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Abstract: Techniques based on randomized response en-
able the collection of potentially sensitive data from
clients in a privacy-preserving manner with strong local
differential privacy guarantees. A recent such technol-
ogy, RAPPOR [12], enables estimation of the marginal
frequencies of a set of strings via privacy-preserving
crowdsourcing. However, this original estimation pro-
cess relies on a known dictionary of possible strings; in
practice, this dictionary can be extremely large and/or
unknown. In this paper, we propose a novel decoding
algorithm for the RAPPOR mechanism that enables
the estimation of “unknown unknowns,” i.e., strings
we do not know we should be estimating. To enable
learning without explicit dictionary knowledge, we de-
velop methodology for estimating the joint distribution
of multiple variables collected with RAPPOR. Our con-
tributions are not RAPPOR-specific, and can be gener-
alized to other local differential privacy mechanisms for
learning distributions of string-valued random variables.
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1 Introduction

It is becoming increasingly commonplace for companies
and organizations to analyze user data in order to im-
prove services or products. For instance, a utilities com-
pany might collect water usage statistics from its users
to help inform fair pricing schemes. Although user data
analysis can be very beneficial, it can also pose a privacy
threat. Collected data can reveal sensitive details about
users, such as preferences, habits, or personal character-
istics. It is therefore important to develop methods for
analyzing the data of a population without sacrificing
individuals’ privacy.
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A guarantee of local differential privacy can pro-
vide the appropriate privacy protection without requir-
ing individuals to trust the intentions of a data aggrega-
tor [20]. Informally, a locally differentially-private mech-
anism asks individuals to report data to which they have
added carefully-designed noise; this noise ensures that
any individual’s information cannot be learned, but an
aggregator can correctly infer population statistics. The
recently-introduced Randomized Aggregatable Privacy-
Preserving Ordinal Response (RAPPOR) is the first
such mechanism to see real-world deployment [12].

RAPPOR is motivated by the problem of estimating
a client-side distribution of string values drawn from
a discrete data dictionary. Such estimation is useful in
many security-related scenarios. For example, RAPPOR
is reportedly used in the Chrome Web browser to track
the distribution of users’ browser configuration strings;
this is done to detect anomalies symptomatic of abusive
software [12, 15, 16].

Unfortunately, in its current state, the RAPPOR

technology is of only limited utility. This is because it
makes two simplifying assumptions that will certainly
not always hold in practice:
Assumption 1: Aggregators only need to learn the
distribution of a single variable, in isolation. In
practice, aggregators may want to study the association
between multiple variables because attributes are often
more meaningful in association with other attributes.
For example, in RAPPOR’s application domain in the
Chrome Web browser, an innocent-looking homepage or
search-provider URL may become highly suspect if its
use is strongly correlated with installation of software
that is known to be malicious.

Assumption 2: Aggregators know the data dictio-
nary of possible string values in advance. There
are many scenarios in which both the frequencies of
client-side strings and the strings themselves may be
unknown. For instance, when collecting reports on in-
stalled software, it is unlikely that the names or hash
values of all software will be known ahead of time, es-
pecially in the face of polymorphic software. Similarly,
when studying user-generated data—manually-entered
hashtags, for instance—the dictionary of possible strings
cannot be known a priori.
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Lifting these two simplifying assumptions requires
reasoning about “unknown unknowns.” The first as-
sumption can only be removed by estimating the un-
known joint distributions of two or more unknown vari-
ables that are observed only via differentially-private
RAPPOR responses. Removing the second assumption
requires learning a data dictionary of unknown client-
side strings whose frequency distribution is also un-
known. This process must additionally satisfy strong
privacy guarantees that preclude the use of encryp-
tion or special encodings that could link individuals to
strings. Furthermore, neither of these challenges admits
a solution that is simultaneously feasible and straight-
forward. The naive approach of trying all possibilities
incurs exponential blowup over the infinite domain of
unknown strings, and is not even well-defined with re-
gards to estimating joint distributions.

This paper provides methods for addressing these
two challenges. First, regarding multivariate analysis,
we present a collection of statistical tools for study-
ing the association between multiple random variables
reported through RAPPOR. This toolbox includes an
expectation-maximization-based algorithm for inferring
joint distributions of multiple variables from a collection
of RAPPOR reports. It also includes tools for comput-
ing the variance of the distribution estimates, as well as
testing for independence between variables of interest.

Second, regarding unknown data dictionaries, we in-
troduce a novel algorithm for estimating a distribution
of strings without knowing the set of possible values
beforehand. This algorithm asks each reportee to send
a noisy representation of multiple substrings from her
string. Using our previously-developed techniques for
association analysis, we build joint distributions of all
possible substrings. This allows the aggregator to learn
the data dictionary for frequent strings.

We demonstrate the practical efficacy of both con-
tributions through simulation and real-world examples.
For these experiments we have publicly-available analy-
sis code.! While motivated by RAPPOR, and presented
in that context, our contributions are general and do not
depend critically on the RAPPOR encoding and decod-
ing algorithms. Our methods can be generalized to other
locally differentially-private systems that learn a distri-
bution of discrete, string-valued random variables.

1 https://github.com/google/rappor
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2 Background

A common method for collecting population-level statis-
tics without access to individual-level data points is
based on randomized response [27]. Randomized re-
sponse is an obfuscation technique that satisfies a pri-
vacy guarantee known as local differential privacy [20].
We begin by briefly introducing local differential privacy
and explaining how the RAPPOR system uses random-
ized response to satisfy this condition. Formally, a ran-
domized algorithm A (in this case, RAPPOR) satisfies
e-differential privacy [10] if for all pairs of client’s values
x1 and z2 and for all R C Range(A),

P(A(z1) € R) < eP(A(z2) € R).

Intuitively, this says that no matter what string user
Alice is storing, the aggregator’s knowledge about Al-
ice’s ground truth does not change too much based on
the information she sends. Differential privacy is a prop-
erty of an encoding algorithm, so these guarantees hold
regardless of the underlying distribution.

RAPPOR is a privacy-preserving data-collection
mechanism that makes use of randomization to guar-
antee local differential privacy for every individual’s re-
ports. Despite satisfying such a strong privacy defini-
tion, RAPPOR enables the aggregator to accurately es-
timate a distribution over a discrete dictionary (e.g., a
set of strings).

The basic concept of randomized response is best ex-
plained with an example. Suppose the Census Bureau
wants to know how many communists live in the United
States without learning who is a communist. The admin-
istrator asks each participant to answer the question,
“Are you a communist?” in the following manner: Flip
an unbiased coin. If it comes up heads, answer truth-
fully. Otherwise, answer ‘yes’ with probability 0.5 and
‘no’ with probability 0.5. In the end, the Census Bu-
reau cannot tell which people are communists, but it
can estimate the true fraction of communists with high
confidence. Randomized response refers to this addition
of carefully-designed noise to discrete random values in
order to mask individual data points while enabling the
computation of aggregate statistics.

RAPPOR performs two rounds of randomized re-
sponse to mask the inputs of users and enable the collec-
tion of user data over time. Suppose Alice starts with the
string X (e.g., X = “rabbit”). The sequence of events
in the encoder is as follows:

1. Hash the string X twice (h times in general) into a

fixed-length Bloom filter, B.
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2. Pass each bit in the Bloom filter B; through a ran-
domized response (giving B}) as follows:

1,  with probability 3 f
Bi =10, with probability 1 f
B;, with probability 1 — f

where f is a user-tunable parameter controlling the
level of privacy guarantees. We refer to this noisy
Bloom filter B’ as the permanent randomized re-
sponse (PRR) for the value X, because this same
B’ is to be used for both the current and all future
responses about the value X.

3. Each time the aggregator requests a report, pass
each bit B! in the PRR through another round of
randomized response (giving X!), as follows:

q, if Bl =

P(X = 1) -
p, if B =

We refer to this array of bits X’ as an instantaneous
randomized response (IRR), and the aggregator only
ever sees such bit vectors X’ for any reported value
X. The smaller the difference between g and p (user-
tunable), the stronger the privacy guarantee.

