the clients’ credential informa-
tion. Social websites require a client to submit authen-
tication credential in order to provide some privileged
services, but cannot be relied on to provide a notion of
limited delegation; thus for the Mailet system to rep-
resent a client it must have authentication credentials
for that client’s account. This poses a potential security
threat to the client, since a malicious or compromised
Mailet server could leak or otherwise misuse these cre-
dentials.

To protect the clients’ credential information,
Mailet is designed so that the system can use the cre-
dential even though no individual server will know it. In
order to achieve this goal, we introduce a decentralized
Mailet server structure, in which sub Mailet servers are
controlled by separate parties, and clients distribute cre-
dential information among some of them, so that these

Mailet: Instant Social Networking under Censorship 178

���������	�
���

��������������

�

������
������������

�

��������������
��������� �������

��������

�����������

�����������

�����������

�����������

����������

�

�

�

� �

Fig. 1. Mailet System Architecture: the user in the censored regime splits its credential into two copies, which are then distributed
to two Mailet servers. This protects the credential of the user, while still being able to fulfill the user’s service requests after the two
servers running secure computation to recover the credential privately.

servers can collectively represent the user while no indi-
vidual server can access the credentials. In the following,
we introduce the Mailet server design.

3.1 Architecture

Mailet servers and clients communicate with each other
by email. Clients send commands and message to be
posted to servers via email, and servers use email to de-
liver site contents to clients. In the system architecture,
there are four types of entities:
– Mailet Clients are assumed to be able to access an

uncompromised email service, but are assumed to
have no direct access to the social website, due to
censorship or surveillance.

– Email Service Providers. The Mailet server and
client can have different email service providers,
and these providers are assumed to be uncompro-
mised by the censor. We argue that this is a reason-
able assumption. Since Mailet servers are outside of
the censored regime, they can reach uncompromised
email service providers. For Mailet clients, the abun-
dance of independent providers makes it difficult for
a censor to compromise or filter all of them.

– Mailet Servers. The Mailet design includes multi-
ple servers in order to protect the credential infor-
mation of the clients. When a client first enrolls
in Mailet, it distributes its credential information
among two randomly selected servers, which col-
laboratively present the credential information to
the social websites. Each server has its own (set of)
email inbox(es) for communicating with clients.

– Social Websites. In our paper, we implement the
Mailet system for Twitter. Social websites only ac-
cept direct connections via TLS, which cannot in-
clude third parties; thus Mailet’s protocols must be
designed to match this interface.

For connections requiring no credentials, such as search-
ing tweets, the client can select a random Mailet server.
For example, if the user wants to search for tweets, it can
send an email with the command “searchtweet” plus the
keyword to the server, which will search by the keyword
and email the results back to the client. However, most
commands require the user to prove its identity to the
website by providing its credential. In these situations,
Mailet servers use the decentralized credential mecha-
nism described in the next section to allow transmission
of the credential to the social website while preventing
its recovery by any Mailet server.

4 Decentralized Credential
Mailet clients need to share their credentials with Mailet
servers when they require privileged services from social
websites, so that the Mailet servers can present the cre-
dential to websites on behalf of their clients. While this
concept of content proxy enhances Mailet in terms of un-
observability and usability, it poses a potential threat to
its clients’ credentials if the Mailet servers are honest-
but-curious or even malicious.

To protect the clients’ credential, we propose the
decentralized credential mechanism. Instead of “putting
all the eggs in a single basket”, Mailet design allows a

Category Mailet Server A Mailet Server B
OT Prep. 13.1 8.97

Label Transfer 0.79 0
OT Label Transfer 14.8 21.26
Circuit Evaluation 6631.13 0

Total 6659.82 30.23

Table 1. 2PC Downstream Bandwidth Consumption (KB)

Mailet: Instant Social Networking under Censorship 179

0

500

1000

1500

2000

2500

3000

3500

4000

Circuit Prep.

NPO
T Key

O
T Prep.

Peer’s Labels

Self’s Labels

Circuit Eval.

T
im

e
 (

m
s
)

(a) Mailet Server A

0

500

1000

1500

2000

2500

3000

3500

4000

Circuit Prep.

O
T Prep.

Self’s Labels

Peer’s Labels

Circuit Eval.

Interpretation

T
im

e
 (

m
s
)

(b) Mailet Server B

Fig. 2. 2PC Time Cost Breakdown: Mailet server A holds the
cryptographic keys of the TLS session and a part of the TLS
plaintext, while Mailet server B having the other part of the
plaintext. The computation ends up with a valid TLS message
having the client’s genuine credential. This TLS message is then
presented by server B to social websites to finish the service re-
quest. RC4-SHA is used as the cipher suite of the TLS session.

Mailet client to split its credential into two copies, and
distribute them in two separate servers (which are ran-
domly selected by the client). For each server, its holding
of one copy cannot enable it to recover the original cre-
dential. This decentralized credential design effectively
protects the client’s credential.

A challenge in decentralized credential mechanism is
how to privately combine and represent the credential to
social websites. In other words, the Mailet servers should
collaboratively recover the original credential, and in-
clude it in a TLS connection to the social website, while
still preventing each other from learning the other copy.
This task is usually regarded as a secure two-party com-
putation problem: two parties (Mailet servers) holding
separate secret inputs (the credential copies) evaluate a
common function (a TLS record message) without dis-
closing their inputs to each other. However, since a TLS
record message in Mailet is usually large (several hun-
dred bytes), a standard two-party computation is too
costly. We implemented a credential recovery by using
an optimized 2PC algorithm, and the costs (time, CPU
and memory usage) are shown in Figure 2 and Table 1.2

The results show that 2PC has to take nearly 6 seconds
to finish and consumes about 6 MB bandwidth between
Mailet servers. In addition, it uses about 90% CPU and

2 We adopted the FastGC framework[19] and implemented the
2PC in 1600 lines of Java.

9% memory for each computer with a Quad-Core pro-
cessor and 4GB memory.

To overcome this challenge, we propose a novel
GCM based Credential Recovery (GCM-CR) approach
to secretly combine the decentralized credential with-
out using the high overhead secure two-party compu-
tation. This design uses Galois/Counter Mode (GCM)
cipher suite in the TLS connection, and takes the ad-
vantage of Encrypt-then-MAC (EtM) of GCM mode
to compute a valid TLS record message. Since this
scheme involves no 2PC, a valid TLS record can be
computed efficiently. Comparing with the conventional
2PC, our approach can achieve a speedup of 120. In
our context, the speedup is equal to L2P C

LGCM−CR
, where

L2P C and LGCM−CR are the latency of the traditional
2PC and the GCM-CR approach, respectively. Further-
more, we propose Checking-by-Sampling (CbS) mecha-
nism to enhance the Mailet design against a malicious
Mailet server crafting malicious messages on behalf of
the client. Before delving into the details about decen-
tralized credential, we first briefly introduce the Trans-
port Layer Security (TLS) protocol.

4.1 TLS Protocol

Social media users connect to the website server by TLS
protocol. A TLS handshake protocol is firstly executed
by both sides to negotiate the cipher suite to use, ex-
change random numbers, and agree on a common pre-
master secret by public-key cryptography. Afterwards,
under the negotiated cryptographic parameters, users
communicate with the website server by encrypted TLS
application data, which may include the user’s creden-
tial or the message to post. Then for an attacker, it can
neither learn the application data nor forge a malicious
message on behalf of the user or the website server.

The TLS message type can be figured out by any
third party, which enables a Mailet server to intercept

�����������

	
������
�
����

����������������������
�����
�������������������
�
�������������������������
�����������������������������

������������	�	���������
�����������������������	�
���������

������

�
�� ���

!

