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Abstract

Even if a web-based messaging service offered confiden-
tial channels, how would users know whether their keys,
or indeed even their plaintext, was not being exfiltrated?
What if a variety of applications offered confidentiality?
How would a user gain trust in all of them?

In this paper we argue that a platform for private
web applications is the only practical way for users
to gain assurance about the confidentiality claims of a
large number of full-featured web-services. We introduce
Beeswax, a client-side platform that allows confidential
data to be exchanged between users at the behest of an
application, through a narrow set of APIs. Beeswax in-
stalls in a modern browser to deliver a complete practi-
cal solution, from key distribution to isolation of private
data from the applications, thereby making an analysis
of application code unnecessary. This focuses scrutiny
and trust on the platform itself, rather than on all the
applications using it.
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1 Introduction
Recently, users are showing increased reticence in giving
up their privacy, enough for some service providers to
market their privacy-friendly data policies. For exam-
ple, chat on Gmail [27], ChatStep [20], and Slack [32]
claim that the data that users pass through their service
will not be stored or will be stored but not monetized.
Since such claims are enforced on the server side, the
only assurance that users have is the knowledge that
providers have a strong financial incentive to avoid a
public breach of these claims. On the surface, web ap-
plications like Cryptocat [22] and Subrosa [33] provide
more assurance of confidentiality as they use client-side
cryptography. However, after having been lured to an
application by promises of privacy, how would a user
know that the client-side code was not exfiltrating pri-
vate plaintext or keying material?

We posit here that any application that implements
end-to-end cryptography must be considered by the user
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as being part of his/her trusted computing base: even
if the code itself is not intentionally exfiltrating private
data, any vulnerability in the code might be leveraged
to extract private data. Ideally, the market would offer a
large number and variety of privacy preserving applica-
tions: messaging apps, photo sharing apps, full-featured
social networking apps, webmail clients, etc. If a con-
sumer would like to benefit from the functionality of a
handful of applications, he will have to implicitly put
all of them in his TCB. To make the issue of trust even
more problematic, many important safeguards (such as
checking the fingerprint of an application version that
has had a thorough open-source review) do not fit with
the deployment model of modern web applications as
HTML, CSS, and JavaScript are modified frequently
and pages often contain dynamic content.

1.1 A Platform Approach

In current private web applications, it is all or noth-
ing: either you don’t use the application or there is no
isolation of critical code and data. Because of this, ev-
ery new application adds its entire code base to the
TCB. The approach we take in this paper is based on
the principle of least privilege: isolate highly privileged
code and sensitive data and export a narrow interface
to this code. We observe that once this is done, mul-
tiple applications can use the same sensitive code base
via the APIs without adding to the TCB. We propose a
platform approach to building confidential web applica-
tions. The goal of our approach is twofold: 1.) to allow
for applications that have rich interactions with service-
side functionality, and 2.) to reduce the assurance of an
ecosystem of such web services to the assurance of the
platform code.

In our proposed approach, the responsibility for the
overall functionality of a service is split between our
client-side platform, Beeswax, and the service provider’s
code (both client- and server-side). The platform is re-
sponsible for, among other things, managing and isolat-
ing keying material and for performing standard crypto-
graphic operations on behalf of the application through
an API. The application is responsible for the rest of
the functionality, including its look and feel, sharing,
and distribution of (encrypted) content. For example,
the application is responsible for designating DOM el-
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ements as private, e.g., after user action. The platform
takes care of accepting user input to a private DOM
element and shielding that input from the application.
The platform similarly displays data in private elements
to the user but shields it from the application. The plat-
form is responsible for providing an unspoofable indica-
tion to the user about whether a DOM element is pri-
vate, and if so, the identities of other users with access
to the content of the element.

As a result of this split, the technical community
can focus its scrutiny regarding whether a given set of
privacy properties are properly implemented onto a sin-
gle code base. The intent is that focusing scrutiny on a
single code base, as opposed to spreading the scrutiny
across a large number of applications, will generate
greater assurance in the claimed privacy and security
properties, e.g., the impossibility of exfiltration of pri-
vate user data or keying material to the application.

1.2 Adversarial Apps & Other Threats

Our goal is to ensure that users need not place appli-
cations that use our platform in their TCB. However,
by placing applications outside the TCB we must as-
sume them to be malicious. While it may seem counter-
intuitive to assume that an application dedicated to pre-
serving privacy should be considered malicious, it would
not be unthinkable for a service to lure users into us-
ing an application with promises of privacy via the use
of a privacy platform, only to subvert the platform to
retrieve private data for commercial or nefarious gains.

Thus, the platform must provide privacy guarantees
even in the face of an application purposefully trying to
circumvent its defensive mechanisms. We assume that
an application may attempt to: 1.) exploit a vulnerabil-
ity in the platform code in order to retrieve data in UI
elements designated as private or to extract keying ma-
terial in isolated storage or 2.) trick the user into enter-
ing private data into a UI element that the application
has not designated to the platform as being private.

A top level goal is to maintain the integrity of the
platform code (e.g., the mechanisms that isolate data
in private UI elements from the application) even in
the face of attacks against the platform. We discuss our
software integrity defenses in detail in Section 3.2. We
cannot, of course, guarantee code integrity completely.
However, as discussed above, we believe the benefit of a
platform approach is to focus the scrutiny of the com-
munity on the code base of the platform to maximize
the chances of detecting and fixing vulnerabilities.

We assume that the application may attempt to
mislead the user about the read/write permissions of
a given UI widget via visual trickery, e.g., transparent
overlays or rapid changes of focus. We take it as a given
that users cannot achieve even the slightest of privacy
guarantees without paying at least some attention. The
goal of our platform is to provide defenses against ac-
tive UI attacks assuming only moderate user attention.
For example, Beeswax provides an indication to the user
in the browser’s toolbar about whether the UI element
with the current focus is private, and if so, what other
users have access to the data in that element. This is
detailed in Section 3.3. Short of extremely sophisticated
per-user behavioral modeling, as long as some users are
sufficiently motivated to protect their privacy from UI
spoofing, an application that occasionally mounts such
attacks would be identified by the community.

Our platform exchanges messages over the network,
via the application and a pub/sub service such as Twit-
ter. Beeswax must thus also protect the confidential-
ity and authenticity of messages in flight. Beeswax uses
well-known cryptographic protocols for such purposes.
We do not defend against denial-of-service, but failure
to deliver messages would only result in poor user expe-
rience, without negatively affecting security. Our plat-
form is immediately deployable, but relies on the PKI
trust rooted in the browser for HTTPS communications.

To bootstrap trust in the messaging, we assume
users of the platform are also registered users of a
pub/sub service. For this paper we use Twitter but
other services could also be used. We assume that each
user, via out-of-band mechanisms, makes a personal de-
termination of the validity of the binding between the
pub/sub (Twitter) account name and a person. We as-
sume that when choosing to share, a user will only use
account names that meet some personal threshold of
trust. For example, an account name may be considered
trusted when it has been shared via a number of chan-
nels and the stream of updates is completely consistent
with what one presumes to know about the person sup-
posedly bound to the account name. We cannot protect
users from spoofed accounts if they put no effort into
ascertaining the identities of account holders.

We do not combat attacks on the underlying OS or
browser. We consider them as part the platform’s TCB:
any security improvements to them will be inherited by
our platform. In any system implementing end-to-end
security, the privacy of a user at one end may be com-
promised by a breach at the other end. Users of Beeswax
must therefore trust the integrity of the systems of the
users with whom they interact.
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1.3 Beeswax

In this paper we present Beeswax, a platform for devel-
oping private web applications. In designing Beeswax,
our goal is a platform that:

1. supports the development of rich interactive appli-
cations with custom look and feel,

2. provides transparent key management,
3. enables applications that give users control of the

permissions of UI elements that the application has
labeled as private.

