
Proceedings on Privacy Enhancing Technologies ; 2016 (3):62–82

Tibor Jager and Andy Rupp*

Black-Box Accumulation: Collecting Incentives
in a Privacy-Preserving Way
Abstract: We formalize and construct black-box accu-
mulation (BBA), a useful building block for numerous
important user-centric protocols including loyalty sys-
tems, refund systems, and incentive systems (as, e.g.,
employed in participatory sensing and vehicle-to-grid
scenarios). A core requirement all these systems share
is a mechanism to let users collect and sum up values
(call it incentives, bonus points, reputation points, etc.)
issued by some other parties in a privacy-preserving way
such that curious operators may not be able to link the
different transactions of a user. At the same time, a
group of malicious users may not be able to cheat the
system by pretending to have collected a higher amount
than what was actually issued to them.
As a first contribution, we fully formalize the core
functionality and properties of this important build-
ing block. Furthermore, we present a generic and non-
interactive construction of a BBA system based on ho-
momorphic commitments, digital signatures, and non-
interactive zero-knowledge proofs of knowledge. For our
construction, we formally prove security and privacy
properties. Finally, we propose a concrete instantiation
of our construction using Groth-Sahai commitments and
proofs as well as the optimal structure-preserving signa-
ture scheme of Abe et al. and analyze its efficiency.

Keywords: Loyalty systems, incentive collection, refund
systems, participatory sensing, vehicle-to-grid, provable
security.

DOI 10.1515/popets-2016-0016
Received 2015-11-30; revised 2016-03-01; accepted 2016-03-02.

1 Introduction
Loyalty programs are an important market mechanism
for customer retention. These programs enjoy a great
popularity all over the world and are employed from

Tibor Jager: Ruhr-University Bochum, E-mail: ti-
bor.jager@rub.de
*Corresponding Author: Andy Rupp: Karlsruhe Institute
of Technology, E-mail: andy.rupp@kit.edu

small shops to retail chains and even across different
stores. Examples are the Payback program in Germany
[3], with more than 60% of German households enrolled,
the Coop Supercard program in Switzerland [4], or the
Nectar program in the UK [2]. The basic principle un-
derlying such programs, is that customers collect loyalty
points for every purchase in a participating shop. They
may redeem them later to directly pay for a purchase,
get a voucher, etc. User devices range from regular PCs
for online shopping to magnetic cards or smartcards to
NFC-enabled smartphones for offline shopping.

We can find similarly working incentive mechanisms
in other areas as well. For instance, in upcoming user-
centric cyber-physical systems (CPS) such as participa-
tory sensing (PPS) systems [13] or the vehicle-to-grid
(V2G) [22], users will receive incentives (e.g., micropay-
ments) to actively participate and contribute to the sys-
tem. PPS refers to a whole family of human-centered
CPS. Users, called Producers, collect fine-grained mea-
surement data (enhanced by location and time) in ex-
change for incentive points. This may include, for ex-
ample, temperature, CO2, noise level, health data, etc.
The sensing and data transmission might be performed
by ubiquitous smart phones (possibly connected to ad-
ditional external sensor devices) or by dedicated con-
strained devices (such as, e.g., [14]). V2G is part of the
overall Smart Grid vision. Here batteries of electric cars
serve as projectable and controllable Smart Grid compo-
nents which are used as energy source if there is a peak
in demand and as buffer if there is a surplus of energy
in the Smart Grid. E-Car owners will receive incentives
for providing battery power to the Smart Grid.

In all mentioned applications, the anonymity and
location privacy of users is a critical issue. Users should
stay anonymous while collecting points, where ideally,
two such transactions should not even be linkable. Oth-
erwise, operators may trace the location and behavior
of users, e.g., where and when they bought which items
(loyalty systems), where and when they left their cars
(V2G), and even worse, where they walked around in be-
tween (PPS). Unfortunately, privacy is often neglected
in these systems. For instance, Loyalty Partner, the op-
erator of the Payback program, received the German
Big Brother Award for violating individual privacy [1].