���������������������

���

������"���
����
�� �����

���"���
��#���������

����"���
���$�������

Fig. 3. TLS Record Format: the general case

Mailet: Instant Social Networking under Censorship 180

Fig. 4. Data Application Format: under stream cipher encryption
with HMAC-SHA1 as the MAC algorithm

at the right time. The method is to examine the Con-
tentType field. Figure 3 shows all the possible TLS mes-
sage types and their ContentType field values. Besides
of ContentType, a TLS message also contains Proto-
colVersion field, Length field (the length of the Frag-
ment in byte), and Fragment field. An example of the
TLS format for application data under stream cipher
encryption is shown in Figure 4. The content field is
the encrypted application data, and the MAC field is
the Message Authentication Code (MAC) for the appli-
cation data, a sequence number, ProtocolVersion, Con-
tentType, and length of the application data. The MAC
is computed before the application data is encrypted.
More details are given in the Appendix.

4.2 Credential Sharing and Recovering

Credential Sharing. Mailet’s design incorporates
multiple servers to store the client’s credential infor-
mation. For example, in Figure 1, the No. 1 and No. 3
servers are randomly chosen by the client to hold creden-
tial shares Cred1 and Cred2, separately. The credential
generation method is as follows. First, the client gen-
erates a random string as the credential Cred1, whose
length is equal to that of the original credential. By
XORing credential Cred1 and the original credential,
the client obtains the other credential Cred2. Finally,
the client distributes these two credentials to the cho-
sen servers. Now neither of these two servers can recover
the client’s credential alone.

Credential Recovering. When the client initiates a
command that requires credential use, the two Mailet
servers S1 and S2 storing shares of the client’s cre-
dential Cred must collaborate to conduct a TLS ses-
sion including Cred with the social website server. S1

and S2 could recover Cred simply by jointly computing
Cred1⊕Cred2, but this would not be secure since then
both servers would know Cred.

The approach in this section for privately generat-
ing the valid TLS record message relies on the Initiator-
Interceptor structure. Particularly, we assign the servers
asymmetric roles: one server is the Initiator, and the
other is the Interceptor, shown in Figure 5. The Initiator
initiates the client side of the TLS handshake with the
social website server, using the Interceptor as a proxy
to pass messages to the server, so that from the point
of view of the social website, the connection originates
from the Interceptor. At the conclusion of the hand-
shake, the Initiator and the social website server share
symmetric keys, so the Interceptor is unable to decrypt
the traffic passed to the social website.

After the TLS handshake, the Initiator continues
to forward TLS records through the Interceptor to ini-
tiate the application-level session; once the TLS record
containing only Cred1 arrives at the Interceptor, the In-
terceptor holds on this message, and regenerates a valid
TLS record having Cred = Cred1 ⊕ Cred2 with the
help of the Initiator. Finally, the Interceptor sends the
regenerated message instead of the original TLS mes-
sage. The approach to regenerating a valid TLS record
is described in the following.

4.3 GCM based Credential Recovery

We introduce the credential recovery without involving
2PC. The GCM-CR approach uses the cipher suites of
GCM mode in the TLS session, and takes the advantage
of GCM’s stream cipher property and EtM feature.

Galois/Counter Mode (GCM). GCM is an opera-
tion mode for symmetric key block ciphers. It is an au-
thenticated encryption algorithm, and can provide data
confidentiality and integrity simultaneously. Due to its

�������
�	
���	

��������

��	��	����

���	���	���
�	��	��	���

���	���	��������	

�����	����	���	�

�����	����	���	�

����������	
����
���������������

�
���

����������	
����������	
����
������������������������

����
�

����
�
� ����

�

Fig. 5. Initiator and Interceptor Structure: the Interceptor in-
tercepts the TLS application data from the Initiator to the social
media website. By collaborating with the Initiator, it regenerates
a valid TLS application data which has the genuine credential.

Mailet: Instant Social Networking under Censorship 181

�
�

�
�

�
�

�������������� �������������� ��������������

� �	
���
��
�� 	
���
��
�����������������

������
��
�� ������
��
������������

����
�

�

���������

����
�

�

����
�

�
���������
�����

����
�

��������

���	
���
����������

���	
������������

�

�	
�
�

	
���
��
�������������	
�
�

�

�	
�
�

�����������
����������������������	
�
�
��	
�

�

�	
�
�

�

���������������
������

�����

������

Fig. 6. Credential Recovery with GCM Mode: the Interceptor re-
ceives H and Ek(IV ||00000001) from the Initiator and creates a
valid Auth Tag for the ciphertext including the genuine credential.

high speed with low cost and low latency, GCM mode
has been included in TLS cipher suite list, and is widely
implemented by popular website servers.

Recover the Credential in Ciphertext. For the en-
cryption, GCM resembles the counter mode encryption,
and turns a block cipher into a stream cipher. This
makes the credential recovery in the ciphertext conve-
nient. For the Initiator, it encrypts the TLS record mes-
sage with Cred1 in place of the original credential Cred,
and passes this message to the Interceptor. The Inter-
ceptor can locate the credential Cred1 with the help
of the Initiator, and XOR Cred2 with the ciphertext
bytes in this location, so that when the website server
decrypts the TLS message, the plaintext will contain
Cred. Since the Interceptor does not know the symmet-
ric key, it cannot recover Cred, while the Initiator does
not see the completed record, and also cannot recover
Cred. However, recovering the credential in the cipher-
text/plaintext alone is not sufficient. The Interceptor
has to generate a correct MAC to make the TLS record
message valid.

Validate the TLS Record. In GCM mode, the plain-
text is first encrypted, then an authentication tag is
computed based on the ciphertext by a GHASH func-
tion. This Encryption-then-MAC (EtM) property en-
ables the Interceptor, which has access to the ciphertext,
to compute a valid authentication tag without having
to do a 2PC with the Initiator. The authentication tag
generation is shown in Figure 6. Note that the Initiator

should share the H (the encryption of 128 bit 0s) and
Ek(IV ||00000001) (the encryption of the first counter)
with the Interceptor. This does not break the security
of the cryptographic system. It leaks neither the TLS
session key nor the Initiator’s credential Cred1.

Though GCM-CR can effectively protect the clients’
credentials in the honest-but-curious attack model, it
cannot prevent a malicious server from corrupting the
protocols. Both Initiator and Interceptor can mali-
ciously flip the bits in other fields of the TLS record
message without being noticed by each other, so that
they can change the App ID to be authorized or the
message to be posted, etc.. In the following, we give
solutions to prevent a Mailet server from crafting mali-
cious messages.

4.4 Interaction Integrity

By applying the decentralized credential mechanism, a
corrupted Mailet server is prevented from knowing the
user’s credential. However, this server might seek to
modify the TLS message in a covert way to manipu-
late the outcomes of the protocol. An incorrect tweet
may be posted, or a wrong third-party App is autho-
rized because of this attack. In this section, we propose
approaches to detect and prevent such attacks.

A Corrupted Mailet Interceptor. This Interceptor
may flip the bits of the TLS ciphertext to manipulate
a HTTP field value in the GCM-CR. To prevent such
attacks, Mailet can randomize the order of fields in re-
quests, and pad requests with separator strings of ran-
dom length, making it difficult to predict the location of
the desired field. In addition, an Initiator can screen the
response from Twitter for a corrupted Interceptor. For
example, when posting a tweet, the Initiator receives a
response including the posted tweet ID, which allows it
to retrieve the tweet. An inaccurate tweet indicates the
presence of a corrupted Interceptor.