Assuming that selected Twitter identities are trusted,
and that the cryptographic libraries we use are imple-
mented correctly and computationally secure, we claim
the following, in parallel with the goals. Beeswax:

1. adds only minimal complexity and lines of code to
an application and incurs minimal overhead,

2. prevents exfiltration of keying material, and spoof-
ing of identities by an application,

3.a prevents an attentive user from reading (writing)
private data from (into) a non-private UI element
by providing an unspoofable indicator for the per-
missions of the UI element in focus,

3.b prevents data entered into a private UI element
from being leaked to the application or unautho-
rized users.

To validate the first claim we build two applications:
a privacy-enhanced version of the IRC web client Kiwi
IRC [29] that allows encrypted messaging and an en-
crypted photo-sharing gallery called PicSure built from
the ground up. We report on their construction and
platform overheads in Section 4.

We cover the isolation of keying material with our
platform’s API in Section 2.1. We argue for the cor-
rectness of our identity and key management in Sec-
tion 2.2. Isolating plaintext from the application (and
unauthorized users) is covered by the implementation,
Section 3.1 and Section 3.2. Finally, we describe our de-
fenses against UI-redressing attacks in Section 3.3.

1.4 Overlay versus Platform

An approach related to our own is embodied by the
browser extensions Priv.ly [30] and ShadowCrypt [8],
which we call overlays. Overlays do not require the co-
operation of the web service to which they are applied
and so work with existing services. Their aims are simi-
lar: a user may protect text by declaring input areas as
private. Private posts are submitted as encrypted mark-

ers (inline, or external links) which are exposed as plain
text by overlaying isolated elements. In its current im-
plementation, ShadowCrypt does not meet this isolation
goal. In Section 6 we show it has many vulnerabilities
that allow us to craft attacks that retrieve plaintext.

While we believe that it is possible in principle to
build an overlay that properly isolates keying material
and user content using techniques similar to our own,
the overlay approach, in general, leaves unsolved two
significant impediments to security and deployment: UI
spoofing and key management.

UI Spoofing. ShadowCrypt [8] explicitly excludes UI
spoofing from its threat model. Indeed, without hooks
into the application state, it is difficult, if not impossi-
ble, for a security layer to provide an unalterable indi-
cation to the user about the privacy characteristics of
a UI element. For instance, the use of coloured borders
and floating padlock icons around confidential elements
in a page (as used in ShadowCrypt) are not sufficient to
protect against malicious UI spoofing.

Key Management. Overlays remain entirely separate
from applications, requiring that their key management
be done out-of-band of the application. In practice this
means that users of an overlay must, for example, email
or text a symmetric key for each application stream
and friend. Such ad hoc key management severely limits
adoption of an overlay to all but a few motivated users.
Our platform approach, on the other hand, allows keys
to be exchanged securely in-band of the application.

In short, a plethora of stand-alone privacy applica-
tions are difficult to trust. An overlay will break some
functionality, is susceptible to active UI attacks, and re-
quires unrealistic user effort for key management. We
posit that tight cooperation between developers and a
security platform is necessary to achieve an ecosystem of
easy-to-use applications that provide strong assurance
of privacy.

2 Architecture
Beeswax is built as a Chrome browser extension. It
therefore ties together multiple extension components,
as per Figure 1. Below, we briefly describe these compo-
nents and our usage of them in Beeswax. We also rely on
another browser technology called ShadowDOM, which
we also briefly describe below. We mostly mention in
this paper the security properties of Chrome extensions
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A injects B

Browser Tab

Per Document (<html>/frame/iframe)

Browser Content Script env.
DOM Agent
(R-W ShadowDOM & DOM +
events)

Browser JS env.

Privacy Indicator/Menu

Page Runtime + API
(closure, modifies globals) 

Application Code
(public DOM only + API)

Comm. via
message port

Comm. via DOM
events

Background Page
(isolated process)

● Privacy indicator
○ status
○ display
○ notifications

● Public key mgmt.
● Symmetric crypto

● Settings
○ import/export

Extension icon API

Fig. 1. Division of the Beeswax platform into components.

and ShadowDOM that are of high relevance, but they
are otherwise well documented [3, 6, 24].

Background Page. A Chrome extension consists, in
part, of a background page: a JavaScript program that
the browser isolates from other pages and extensions.
The browser provides the background page with its own
isolated local storage and with access to several privi-
leged browser APIs. A background page may also in-
clude HTML to be run in a tab. Beeswax relies on the
background page’s isolated context and its ability to
run continuously for accomplishing a number of crucial
tasks.
These tasks include:

– public key management: identity binding & vali-
dation, public key store, and key agreement;

– symmetric key cryptography: key generation & in-
dexing, and cryptographic computations;

– control of the privacy indicator (described below):
status, display, and user notifications.

DOM Agent. An extension may include a content
script. Every time a page is loaded, the browser loads
the content script in a separate JavaScript environment
that is paired with the JavaScript environment of the
page. The pair share access to the same DOM, but none
of each other’s JavaScript variables or functions [21]. We
call the Beeswax content script the DOM Agent.

Page Runtime. By virtue of having access to the
DOM, the DOM Agent can insert additional scripts in
the page. These injected scripts share the same object
space as the page. Extensions can be configured so that
the browser runs the content script before the page is
loaded. Beeswax uses this early-load capability to in-

stall our platform’s API (covered in Section 2.1) and to
create a modified runtime for the page which isolates
the API implementation from the page code.

ShadowDOM. Another browser mechanism useful for
our purposes is the recent ShadowDOM. The technol-
ogy allows DOM subtrees (called “shadow trees”) to be
grafted to a host DOM element and override its render-
ing: the browser renders the contents of the shadow tree
in lieu of its host. The technology became officially avail-
able in Chrome version 35 beta (May 2014). While the
technology alone does not allow full isolation between
a host and its shadow tree, mechanisms in Beeswax re-
purpose shadow trees to render private data in plain,
but present it as ciphertext to the hosting application.

Private Areas. When an application designates a
DOM element to host a private area, the background
page, content script, injected script, and ShadowDOM
mechanism work together to deny the application read
and write access to its ShadowDOM. The injected script
provides the APIs for an application to create a private
area. When this API is invoked, the DOM Agent cre-
ates a shadow tree rooted at the chosen host element.
User data is written inside the shadow tree and will be
rendered by the browser. The injected script and DOM
Agent relay user data to the background page and back
for encryption and decryption. An application cannot
read the shadow tree directly, but can extract ciphertext
from a private area using the API. It can then embed
the ciphertext into its various communication streams.

Privacy Indicator For each extension, Chrome re-
serves an area on the right side of the toolbar for draw-
ing one icon. This icon can be drawn dynamically and
can adorn a small amount of text called a “badge”. The
extension icons are unspoofable: a webpage cannot ren-
der UI elements outside the browser window, so it can-
not cover up an extension icon. Similarly, an application
could launch a popup window to redefine its boundaries,
but the browser ensures that popup windows are always
rendered on-screen and with an address bar. Moreover,
the browser ensures address bars in popups cannot em-
ulate the look of a browser tab toolbar.

A malicious application might trick a user into in-
putting private data into areas that are not private. We
employ the Beeswax extension icon as a privacy indi-
cator to defeat UI-redressing attacks. The DOM Agent
informs the background page of references to DOM el-
ements having received the last user event. The back-
ground page uses those references to update the icon and
badge appropriately. Furthermore, if the current UI ele-
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Table 1. Part of the Page Runtime API, detailed in text below.

Category Methods

Friends get_friend(userid) → fr_chan

Streams
new_stream() → streamid
invite(fr_chan, streamid) → invitation
accept_invite(invitation) → streamid

Private UI

make_priv(dom_el, streamid) → bool
is_priv(dom_el) → streamid | nil
get_cipher(dom_el) → cipher
put_plain(dom_el, cipher) → bool

ment is part of a private area, the icon can be clicked to
reveal the user names of those with access to the data.

2.1 Beeswax Operation and API

We present the operation of Beeswax and the APIs,
listed in Table 1, that invoke those operations. The table
omits appearance modifier calls (introduced below) and
one call to enable the extension in the page. Our plat-
form uses three standard asymmetric and symmetric
cryptographic methods: trusted bindings between pub-
lic keys and identities, authenticated key agreement us-
ing asymmetric cryptography, and communication chan-
nels protected by symmetric key cryptography. By de-
sign, the complexity of these operations is hidden from
the application: the API is concerned with opaque han-
dles to keys, rather than keying material.