This process is visualized in Figure 1.
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Fig. 1. Visualization of the RAPPOR mechanisms from [12].
Each user starts by hashing her true string into a Bloom filter
B. This representation B is used to generate a permanent ran-
domized response (PRR) B’. Whenever the aggregator collects
data (daily, for instance), the user builds a new instantaneous
randomized response X’ from B’ and sends it to the aggregator.

The RAPPOR encoding scheme satisfies two dif-
ferent e-differential privacy guarantees: one against a
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one-shot adversary who sees only a single IRR, and one
against a stronger adversary who sees infinitely many
IRRs over time. The latter adversary is able to recon-
struct B’ with arbitrary precision after seeing enough
reports, which motivates the need for a PRR, but is un-
able to infer B from a single copy of B’. In principle,
users could always report B’ at every data collection,
but this would create a unique tracking identifier.

If the set of possible strings is small and known
prior to collection (e.g., country, gender, etc.), a sim-
plified version of the algorithm, called Basic RAPPOR,
is more appropriate. The single difference is that in step
(1), Basic RAPPOR does not make use of Bloom filters,
but deterministically assigns each string to its own bit
(h =1). In this case, the size of B is determined by the
cardinality of the set being collected. This also signifi-
cantly simplifies the inference process to estimate string
frequencies by the aggregator.

Despite strong report-level differential privacy guar-
antees, RAPPOR can approximate the marginal distri-
bution of the measured variable(s) with high precision.
One high-utility decoding scheme is described in [12],
but the details of marginal decoding are not critical to
understanding our present work.

3 Estimating Joint Distributions

Learning the distribution of a single variable is some-
times enough. More often, however, aggregators may be
interested in learning the associations and correlations
between multiple variables, all collected in a privacy-
preserving manner. For example, suppose we would like
to understand the relationship between installed soft-
ware and annoying advertisements, e.g., to detect the
presence of so-called adware. To do so, we might study
the association between displayed advertisements and
recently-installed software applications or extensions. If
both of these variables are measured using the RAP-
POR mechanism, the current literature does not de-
scribe how to estimate their joint distribution, although
methods exist for estimating marginal frequencies of
both variables individually.

In this section, we describe a general approach
to estimating the joint distribution of two or more
RAPPOR-collected variables. Inference is performed us-
ing the expectation-maximization (EM) algorithm [7],
which produces asymptotically-unbiased estimates of
joint probability distributions. These joint estimation
techniques will play a key role in Section 4, in which we
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estimate data distributions over unknown dictionaries.
Notice that EM is a general-purpose algorithm that can
be applied to any differentially-private encoding mech-
anism; as such, the techniques in this section are not
RAPPOR-specific.

3.1 Joint Distributions with the EM
Algorithm

The EM algorithm is a common way to approximate
maximum likelihood estimates (MLEs) of unknown pa-
rameters in the presence of missing or incomplete data.
Here, the parameters to be estimated are the entries
of a contingency table for two or more random vari-
ables. EM works by alternating iteratively fixing the
parameters and computing the expected log-likelihood
(expectation-step), and then maximizing the expecta-
tion of the log-likelihood with respect to the parame-
ters (maximization-step). This eventually converges to
a local maximum in the log-likelihood function, but it
not guaranteed to give the true ML solution. The EM
algorithm is well-suited to RAPPOR applications where
true values are not observed and only their noisy repre-
sentations are collected.

For the sake of clarity, we will focus on estimating
the joint distribution of two random variables X and
Y, both collected using Basic RAPPOR introduced in
Section 2. Extending this estimation to general RAP-
POR requires careful consideration of unknown cate-
gories and will be discussed in the next section. Let
X’ = RAPPOR(X) and Y/ = RAPPOR(Y) be the
noisy representations of X and Y created by RAPPOR.
Suppose that N pairs of X’ and Y’ are collected from N
distinct (independent) clients. X; and X/ denote the ith
data point and noisy representation, respectively. The
conditional probability of true values X and Y, given
the observed noisy representations X’ and Y’ follows
from Bayes’ theorem:

P(X = l‘i,Y = yj|X/,Yl) =
pijP(X/,Y/|X = Ty, Y = yj)

m n :
Yo Y e P(X Y X = a1, Y =y,)
h=1i=1

where m and n are the number of categories in X and
Y, respectively. Here, p;; is the true joint distribution
of X and Y’; this is the quantity we wish to estimate for
each combination of categories ¢ and j. P(X',Y'|X,Y)
is the joint probability of observing the two noisy out-
comes given both true values. X’ and Y’ are gener-
ated independently from X and Y, respectively, and are
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therefore conditionally independent given X and Y'; that
is, P(X",Y'|X,Y) = P(X'|X)P(Y'|Y). Since the noise
added through RAPPOR is predictable and mechani-
cal, it is easy to precisely describe these probabilities.
Without loss of generality, assume that X = z;. In Ba-
sic RAPPOR, z1’s Bloom Filter representation has a
one in the first position and zeros elsewhere, so we have

/

"1 (1 — )" x pT2(1 — p)' 772
X pmi(l — p)lf‘”;
L. X p"]';n(]_ _p)l_w;n'

PX'|X=21) = ¢

X .
X .
The EM algorithm proceeds as follows:

1. Initialize: ﬁ?j = ﬁ, 1<i<m,1<j<n (uniform
distribution).

2. E-Step:
P(Xy =23, Yy = y;| X5, Yisp') =

Py P(Xy, Y Xy = 24, Yy = y5)

m n .
21 KZ PLyP(X, Y| Xy =2, Y = yp)
r=10=1

3. M-Step: Set

N
R 1 R
YDEj+1 - N ZP(Xk = i, Vi = y;| X4, Vi )
k=1
4. Repeat steps 2-3 until convergence, i.e.
max;; |ﬁfj+1 — pi;| < 6* for some §* > 0.

This algorithm converges to a local maximum of the log
likelihood, parameterized by p;; [8].

Proposition 3.1. The EM algorithm converges to the
mazimum-likelihood (ML) estimator of pi;, 1 <1i < m,
1<j<n.

(Proof in Appendix E.1)

Notice that ML estimators may be biased for finite
sample sizes, but in this case, the EM algorithm estima-
tor is asymptotically unbiased [26]:

Proposition 3.2. Let p;; v denote the EM estimate of
parameter p;j, with 1 <i <m and 1 < j <n, using N
samples. Then p;; N converges p;; N L Dij-

(Proof in Appendix E.2)

3.2 The “Other” category

In the EM initialization step, we assume that we know
all n categories of X and all m categories of Y. In prac-
tice, the aggregator is unlikely to know all the relevant



Building a RAPPOR with the Unknown: Privacy-Preserving Learning of Associations and Data Dictionaries

categories, and must make choices about which cate-
gories to include. Operationally, the aggregator would
perform marginal analyses on both X’ and Y’ sepa-
rately, estimate the most frequent categories, and use
them in the joint analysis. The remaining undiscovered
categories, which we refer to as “Other”, cannot be sim-
ply omitted from the joint analysis because doing so
leads to badly biased distribution estimates. In this sec-
tion, we discuss how to handle this problem.

Suppose one ran the marginal decoding analysis sep-
arately on X’ and Y, thereby detecting m and n top
categories, respectively, along with their corresponding
marginal frequencies. Note that m and n now represent
the detected numbers of categories instead of the true
numbers of categories. The “Other” categories for X
and Y may constitute a significant amount of probabil-
> iy i and 1 — 2?21 Dy
respectively) which must be taken into account when

ity mass (computed as 1 —

estimating the joint distribution.