A Corrupted Mailet Initiator. Violating the interac-
tion integrity is much easier when the corrupted Mailet
server takes the role of the Initiator. This is because
a malicious Initiator can craft any arbitrary plaintext
of the TLS message in GCM-CR. In order to enhance
Mailet design against a malicious Initiator, Checking-
by-Sampling (CbS) mechanism is proposed. Instead of
initiating a single TLS session with the website server,
the Initiator starts n parallel sessions which are all
passed through the Interceptor. For all these sessions,
the Initiator cuts off the ciphertext of its credential copy

Mailet: Instant Social Networking under Censorship 182

����������	
������										

��������

����������

� ���� ��

����������	��										���	
�

���	
�

���
�

�����

�����

�����

�������� �����

����

��� ��

Fig. 7. Checking-by-Sampling: the Interceptor randomly chooses
n − 1 sessions to check the correctness of the non-credential
HTTP fields. The commitment H(KEYi) is required to force the
Initiator to provide the true TLS session key in the latter phase.

and passes only the rest of the TLS record messages with
n commitments to corresponding TLS session keys. The
commitment for each TLS session can be the crypto-
graphic hash of the session key. For the Interceptor, it
chooses n−1 out of n TLS sessions to open by requesting
the Initiator to provide n−1 corresponding session keys.
The Interceptor checks the commitments, and if mali-
cious messages are detected, it stops the collaborative
computation with the Initiator. Otherwise, the Initiator
is believed to be honest and the only TLS session left is
used for credential recovery. Before doing GCM-CR, the
Initiator should complete this TLS record by providing
the Interceptor with its credential ciphertext.

This enhancement can practically prevent an ma-
licious Initiator. Even for a smart malicious Initiator,
it only has 1/n probability to succeed for each session.
Being malicious for multiple sessions, the malicious Ini-
tiator would be probably detected and reported.

5 Implementation
This paper implements the Mailet design for Twit-
ter.com, and the implemented system can provide tweet
posting, reading and searching as well as decentralized
authorization for the client. We implemented the GCM-
CR module in 1900 lines of Python, and the Mailet
server in 1636 lines of Python. It is worth noting that
our Mailet design is not limited to Twitter. Since many
social websites (such as Facebook) share the similar au-
thentication mechanism with Twitter, our implementa-
tion can be extended to support these websites.

5.1 Mailet Server Implementation

Interceptor in Mailet Design. We implemented a
socket proxy as the Interceptor in Mailet. This proxy
establishes an encrypted socket connection with the Ini-
tiator, and relays the socket level messages between the
Initiator and the Twitter server. It identifies and in-
tercepts the application data packet by inspecting the
ContentType field of the encrypted TLS message, and
does the GCM-CR approach with the Initiator. After
the GCM-CR session, it sends the computed result to
the Twitter server.

Initiator in Mailet Design. The Initiator adopts
the TwitterAPI to complete the non-privileged services.
TwitterAPI is a Python package to support the Twit-
ter’s REST and Streaming API with OAuth 1.0 and
OAuth 2.0. We implemented the Initiator for reading
and searching tweets. Note that these services do not
need the user to provide its credential.

Session Cookie. For posting tweets and retweeting,
the Twitter website only accepts session cookies as the
authentication approach. Even the user is providing its
credential such as its username and password in these
services, the Twitter website server only responses with
the session cookie which is expected to be used in au-
thentication. This complicates the decentralized cre-
dential. In our implementation, the Interceptor XORs
a random string in the auth_token field of the Twit-
ter server’s response, splitting the auth_token field on
the fly. After the Initiator receives this packet, it de-
crypts without checking the MAC of this packet. At this
point, the Initiator and the Interceptor holds separate
auth_token copies. When posting a tweet or retweeting,
the Mailet servers use GCM-CR to recover the original
auth_token in the TLS record message.

In the cookie splitting, the Initiator can no longer
check the MAC of the website’s response containing the
session cookie. This may make the Mailet design vul-
nerable to an external attacker. Fortunately, as the Ini-
tiator and Interceptor collaboratively represent a user,
the Interceptor can do the MAC check instead. The ap-
proach is the same as GCM-CR. Besides splitting the
session cookie, the Interceptor uses the original cipher-
text and parameters H, Ek(IV ||00000001), which are
passed by the Initiator, to compute the correct MAC.
If the two MACs are not equal, the results from ses-
sion cookie splitting would be dropped. Furthermore, it
is worth noting that the connections between Initiator
and Interceptor are secured by TLS, leaving an exter-
nal attacker no chance to change the packet when this

Mailet: Instant Social Networking under Censorship 183

����������������

������	���
����

������������������

��	
�	����
������

��	
�	����
������

�������������������������

�������������������������

����������	
�����
������

������������
�����������

�����
������
�����
��

������
������	���

����������������

��������

����

����

	
����
��

Fig. 8. Mailet Authorization GUI

packet is transmitted from the Interceptor to the Ini-
tiator. Therefore, we argue that checking MAC at the
Interceptor protects against an external attacker.

TLS Session Information Extraction. In Mailet de-
sign, the Initiator should know the client write key,
MAC client write key, and TLS plaintext messages in
the TLS session. Since the Python ssl and socket
adopt the OPENSSL library [5] to start the TLS ses-
sion, we modified the “ssl/t1_enc.c” in OPENSSL to
write the keys and the plaintexts in a file specified by
the Initiator. We also defined the macro SSL_DEBUG,
TLS_DEBUG, and KSSL_DEBUG to print out the
TLS session information for debugging.

5.2 User Interface Design

This part introduces the user interface design in Mailet.
We first introduce the Graphical User Interface (GUI)
design for Mailet authorization.

Authorization GUI. The Mailet client can use the au-
thorization GUI to authorize a Mailet server. The GUI
is written in HTML and JavaScript, and is shipped to
the client as an email attachment. The client can open
the GUI in its web browsers, or uses the GUI directly in
the email if the email application supports JavaScript.
The authorization GUI is shown in Figure 8.

Firstly, the Mailet client inputs its Twitter user-
name and password in the GUI; then it can split the
password by clicking the “Generate” button. In the third
step, the client chooses the Initiator and the Intercep-
tor in the Mailet server pool, and clicks “Send” buttons
to create autofilled emails to distribute the shares of

the password. Last, the Mailet client clicks the “Au-
thorize” button to send the authorization request by
an autofilled email. Note that some buttons (such as
“Generate” and “Send”) can be combined to be a single
button.

Email Interface. The Mailet client communicates with
the Mailet servers by email messages. The Mailet imple-
mentation defines the interface for the email:
– The email subject consists of the Mailet commands

and the parameters, with a colon separating the two
fields. Take retweeting as an example. The client
sends an email with the subject “retweet:ID”, where
retweet is the Mailet command for retweeting, and
the ID is the parameter specifying which tweet the
user is retweeting. All supported commands in the
current implementation are listed in Table 2.

– The email body is defined to carry the text input of
the client. It is used when the client posts, searches
for, or replies to a tweet.

But a Mailet client does not have to access this interface
by manually filling emails. Instead, it can use the Mailet
autofilling feature, which is introduced in the following.

Mailet enables a client to autofill the email subject.
The Mailet server encodes its emails in HTML language
with navigation links for the client. For each link, the
mailto URL scheme is exploited to autofill the email
address and the subject. An example is shown in Figure
9. For each tweet, there is a retweet link created by the
server to include the retweet command and the tweet’s
ID. When the client clicks this link, the subject will be
autofilled.