Identities and Public Key Distribution. We could
not find an existing public key binding and distribu-
tion system that fit easily with our deployment model.
We sought to use Keybase.io [28], a promising approach
to distribute keys across multiple social networks. How-
ever, it does not currently support multiple public keys
per user. Moreover, formal documentation for their
proofs of identity is lacking.

Another alternative is PGP-based tools. PGP’s
trust model is difficult to make fully programmatic, ex-
cept with complex policy configuration. For example,
even when a key with a given ID (e.g., an email account
name) is pushed into the PGP key base by one party, it
is trivial for another party to push another key into the
key base with the same ID. In principle these can be dif-
ferentiated by web-of-trust signatures by other parties.
But for most users, deciding which public keys to trust
would need to be done on an ad hoc basis depending on
the web-of-trust of a each particular key/ID pair.

For Beeswax, we developed a key distribution mech-
anism which uses a pub/sub service both for identity
and key distribution. We use Twitter, but other ser-
vices would be suitable as well. Firstly, for a pub/sub
service to be usable by Beeswax, it should be possible for
Beeswax users to verify a binding between a person and
their account ID on the service. For instance, the con-
tent on a Twitter feed should match what one would ex-
pect the feed’s owner to post. This inferral can naturally
be avoided if one already knows the account ID of the in-
terlocutor. Secondly, the pub/sub service should autho-
rize its users so that only the owner of a feed can post to
it. This way, when certificates are retrieved from a feed,
we can expect them to have been posted by the feed’s
owner. Thirdly, subscription to a feed must be done over
an authenticated channel. Lastly, it should be suited to
store certificate information, possibly using fragmenta-
tion or image steganography to bypass length or format
limitations. The roles of identity provider and key dis-
tribution can be dissociated, but if and only if users
on the key distribution service are authenticated using
identities from the identity provider (e.g., distributing
certificates with Twitter IDs on source code reposito-
ries would hypothetically work if the repositories could
authenticate using Twitter accounts).

Initially, each user creates a self-signed cert embed-
ding his/her Twitter ID. Users then publish these certs
over their Twitter feeds. Users then pull certs from their
own feeds and the feeds of others with whom they wish
to communicate, and sanity-check these certs. Beeswax
does not support anonymous keys – it provides confi-
dentiality, but anonymity is beyond its objectives.

Normally, self-signed certs have no identity integrity
on their own. The key idea here is for the identity in
the cert to be the same as the name of the authenti-
cated (i.e., HTTPS) channel over which the cert was
obtained. The extension periodically compares certs in-
stalled locally to those on the key distribution service,
and raises a flag if they differ. In this way, Twitter IDs
and their associated authenticated pub/sub channels
become roots of trust. We assume that users decide for
themselves, based on out-of-band evidence, which Twit-
ter username/identity pairs are sufficiently trusted for
the purposes of a particular interaction. We analyze the
security of this key distribution scheme in Section 2.2.

Applications must obtain Twitter usernames at reg-
istration to use Beeswax. As we will show, a user who
registers a Twitter account to which it does not have ac-
cess will not succeed in completing key agreement pro-
tocols with other users of that application. We support
configuring multiple Twitter accounts, but only one may
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be used at a time. For simplicity, this discussion assumes
the extension has been configured with a single account.

Beeswax will make reads and writes to a user’s Twit-
ter account on behalf of the user. To do so, the user
must first register his/her Twitter account name in the
Beeswax settings. Subsequently, whenever the user is
logged into his/her Twitter account, Beeswax will have
the credentials necessary to post to the user’s account.

To proceed, a user must install asymmetric keys
into Beeswax to bind to the installed Twitter username.
Beeswax provides two mechanisms for this. In the back-
ground page tab, Beeswax can generate an encryption
key pair and a signature key pair and install them into
the public key database using its gen_pub_keys routine.
Beeswax can also import public keys the user owns with
its import_keys routine.

Once the user’s Twitter ID and public keys have
been successfully installed, the background page invokes
the distribute background daemon. This process peri-
odically reposts self-signed certs of a user’s public key
pairs to the user’s Twitter account. This daemon also
periodically polls the user’s feed for posts that claim to
be self-signed certs of the user. If a cert is invalid, its
public keys are not those installed into Beeswax, or its
embedded Twitter ID cert is not the user’s, a flag is
raised. Details of this process, such as expiration and
revocation, are described in Section 3.4.

The Beeswax background page also has a back-
ground process called validate that periodically fetches
the recent posts of other users. When validate is first
called, it scans a user’s feed for the most recent self-
signed cert. If the cert is valid, and the username
in the cert matches the Twitter account name, it in-
stalls the username and public keys in the public key
database, otherwise it raises a warning. On subsequent
calls, validate tests for the validity of the certs, checks
whether the embedded Twitter ID matches the feed, and
checks whether the keys are the same as those already
installed. If not, it raises a flag.

The background page operates as soon as, and as
long as, at least one browser window is open. Periodic
tasks are rescheduled immediately when the browser
starts up or when connectivity is resumed. Operating
24/7 ideally minimizes problem detection delays, but is
not strictly necessary.

Key Agreement and Friendship Channels. In or-
der for a communication stream between two parties to
be identified as private via the Privacy Indicator, an ap-
plication must first enable a friendship channel, i.e., a
secure bi-directional signalling channel between two par-

ties. When a user selects a friend (identified, in part, by
a Twitter username) inside an application, the applica-
tion makes a call to get_friend. If the potential friend’s
public key is not yet in the public key database, the
background page makes the validate call described ear-
lier. Once a key is installed, the background page, with
the help of the communication channels of the applica-
tion, performs a key agreement protocol (Section 3.4).
The net result of a successful protocol is a set of sym-
metric keys that enable secure communication between
the two parties. If the key agreement protocol runs to
completion, get_friend returns a handle to the keys for
the secure friendship channel. This channel is used sub-
sequently by friends for passing reference values, meta-
data, and symmetric keys for collections of private data
that we call streams.

Stream. A stream is a series of media messages between
one, two, or more users. The function new_stream cre-
ates new streams. During this call, Beeswax generates
one symmetric AES key which will be used in authenti-
cated encrypted mode to encrypt all messages from the
stream. The creation operation returns the stream iden-
tifier streamid (a key handle) so that it may be stored
by the application and retrieved subsequently. The user
creating a stream is said to be that stream’s owner.

Sharing. Sharing in an application is achieved by dis-
tributing stream handles. The owner of a stream can
use the invite method with two key handles: one desig-
nates a friendship channel and the other one designates
a stream. The operation is asynchronous, which allows
the platform to ask for user permission (e.g., “The ap-
plication is inviting @Carl to a stream in which [@Alice,

@Bob] already take part, do you accept?”). The call gen-
erates an invitation message over that friendship chan-
nel. One invitation is sent over each friendship channel
between the owner of the stream and its participating
users. That is, the friendship channels are one-to-one,
but multiple friends can be invited to the same stream.

The invitation messages are authenticated and con-
tain the encrypted stream key, the stream ID, and meta-
data indicating their provenance. Calling accept_invite

on the invitee’s computer reconstructs the stream han-
dle. The provenance allows our UI to determine and list
a stream’s participants.

Private UI.Once streams have been created, the appli-
cation may choose elements of the page to host stream
content for display. First, make_priv transforms a regular
DOM element (dom_el) to “host” private content. The
platform clones the host’s subtree into a new private
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area and inserts the area as the children of a shadow
tree on the host – which hides the original subtree from
view. The platform associates the host element with
that stream for the rest of the element’s lifetime. The
application keeps references to the host element (it is
part of the regular DOM), but our mechanisms prevent
the application to query the DOM to access the private
content. To query whether an element hosts private con-
tent or not (i.e., if it has been passed to make_priv prece-
dently), we provide is_priv as a convenience.