The difficulty of modeling the “Other”
comes from the apparent problem of estimating P(X' =
2| X “Other”), ie.,
a report z’ given that it was generated by any cat-

category
the probability of observing

egory other than the top m categories of X. If we
could estimate this probability, we could simply use the
EM algorithm to estimate the joint distribution—an
(m 4+ 1) x (n + 1) contingency table in which the last
row and the last column are the “Other” categories for
each variable.
We use knowledge of the top m categories and their
frequencies to estimate this conditional probability. Let
™ be the expected number of times that reported bit s
was set by one of the top m categories in X. It is equal
() 8 (0 e )
Ts), where N is the number of reports collected and
Ty = NY " pil(Bs(z;) = 1) represents the expected
number of times the sth bit in N Bloom filters was set

mo o
to ¢f' =

by a string from one of the top m categories. Here, I
is the indicator function returning 1 or 0 depending if
the condition is true or not, B(z;) is the Bloom filter
generated by string xz; and p; is the true frequency of
string x;.

Given the above, the estimated proportion of times

each bit was set by a string from the “Other” category
cs—2y (Ih)

N(1- Di)

number of times bit s Wab set in all N reports. The con-

is then p¢ = , where cs is the observed
ditional probability of observing any report X’ given
that the true value was “Other” is P(X' = 2/|X =
“Other”) = Hle (p°) (1 —p°)* ™" . We use this esti-
mate to run the EM algorithm with “Other” categories
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and obtain unbiased joint distribution estimates. We
generalize this estimation to other differential privacy
mechanisms in Appendix D.

3.3 The Variance-Covariance matrix

Under mild regularity conditions, the asymptotic distri-
bution of maximum likelihood estimates (P11, - -, Pmn)
is NV ((]9117 . ,pmn),I_l) , where N(u,3) denotes a
Gaussian distribution with mean g and variance-
covariance matrix X, and [ is the information ma-
trix [26]. This permits an aggregator to construct confi-
dence intervals, test if any of the proportions are differ-
ent from 0, or perform an overall test for the association
between X and Y.

In this case, the asymptotic variance-covariance ma-
trix is given by the inverse of incomplete-data observed
information matrix I,ps. To obtain an estimate of the in-
formation matrix, we would evaluate the second deriva-
tive of the observed-data log-likelihood function at our
ML estimates p;;’s.

The log-likelihood function is the log of the proba-
bility of observing all N reports, treated as a function

:pmn):

Zlog I NILERTERE

=1 j=1

of the unknown parameter vector (pi1,...

{p1a, -

7pmn

The first derivative with respect to p;; is given by

pu_ZZ

The second derivative, also known as the observed

X’ Y"XZl‘i,Y:yj)
o= 1Z€ 1p1] X;/chk/\X:ﬂUmY:yz)'

information matrix (size mn x mn), is given by

N
o=y P(XG Yylai,y;) - P(XG, Yilws, ye)
PijPst

5
k=1 (ZTzl 2?21 polP(X]/wY]Q‘rmyﬁ))

Inverting this matrix and evaluating at the current ML

estimates P11, ..., Pmn gives an estimate of the variance-
covariance matrix Y. The mn diagonal elements of X
contain the variance estimates for each p;; and can be

directly used to assess how certain we are about them.
3.4 Testing for Association
It is often important to test for independence between

categorical random variables. For two variables to be in-
dependent their joint distribution must be equal to the
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product of their marginals, i.e. P(X,Y) = P(X)P(Y).
The x? test is commonly used to test the independence
of two or more categorical variables [1]. It compares ob-
served cell counts to what is expected under the inde-
pendence assumption. The formal test statistic is given
by x? =31 %, where E; is expected number of
cell counts under the independence assumption and O;
is the observed number of cell counts. When X and Y
are independent, this test statistic has a x? distribution
with (m—1)(n—1) degrees of freedom. However, we can-
not use the y? test statistic because we do not observe
exact cell counts O; of the co-occurrence of our random
variables X and Y. Instead, we have mean estimates
and the corresponding variance-covariance matrix.

The Wald test is commonly used to evaluate how
far parameter estimates are from those suggested by a
null hypothesis [11]. In this context, we can test how
significantly different our estimates are from those that
would have been observed under the independence as-
sumption. The Wald test uses statistic

T=p—p)"S"(p-p), (1)

where p is a vector of pi;’s, i (flij = pip;) is a vector
of products of marginals (i.e. the expected joint distri-
bution if the variables are independent) and ¥ is the
estimated variance-covariance matrix. T indicates the
transpose operation. Under the null hypothesis, this test
statistic T' converges in distribution to a x?2 distribution
with (m —1)(n—1) degrees of freedom, since the param-
eter estimates are asymptotically normally distributed
about their true values [26]. Indeed, under some regu-
larity conditions [6], the Wald test is an asymptotically
locally most powerful invariant test (asymptotically op-
timal) [11].

In summary, to perform a formal statistical test for
independence between X and Y, one would use the EM
algorithm to estimate the joint distribution along with
the variance-covariance matrix. Then, one would com-
pute the Wald test statistic and compare it to the cor-
responding critical quantile ¢, from the X%mfl)(nfl)'
We conclude that X and Y are not independent if
T > q1_ and state that there is no evidence for non-
independence otherwise. The empirical power and Type
I error rate of this test are studied in Appendix A.

3.5 Simulation Results
To illustrate our multivariable analysis of differentially

private data, we generated synthetic RAPPOR reports
for variables X and Y, each with 100 unique categories.
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Table 1. True joint distribution of X (rows) and Y (columns).

1 2 3 4 5  Other

1 3.567 2937 2468 1.952 1.639 6.436

2 2984 2432 1967 1.581 1.289 5.362

3 2473 1991 1.609 1.223 1.025 4.343

4 1.881 1569 1.293 1.069 0.874 3.499

5 1.625 1.292 1.080 0.892 0.662 2.836
Other 6.380 5.292 4.311 3.495 2.809 11.863

Table 2. Estimated joint distribution of X (rows) and Y (cols).

1 2 3 4 5  Other

1 3.306 2952 2413 2.018 1.806 6.691

2 3.045 2292 2.043 1.588 1.286 5.302

3 2336 2173 1587 1.115 0.916 4.450

4 1902 1.506 1.354 1.087 0.887 3.510

5 1.763 1.233 1.188 0.873 0.615 2.801
Other 6.531 5.338 4.245 3.513 2916 11.419

The marginal distributions of X and Y were discretized
Zipfian distributions, and their (truncated) joint distri-
bution is given in Table 1.

With 100,000 reports, we estimated the frequencies
of 15 top categories for each X and Y, on average. For
the association analysis, we selected the top five cat-
egories from each variable’s estimated marginal distri-
bution. We first ignored the “Other” categories and as-
sumed that X and Y had 5 unique values each. 10 Monte
Carlo replications were performed; the first two panels
of Figure 2 plot the estimated cell frequency against
the true cell frequency for each of the ten trials and 25
cells. The estimated 25 proportions are poor estimates
for both the true joint frequencies and the conditional
frequencies P(X = z,Y = y|X € top-5,Y € top-5).

The bottom panels of Figure 2 show estimates when
we account for the “Other” categories of X and Y. The
estimated joint distribution is now a 6 x 6 table, and
the procedure produces unbiased estimates for the true
joint frequencies (Table 2). Accordingly, it also produces
25 unbiased estimates for conditional frequencies.

Figure 3 shows the effect of privacy level € and sam-
ple size N on the reconstruction accuracy of this joint
estimation. This suggests that operationally, we need
a sample size of at least N = 20,000 in order to reli-
ably reconstruct the joint distribution with privacy lev-
els € < 1. This accuracy also depends on the size of the
underlying dictionaries, which is explored in more detail
in Appendix B.
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Fig. 2. True vs. estimated joint frequencies. Red dots show average estimates over 10 Monte Carlo runs. Grey dots show individual es-

timates. Top panels show how ignoring the “Other” category leads to biased joint and conditional distribution estimates. For the con-

ditional distribution, there's a regression to the mean effect where high values are underestimated and lower values are overestimated.