�����������������	��
����	
 ��	���	��������

�������������	����������������������� ��	���	���	�!!"#$"�%��	���	�&�%

�����������������������
����	
���'���������(�����)��*
����	+
��

�
���		��� ���� ��������� ������	�

�	��
������	���	
�����

����������������,��		���-.�	�.	�� ��	���	��������

���

���

�����./.��� ,���	�*-0��!!"#$"+ ����1�	����	���	

2���3�	��.�4��

Fig. 9. Navigation Links for Email Autofilling

Mailet: Instant Social Networking under Censorship 184

Email Subject Email Body Service
authorize n/a Authorization
password Credential Cred. Distribution

mytweet:count n/a My Tweets
posttweet the tweet text Post Tweets

searchbyname screen_name Search (Name)
searchbykey Keywords Search (Keyword)

deletetweet:ID n/a Delete Tweets
following:ID n/a Following List
follower:ID n/a Follower List
retweet:ID n/a Retweet

tweetreply:ID reply text Reply

Table 2. the Email Interface

Email Security. A recent work [12] provides the evi-
dence that a state-level attacker, which is in control of
the network, can strip out a client’s STARTTLS com-
mand when this client connects to a mail server, forcing
the email contents and attachments to be transmitted
in plaintext. This attack would enable a censor to detect
and block the usage of the Mailet service. One strategy
to defeat such an attacker is to encrypt the emails (by
PGP [9], for example). Another strategy is to exploit
the pinning approach [13] to disable the attack.

6 Security Analysis
In this section, we informally analyze the security of the
Mailet protocols.

6.1 Previous Attacks

Attacks by Imitation Flaws. Mailet uses email pro-
tocols and applications directly rather than imitating
the email protocols as in parrot circumvention systems.
As a consequence, there are no imitation flaws in Mailet,
and the censor cannot detect Mailet by this attack.

Attacks by Channel and Content Mismatch. Re-
call that Geddes et al. citecoveracks introduced the
channel mismatch and content mismatch attacks. Chan-
nel mismatch attacks occur when the censor interferes
with potential cover protocols to stall or block proxy
connections. When the cover protocols can tolerate
packet loss or packet delay, the censor’s interference only
has limited impact on the protocol. However, a proxy
connection with the opposite channel feature may be
stalled. Mailet exploits the fact that email and twitter

conversations have similar loss tolerance and compatible
delay tolerance to avoid this attack. Content mismatch
occurs when the nature of the proxy traffic causes dif-
ferences in the statistical properties of the cover channel
compared to typical usage. In general, Mailet transac-
tions and email conversations do not differ in terms of
content, but may have variations in size and frequency
of messages; we consider traffic analysis on these fea-
tures further in section 6.3.

Denial of Service Attack. Since the email addresses
of Mailet servers are public, the censor may try to
disable the Mailet service by Denial of Service (DoS)
attacks. To defend against the DoS attacks, a Mailet
server can enforce usage limitations on each client ID,
and it can also use CAPTCHA [6] or puzzles to defend
against a Sybil identity attack.

6.2 Untrustworthy Mailet Servers

User’s Credential Privacy. In general, under stan-
dard cryptographic assumptions on the security of the
AES block cipher, credential splitting and detection of
key reuse attacks are sufficient to prevent non-colluding
malicious Mailet servers from gaining any information
about a given user’s credentials. One exception is that
like most standard encryption protocols, the length of a
credential is leaked; since credentials might include pass-
words, this could reduce the effort required to guess the
user’s credential by brute force. Fortunately, the Mailet
client can conceal its credential length on purpose. Let’s
denote the length of the credential as θ. Instead of hav-
ing the genuine credential as the input, a Mailet client
can add n − θ ampersand separators to the end of the
credential, padding to a length n sufficient to obscure
the credential length, After Mailet servers recompute
the credential in the TLS message, these added amper-
sands are taken as separators in the HTTP context and
are ignored. In this way, the Mailet client can prevent
the Mailet servers from learning the length of the cre-
dential.

Privacy of the User. The Mailet servers act as man-
in-the-middle (MitM) when providing privileged access
to a social media site. Thus, the servers have the chance
to know what the user posted, or who she replied to,
etc.. This may raise concerns about privacy violation.
Fortunately, due to the open nature of Twitter, the
messages or replies are not private in most situations.
For example, everyone can see the tweets and replies of
Twitter users without having any permission. Even for

Mailet: Instant Social Networking under Censorship 185

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

Time (h)

N
o

.
o

f
S

e
n

t
M

e
s
s
a
g

e
s
 (

A
v
e
ra

g
e
)

(a) Normal Users (Send)

0 2 4 6 8 10 12 14 16 18 20 22 24

0

5

10

15

20

Time (h)

N
o

.
o

f
R

e
c

e
iv

e
d

 M
e

s
s

a
g

e
s

 (
A

v
e

ra
g

e
)

(b) Normal Users (Receive)

5 10 15 20

0

1

2

3

4

5

6

7

8

Time (h)

N
o

.
o

f
S

e
n

t
M

e
s
s
a
g

e
s
 (

A
v
e
ra

g
e
)

Email

Twitter Post

Twitter Search

(c) Mailet Clients (Send)

5 10 15 20

0

1

2

3

4

5

6

7

8

Time (h)

N
o

.
o

f
R

e
c

e
iv

e
d

 M
e

s
s

a
g

e
s

 (
A

v
e

ra
g

e
)

Email

Twitter Search

(d) Mailet Clients (Receive)

Fig. 10. the Daily Statistics for the Genuine Email Users and the Mailet Clients

the social media websites in which users’ privacy is high-
lighted, we can protect a private field by splitting and
distributing it to the two Mailet servers. By using GCM-
CR, the field can be recovered secretly, as is adopted
for protecting the credential. As a consequence, a single
Mailet server cannot learn the private field alone. Ex-
cept the private field and the credential, the Initiator
and Interceptor can also learn other parts of the HTTP
message. We argue that they only learn low level traffic
parameters and do not violate the user’s privacy.

Malicious Mailet Servers. We analyze the possi-
ble malicious application-level behaviors a Mailet server
could launch and describe countermeasures that can de-
tect these attacks, mitigating them in the context of
covert adversaries.

Mailet servers can be malicious and may launch
denial-of-service attacks. They may halt the collabora-
tive credential recovery process, or corrupt credential
copies in order to fail the service. Since there is no user
input error involved in these processes however, they
will result in failures that can be observed by the other
Mailet server in a given interaction. Such attacks are
thus easily detected.

A malicious server may attempt to corrupt the non-
credential fields of a TLS message in order to post
a selectively altered message, authorize a malicious
App, or modify a user’s social profile. The Checking-
by-Sampling mechanism described in section 4.4 pro-
vides a high probability of detection if the Initiator at-
tempts such an attack. The Interceptor may also at-
tempt to maul the ciphertext of a request in order to
carry out such an attack. To minimize the potential
damage caused by this attack, Mailet randomizes the
order of fields in requests, and pads requests with sep-
arator strings of random length. Unless the Interceptor
predicts the exact position of the field it will be un-
able to create a semantically meaningful request; even
if the request is semantically meaningful, the response

sent to the Initiator will indicate an attack, since the
outcome implied in the response will not match what is
requested by the Initiator. Thus attacks by either server
on the integrity of the social network interactions will
be detected by the other server with high probability.