To read the user’s encrypted input, the application
calls get_cipher with the host element dom_el, which will
cause the extension to read the contents of elements, and
encrypt them with the associated stream key. To display
it, ciphertext information is passed back into put_plain,
during which the extension replaces the visible contents
of the element with those of the decrypted message.

Beeswax supports secure input and output (dis-
play) of both text and images. The element passed to
mark_priv determines a private area’s type: e.g., <input>,
<p> host text and <img>, images. To provide the applica-
tion more control over the private area content, which it
cannot access directly, the platform ships with “appear-
ance modifiers”, functions part of our TCB (omitted
from Table 1), that the application can call to change
an area’s look and feel. We list limitations in Section 5.

Beeswax fully controls the flow and contents of
DOM events falling into (and outside of) any private
area. Our privacy indicator monitors these events: at
any given time, it can confine events to only certain pri-
vate areas, and block others. This interposing of events
protects users against UI-spoofing.

2.2 Security of Beeswax Key Distribution

We distribute keys over the pub/sub service, Twitter.
For this discussion, we assume that if a Twitter account
is hacked and the true owner loses access to the account,
the account can be disabled by contacting support. Such
a scenario is outside of our threat model.

Unauthorized Posts. Consider a malicious party
other than Twitter. Such a party may craft key pairs
for which it knows the private keys and attempt to post
the cert for those keys to a user’s Twitter feed. If success-
ful, several other users may install the malicious public
key into their Beeswax keyring for the victim. We note
that such an attack can only be successful if three things
are true: the party gains access to the victim’s Twitter
account, the victim does not notice the bogus cert in

its twitter stream, and the malicious party has gained
access to the victim’s Beeswax extension and installed
its bogus key pair. The latter is necessary because the
distribution protocol requires the background page of a
user to ensure the user’s published certs and those in-
stalled locally have matching public keys. We consider
it unlikely that all three conditions above will be true.

Although Twitter itself has write access to every
Twitter account, it is not in a position to install key
pairs in Beeswax extensions. Thus, Twitter cannot sim-
ply try to post a crafted cert to a user’s feed without
the user noticing. However, Twitter could perform a fork
attack on a user’s account. That is, it could present the
correct replay of a user’s posts to the user, but present
an incorrect feed of posts to the user’s followers. This
fork could trick that user’s followers into binding a bo-
gus public key to the victim’s Twitter ID, a public key
for which Twitter had the corresponding private key.

We do not attempt to provide protection against
such a strategy by Twitter. Nonetheless, we posit
that maintaining fork-consistency after having lied (i.e.,
serve veridical tweets to the key owner, but lie to all
others) would be prohibitive. Amongst applications in
which the target user and friends were already enrolled,
and Twitter’s indisposition to man-in-the-middle, some
evidence of the subterfuge would surface.

Trusting Strangers. A malicious party may attempt
to register a Twitter handle designed to deceive other
users about the identity of the account’s owner. A user
who asks her extension to subscribe for key broadcasts
on a given Twitter ID should perform due diligence, up
to her desired level of assurance, on the account owner’s
true identity (e.g., using out-of-band channels). Our
scheme does not attempt to protect unvigilant users.

Limitations. Twitter does not guarantee that tweets
will be searchable beyond about a week after their post-
ing. Not all tweets are indexed in the same way, and
what determines that a tweet will remain searchable
past this window is not made clear [34]. This API be-
havior forces extensions to continually re-publish their
identities to prove possession of the signing private key
and permit discovery by other users of Beeswax appli-
cations. This API limitation, in fact, encourages good
practice. It is for this reason that we expect a working
validity period to be just shy of a week.



Beeswax: a platform for private web apps 31

3 Implementation
Our prototype Beeswax platform is implemented
against a stable version of Google Chrome (initially ver-
sion 40.0.2214.95) and can be installed in only a few
clicks. This allows our work to be immediately deploy-
able on the Web. It is composed of about 5000 lines
of code, including comments and HTML, and excluding
third-party library code. The code for our prototype
and applications is open-source and is available online
on our project page [19].

3.1 Secure Display of Private Data

An intricate aspect of the implementation follows from
the need for private areas to be hidden from the appli-
cation, but visible to the user. It also aims to allow the
application to preserve its desired look and feel.

Creating a private area. Our Page Runtime modi-
fies the application’s environment to prevent Beeswax-
enabled applications from creating new shadow DOMs
and retrieving the root of existing ones. As a result,
transforming host elements into private areas can only
be done via the content script, with the use of the
make_priv API call. We support two types of private ar-
eas: generic text and images, but this could be extended
to other media (canvas, file attachments, etc.).

We use HTML5’s Element.createShadowRoot() to cre-
ate a protected ShadowDOM subtree. The created
shadow root is made available in a single getter property
called elt.shadowRoot, and that property only. Nullifying
that property suffices to hide the private area from the
application DOM. The application cannot recover nodes
from shadow trees by traversal nor with typical selec-
tors (e.g., document.querySelector). However, the shadow
trees remain accessible to the content script.

Browsers render what is called the “composed”
DOM tree, a stitched-up global view of the main DOM
tree and shadow roots. Mangling the shadowRoot property
of nodes in the application environment does not affect
this composition, as the browser still uses internal ref-
erences to form the correct tree. The composition rules
are such that the content of the shadow root (which will
contain the private data) is rendered in place of the con-
tent of the host node in the composed tree. The rules
are complicated by the nesting and relocation of multi-
ple roots, but we eliminate this concern by preventing
applications from creating new roots outside make_priv.

Trapping Events. Due to the way events propagate in
the DOM, events targeting private elements may leak
private information, such as keycodes, selection of text
in the page, or data input changes, into the application’s
event handlers. One challenge of our implementation is
to prevent leaks without breaking the event system ap-
plications depend upon. The platform traps events that
carry sensitive information. Not all event types can tar-
get private elements, so we apply a first round of filter-
ing to move certain events back on the fast path. For
instance, events that only target the window or document

(e.g., DOMContentLoaded) propagate unmodified.
To ensure our filters are effective, we arrange for the

platform to inspect every event dispatched ahead of the
application. We rely on two properties enforced in the
browser: first, that the order in which event listeners are
registered is honored during dispatch, and second, that
event listeners cannot be removed without a reference
to the identical object given at registration. The rules
of event dispatch are intricate and are omitted here for
brevity. We make use of the former property when our
Page Runtime is injected before the application, and we
make use of the latter by hiding the Runtime’s event lis-
teners in a closure, thus preventing the application from
de-registering our listeners. Although the order of invo-
cation of listeners on a given object (e.g., EventTarget) is
unspecified by DOM Level 2 standards, it is predictable
within a particular browser. This is rectified in the newer
DOM Level 3 [26], where orders of invocation and reg-
istration of listeners must match.

Filtering only the event types for which the appli-
cation has handlers registered would be most efficient,
but is hard in practice. It is straightforward to obtain a
complete view of DOM Level 2 listener (de-)registration
because it is centered around a single prototype method
(i.e., addEventListener) that can be interposed. However,
legacy DOM Level 0 events can be registered indepen-
dently on all objects, either inline in the HTML or with
a script (e.g., img.onload = my_func;). We are not aware
of ways to disable this older event model, and intercept-
ing all accesses to all on* properties of all objects (and
along their prototype chain) is impractical. Our Page
Runtime remains conservative, pre-registering all event
types for which there exists an on* method before the
application does (around 100 different types of events
are registered this way, e.g., onfocus, onblur, etc.).

Sanitizing Events. Our sanitizer functions will erase
properties that might reveal information about the con-
tents of the private area, such as keycodes or selection
information. When an event is dispatched on a node in-
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side a shadow tree, a private area in our case, standard
event dispatch undergoes a process called event retar-
geting. In this process, the effective target of an event is
updated when it crosses a shadow tree boundary. This
is so that the target of an event (as in event.target) al-
ways points to a node within the same subtree as the
node on which the current handler is installed. This re-
targeting process is in line with ShadowDOM’s original
intent, i.e., to hide the complexity of a sub-layout from
the parent layout. Consequently, if our window filter de-
tects an event targeting (or relating to) the host element
of a private area, the actual node targeted is either the
host element itself or an element within the private area.
In either case, the event is flagged for sanitization.