Accounting for the “Other” category fixes the problem, and estimates are close to the truth. Sample size is 100,000, ¢ = 3.
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Fig. 3. Hellinger distance between the estimated and true joint
distributions, parameterized by € and the number of reports N.
The true distribution has dictionary size 4 x 5.

3.6 Example: Google Play Store Apps
To demonstrate these techniques, we downloaded the

public metadata for 200,000 mobile-phone apps from the
Google Play Store. For each app, we obtained the app

category (30 categories) and whether it is offered for free
or not. This information can be summarized in a 30 x 2
contingency table. Applying a x? independence test to
this contingency table would test whether different cat-
egories are statistically more likely to feature free apps.
We use RAPPOR and our joint decoding approach to
learn this distribution without direct access to the un-
derlying data points. The data in this example is not
particularly sensitive, but we were unable to find pub-
lic datasets of sensitive, multivariate, categorical data,
precisely due to the associated privacy concerns.

For each sampled app, we generated a simulated
Basic RAPPOR report for both variables: app cate-
gory and payment model. We used 30-bit reports for
the category variables, and 1-bit reports for the Boolean
payment model. We then performed a joint distribution
analysis by estimating the 30 X 2 contingency table—i.e.,
the frequency of each combination of item category and
payment model. Results are shown in the second panel
of Figure 4. The green points show both true and esti-
mated frequencies of free items for each category, while
the brown points show the paid ones. Note that these
are the 60 cell frequencies from the true and estimated
contingency tables, not proportions of free or paid apps
for each category. 95% confidence intervals are shown
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as horizontal bars for both sets of estimates and have
proper coverage in all cases.

The top panel of Figure 4 shows the true and es-
timated paid rate for each category, computed as the
proportion of paid apps for that category divided by
the overall proportion of a category. This ratio estimate
is less stable than the joint frequencies but follows the
true rates closely for most app categories.

We perform a formal test for independence by com-
puting the proposed y2-test statistic T = 107.093, which
has a p-value of 6.9523¢ — 11. This is much smaller than
0.05 and we would therefore conclude that there are, in
fact, statistically significant differences in paid rates be-
tween different app categories. This can be, of course,
clearly seen from the top panel where categories are
ordered in the descending prevalence of paid software,
with proportions ranging from 30% to 4%.

4 RAPPOR Without a Known
Dictionary

Suppose we wish to use RAPPOR to learn the ten most
visited URLs last week. To do this, we could first create
an exhaustive list of candidate URLs and then test each
candidate against received reports to determine which
ones are present in the sampled population. In this pro-
cess, it is critical to include all potential candidates,
since RAPPOR has no direct feedback mechanism for
learning about missed candidates. Such a candidate list
may or may not be available, depending on what is be-
ing collected. For instance, it may be easy to guess the
most visited URLs, but if we instead wish to learn the
most common tags in private photo albums, it would
be impractical to construct a fully exhaustive list. In
this section, we describe how to learn distribution-level
information about a population without knowing the
dictionary, i.e., the set of candidate strings, beforehand.

In order to provide a benchmark for future compar-
ison, we pose the problem in terms of minimizing the
Hellinger distance between the learned distribution and
the true distribution. Hellinger distance captures the
distance between two distributions of discrete random
variables. For discrete probability distributions P and
@ defined over some set U, it is defined as

HPQ) - \/Zu/m) NG

€U
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This metric is appropriate because unlike Kullback-
Leibler divergence, it is defined even when the two dis-
tributions have different support sets.

Problem Statement: Consider a collection of data-
points X = {Xy,..., Xy} drawn i.id. from some dis-
crete distribution P defined over alphabet Y. In RAP-
POR, U is the set of all strings of any length. Let Up be
the unknown subset of U that defines the true support
of P, and suppose that [Up| < |[U/|. In RAPPOR, Up
is the set of relevant strings, like webpages or names of
browser plugins. Each datapoint is independently ran-
domized using an e-locally-differentially-private mecha-
., XN} De-
sign a mechanism F that takes as input X’ and outputs
a distribution @, such that H(P, Q) is as small as possi-
ble. The complexity of F should be constrained to scale

nism, giving noisy datapoints X’ = {X],..

according to [Up| rather than U.

To enable the measurement of unknown strings,
we collect more information from clients, still using
RAPPOR encoding. In addition to collecting a regu-
lar RAPPOR report of the client’s full string, we col-
lect RAPPOR reports generated from n-grams? selected
randomly from the string. The key idea is to use co-
occurrences among n-grams to construct a set of full-
length candidate strings. For example, if the distribu-
tion contains only two words, “cats” and “dogs”, we
might measure randomly-selected bigrams, like “ca”,
“ts”, “do”, and “gs”. The idea is to learn the joint dis-
tributions of these bigrams, to infer that “ca” and “ts”
co-occur often, but “ca” and “gs” do not.

To analyze these co-occurrences, we use the joint
distribution estimation algorithm developed in the pre-
vious section. Once we build a dictionary of candidate
strings, we perform regular, marginal RAPPOR analy-
sis on the full-string reports to estimate the distribution.
In the limit, if our n-grams were as long as the string
itself, we would be searching for candidates over U, the
space of all strings. By using small n-grams (2 or 3 char-
acters long), we can significantly reduce the associated
computational load, without compromising accuracy.

Our proposed method does not depend explicitly
on the RAPPOR encoding mechanism. It only re-
quires the aggregator to be able to learn joint distri-
butions of string-valued random variables. Since EM
is a general-purpose algorithm, it can be used to learn
joint (or marginal) distributions irrespective of the en-
coding mechanism. Therefore, the method we propose in

2 An n-gram is an n-character substring.
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Fig. 4. Estimating the joint distribution of the categories of software items, and whether they are free or for purchase. Categories are
ordered by the paid fraction, shown in the top panel. The bottom panel plots 60 true and estimated joint frequencies along with 95%

confidence intervals shown as horizontal bars. Sample size is 100,000, and ¢ = 2.

this section can be trivially applied to any differentially-
private encoding.

Concretely, a client reporting string x with local
differential privacy budget e¢ would create a report,
X’ = RAPPOR(z), by spending a third of her pri-
vacy budget (i.e., using differential privacy level €/3).
The other two thirds of ¢ would be spent equally on
collecting two n-grams, G, = RAPPOR(n-gram(z, g;)),
for i € {1,2} at distinct random positions ¢g; and ga,
where n-gram(z, g;) denotes the length-n substring of
x starting at the g;th character. The only limitations
on g1 and go are that g1 # g2 and g1,92 < M — n;
one could choose partially overlapping n-grams. In our
simulations, we partition the string into adjacent, non-
overlapping n-grams. For instance, if our strings have at
most M = 6 characters and our n-grams are two char-
acters each, then there are only 3 bigrams per string; g1
and go are therefore drawn without replacement from
the set {0,2,4}. In the original RAPPOR paper, each
client would report a single randomized bit array X’.
We instead collect {X’, G}, G}, 91,92}, where both ¢q
and g2, the two n-gram positions, are sent in the clear.

To prevent leakage of information through the length
of the string, =, the aggregator should specify a maxi-
mum string length M and pad all strings shorter than
M with empty spaces. Strings longer than M characters
are truncated and hashed.

Note that one could use more than two n-grams.
However, this would force each n-gram to use privacy
level €/(r 4+ 1), where r is the number of n-grams mea-
sured; this forces the client to send more data to achieve
the same fidelity. Also, using more n-grams can signifi-
cantly increase the complexity of estimating n-gram co-
occurrences. For example, collecting 3 bigrams over the
space of letters requires us to estimate a distribution
over a sample space with (262)3 possibilities. For this
reason, we do not provide simulation results based on
collecting more than two n-grams.