6.3 Traffic Analysis

The censor may try to detect Mailet connections by
traffic analysis. For each communication session, since
Mailet is content consistent, there is little chance for
the censor to detect the Mailet session. The censor may
also try to detect Mailet by the traffic pattern of an im-
mediate reply email following the sent email. We argue
that, for genuine email service, the auto reply feature
also leads to such pattern. In addition, for many ser-
vices such as post tweets and retweets, Mailet does not
have this traffic pattern. Therefore, the detection is be-
lieved to have high false positives and negatives.

For multiple communication sessions, the censor
may try to detect Mailet by inspecting the frequency
of emails sent and received per day. In our experiment,
we investigate the email patterns over a day for both the
Mailet clients and the genuine email users. The exper-
imental results show that, after the Mailet client uses
its emails to access Mailet, the email patterns are still
in the normal range of the genuine email users. This
demonstrates that Mailet can defend against such at-
tacks.

Experimental Results. This section measures the
daily email patterns for the genuine email users and the
Mailet clients. The datasets used in the experiment are
introduced as follows.

Email Dataset. In this experiment, we use the
Enron email dataset [3]. This dataset contains 517,425
emails from 151 users, and most of the users are senior
management at Enron. However, there is no explana-
tion about whether the dataset contains all the emails

Mailet: Instant Social Networking under Censorship 186

for each user over the period. Therefore, we cannot sum-
marize how many emails are sent or received daily on
average.

Fortunately, this dataset still captures the probabil-
ity distribution p(u, t) over a day. Here, u denotes the
user ID, and p(u, t) represents what percentage of emails
the user u sent in time interval t everyday. Besides, ac-
cording to the email statistics report[2], an average busi-
ness user sent 36 emails and received 85 emails per day
in 2014. We then combine these two results to get how
many emails are sent or received in each time interval
in a day for a genuine email user.

Mailet Usage Dataset. This dataset includes the
timestamps of the emails sent or received when a par-
ticular user utilizes the Mailet service. To simulate the
Twitter users and capture the users’ habits of posting,
replying, and retweeting tweets, we randomly selected
100 Twitter users and collected their most recent 200
tweets. Specifically, we generated a random integer to
be the Twitter user ID, and included this ID if it is
valid and has more than 100 tweets (we excluded inac-
tive users from our dataset). We also excluded the users
who do not have time zone information. Last, the Co-
ordinated Universal Time (UTC) was converted to the
local time.

We also simulate the search habits of the Twitter
users. According to[29], twitter users posted 340 million
statuses and made 1.6 billion search queries per day.
We use this ratio to obtain how many search requests
are made by the user through a day. Here, we make
an assumption that the way the user uses Twitter is
stable. In other words, the ratio of posts to searches
is consistent through a day. Though this dataset does
not incorporate all the activities of the clients (such as
authorization), it includes most of the activities of a
typical Mailet client.

The daily statistics for the genuine email users is
given in Figure 10. The time interval is set to 1 hour,
and the number of the emails sent in each time interval
is shown in boxplot. The central mark for each box is the
median, and the edges of the box are the 25th and 75th
percentiles. The whiskers reach the most extreme data
points which are not considered to be outliers. The Fig-
ure 10(a) shows that the users from the Enron dataset
sent more emails between 8am to 10am, and less emails
during the night. The Figure 10(b) shows that the users
received more emails than they sent, but the daily statis-
tics of receiving emails is similar with the pattern shown
in Figure 10(a).

The daily statistics for the Mailet client is also
shown in Figure 10. In the experiment, we assume the

email account of the Mailet client is also used for genuine
email services, and we summarized how many emails an
average Mailet user would send through a day. The fig-
ure shows that comparing with the normal emails, the
number of emails used for the Mailet service are much
less. In other words, the daily statistics of the client does
not change significantly after the client uses the Mailet
service. Considering the variations of the daily statistics
for different users (which is shown in Figure 10(a)(b)),
it is difficult for the censor to detect the Mailet ses-
sion by inspecting the daily statistics. It is worth noting
that though the Mailet clients send a bit more emails
at midnight than genuine email users, which may make
them detectable, it is believed that the bias of the email
dataset leads to this problem. Since the emails in the
dataset are from business email accounts, the dataset is
biased in the sense of incorporating less midnight emails.
Consequently, the censor is still believed to be unable
to detect the Mailet session by email daily statistics.

7 Performance Analysis
This section measures the Mailet system from the per-
spective of performance. It evaluates the CPU, memory,
and time cost of the Mailet servers, and demonstrates
the feasibility of Mailet.

7.1 Mailet Server Overhead

This part evaluates the Mailet server’s overhead in
terms of CPU and memory usage. Before giving the
experimental results, we first introduce the experiment
setup.

Experiment Setup. We started our experiment on
two desktop computers A and B, which were connected
by a local area network (LAN). The computers are Dell
Precision T1500s, with the Ubuntu 14.04.1 LTS operat-
ing system. The processor for each computer is an Intel
Core i7 CPU 860 (Quad-Core) 2.80GHz. The memory
size for computer A is 8GB, and for computer B it is
4GB. They both have 8GB for swap space. The Initia-
tor resided at B, and A was used as the Interceptor.
The password in the credential is 10 bytes long, and the
account is 17 bytes long.

We used a laptop as the Mailet user, which is a
Lenovo Thinkpad T400 with an Intel T9900 processor
and 6GB memory. This user sent service requests to the
two Mailet servers over the Internet, and the services

Mailet: Instant Social Networking under Censorship 187

2 4 6 8 16
0

0.2

0.4

0.6

0.8

1

Time (s)

E
C

D
F

RFT (Server)

Waiting Time (Client)

(a) Retrieve Self’s Own Tweets

1 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time (s)

E
C

D
F

Waiting Time (Client)

RFT (Server)

(b) Search by Keywords

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Time (s)

E
C

D
F

Receive Email (Client)

Send Email (Client)

Receive Email (Server)

Send Email (Server)

(c) Send/Receive Emails

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

RFT (s)

E
C

D
F

Post a Tweet

Retweet

(d) Comparison: Twitter API

Fig. 11. Time for None-Privileged Mailet Services (s): (a) and (b) give the ECDF of a client’s waiting time and the Mailet server’s
Request Fulfillment Time (RFT); (c) shows the ECDF of the email channel’s delay; (d) represents the ECDF of the RFT when the
authorized Mailet server fulfilled the privileged services by the Twitter APIs as a comparison with the GCM-CR based approach.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Time (s)

E
C

D
F

RFT

GCM−CR

(a) Retweet

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Time (s)

E
C

D
F

RFT

GCM−CR

(b) Post a Tweet

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

RFT (s)

E
C

D
F

n = 2

n = 4

n = 8

(c) Post a Tweet with CbS

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

RFT (s)

E
C

D
F

n = 2

n = 4

n = 6

(d) Retweet with CbS

Fig. 12. Time for Privileged Mailet Services (s): (a) and (b) show the ECDF of Mailet servers’ Request Fulfillment Time (RFT); (c)
and (d) measure the ECDF of RFT when CbS is adopted.

included authorization, posting a tweet, and retweet-
ing. At the servers’ sides, after receiving a request, they
started to log the accumulative CPU and memory us-
ages of the Mailet system until this request is fulfilled.
The final measurement results are the average of multi-
ple trials. In addition, the system cost with Check-by-
Sampling mechanism was also logged as a comparison.