The platform is configured with a static list of prop-
erties that should be erased for the various event types.
Depending on the nature of the property to hide, we
either use delete to remove the property from the event
object or rely on non-reconfigurable getters (that return
a constant instead of the true value) along the prototype
chain. During event propagation, each event listener will
receive the same event object, so our modifications per-
sist across the event’s entire lifetime.

We considered it appropriate to only erase the sensi-
tive content from the event object, rather than stopping
its propagation altogether. This is useful, for instance,
to determine if a user has started typing. In the fu-
ture, we could also base these decisions, i.e., to sanitize
or stop, on a configurable application policy. We could
also delay the events, for instance to prevent a timing
attack that would infer keystrokes, but this is outside
the scope of this paper.

Revealing private content. We assume the applica-
tion running in the page cannot simulate keypresses on
behalf of the user. This ensures all private data entered
comes from users. Applications can indeed synthesize UI
events, but in Chrome we can differentiate those from
true user events. The system clipboard could constitute
an exfiltration path, but modern browsers cannot read
its contents without the user’s permission. The page
could access regions of the page that are selected, i.e.,
with window.getSelection()), but those can be interposed.
HTML5 comes with a Web Clipboard API with a pro-
grammatic RW capability, but it cannot amass private
content without user action.

Styling rules in the page can affect the look of pri-
vate areas, and may shift content around. While we are
not currently aware of attacks that would infer precise
contents of a box by observing its response to repeated
resizing, such an attack is conceivable (e.g., by prescrib-

ing crafted fonts, or forcing text to wrap in different
ways). A related attack exists where links are styled dif-
ferently based on their “visited” status (a CSS a:visited

property exploit [1]), but this has since been fixed by
limiting the capabilities of CSS in certain selectors. We
imagine similar patches could be applied if other such
side-channels were to surface. Another remedy could be
to impose fixed dimensions on private areas.

3.2 Integrity of the Page Runtime

The security of the platform, and the safety of the user’s
private data, hinges on the inability of the application to
modify the Page Runtime’s behavior. If application code
were to compromise the Runtime, it could exfiltrate pri-
vate content. The Runtime constitutes a self-protecting
reference monitor to the privileged objects and func-
tions it defines. It is a lightweight modification to the
browser (as defined in previous work on self-protecting
JavaScript [14]): it is trusted and does not parse or mod-
ify the code of the application. To the application, the
Page Runtime appears as a built-in browser API. We use
language-based techniques, such as closures and func-
tion wrappers, to reach the following goals of protection:

1. Globals, methods, and object properties used in the
Runtime are those original implementations pro-
vided by the browser.

2. The application cannot tamper with objects and
functions of the Runtime.

3. Functions wrapped by the Runtime do not reveal
the unwrapped implementation to the application.

We have not directly used tools from previous work [10,
11] to generate code for our Runtime, but our con-
struction defends against the tampering attacks they
describe: prototype poisoning (when functions, getters,
and setters are rewritten by the application), abus-
ing the callchain (e.g., reflection over arguments.caller),
unsafe accesses on application-provided objects (safe-
guards against objects which can change appearance be-
tween time-of-check and time-of-use), unsafe casts (e.g.,
implicit string casts), etc. We explain how we achieve
the first goal next. Goals 2 and 3 are handled with the
same care, but we omit their descriptions for brevity.

First, before the application starts, a (pristine) copy
of each needed global is passed as an argument to an all-
enclosing anonymous function – in other words, we save
global objects and functions into local scopes. These lo-
cals are used instead of accesses via the window object.
Verifying that only symbols local to the Runtime are
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referenced is tedious, but this task could be automated
with a static analysis tool designed for this purpose.

Second, accessing properties with the dot operator
or brackets, e.g., x.y or x["y"], might invoke getters
and setters that have been defined by the application.
Where needed, we rely on built-in object reflection
mechanisms to read application objects, for instance
with Object.getOwnPropertyDescriptor. In cases where the
Runtime must invoke a prototype method on an ap-
plication object, e.g., obj.hasOwnProperty(’x’), we avoid
the dot completely by first wrapping the method’s apply:

function wrap(m){ return m.apply.bind(m); }

var HOP = wrap(Object.prototype.hasOwnProperty);

Assuming HOP is saved to a local in the Runtime, the ex-
ample can then be safely re-written as HOP(obj, [’x’]).
This is a refinement over the approach presented in [11].

Third, access to still-undefined object properties in
the Runtime cause a lookup in the prototype chain,
which could find a hit on a property of Object.prototype.
For instance, if the application installed a setter prop-
erty called key on Object.prototype, statements in the
Runtime code as seemingly innocuous as var data =

{}; data.key = "X"; would leak the value to the setter.
To eliminate this possibility, and allow base objects to
be used inside our code with peace-of-mind, we freeze
Object.prototype. Prototype lookups on objects could be
avoided by other means, albeit tediously. Literal object
definitions, for instance, do not cause the setters to be
invoked in the prototype chain. In the same example,
var data = {key: "X"}; would not invoke the setter.

Using freeze is simpler than breaking proto-
type chains [11] and eased development. Freezing
Object.prototype is convenient, but we have found it to
break some websites (Gmail) and some libraries (d3.js)
in subtle ways, so we also had to allow certain redefini-
tions, such as toString, to restore expected behavior.

Future language features could allow discovering
hidden content (e.g., a new exception mechanism that
allows inspecting stack variables, a new unhandled event
type, or additional object introspection) and could af-
fect the integrity of the platform. We cannot claim our
defenses are future-proof. On the other hand, the plat-
form approach allows code to be exposed and vetted
by enthusiast and professionals. The software platforms
underlying the Web evolve constantly – everything built
on top of them must necessarily co-evolve, or die. We
do not believe future uncertainty should be a deterrant
to the creation of novel privacy-protecting technologies.

We note that the number of global wrappers intro-
duced by the Runtime is tractable: only for event lis-
tener registration, selected event getters, and shadowRoot

interactions (all discussed in Section 3.1). We have been
diligent in consulting specifications and available docu-
mentation to cover possible aliases and equivalent func-
tions. Also, because it is difficult to determine, without
inspecting the browser’s source code, whether a built-in
(e.g., appendChild) internally accesses object properties
that can be modified by the application, we perform
DOM manipulations in the content script rather than
in the page. Hopefully, further review of the published
code would clear out any oversight on our part.

3.3 Privacy Indicator

Ideally, we would like to have visible at all times the
full list of participants involved in a particular stream.
Unfortunately, Chrome allocates space for no more than
a single icon per-extension in its decorations. The icon
can display a badge of text, but even that is limited to
4 characters. The compromise we found was to use the
icon as a notification and use its popup activation menu
to display additional details.

The indicator toggles between two modes: “pro-
tected” and “unprotected”. As long as there is no user
activity, the indicator rests in its default “unprotected”
state. However, when the Agent receives a keyboard or
click event for a private area of the page, it transitions
the indicator to “protected mode” for that area. The in-
dicator changes its appearance to notify the user, and
a marker is added to describe the nature of the events
that have caused the transition (See Figure 2).

This transition activates a locking mechanism re-
leased by a timer. While the lock is held on the area,
events dispatched for areas of the DOM unrelated to
the stream will be aborted. Inactivity will expire the
lock and switch back to unprotected mode. On the other
hand, continued activity in a private area of the stream
will renew the timer. In the future, we would reserve a
CTRL-* key sequence to prolong the lock indefinitely
and unlock it on-demand.

Activating the icon brings up information about the
one specific locked area and its associated stream. Recall
that there may be multiple private areas shown on the
page for a given stream. The information shown for the
stream would apply to all of the areas.