4.1 Building the Candidate Set

Let N be the number of clients participating in the col-
lection. The aggregator’s reconstruction algorithm pro-

ceeds as follows:
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1. Build n-gram dictionary: Start by building a
subdictionary of every possible n-gram. If the al-
phabet has D elements in it, this subdictionary
will have D™ elements. An example alphabet is
D={0-9a—2—,_,.}.

2. Marginal preprocessing: Take the set of all re-
ports generated from n-grams, {(G})i, (G5)i}Y,.
Split this set into mutually exclusive groups based
on the position from which they were sampled.
There will be M /n such groups.

3. Marginal decoding: For each position group, per-
form marginal analysis to estimate which n-grams
are common at each position and their correspond-
ing frequencies. This step uses the n-gram dictio-
nary constructed in (1).

4. Joint preprocessing: Each pair of n-grams falls
into one of (M2/ ") groups, defined by the randomly-
chosen positions of the two n-grams, g; and gs. Split
the reports into these groups.

5. Joint analysis: Perform separate joint distribution
analyses for each group in (4) using the significant
n-grams discovered in (3).

6. n-gram candidates: Select all n-gram pairs with
frequency greater than some threshold §.

(Graph-building): Con-

edges specified by the

7. String candidates
struct a graph with
previously-selected n-gram pairs. Analyze the graph
to select all M/n-node fully connected subgraphs
which form a candidate set C.

Steps (3)—(7) are illustrated in Figure 5, but steps (6)
and (7) require some more explanation. For simplicity
assume that M = 6 and that we are collecting two
bigrams from each client. For string x with frequency
f(z), there could only be three different combinations
of bigram pairs reported by each client: (g1,g92) €
{(0,2), (0,4), (2,4)}. If string = is a true candidate,
then we would expect the corresponding bigrams from
all three pairings to have frequency of at least f(x) in the
relevant joint distributions. Additional frequency could
come from other strings in the dictionary that share the
same bigrams. In general, all n-gram pairs must have
frequency greater than some threshold § to produce a
valid candidate. We take

p2(1 — p2)
(@2 —p2)N’ @

where g2 = 0.5f(p+q)+ (1 - f)g and p2 = 0.5f(p+q) +
(1 = f)p. This expression is designed to ensure that if

5=

an n-gram pair has no statistical correlation, then with
high probability its estimated probability will fall below
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0. Indeed, 1.649 is a frequency threshold above which we
expect to be able to distinguish strings from noise in our
marginal analysis. We deliberately use a slightly lower
threshold to reduce our false negative rate.

Step (7) is explained further in Figure 6. The idea is
to construct a set of candidate strings by finding fully-
connected cliques in a graph. Each n-gram at each po-
sition is treated as a distinct node. Edges are drawn be-
tween every valid n-gram pair from step (6). These edges
may be due to true signal (solid lines) or noise (dotted
lines), but the aggregator has no way of distinguishing a
priori. Regardless of provenance, edges are only drawn
between n-grams of different positions, so the resulting
graph is k-partite, where k = M /n. Now the task sim-
plifies to finding every fully-connected k-clique in this
k-partite graph; each clique corresponds to a candidate
string. If a string x is truly represented in the under-
lying distribution, then the likelihood of any n-gram
pair having a joint distribution below the threshold §
is small. Therefore, if even a single n-gram pair from
string x has a significantly lower frequency than ¢ after
accounting for the noise introduced by RAPPOR, then
it is most likely a false positive. Accordingly, the cor-
responding edge will be missing in the graph, and our
clique-finding approach will discard x as a candidate.

If executed naively, this clique-finding step can be-
come a storage and computation bottleneck. Worst case,
the number of candidates can grow exponentially in the
number of bigrams collected. However, the problem of
efficiently finding k-cliques in a k-partite graph has been
studied [23].

Candidate strings can be further filtered based on
string semantics and/or domain knowledge. For exam-
ple, if it becomes apparent that what we are collecting
are URLs, candidates that do not meet URL encoding
restrictions can be discarded (e.g., strings with spaces
in the middle).

4.2 Testing Candidate Strings

To estimate the marginal distribution of unknown
S XN
and candidate dictionary C' to perform marginal in-

strings, we use the set of full string reports X7, ..

ference as described in the original RAPPOR paper.
False positives in the candidate set C will be weeded
out in this step, because the marginal decoding shows
that these strings occur with negligible frequency. The
marginal analysis here differs from classical RAPPOR

marginal analysis in two important ways:
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Fig. 6. The graph-building process for
generating full string candidates iden-
tifies fully-connected cliques in a k-
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Fig. 5. Process for learning the distribution of a random variable without knowing the

. - Final Result
Extract canfildlates Qheck can_d|dates rabbit
(Graph Building) against full-string reports hermit

partite graph. In this example graph,

the set of candidate strings would be

C = {rabbit, hermit, hebbit}. The noisy
false positive (“hebbit") gets removed by
candidate testing (section 4.2).

dictionary ahead of time. The aggregator computes pairwise joint distributions from the

noisy reports generated at different n-gram positions. These pairwise joint distributions

are used to generate a candidate string dictionary.

(1) Reports X7, ..
vacy by using privacy parameter ¢/3 instead of e.

(2) The estimated candidate set C is unlikely to be as
complete as an external knowledge-based set. With high

., Xy are collected with stronger pri-

probability, it will include the most frequent (impor-
tant) candidates, but it will miss less frequent strings
due to privacy guarantees imposed on n-gram report-
ing. On long-tailed distributions, a significant portion of
distribution mass may fall below the noise floor. Set C
is also likely to be comprised of many false-positive can-
didates forcing a higher stress load on statistical testing
that necessarily must be more conservative in the pres-
ence of a large number of tests.

The output of this step is the estimated marginal
weights of the most common strings in the dictionary.

5 Results

We performed simulation studies and one real-world ex-
ample to empirically show the utility of the proposed
approach. We first discuss why this scheme does not
alter RAPPOR’s privacy guarantees.

Privacy: We split the privacy budget evenly between
the n-grams and the full-string report. For instance, if
we collect reports on two n-grams and the full string,
each report will have privacy parameter ¢/3. The defi-
nition of local differential privacy implies that two inde-
pendent measurements of the same datapoint, each with
differential privacy parameter -, will collectively have
privacy parameter 27. Dependent measurements con-
tain less information than independent measurements,

so the overall privacy parameter is at most 2. Thus, our
n-gram based measurement scheme provides the same
privacy as a single RAPPOR report with differential
privacy e. Note that local differential privacy guaran-
tees hold even in the face of side information [19].

Computational Efficiency: The bottleneck of our
algorithm is constructing the dictionary of candidate
strings. This can be split into two phases: (a) comput-
ing n-gram co-occurrences, and (b) building the candi-
date dictionary from a k-partite graph of n-gram co-
occurrences. Recall that |D| is the size of our alpha-
bet, and r is the number of n-grams collected from each
string. NV denotes the number of datapoints. Part (a) has
complexity O(N|D|™") due to the EM algorithm. Part
(b) depends on the size of the initial k-partite graph. If
there are p nodes in each of the partitions, this part has
worst-case computational complexity O(k:p’“fl). How-
ever, sparsity in this k-partite graph can reduce the
complexity in practice.

These asymptotic costs can be prohibitive as the
number of data samples increases. This is partially be-
cause the EM algorithm in phase (a) is iterative, and
each iteration depends on every data element; this can
lead to high memory constraints and lengthy runtimes.
However, while the complexity of part (a) dominates
part (b) in most usage scenarios, part (a) can also be
parallelized more easily. For scalability, it would be most
practical to use a parallelized implementation of EM es-
timation. We will also show how the parameter § can be
tuned to reduce the computational load of part (b) in
exchange for a reduction in accuracy.
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5.1 Simulated Results

In this section, we demonstrate empirically how the ac-
curacy of this approach depends on various parameters:
the privacy setting €, the number of reports NV, the type
of distribution being estimated, and n-gram parame-
ters. We explored performance on a synthetic dataset
of “hashes”—random, fixed-length character strings.