Evaluation Results. Table 3 gives a summary
about the CPU and memory usage for the Initiator and
Interceptor. In the table, the cost of the services (autho-
rization, posting a tweet, and retweeting) is the cost of
the Initiator and the Interceptor handling a single ser-
vice request. Note that this measurement excludes the
cost of the email clients for clarifications. The results
show that the whole Mailet system (including email
clients) only consumes less than 5.3% of the CPU and
at most 1.0% of the memory space. If the Mailet servers
adopt the Checking-by-Sampling mechanism to avoid a
malicious Initiator, the overhead still remains low. Take
retweet as an example. When no CbS approach is ap-
plied (n = 1), the CPU usage is 2.0% for the Initiator
and 1.8% for the Interceptor. When CbS is applied with
n = 8 (which means the Initiator starts 8 TLS sessions),
the CPU usage only rises to 3.15% and 2.0%. In both

cases, the Initiator consumes 0.1% memory while the
Interceptor occupies 0.2% memory. These results show
the high efficiency of our GCM-CR approach.

7.2 Service Measurement

This part gives the performance analysis for Mailet. In
the experiment, we measured the Mailet service by the
following metrics:
– Mailet User’s Waiting Time. This is the period of

time between when a user makes a request and
when this user receives the response from the Mailet
servers. This time includes the time of sending and
receiving the emails at both sides of the Mailet user
and the server, and the time of the server fulfilling
the request by the decentralized credential or Twit-
ter API calls.

– Request Fulfillment Time (RFT). RFT is the pe-
riod of time that the Mailet server needs to handle
a request. For non-privileged services, RFT is the
time that the server takes to complete the Twitter
API call. For privileged services, RFT refers to the
time cost of fulfilling a request by the decentralized

Mailet: Instant Social Networking under Censorship 188

credential mechanism. Note that RFT excludes the
time cost of the email clients.

– GCM-CR Time. This refers to the period of time
that the Interceptor spends on recovering the cre-
dential in ciphertext and calculating a valid authen-
tication tag. Note that this time cost includes the
time spent on the Initiator’s transmitting parame-
ters such as H. For privileged services, the GCM-CR
time is part of the RFT, and therefore it is shorter
than the RFT.

For each kind of requests, we logged the above metrics
and had 100 trials. For each metric, the final measure-
ment is the average of the 100 results. The experimental
results are shown in Figure 11 and Figure 12.

None-Privileged Service. Figure 11 (a) gives the
time in retrieving the client’s own tweets. Since collect-
ing a user’s tweets does not necessarily require the per-
mission from this user, we implemented by using the
Twitter API without having the user’s credential. For
the client, the waiting time is from 8 seconds to 16 sec-
onds. On the server side, with 90% probability, the API
calls can be completed in less than 0.2 seconds. These
results show that the time cost of the email conversa-
tions contributes most to the client’s waiting time.

Figure 11 (b) shows the time for the service of
searching by keywords. The Mailet server is configured
to return 20 search results in a session, and RFT is
less than 1 second. At the client side, the waiting time
is in the range of 3 seconds to 8 seconds. It is worth
noting that the search service can be completed with-
out the user’s credential. Consequently we implemented
this service by using the Twitter API.

Figure 11 (c) presents the time of sending/receiving
emails for the Mailet client and the server. The x-
coordinate is set in log scales, and the y-coordinate is the
Empirical Cumulative Distribution Function (ECDF).
Both the Mailet client and server have to spend at least

Initiator Category Interceptor
CPU MEM CPU MEM
0.4% 0.8% Email Client 0.5% 0.2%
4.88% 0.2% Authorization 1.71% 0.1%
2.25% 0.1% Post a Tweet, n=1 1.3% 0.2%
4% 0.1% Post a Tweet, n=8 1.7% 0.2%
2.0% 0.1% Retweet, n=1 1.8% 0.2%
3.15% 0.1% Retweet, n=8 2.0% 0.2%

Table 3. CPU and Memory Consumption for Mailet

1 second sending or receiving emails with 50% proba-
bility.

To compare GCM-CR with the normal Twitter ser-
vice access, Figure 11 (d) gives RFT for posting a
tweet/retweeting by Twitter API at the server side when
this server is authorized by the user. The server uses
about 0.5 seconds to retweet, less than the time of its
posting a tweet, which is in the range of 0.8 to 1.2.
For GCM-CR, the server uses about 0.6 seconds to
retweet, and 0.8 seconds to post a tweet. This compar-
ison demonstrates the high efficiency of GCM-CR.

These experimental results show that the email con-
versations contribute the most to the client’s waiting
time, while most Twitter API calls can be completed
by the Mailet server in less than 1 second. These re-
sults demonstrate that Mailet can provide quick access
to non-privileged services of Twitter for its clients.

Privileged Service. The measurements for privi-
leged services are given in Figure 12.

Figure 12 (a) (b) shows how fast GCM-CR can be
completed, and how quickly the Mailet servers handle
the services of posting a tweet or retweeting. It shows
the GCM-CR time is under 0.05 seconds, which has a
speedup of 120 when being compared with the conven-
tional 2PC computation. In addition, the figures show
that the Mailet servers can handle a post request in 0.8
seconds and a retweet request in 0.6 seconds on average.

Figure 12 (c) and (d) show the RFT when the
Checking-by-Sampling strategy is applied. For the post
request, when a larger n is adopted (which means the
Initiator starts more TLS connections), the RFT is in-
creased. If n = 4, it takes the Mailet servers about 1.2
seconds to complete a post request. For the case n = 8,
the RFT is about 2 seconds. For the system deployer, it
can tune the parameter n to make a trade-off between
usability and security. It is worth noting that if long-
term detection is applied in Mailet deployment, a small
n (for example n = 2) is suitable.

The experimental results demonstrate the high per-
formance of the Mailet design, while having small CPU
and memory usages.

8 Related Works

8.1 Parrot Circumvention Systems.

The parrot circumvention systems disguise their com-
munications with the circumvention system user by em-
ulating the well-known non-blocked protocols. Skype-

Mailet: Instant Social Networking under Censorship 189

Morph [24] disguises the communication between a Tor
client and bridge as Skype Voice over Internet Proto-
col (VoIP). SkypeMorph starts the video call between
the bridge and client as camouflage, then it drops the
genuine connection and transmit Tor’s TCP traffic over
non-Skype UDP. A packetizer module is used to emu-
late the Skype UDP traffic. StegoTorus [30] obfuscates
the Tor protocol. It can choose HTTP request as a cover
protocol and embeds hiddentexts in the URL and cookie
fields. For HTTP responses, StegoTorus utilizes the at-
tached files such as PDF and Flash to carry the hidden-
texts. CensorSpoofer [28] is designed to provide an un-
blocked web browsing service by IP spoofing. Consider
the upstream traffic of the web browsing is lightweight,
it uses low capacity channels like emails for transmis-
sion. For downstream traffic, it directly sends the traffic
to the user but with the faked IP source address to
fool the censor. As a consequence, the IP address of the
proxy is concealed in both upstream and downstream
traffic.

Imitation Flaws. [15] shows the parrot systems
fail to achieve the unobservability. Firstly, SkypeMorph
and StegoTorus fail to imitate side channels, which are
created by the genuine systems for traffic control, user
login, etc. Secondly, StegoTorus and CensorSpoofer fail
to imitate reactions. StegoTorus returns different error
messages when the censor sends HTTP requests to it,
and CensorSpoofer fails to properly select the spoofed
IP address/port, making the address/port behave differ-
ently in responding to a censor’s probe. Thirdly, Skype-
Morph and StegoTorus are incorrect in imitation. Both
SkypeMorph and StegoTorus wrongly imitate Skype
UDP packets for lack of SoM field. Also StegoTorus gen-
erates incorrect PDF lacking the xref table.