The monitor can simultaneously adorn four mark-
ers. A mouse click or keyboard event in a private area of
the page will lock the monitor (with “M” or “K” mark-
ers, respectively). In addition to text areas, Beeswax
provides built-in support for private images. A mouse
click in a private image area allows users to input new
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Fig. 2. The Privacy Indicator “unprotected” (left), “protected”
due to keyboard events (“K”) in a private area (middle), and
showing a security warning (right).

images. When the click is intercepted, Beeswax opens
a file chooser dialog locked to the area. To differentiate
the file chooser opened by the platform from one opened
by the application, we add an “F” marker on the indica-
tor. Lastly, a “*” marker attracts the user’s attention to
answer a prompt, e.g., to confirm sending or accepting
an invitation or friendship.

3.4 Cryptography and Key Management

All keys are stored in local storage in the background
page. Because Chrome’s model is limited to a single
store per extension, we avoid collisions of keys from dif-
ferent applications (but equal streamids) with a canoni-
cal naming scheme. To save/load a key to/from storage,
we combine the key id (e.g., a streamid passed in the
API) with the domain origin of the application, as well
as the extension user’s account name. The browser re-
ports the tab URL associated with a content script’s
message port to the background page. This metadata
and the naming scheme allow authorizing API requests
access to only the keys associated with their application.

Key Agreement. As mentioned above, our platform
supports an abstraction called a friendship channel. A
friendship channel is a virtual private channel between
the Beeswax extensions of two users. Beeswax has an
API for one party to launch an authenticated key agree-
ment protocol with another party. Assuming the par-
ties have the appropriate public keys and Twitter userid
bindings, and that the protocol completes, the two par-
ties will possess two symmetric keys, one for encryp-
tion and one for authentication. Those keys will be
used subsequently to encrypt-then-mac all communica-
tion over the friendship channel. Namely, two friends use
the channel to send each other stream invitations. Note
that channels are between two users only, but streams
may involve more than two users (see Section 2.1).

For the authenticated key agreement, we imple-
ment the well-known AKEP1 protocol of Bellare and Ro-
gaway [4] in the public key model. The JSON-like wire
format of our protocol is in Table 2. We leave imple-

menting a Diffie-Hellman style perfect forward secrecy
key agreement protocol to future work.

Key Distribution. To publish a new set of keys, the
extension posts three tweets. The body of the first con-
tains #encryptkey, a time stamp, and the user’s public en-
cryption key. The body of the second contains #signkey,
the same time stamp, and the user’s public signature
key. The body of the third contains #keysig, the same
time stamp, the expiration date of the keys, a signature
over the user’s Twitter username and ID, the two pub-
lic keys formerly identified, the same time stamp, and
an expiration date (of about one week). The extension
requires that the user be signed in to Twitter, so the
extension can publish on the user’s behalf.

The extension polls the user’s Twitter feed to find
tweets with the above markers and timestamps. For a
given triple, the extension checks four conditions: the
public keys in the body of the tweets are the same as
the user’s locally bound public keys, the time of the
tweets is within delta (a configurable parameter in the
order of minutes) of the time stamp in the body of the
tweets, the time of the tweets is before the expiration
time in the body of the #keysig tweet, and the signature
in the #keysig tweet is valid. If any of these checks fail
the extension raises an alarm to the user. If all pass, the
extension binds the two public keys to the given Twitter
ID, regardless of the state of an existing key binding.

Key Revocation. A Beeswax extension subscribes to
key announcements of other Twitter accounts. Revoca-
tion is achieved in Beeswax by publishing a new key
over an old one, which causes other users’ extensions
to notice the change. Cases where certificates are ab-
sent, have expired, or have changed since the last vali-
dation are handled similarly. Whenever a certificate is
determined invalid, associated keys (including stream
keys obtained over invalidated channels) are kept, but
marked invalid. The case of a certificate having changed
differs only slightly in that there is opportunity to re-
establish a valid friendship channel.

In our current model, the participants in a stream
must trust the stream owner’s extension to verify the
validity of other participant’s certificates, and re-key
appropriately (e.g., new friendship requests and new in-
vites). From the moment a stream participant’s exten-
sion detects the stream owner’s certificate being invalid,
the stream cannot be used to encrypt new content. The
extension provides the application with an API error
code in this event. It is the application’s responsibility
to launch a new stream. A page is allowed to load with
content from invalid streams (e.g., content encrypted
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Table 2. Alice contacts Bob for the first time and negotiates a shared secret with him using our Key Agreement Protocol (KAP) (via
get_friend). Messages flow between users’ extensions in the direction of the arrows. Alice’s keys are denoted by the letter A, and Bob’s
with B. Key subscript ·s denotes signing, and ·e encryption. Public keys are suffixed with +, private ones with −. Functions add_sign

and add_HMAC compute signature and HMAC (respectively) and return their augmented input.

Alice Bob

Input: (As+, As−, Ae+, Ae−), (Bs+,
Be+)

Input: (Bs+, Bs−, Be+, Be−)

• Generates AF ID: contribution to friend-
ship ID (challenge nonce).
• Sends KAP_MSG1 Message. →

type: KAP_MSG1 ,
hdr: { To: "B", From: "A",

AFID: AF ID , BFID: "" },
payload : null

→

• Receives KAP_MSG1

• Finds As+ and Ae+ if unknown (See
Section 2.2).
• Validates To .

↓
• Receives KAP_MSG2.
• Validates hdr.
• Validates signature with Bs+.
• Decrypts payload with Ae−
• Saves plaintext as MK.

↓

←

add_sign (k=Bs−, {
type: KAP_MSG2 ,
hdr: { To: "A", From: "B",

AFID: AF ID , BFID: BF ID },
payload : enc(k=Ae+, m=MK)

})
←

• Generates BF ID: contribution to friend-
ship ID (challenge nonce).
• Generates MK: the master key of the
friendship.
• Replies with KAP_MSG2 message.

• Sends KAP_MSG3 message.
• Derives & stores friendship keys:

Fmac= HMAC(MK, "mac")

Fenc= HMAC(MK, "enc")
→

add_sign (k=As−, {
type: KAP_MSG3 ,
hdr: { To: "B", From: "A",

AFID: AF ID , BFID: BF ID },
payload : null

})

→

• Receives KAP_MSG3.
• Validates hdr.
• Verifies signature with As+.
• Transitions to A-has-friendship-keys state

↓

• Receives KAP_MSG4.
• Validates hdr.
• Validates HMAC.
• Transitions to B-has-friendship-keys state ←

add_HMAC (k=Fmac , {
type: KAP_MSG4 ,
hdr: { To: "A", From: "B",

AFID: AF ID , BFID: BF ID },
payload : null

})

←

• Derives & stores friendship keys:
Fmac= HMAC(MK, "mac")

Fenc= HMAC(MK, "enc")

• Sends KAP_MSG4 Message.

prior to the invalidation), but the privacy indicator will
display a lasting warning graphic (right-hand side of
Figure 2).

Crypto Library. For cryptographic routines, we use
the Stanford JavaScript Crypto Library [31] (sjcl) with
AES and ECC support. The version of the library we use
relies on the browser platform’s crypto.getRandomValues

to seed its pseudo random number generator (which
is described in [16]). We have adopted sjcl because of
its more mature ECC support vs WebCrypto [2] at the
time the project started, but we could easily move to an
alternate, native and faster, cryptographic library sup-
ported directly in the browser when it officially supports
the primitives we need (ElGamal). Keys are stored in
JSON format, using base64 encoding when appropriate.

We use elliptic curve cryptography (ECC) for all
asymmetric material, in particular ECDSA for signing
messages and ElGamal for encrypting small messages.
Our symmetric encryption keys are 256bit long and we
use the AES cipher in CCM mode (Counter with CBC-
MAC, with 128bit IV and 64bit tag size). For HMAC,

we use SHA-256 hashing, also with 256bit keys. All ellip-
tic curve operations take place on NIST’s recommended
P-192 curve, which is available in sjcl. Moving to a po-
tentially more secure curve, such as Curve25519 [5], or
implementing ciphersuite negotiation is future work.