Accuracy vs. ¢ and population size: Figure 7
shows how accuracy of the method depends on e and
N. Here, € refers to the differential privacy of the whole
estimation scheme (including all n-grams and full string
reports). Analogous plots for other distributions are in-
cluded in Appendix C. These results suggest that the
proposed method partially learns the unknown dictio-
nary and distribution, but many strings may not be
detected. Indeed, € must be large (> 3 or 4) to ob-
tain meaningful estimates for populations with fewer
than 100,000 users. Such values of € are too large to
offer substantial, general privacy-protection guarantees;
this suggests that operationally, the proposed approach
may too inefficient for smaller enterprises. More work is
needed to understand how to improve the accuracy of
these methods for a fixed number of users or reports.

To understand the source of this error, Figure 8 de-
picts a learned distribution, with and without the dictio-
nary as prior knowledge. The most frequent strings’ fre-
quencies are estimated correctly, even without the dic-
tionary; this implies that the error in Figure 7 between
the true and estimated distributions stems mainly from
learning an incomplete dictionary, rather than errors in
distribution estimation.

The distribution used in this example (as well as
subsequent tests), is a discretized power-law distribu-
tion with scaling exponent 8 = —5 over 100 random
strings. We drew 100,000 strings from this distribution
and encoded them as 128-bit RAPPOR reports, with
parameters p = 0.25, ¢ = 0.75, and f = 0; this corre-
sponds to ¢ = 9, per report. We limited ourselves to
100,000 strings for the sake of computational feasibility
while exploring the parameter space. However, we show
results in Sec. 5.2 from a larger trial on a real dataset
with 1,000,000 simulated clients.

Accuracy and n-gram length: Figure 9 plots the
Hellinger distance of our reconstructed distribution as a
function of string length, for different sizes of n-grams.3
This figure suggests that for a fixed string length, using

3 We only generated one point using 4-grams due to the memory
costs of decoding a dictionary with 264 elements.
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larger n-grams gives a better estimate of the underlying
dictionary. Intuitively, this happens for two reasons: (1)
Reports generated from longer n-grams contain infor-
mation about a larger fraction of the total string; we
only collect two n-grams for communication efficiency,
so the n-gram size determines what fraction of a string
is captured by reports. (2) The larger the n-gram, the
fewer n-gram pairs exist in a string of fixed length. In
simulation, we observe that the likelihood of our algo-
rithm missing an edge between n-grams is roughly con-
stant, regardless of n-gram size. Therefore, if there are
more n-gram pairs to consider with smaller n-grams,
the likelihood that at least one of the edges is missing—
thereby removing that string from consideration—is sig-
nificantly higher.

This hypothesis is supported by Figure 10, which
shows the false negative rate as a function of string size
for different n-gram sizes (i.e., the fraction of dictio-
nary strings that were not detected by the protocol).
In all of these trials, we did not observe any false pos-
itives, so false negatives accounted for the entire dis-
crepancy in distributions. Because our distribution was
quite peaked (as is the case in many real-life distribu-
tions over strings), missing even a few strings caused the
overall distribution distance to decrease significantly.

Accuracy vs. computational costs: As men-
tioned previously, graph-building becomes a bottleneck
if the EM portion of the algorithm is properly paral-
lelized and optimized. This stems from the potentially
large number of candidate strings that can emerge while
searching over the k-partite graph of n-grams. This
number depends in part on the threshold § used to select
“significant” associations between n-grams. Choosing a
larger threshold results in fewer graph edges and lower
computational load, but this comes at the expense of
more missed strings in the candidate set.

We examined the impact of the pairwise candidate
threshold on accuracy. Setting this threshold to 0 recov-
ers every string, while also greatly increasing the false
positive rate, as well as the algorithmic complexity of
finding those strings. Figure 11 plots the Hellinger dis-
tance of the recovered distribution against the number
of edges in the candidate n-gram graph for various dis-
tribution thresholds. The number of edges in the n-gram
k-partite graph indirectly captures the computational
complexity required to build and prune candidates.

As expected, the computational complexity (i.e.
number of edges in the candidate graph) decreases as the
threshold increases. However, the accuracy decreases
for very low thresholds. This is because each candidate
string is treated as an independent hypothesis (the null
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hypothesis being that the candidate is not significant).
When testing for M independent hypotheses with signif-
icance «, Bonferroni correction is often used to reduce
the significance of each individual test to a/M in or-
der to account for the greater likelihood of seeing rare
events when there are multiple hypotheses. Since lower-
ing the threshold also increases the number of candidate
strings, the resulting Bonferroni correction causes many
true strings to fail the significance test. If we did not use
Bonferroni correction, we would observe a high num-
ber of false positives. The optimal parameter setting is
difficult to estimate without extensive simulation. How-
ever, we observe in simulation that the threshold in Eq.
(2)—which is based on the statistics of the randomized
response noise—appears close to a local optimum, and
is likely a good choice in practice.

5.2 Estimating the Dictionary in
Real-World Settings

To understand how this approach might work in a real
setting, we located a set of 100 URLs with an interest-
ing real-world frequency distribution (somewhat simi-
lar to the Alexa dataset [2]). We simulated measuring
these strings through RAPPOR by drawing one mil-
lion strings from the distribution, and encoding each
string accordingly. We then decoded the reports using
the methods in this paper.

All URL strings were padded with white space up
to 20 characters, matching the longest URL in the set.
In addition to full string reports, two randomly-chosen
bigrams (out of 10) were also reported, all using 128-bit

Number of reports (N)

T
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o
g
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Fig. 8. Estimated distribution compared
to the true distribution. Top 17 strings

are learned with prior dictionary knowl-

edge, compared to 7 strings without.

Bloom filters with two hash functions. Overall privacy
parameters were set to ¢ = 0.75, p = 0.25 and f = 0
(assuming one-time collection). This choice of parame-
ters provides € = 4.39 or exp(e) = 81 privacy guaran-
tees, deliberately set high for demonstration purposes.
Each of the collected reports—based on the string itself
and two bigrams—were allotted equal privacy budgets
of €/3, giving effective parameters p = 0.25 and ¢ = 0.32.

Results are shown in Figure 12, where we trun-
cate the distribution to the top 30 URLs for readability.
Each URL’s true frequency is illustrated by the green
bar. The other three bars show frequency estimates for
three different decoding scenarios. A missing bar indi-
cates that the string was not discovered under that par-
ticular decoding scenario.

Under the first scenario, we performed an original
RAPPOR analysis with € = 4.39 and perfect knowledge
of the 100 strings in the dictionary. With 1 million re-
ports, we were able to detect and estimate frequencies
for 75 unique strings. The second scenario also assumes
perfect knowledge of all 100 strings, but performs col-
lection at €/3 = 1.46. This illustrates how much we lose
purely by splitting up the privacy budget to accommo-
date sending more information. In this second scenario,
23 strings were detected, and their estimated frequen-
cies are shown with blue bars.

In the third scenario, no prior knowledge of the
dictionary was used. Each string and bigram was col-
lected at privacy level ¢/3 = 1.46. Ten marginal
bigram analyses for each bigram position returned
4, 2, 2, 3, 4, 5, 2, 1, 1, and 1 significant bigrams, re-
spectively. After conducting joint distribution analysis
on pairs of bigrams, we selected bigram pairs whose joint
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string.

frequency was above the threshold cutoff of § = 0.0062.
We then located the 10-cliques in the corresponding 10-
partite graph, which produced 896 candidate strings.
The final marginal analysis based on the full string re-
ports (to weed out false positives) discovered the top
five strings and estimated their frequency quite accu-
rately (pink bars). There was also one false positive
string identified by the analysis. We also reran the col-
lection with trigrams, which produced only 185 candi-
date strings. Final marginal analysis resulted in only
two strings with no false positives.