8.2 Circumvention Systems without
Imitation Flaw

FreeWave [17] is designed to circumvent the Internet
censorship by hijacking the Skype protocol. The web
browsing traffic between a FreeWave client and server is
modulated into acoustic signals, so that it can be carried
via Skype acoustic channels. Since FreeWave directly
uses the genuine Skype VoIP service, it is claimed to
avoid flaws in camouflage.

SWEET [34] is proposed to provide the unblock-
able web browsing service via email channels. In the
infrastructure, the user in the censored regime encapsu-
lates its web browsing traffic in emails, and sends these
emails to the SWEET server. At the server side, it ex-

tracts the traffic from the emails, and forward the traffic
to the expected destination. After receiving the replies
from websites, the SWEET server embeds the responses
in the emails and sends them back to the user. Since the
email service provider does not collude with the censor,
the SWEET is claimed unobservable due to the censor’s
disability in recognizing the SWEET session.

CloudTransport[8] uses the cloud storage service
to circumvent the Internet censorship. It proposes a
passive-rendezvous protocol, which enables the Cloud-
Transport client and bridge to communicate through
oblivious cloud systems.

Inevitable Inconsistency. Recent work [14] re-
veals even perfect emulation can not guarantee the
proxy unobservability and unblockability. The failure
roots in the inevitable content and channel inconsisten-
cies between genuine and proxy protocols.

Content Inconsistency. In FreeWave, a modulated
acoustic signal rather than human speech is transmit-
ted over VoIP. This content inconsistency is proved suf-
ficient for a censor to identify FreeWave connection
by traffic analysis. For SWEET, it utilizes the email
channels to transmit the network layer traffic, making
the connections distinguishable from the genuine email
users. For instance, the SWEET client and server have
to exchange 8 emails on average in order to complete
one web browsing request. Since this burst of emails is
rare for genuine email users, it gives the censor the op-
portunity to identify the SWEET connections. Besides,
this deficiency limits the SWEET user to at most 10 to
15 web browsing requests, far from satisfying the user’s
needs.

Channel Inconsistency. Both SkypeMorph and Free-
Wave require reliable channels to transmit Tor TCP
packets or synchronization frames. But VoIP usually
adopt unreliable UDP transmission. This inconsistency
enables a censor to stall SkypeMorph and FreeWave by
packet dropping, while having negligible impacts on the
genuine VoIP service. For SWEET, such channel incon-
sistency also exists. The email channel is delay tolerant,
but the SWEET infrastructure can hardly handle the
delayed email delivery, which makes the HTTP/HTTPS
connections timeout or stalls the handshake protocol.
That means the sensor could delay the email delivery
to interrupt the SWEET connection without severely
affecting normal email users.

Mailet: Instant Social Networking under Censorship 190

8.3 Circumvention Systems with
Consistency

By realizing the design pitfalls in censorship circumven-
tion system, Facet [22] is proposed as an unobservable
transport which enables the users in the censored regime
to watch YouTube, Vine, and Vimeo videos in real-time.
Facet circumvents the Internet censorship by streaming
social videos over Skype video calls. Specially, the Facet
server creates a pair of audio and video emulators for
the user, and after receiving the video request, the server
will start a Skype video call with the user and streams
the requested video through the emulators. At the user
side, it can watch the video in Skype session. The Facet
design is claimed to have no imitation flaws, and be con-
sistent with the Skype video calls. Also, Facet includes
video and audio morphing to mitigate the censor’s traf-
fic analysis attack. The experiment demonstrates that
If the censor wants to block 90% Facet connections, it
has to block 40% genuine Skype calls. Though Facet is
more secure against blockage, it can only support so-
cial video sites and can not protect the user from an
untrustworthy server.

At last, a system named Tweetymail exists with no
purpose of circumventing Internet censorship. This sys-
tem also uses the email channels to transmit the tweets,
and users have to authorize the Tweetymail server by
the Twitter authorization routine before using the sys-
tem. This renders the users in censored regimes unable
to utilize the Tweetymail service, since these users can-
not access Twitter website servers to complete the au-
thorization. In addition, Tweetymail cannot prevent an
untrustworthy server, which poses potential threats to
the users’ account safety.

9 Limitations and Future Works
Mailet is aimed at enabling users in the censored regimes
to access social media websites. While we confess that
Mailet cannot support uncensored generic Internet ac-
cess, this limitation does not undermine its usability.
The design method is to satisfy most of users’ circum-
vention needs by a small set of unblockable transports,
and Mailet is one of these transports which is for ac-
cessing social websites. Together with other transports
(such as Facet), Mailet can fulfill most of users’ needs.
The future work includes the extension of the implemen-
tation to support other social websites, and the privacy
enhancement for the Mailet users.

10 Conclusion
This paper presents Mailet, an unobservable transport
which provides instant social networking under censor-
ship. In Mailet, the client sends the Mailet server emails,
which contain the request for accessing the social web-
site. On behalf of the client, the Mailet server commu-
nicates with the social website server, and emails any
website response back to the client. To prevent an un-
trustworthy Mailet server from misusing or leaking the
credential of the client, the credential is split and dis-
tributed to some of the Mailet servers, and Mailet ex-
ploits GCM based secure computation to privately com-
bine the shares. The experimental results demonstrate
the security and practicality of Mailet. The Mailet im-
plementation for other social websites (such as Face-
book) is taken as the future work.

References
[1] Collateral freedom: A snapshot of chinese internet users

circumventing censorship, https://openitp.org/news-
events/collateral-freedom-a-snapshot-of-chinese-users-
circumventing-censorship.html.

[2] Email statistics report 2014-2018, http://www.radi-
cati.com/wp/wp-content/uploads/2014/01/email-statistics-
report-2014-2018-executive-summary.pdf.

[3] Enron dataset, https://www.cs.cmu.edu/ ./enron/.
[4] Google approves an app that steals all your data,

http://www.technologyreview.com/.
[5] Openssl, https://www.openssl.org/.
[6] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford.

Captcha: Using hard ai problems for security. In Proceed-
ings of the 22Nd International Conference on Theory and
Applications of Cryptographic Techniques, 2003.

[7] Y. Aumann and Y. Lindell. Security against covert adver-
saries: Efficient protocols for realistic adversaries. In Theory
of Cryptography, pages 137–156. Springer, 2007.

[8] C. Brubaker, A. Houmansadr, and V. Shmatikov. Cloud-
transport: Using cloud storage for censorship-resistant net-
working. In Proceedings of PETS’14, 2014.

[9] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and
R. Thayer. Openpgp message format. RFC 4880, 2007.

[10] T. Dierks. The transport layer security (tls) protocol version
1.2. 2008.

[11] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In Proceedings of USENIX
Security’04, 2004.

[12] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein,
N. Lidzborski, K. Thomas, V. Eranti, M. Bailey, and J. A.
Halderman. Neither snow nor rain nor mitm...: An empirical
analysis of email delivery security. In Proceedings of IMC’15,
2015.

Mailet: Instant Social Networking under Censorship 191

[13] C. Evans, C. Palmer, and R. Sleevi. Public key pinning
extension for http. RFC 7469, 2015.

[14] J. Geddes, M. Schuchard, and N. Hopper. Cover your acks:
Pitfalls of covert channel censorship circumvention. In Pro-
ceedings of CCS’13, 2013.

[15] A. Houmansadr, C. Brubaker, and V. Shmatikov. The parrot
is dead: Observing unobservable network communications. In
Proceedings of IEEE Symposium on Security and Privacy’13,
2013.

[16] A. Houmansadr, G. T. Nguyen, M. Caesar, and N. Borisov.
Cirripede: Circumvention infrastructure using router redirec-
tion with plausible deniability. In Proceedings of CCS’11,
2011.