4 Evaluation
Beeswax aims to provide mechanisms and APIs that are
fit for the development of modern web applications. To
test this claim, we have used the platform primitives
presented earlier on two applications. First, we trans-
formed an existing web communication application, Ki-
wiIRC (v0.9.0), into one that also offers encrypted com-
munications between groups of users. Second, we de-
veloped a new photo gallery application, PicSure, from
scratch to demonstrate the abilities of the platform to
handle richer media types. Below we discuss our experi-
ence in developing these applications and our platform’s
performance overheads.
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4.1 Functionality and Experience

KiwiIRC is a web IRC client software package that
contains both Web2.0 single-page client-side code, and
server code to proxy messages between the browser and
the IRC network. The IRC client already routed dif-
ferent types of messages between users and channels.
It was therefore relatively easy to add another class of
messages to carry Beeswax payloads within the IRC net-
work. We changed KiwiIRC to route platform messages
using information present in their headers. One diffi-
culty we surmounted was that encrypted messages had
to be fragmented to respect the length limitations of the
underlying relay protocol and pass integrity checks.

The client was augmented with new commands:
/joinenc [streamid]: Takes a stream id (or creates one
if unspecified), deterministically forms an IRC channel
name from it, joins that channel, and allows typing new
messages using the stream key.
/inviteenc streamid [user]+: Invites each user in the list
to partake in the stream identified by streamid. Once a
target user accepts the invitation, he/she automatically
joins the conversation using /joinenc.

We have added graphical menu options to befriend
other users in a chat room, as well as buttons to toggle
encryption of input messages in the chat room panel.

When typing in regular messages, the application
uses the arrow keys to recall elements from a history
buffer and uses the “enter” key to signal the readiness
for submission. The application cannot read keycodes
from private areas, thus additional buttons are added
outside the private area to recover this functionality.

For a seamless look, private areas hosting encrypted
messages are styled like plain messages. That is, they
are added with the other messages, along with infor-
mation coming from the network (nickname of author,
timestamp, etc.). The platform can apply highlighting
to designated words in incoming messages, such as nick-
names, but we have yet to explore fancier formatting,
as there is often a tradeoff between functionality and
side-channel leakage.

The server-side code did not require any modifica-
tion. The approximate number of lines of code added
(not counting whitespace and comments) was around
400, constituting a 7% increase in code size. This gives
an estimate of how little work is needed to add key-
agreement and end-to-end encryption to an existing ap-
plication using Beeswax.

Richer Sharing. We have also built a web photo
gallery called PicSure to show the capabilities of

the platform to handle richer media types and allow
application-defined sharing rules between users. It con-
sists of approximately 2000 lines of script code, server
and client combined. Put simply, it allows users to create
albums of photos with simple descriptions and share in-
dividual albums with other users. All the data inside an
album is part of the same Beeswax stream. The action of
sharing albums is done through forms (drop-downs and
lists) in the application. Unlike with overlay approaches,
the user does not need to leave the application to define
keys or assign them to the various objects. Rather, the
application gives sensible sharing controls to the user:
the owner of an album may invite any user currently
online to collaborate on an album.

Editing descriptions is done with toggles and confir-
mation icons, like many edit-in-place applications, and
uploading images is done using the Beeswax image file
chooser. There are a few usability problems with the
current platform, but they have solutions. First, having
no capability to reduce images to thumbnails, PicSure
renders album photos as full resolution images. Second,
the sizes of the images are not known by the applica-
tion, so it imposes a fixed size area to render them in
the markup. A new appearance modifier could gener-
ate a thumbnail or resize the host element to match the
image’s aspect ratio. One other difference from a nor-
mal photo gallery is that the encrypted image data is
retrieved and fed using data-URIs, as our implementa-
tion does not yet pass src="{url}" files through the de-
cryption. This translates into encoding/decoding delays.
Despite these usability issues, the application remains
quite practical to share images quickly and securely.

4.2 Performance

We first report on the performance overhead of
Beeswax, and conclude qualitatively with our own ex-
perience. The performance overhead of the platform as
a whole can be attributed to several aspects:

Runtime initialization Page load delays incurred by
the initialization of the Page Runtime.

Events Interception of every DOM event to prevent a
possible data exfiltration (e.g., keycodes).

Message passing Costs associated with passing mes-
sages between the page, content script, and back-
ground page.

Encryption Cost associated with the encryption and
decryption of user data.
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Fig. 3. Median time (N=51) spent in each component when en-
crypting DOM elements, by plaintext size. Blocks (from bottom:
Page Runtime, DOM Agent, and Background) do not overlap.

The cost of initializing the runtime and intercepting the
events is always present, even when the page in the tab
does not use Beeswax. This is the base cost of loading
the content script, injecting the runtime in the page,
initializing the event hooks, and trapping on the first
few load events. We compare load times of a bare bones
HTML page with and without the extension enabled.
This constitutes a base cost for loading any website.
For N = 400, the minimal page’s mean load time is
under 65.5ms (σ=10.1 median=65 min=42 max=100)
with the extension, versus 13.7ms (σ=4.7 median=14
min=5 max=25) without (cost average of 51.8ms).

Invocations of API methods do have an associated
cost when generating events. This is because the Page
Runtime needs to perform sanitization of these events.
To calculate the overhead in event dispatch, we com-
pare the time taken to generate and dispatch 1000 key-
board events. With the extension loaded, over N=100
rounds, 1000 events take on average 130.2ms to dispatch
(σ=5.2 median=128 min=125 max=153) versus 51.8ms
without (σ = 5.2 median=51 min=46 max=64). Event
dispatch takes 252% the time of the baseline, which is
a considerable relative overhead, but in practice this is
not noticeable.

The cost of message passing and encryption is pre-
dictable and is linear with the size of the plaintext sub-
mitted. Figure 3 shows where time is spent, by compo-
nent, during calls to encrypt, i.e., with get_cipher.

The time spent in the Page Runtime includes the
serialization of a message containing a node identifier
(the one to encrypt) and 2 event dispatches with JSON
serializations (on the call and on the return). The time
spent in the DOM Agent includes reading the private
DOM element’s contents and passing the plaintext to
the Background Page (and ciphertext back) over a mes-
sage port (these ports support “structured clone” copies
to avoid JSON serialization). Lastly, the majority of the

time is spent in the Background Page performing the
AES encryption routine and forming the stringified ci-
phertext (returned ciphertext objects contain a few pa-
rameters, namely an IV, which needs to be kept along
with the text). Figure 3 shows median information over
51 runs. The top of a bar estimates the roundtrip time
for encrypting private content of that size.

Overall, we did not perceive any performance im-
pact in using the IRC client with and without privacy
enabled. Similarly, we have run the extension on our
desktops over the course of months without perceiving
negative effects on non-Beeswax sites. A full user study
is outside the scope of this paper.

5 Limitations
The API maintains data confidentiality, but this loss of
visibility comes at a cost in interactivity for the appli-
cation. Beeswax is not suitable for all applications. For
instance, applications heavily relying on data-mining
might find this cost prohibitive. However, from our ex-
perience building applications with the platform, we be-
lieve that many of the typical social-networking features
such as comments, change notifications, “likes”, replies,
view counts, and untargeted ads (i.e., without access to
content) can still be implemented. Also, where greater
control is required over one data element (rich text for-
mat, image manipulation, etc.), appearance modifiers
can fill in some of the gap. Lastly, applications which
combine data with different confidentiality levels (public
and private) might be drawn to Beeswax. Below, we de-
tail more subtle restrictions and suggest improvements.

Private Area Interactions. Our event sanitization
conceals most interactions with private areas, but can
be modified to let out more events. For instance, to allow
the application to detect when an input image changes,
Beeswax currently synthesizes a “change” event on the
host element after the platform’s file chooser is used.
An improvement would be to interpret “Enter” strokes
in private input boxes as an intent to submit, and syn-
thesize a corresponding event interceptable by the ap-
plication. Although arbitrary input validation is impos-
sible without access to content, simple validators such
as length enforcement could be communicated declara-
tively via DOM attributes. Leaving these decisions up
to the application is an aspect where the platform ap-
proach shines over overlays.