A note on accuracy: Our method fails to detect
many of the distribution strings. While we make no
claims of optimality, there is a well-studied fundamen-
tal tension between local differential privacy and data
utility [9]. Since we collect each n-gram with privacy pa-
rameter ¢/3, our effective learning rate is significantly
slower than that of regular RAPPOR. More problem-
atically, estimating a multinomial distribution requires
a number of samples that scales linearly in the support
size of the distribution. So if we wish to estimate a dis-
tribution over an unknown dictionary of 6-letter words,
in the worst case, we would need on the order of 300
million samples—a number that grows quickly in string
length. Considering these limitations, it is not surprising
that learning over an unknown dictionary performs sig-
nificantly worse than learning over a known dictionary,
regardless of algorithm. Our algorithm nonetheless con-
sistently finds the most frequent strings, which account

for a significant portion of the probability mass in many
real-world distributions.

Critically, the natural drawback of this tradeoff is
that an aggregator needs large amounts of data to ef-
fectively learn distributions. We want to emphasize that
this is a property of the original RAPPOR mechanism,
not of our post-processing methods. It is a significant
problem that might be solved by using optimal encod-
ing mechanisms or by using different privacy levels for
different users, but these research questions are orthog-
onal to the present work.

6 Related Work

Since its introduction nearly a decade ago, differen-
tial privacy has become perhaps the best studied and
most widely accepted definition of privacy [10]. When
no party is trusted to construct a database of sensitive
data, the notion of local differential privacy is often con-
sidered [9, 18, 20]. Research on local differential privacy
is largely centered around finding algorithms that satisfy
differential privacy properties [22, 24, 25|, and improv-
ing the tradeoffs between privacy and utility [9, 18].
Our work follows a recent trend of using local dif-
ferential privacy to learn a distribution’s heavy-hitters—
the most significant categories in a distribution [5, 12,
14, 21]. Several of these papers focus on the information-
theoretic limits of estimating heavy-hitters while satis-
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Fig. 12. Learning a distribution of URLs with and without the dictionary. The dictionary has 100 strings (top 20 are shown). From bot-
tom up, the bars indicate: (1) the URL's true frequency, (2) the estimated frequency when collected at ¢ = 4.39 with full dictionary

knowledge, (3) estimated frequency with full dictionary knowledge, but data collected with ¢/3 = 1.46 (stronger privacy); this illus-

trates losses incurred by allocating 2/3 of the privacy budget to collecting two bigrams, (4) estimated frequency computed with no

dictionary knowledge; each report and ngram was again encoded at €/3 privacy. The sample size was 1 million reports.

fying differential privacy. Our paper differs from existing
work by asking new questions aimed at improving the
practicality of the recently-introduced RAPPOR. mech-
anisms [12]. Specifically, we consider two key questions:
how to decode joint distributions from noisy reports,
and how to learn distributions when the aggregator does
not know the dictionary of strings beforehand.

Our work combats the recent notion that differ-
ential privacy is mainly of theoretical interest [3]. We
have identified two main technical shortcomings of a
differentially-private mechanism with practical, real-
world deployment, namely RAPPOR, and provided so-
lutions that address those shortcomings.

The question of estimating distributions from differ-
entially private data is not new, with Williams et al. first
making explicit the connection between probabilistic in-
ference and differential privacy [17, 28]. This previous
work is similar to our approach. There has even been
some work on the related problem of releasing differ-
entially private marginal distributions generated from
underlying multivariate distributions [13].

However, previous work has focused on continuous
random variables and learning the distribution of dis-
crete data in a differentially-private manner (specifi-
cally, strings in an unknown dictionary, as we do here)
has its own significant challenges. Such learning has
been studied only recently, e.g., in work done con-

currently with ours, [4], which describes sophisticated
mechanisms whose characteristics are quite different
from RAPPOR (e.g., offering no built-in longitudinal
protection or defense against tracking). In comparison,
our work builds directly upon RAPPOR, and therefore
inherits its simple data-collection mechanisms, attack
models, defenses, and other characteristics; thus, our
work is directly suitable for use in existing RAPPOR
deployments, without having to introduce, deploy, and
build confidence in new privacy mechanisms.

7 Discussion

Privacy-preserving crowdsourcing techniques have great
potential as a means of resolving the tensions between
individuals’ natural privacy concerns and the need to
learn overall statistics—for each individual’s benefit, as
well as for the common good. The recently-introduced
RAPPOR mechanism provides early evidence that such
techniques can be implemented in practice, deployed in
real-world systems, and used to provide statistics with
some benefits—at least in the application domain of
software security. In this paper, we consider two sig-
nificant limitations of this original RAPPOR system—
namely its inability to learn the associations between
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RAPPOR-reported variables, and its need to known the
data dictionary of reported strings ahead of time. We
achieve those improvements without changing the fun-
damental RAPPOR mechanisms or weakening its local
differential privacy guarantees.

That said, our new analysis techniques are not with-
out shortcomings. Practically, the main limitation of our
method is the accuracy vs. sample size tradeoff. We ob-
serve that in order to get meaningful dictionary esti-
mation with a sample size of 20,000 users, the aggre-
gator would need to set a privacy level of ¢ > 3, which
gives very weak privacy protection. This highlights the
need for further work in designing mechanisms that al-
low privacy-preserving analytics at small sample sizes.

Another challenge we face is parameter selection
and the allocation of privacy budgets. It may pro-
vide more utility, at similar overall levels of privacy,
to collect n-grams with more relaxed privacy guaran-
tees to get a better estimate of the candidate set, and
then use stricter privacy settings when collecting full
string reports. Because our algorithm’s performance is
distribution-dependent, it is difficult to estimate op-
timal settings theoretically. Moreover, searching over
the complete parameter space is computationally chal-
lenging. We hope that the public release of our analy-
sis mechanisms will encourage experimentation on both

fronts.

8 Conclusions

Privacy-preserving crowdsourcing techniques based on
randomized response can provide useful, new insights
into unknown distributions of sensitive data, even while
providing the strong guarantees of local e-differential
privacy. As shown in this paper, such privacy-preserving
statistical learning is possible even when there are mul-
tiple degrees and levels of unknowns. In particular, by
augmenting the analysis methods of the existing RAP-
POR mechanism it is possible to learn the joint distri-
bution and associations between two or more unknown
variables, and learn the data dictionaries of frequent,
unknown values from large domains, such as strings.
Furthermore, those augmented RAPPOR analysis tech-
niques can be of value when applied to real-world data.
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A Evaluation of the Association
Test

We evaluated the hypothesis-testing properties of our
association statistic empirically. We considered pairs of
random variables, which were chosen to be either inde-
pendent or not. Our error rates using the association
test from Section 3.4 allow us to study the Type I error
and power (1 — P(Type II error)) of the test, under a
null hypothesis of independence.
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Consider two independent random variables, X and
Y. If we test a null hypothesis on these variables at a
confidence level of a = 0.05, we would expect to falsely
reject the null hypothesis 5 percent of the time. More
precisely, if the test statistic is continuous (as ours is),
then the p-value is uniformly distributed between 0 and
1 if the null hypothesis is true.

Thus, in order to demonstrate that our proposed
statistic can be used as a test of independence, we gen-
erated a pair of distributions of independent random
variables, X and Y . In each trial, we drew N = 10,000
data points {(x1,y1), ..., (xN,yN)}. After encoding these
data points with RAPPOR and then jointly decoding
the reports, we obtain estimates p;; and 3. We use these
estimates to compute the Wald statistic, T, for a single
trial, over 100 trials.

Since the null hypothesis is true by construction,
the p-values of our test should have a distribution that
is uniform. Therefore, the expected quantiles of our con-
structed dataset should be uniformly spaced between 0
and 1. Figure 13 plots these expected quantiles against
our observed quantiles from the dataset. Because the
points are well-represented by a linear fit with slope 1
and intercept 0, we conclude that our test statistic has
the desired properties as a test of variable independence.