[17] A. Houmansadr, T. Riedl, N. Borisov, and A. Singer. I Want
my Voice to be Heard: IP over Voice-over-IP for Unobserv-
able Censorship Circumvention. In Proceedings of NDSS’13,
2013.

[18] A. Houmansadr, E. L. Wong, and V. Shmatikov. No di-
rection home: The true cost of routing around decoys. In
Proceedings of NDSS’14, 2014.

[19] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure
two-party computation using garbled circuits. In Proceedings
of USENIX Security’11, 2011.

[20] J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer,
D. P. Mankins, and W. T. Strayer. Decoy routing: Toward
unblockable internet communication. In Proceedings of
FOCI’11, 2011.

[21] H. Kwak, C. Lee, H. Park, and S. Moon. What is twit-
ter, a social network or a news media? In Proceedings of
WWW’10, 2010.

[22] S. Li, M. Schliep, and N. Hopper. Facet: Streaming over
videoconferencing for censorship circumvention. In Proceed-
ings of WPES’14, 2014.

[23] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, et al. Fairplay-
secure two-party computation system. In Proceedings of
USENIX Security’04, 2004.

[24] H. M. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg.
Skypemorph: Protocol obfuscation for Tor bridges. In Pro-
ceedings of CCS’12, 2012.

[25] M. Schuchard, J. Geddes, C. Thompson, and N. Hopper.
Routing around decoys. In Proceedings of CCS’12, 2012.

[26] Z. Tufekci. Networked politics from tahrir to taksim: Is
there a social media-fueled protest style? In Digital Media
and Learning Central. http://dmlcentral.net/blog/zeynep-
tufekci/networked-politics-tahrir-taksim-there-social-media
-fueled-protest-style, June 2013.

[27] S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen. Mi-
croblogging during two natural hazards events: What twitter
may contribute to situational awareness. In Proceedings of
CHI’10, 2010.

[28] Q. Wang, X. Gong, G. T. K. Nguyen, A. Houmansadr, and
N. Borisov. Censorspoofer: Asymmetric communication
using IP spoofing for censorship-resistant web browsing. In
Proceedings of CCS’12, 2012.

[29] B. Warf. Global geographies of the Internet, volume 1.
Springer Science & Business Media, 2012.

[30] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister,
S. Cheung, F. Wang, and D. Boneh. StegoTorus: A camou-
flage proxy for the Tor anonymity system. In Proceedings of
CCS’12, 2012.

[31] E. Wustrow, C. M. Swanson, and J. A. Halderman. Tap-
dance: End-to-middle anticensorship without flow blocking.
In Proceedings of USENIX Security’14), 2014.

[32] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman.
Telex: Anticensorship in the network infrastructure. In Pro-
ceedings of USENIX Security’11, 2011.

[33] A. C. Yao. Protocols for secure computations. In 2013
IEEE 54th Annual Symposium on Foundations of Computer
Science, pages 160–164. IEEE, 1982.

[34] W. Zhou, A. Houmansadr, M. Caesar, and N. Borisov.
Sweet: Serving the web by exploiting email tunnels. In Pro-
ceedings of HotPETs’13, 2013.

Appendix

A. Transport Layer Security Protocol

The Transport Layer Security (TLS) protocol [10] pro-
vides communication security over the Internet. Instead
of submitting its credential in a transparent protocol,
the client initializes a TLS handshake with the social
website server, and communicates by encrypted mes-
sages. This prevents attackers from sniffing, modifying,
or injecting the traffic.

Protocol Overview. The following summarizes a
typical handshake procedure for the TLS protocol:
– Client Hello. This is the first message sent by the

client, which includes a client-generated random
number, the cipher suites listing the cryptographic
options supported by the client, and the protocol
version number.

– Server Hello. The server’s response messsage to the
Client Hello. This message contains a server gen-
erated random number, and a single cipher suite
selected by the server from the client cipher suites.

– Server Certificate. The Server sends a certificate
message which is used by the agreed key exchange
method for authentication.

– Server Key Exchange Message. This message is only
sent by the server when the server certificate mes-
sage does not provide sufficient data for the client to
finish a handshake. For key exchange methods such
as DHE_RSA, this message is needed.

– Client Key Exchange Message. The client sends
this message to set the premaster secret, either
by a RSA-encrypted secret or by the transmission
of Diffie-Hellman parameters which allows the two
sides to agree upon a common premaster secret.

– Client Change Cipher Spec. Just after the client key
exchange message, the client sends the change ci-

Mailet: Instant Social Networking under Censorship 192

pher spec message to the server, notifying that it
will use the newly negotiated cryptographic param-
eters immediately. Following this message, a finished
message is sent by the client under the new crypto-
graphic parameters.

– Server Change Cipher Spec. In response, the server
sends its change cipher spec message, and changes
the cryptographic state into the new. Also, a fin-
ished message is sent by the server under the new
cipher specification.

After completing the TLS handshake procedure, the
server and the client can transmit the application data
(including the client credential) to each other under the
the negotiated cryptographic parameters.

TLS Record Format. The general format for all
TLS messages is illustrated in Figure 3. The Proto-
colVersion field (2 bytes) specifies the TLS version, and
ContentType field (1 byte) indicates the type of the car-
ried traffic. The possible types include handshake(22),
application data (23), and change cipher spec (20), etc.
The Length field (2 bytes) is the length of the fragment
in byte, in which the application data resides. An exam-
ple of the TLS format for application data under stream
cipher encryption is shown in Figure 4. The content field
contains the encrypted application data, and the MAC
field is the Message Authentication Code (MAC) for the
application data, a sequence number, ProtocolVersion,
ContentType, and length of the application data. The
sequence number is included in the MAC calculation, so
that missing or duplicated messages are detectable. It
is also worth noting that the MAC is computed before
the encryption of the application data.

B. Comparisons with Similar Systems

There exist two proxy systems SWEET and Tweety-
mail also using the email channel for transmission. In
this section, we compare Mailet with these two systems.

Accessibility.
Mailet: the application-level contents are directly ex-
changed between the user and the Mailet server, so
that the user does not need to install any client-side
software. This makes Mailet easy to be accessed.
SWEET: it requires the user to install the client-side
program to tunnel through the email channels.
Tweetymail: Tweetymail is not available in censored
regimes, because the users cannot finish the authoriza-
tion, which requires them to access Twitter.com.

Usability.
Mailet: the high efficiency of GCM-CR enables the
Mailet servers to complete a service request in less than
1 second. Besides, the user and the Mailet servers ex-
change at most 2 emails to complete the service. As
a consequence, the total waiting time for the users is
between 3 and 5 seconds.
SWEET: it has to exchange 8 emails on average to com-
plete a service request. That means the total waiting
time in SWEET is about 16 seconds on average.

Unblockability.
Mailet: since Mailet uses the email channel to transmit
text contents, it can defend against the blockage ex-
ploiting the channel and content inconsistency.
SWEET: it uses the email channel to transmit the web
browsing traffic (network layer packets), which makes it
vulnerable to the censor’s traffic analysis and proactive
interference.

Security against Untrustworthy Servers.
Mailet: it adopts the decentralized credential to protect
the user’s account. A Mailet server alone cannot recover
the user’s credential. Besides, the CbS mechanism in
Mailet design can mitigate the malicious attacks.
SWEET: it can defend against an untrustworthy server.
Tweetymail: an untrustworthy Tweetymail server may
leak the authorized access tokens of the users, or directly
use these tokens to attack the users’ account.