The ability to drag-and-drop files onto private areas
would be useful, especially for applications using pho-
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tos, but difficult to implement securely. The intention
of moving a file into a private area would need to be
known ahead of time so that drag events could be sup-
pressed along the way (to hide the file object from the
non-private areas) until the file reached its destination.

Running other extensions. The load order of mul-
tiple concurrently installed Chrome extensions is, to
our knowledge, unspecified. A foreign extension could
modify the browser’s JavaScript runtime in unsafe ways
(e.g., by exposing the original implementations of some
global functions) and break our assumptions. Whitelist-
ing safe extensions to run concurrently with Beeswax is
possible, but requires careful inspection. In Chrome’s
model, a permission exists to selectively enable or dis-
able extensions. To ensure our extension loads first, a
workaround is to disable all other extensions whenever
a Beeswax-application is in use. If our API were part of
the browser core, this limitation would vanish.

Visual flexibility. Only CSS and “appearance modi-
fiers” can be used to change the look and feel of pri-
vate areas. We support basic word highlighting, which
is admittedly limiting, but the platform approach shows
potential. It could be extended to support markdown,
BBCode, or other wiki-syntax display. There could be
platform support to crop and rotate images, a platform-
provided rich-text editor, etc. Like all web platforms
and standards, we anticipate features would mature over
time, guided by popular demand.

6 Related Work
We have looked at alternatives before settling on
ShadowDOM to implement isolation in the UI. Namely,
priv.ly [30] uses iframes, but their approach has two
drawbacks. First, iframes are isolated by origin and be-
have like black boxes: it becomes difficult for the em-
bedding application to manipulate and receive events for
them. Second, the added dependence on another service
or domain (in their case the content stores) to store and
retrieve user data, as well as an ever-up-to-date look and
feel (that has to match all websites), was unappealing.

The goals and limitations of overlays were discussed
earlier. While they provide private UI channels, they do
not defend against UI spoofing and require key defini-
tion and sharing to happen out-of-band from the ap-
plication. Our architecture, with its integrated privacy
monitor and in-band key distribution, allows a user to
safely verify the sharing intentions of the application.

In our case, this makes it possible to implement appli-
cation sharing semantics which are in-line with those of
the elements protected.

The data isolation mechanisms in ShadowCrypt [8]
are similar, but not identical, to ours. We have found
several design flaws in their latest implementation [15]
which we detail below. Each of them allows an attacking
website to exfiltrate the private data that ShadowCrypt
is trying to hide. To their credit, their code is open-
source and receives suggestions for improvement. We
note that since the project’s inception, changes in
Chrome’s DOM core moved some object properties to
getters/setters on the prototype chains [25]. This intro-
duced breakage which has not yet been fixed, but the
attacks listed below are valid regardless of the location
of these properties (i.e., before or after said change).

Attack 1) Improper attribute deletion. Events tar-
geting input boxes for encrypted content are canceled
by ShadowCrypt. The decision to cancel an event is
based on the target of the event, i.e., evt.target. Dur-
ing an event’s dispatch, the target will change when
crossing a shadow tree boundary. By introducing an
additional shadow tree between the root of the docu-
ment and the shadow tree for the “secure” input box,
we can make an event appear as if it were targeting an-
other element than the input box’s host. The method
Element.createShadowRoot is not deleted properly from the
globals, allowing an application to mount this attack
and let secure keypress events flow to the application.
This attack can be mounted in two lines of code.

Attack 2) Improper attribute deletion. The prop-
erty shadowRoot of elements gives access to Shadow DOM
contents. ShadowCrypt deletes this property from ele-
ments at the moment they are added to the DOM, but
this is too late. It is possible for a malicious application
to create an element, redefine this property as being
non-configurable, and add the element to the DOM af-
ter. The attempt to delete the property by ShadowCrypt
will fail silently, leaving the “secure” contents readable
by the application.

Attack 3) Unprotected globals. So-called “deep” se-
lectors can be used to retrieve elements across shadow
tree boundaries. ShadowCrypt overrides querySelector

to prevent selectors containing the substring ’/deep/’,
which would allow access to the hidden input ele-
ment. However, it uses the global prototype method
window.RegExp.test to perform the check. Because the
method is accessed through the global window, a mali-
cious application can redefine it to lie when a regular
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expression matches for /deep/, and later obtain a refer-
ence to the secure input element.

While attack 1) is simple, attacks 2) and 3) indi-
cate that a rigorous construction of the functions modi-
fying the runtime are necessary. Properly implementing
these defenses without bugs is hard. We believe the sys-
tematic way in which our Page Runtime is constructed
helps with this, namely by avoiding the use of modified
globals, and making assertions about the presence and
absence of properties (e.g., a property should be there
before deletion and absent after). Pushing our platform
into the browser’s core would make some of these de-
fenses irrelevant, but for the moment, they are crucial.

There exists a body of work concerned with con-
trolled JavaScript execution, which could allow Beeswax
to make private areas less opaque to applications, but
with possible privacy implications. TreeHouse [9] uses
Web Workers to isolate scripts and provide them with
a reduced view of the DOM, which is very much in line
with our data protection strategy in Beeswax. AdSafe
[18] and Caja [13] are language-based sandboxes that
constrain language features and DOM access to allow
for controlling the scope of effects of script execution.

Regarding hardening our Page Runtime against
possible intrusions by the application code, there is
also a wealth of research covering secure ways of iso-
lating concurrently running JavaScript programs from
one another. Many techniques offer ways of modifying
JavaScript in safe ways for a containing page. Those
include enforcing policies on scripts [12, 23] or at the
language level [10] (for the older ECMAScript 3). They
do fairly well in restricting the parts of the language
used for safe operation, but the model of operation is
reversed in our case. Our page runtime hosts an applica-
tion whose programs cannot be modified (instead of an
untrusted program that must conform to certain rules).
As such these are not directly applicable to us.

The work on writing protected wrappers [10, 11],
even though written for an older version of EC-
MAScript, still provides valuable formal descriptions of
actual attacks. The event models (i.e., sanitization) in
the browser are, however, not described in this previous
work. Some the problems, e.g., protecting the globals
against tampering, are addressed previously in work on
JavaScript compilation [7], but for it to be useful would
require rewriting our Page Runtime in ML.

Our work also relates to work on information flow
control. In COWL [17], the authors make use of the
existing isolation in browsers (contexts) to control flow
between domain origins. A finer-grained labeling scheme
than per-origin would be required to apply to our needs.

7 Discussion and Future Work
Our simple invite API could be improved to support
other kinds of groups, such as closed groups or groups
where all existing parties need to agree before a member
can invite a new person. Assuming a user trusts another
friend (and their extension) to forward invites, then this
could allow knowing the full extent of the users with
whom the keys have been shared. Lastly, our streams
can be improved to defeat replay attacks from the ap-
plication. At the moment, a malicious application could
reorder and resend a stream’s messages. We plan to fold
in sequence numbers as authenticated metadata and dis-
play them in the privacy indicator as a simple defense.

Ideally, the platform would support applications for
both desktop and mobile. Popular mobile platforms may
be trustworthy, but are not as open and extensible as
desktop environments. There currently is not good sup-
port for third-party extensions on mobile web browsers.
We do not eliminate the possibility of adapting our
techniques to an OS kernel and/or rendering APIs, but
we suspect it would require a substantial rewrite. By
reusing an existing mobile browser engine customized
with our platform tools, we may support web-based ap-
plications designed for mobile.

8 Conclusion
The Beeswax platform allows developing interactive,
multi-user web-based applications. It balances the desire
of developers to maintain control over the look and feel
and functionality of their applications with the users’
desire to know and control who has access to their pri-
vate data. The Beeswax API forms secure communica-
tion channels between users and prevents data exfiltra-
tion by the applications. Beeswax allows the community
to focus its scrutiny on just the platform, instead of all
applications using it. Like all platforms, Beeswax’s func-
tionality is not set in stone. We anticipate that Beeswax
will evolve to accommodate developer and user needs,
and either move into the core of one or more browsers
or be maintained by an open-source community.
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