This allows us to compute the Type I error rate
(false positive) as a function of sample size, dictionary
size, and €, as shown in Figure 14. We used one variable
with a fixed dictionary size of n = 6 strings, and we
varied the other variable’s dictionary size m. The Type
I error appears to be upper-bounded by 0.05, which is
consistent with our significance level. However, notice
that these plots suggest that larger dictionaries have
a lower rate of Type I error. This effect is due to the
small sample size, which leads to small cell counts; it
does not indicate that the test has better performance
on large dictionaries. Indeed, we observe that as the
sample size grows, the Type I error rate increases and
stabilizes around a.

Figure 15 shows the power (1—P(Type II error)) for
a range of different dependent joint distributions. Dis-
tributions are generated as follows: two marginal distri-
butions are drawn uniformly at random from the m- and
n-dimensional probability simplexes, respectively. These
marginals are used to compute the corresponding inde-
pendent joint distribution. We then add a small, con-
stant probability mass to the diagonal entries of the con-
tingency table, and renormalize to generate a valid prob-
ability distribution. This allows us to control how much
correlation we induce between the variables. ‘Dist1’ uses
an added diagonal probability mass of 0.05, whereas
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Fig. 13. Q-Q plot of the observed p-values for the Wald test ver-
sus the theoretical uniform distribution. As expected, p-values are
uniformly distributed under the null hypothesis of independence.

‘Dist2’ adds a diagonal probability mass of 0.1. These
measurements and distributions are non-exhaustive, but
they suggest that the power of the test increases with
e and N, but decreases as the dictionary size grows. In
particular, the test has low power for dictionaries with
10 strings. Also, the test has almost no power when
€ < 1.5; this confirms our intuition that these tests are
only practical for large- to mid-sized enterprises.

B Joint Distribution Estimation

The overall accuracy of joint estimation depends on the
sample size N, the privacy level ¢, and the dictionary
size. In Section 3.5, we showed the dependence of esti-
mation accuracy on € and N. Here, for a fixed ¢ = 1.5,
we varied the sample size N and the dictionary size,
and measured the Hellinger distance between the true
distribution and the reconstructed distribution. We es-
timated a joint distribution of two random variables,
and kept one dictionary size fixed to 6. The other vari-
able’s dictionary size was varied between 6 and 18. The
results are included in Figure 16; this plot suggests that
with privacy level € = 1.5, to achieve a fixed accuracy as
the dictionary size increases by 6 strings, the necessary
sample size can increase by as much as an order of mag-
nitude. Thus, the proposed joint distribution estimation
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may only be practical for random variables with dictio-
nary size & 10, unless sample sizes grow to N > 100, 000.

C Unknown Dictionary Results

In Section 5.1, we demonstrated the effect of privacy
level ¢ and number of reports N on accuracy for a
power-law distribution. These results are distribution-
dependent. Figures 17 and 18 illustrate the effect of €
and N on the accuracy of our estimation for geomet-
ric and uniform distributions, respectively. Notice that
here, € is the total privacy budget for all ngram and
string reports. The parameters of these experiments are
the same as in Section 5.1, except for the underlying
distribution; for the geometric distribution, we use pa-
rameter p = 0.3. These results suggest that random vari-
ables with higher entropy are more difficult to learn ac-
curately for a given sample size.

D Generalizing “Other"
Estimation

It is straightforward to apply the EM algorithm to a
more general class of locally-differentially-private mech-
anisms. However, in Section 3.2 we described how to
estimate the “other” category explicitly in the context
of RAPPOR. To estimate the “other” category for gen-
eral randomization mechanisms that use symbol-wise
randomized response, the aggregator once again uses
knowledge of the top m categories and their frequen-
cies to estimate this conditional probability. Suppose
that the differentially-private mechanism Q maps in-
puts from the space of strings to k& symbols from some
alphabet A. Let ¢7*(7) be the expected number of times
that the sth reported symbol was set to value i € A by
one of the top m categories in X. ¢7*(7) is mechanism-
dependent, and depends on N (the number of reports
collected). The estimated proportion of times each sym-

bol was set to value ¢ by a string from the “Other”
cs(8) =7 (i)
N(=Y " pi)’

the observed number of times symbol s was set to i in

category is then p2(i) = where c¢4(7) is
all N reports. Because we have no knowledge of what
strings are in the “Other” category, we treat it as a
“single” string. The conditional probability of observing
any report X’ given that the true value was “Other” is
P(X' =2/|X = “Other”) = H];:l P2(z),). This estimate
allows us to run the EM algorithm while modeling the
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unknown categories to obtain unbiased estimates for the

known ones.

E Proofs

E.1 Proposition 3.1

It is enough to show that the log likelihood being max-

imized in the EM algorithm is concave. The log likeli-

hood can be written as follows:

N
LX) Y'|pij) =log | [] P(X7, Yilpis) | =
k=1

N

> log (> pi P(XG, VX =2, Y =y)

k=1 i,

Since the log likelihood function is differentiable, we can
show this by demonstrating that the Hessian is negative
for all parameter values. For brevity in the rest of this
proof, we will use X’ instead of (X',Y”), and we will
use p;, 1 <1 < mn instead of p;;. Differentiating, we get
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Since the denominator is strictly positive and the nu-

9L
Op;Op;

merator is strictly negative (for all i and j), we get that
the log likelihood is concave. This implies that any local
maximum is also a global maximum, so the EM algo-
rithm converges to the maximum likelihood estimate of
the parameters.

E.2 Proposition 3.2

Since the EM algorithm produces an ML parameter es-

timate (Proposition 3.1), it is sufficient to verify the

(mild) regularity conditions under which an ML esti-

mate is asymptotically unbiased [26]:

1. Compactness: The parameter space © is compact.

2. Continuity: The probability P(X’; p;;) is continuous
in p;;. For economy of notation, we use X’ to denote
the noisy variable pair (X', Y”).

3. Identifiability: P(X';pi;) = P(X';pij) < pij =
Dij-

4. Boundedness: There exists a function K(z')
with B, [[K(X")]] < oo and log(P(z';pij)) —
log(P(z'; pij)) < K(2') for all 2/, p;;.

Condition 1 is met because the parameter space is pre-
cisely the probability simplex. The likelihood of observ-
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Fig. 17. (Geometric) Hellinger distance between the estimated
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learned strings compared to the true dictionary size |[Up| (bot-
tom), parameterized by € and the number of reports N (with
95% confidence-intervals). The underlying distribution is a geo-
metric distribution over 10 strings of 6 characters each.

ing reports X’ and Y’ parameterized by joint distribu-
tion p;; is precisely
P(X',Y'ipij) = > pP(XY/|X =i,V =j).  (3)
i,

This is continuous in p;;, so condition 2 is met. To show
condition 3, suppose that P(X',Y";p;;) = P(X',Y"; pij)
for all X’,Y’. This implies that

S P(XLY|X =4, Y = j)(pij — pij) = 0.

i,J
Notice that P(X',Y’|X =4,Y = j) is fixed and positive,

which implies that p;; = p;; for all ¢, j. The other direc-
tion holds trivially by equation (3). To show condition
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4, notice that it is equivalent to
PO Y5 py) _ kxt vy,
P(X",Y";pij) —
This gives
P(X",Y';pi;) 3 i P(XL Y |X =4,V = j)
> Dije PR
- Z’L,j pijeiepm/ig’//

626 max

(4)

XY’
— Pmin ’ (5)
XY!
where
PTI’L/Z’T)L/, = Hzlbn P(XI7 Yllivj)a
and

PR = H;%X P(X'",Y'|i, ),

and line (4) comes about from the definition of
differential privacy. Thus, if we set K(X',Y') = 2¢ +
log(P; “:”/P[]’-””), condition 4 is met. Therefore, we have

that Dij,N i) Dij-