Black-Box Accumulation 63

1.1 Our Contribution

In this paper, we focus on properly formalizing the core
functionality and security and privacy properties of a
point collection mechanism which can be used, as a
building block, to implement the applications mentioned
above. Except from [25], no prior work seems to have
separately studied this important multi-purpose build-
ing block. To the best of our knowledge our work is the
first proposing a formal framework and model.

To do this end, we decided to restrict ourselves to
non-interactive systems. Considering those systems only
typically leads to simpler, more compact and compre-
hensible security models as well as less complex and
error-prone security proofs (e.g., since concurrent ex-
ecutions of protocols are not an issue). Furthermore,
non-interactive systems are preferred in many applica-
tion scenarios due to lower communication latencies. We
thereby assume application scenarios where points are
always positive values and there is no need to withdraw
points after they have been issued. Furthermore, we as-
sume, for simplicity, that all points can be issued using
a single secret key (e.g., since all shops issuing points
have an online connection to the loyalty system opera-
tor). We leave extending our framework to remove those
constraints as future work.

Our framework is multi-use token based: In the be-
ginning, a user receives an accumulation token bound
to a unique serial number known to both parties, the
user and the issuer of the token. All points a user ob-
tains can be collected using this single accumulation
token. To do this in an unlinkable fashion, the user
blinds and (possibly) unblinds this token before and
after every point collection transaction. When redeem-
ing the token, the sum of all collected points as well
as the serial number is revealed, which allows to check
for double-spending. Our security definition is inspired
by the indistinguishability-based security definition for
a pre-payments with refunds scheme proposed in [26]. It
ensures that an adversary (possibly using multiple accu-
mulation tokens) may not be able to redeem more points
than legitimately issued to him. Our privacy definition
is simulation-based and guarantees that besides the sum
of all points no additional information is revealed to link
transactions.

Besides a formal framework, we propose a generic
non-interactive construction from abstract crypto-
graphic building blocks such as homomorphic commit-
ments, signatures, and non-interactive proofs of knowl-
edge. The scheme offers a constant-size public key
owned by the operator as well as a constant-size ac-

cumulation token owned by each user. The latter only
consists of two commitments, the corresponding open-
ings, and a signature. Blinding the token before col-
lecting points adds an extra proof-of-knowledge to the
token. As opposed to the state-of-the-art in loyalty, in-
centive, and refund mechanisms, we provide a generic
construction of such a mechanism as well as full proof
of security and privacy.

Last but not least, we exemplarily show how our
generic BBA scheme can be efficiently instantiated
based on Groth-Sahai proofs under the SXDH assump-
tion [20] and the structure-preserving signature scheme
of Abe et al. [6] which has been proven secure in the
generic group model [27]. For security and privacy, we
additionally rely on the assumption that the common
reference string (CRS) used by our scheme has been gen-
erated honestly. Note that the CRS could be computed
distributedly using multiparty computation techniques
if one does not trust a single entity to setup the CRS
properly. Using this instantiation, collecting points in
an unlinkable fashion requires 70 exponentiations and 7
pairing computations on the user’s device. This trans-
lates to an estimated runtime (ignoring communication
costs) of about 445 ms on a low-end smartphone for a
rather high security of 128 bit. Redeeming the points
requires 66 exponentiations or about 324 ms on such a
smartphone. A token in this setting consists of 66 group
elements, which translates to about 24 kb that have to
be transmitted.1

1.2 Related Work

BBA bear some resemblance with the notion of (addi-
tively) homomorphic signature schemes, formally intro-
duced in [21]. These schemes allow to efficiently combine
two given signatures Sign(m1) and Sign(m2) on messages
m1 and m2 to a new signature Sign(m1 + m2) for the
message m1 +m2. This property is clearly useful to real-
ize accumulation of incentives. However, to achieve se-
curity and privacy in a BBA scheme, one would need
additional properties: (1) a user must not be able to
combine given signatures in an arbitrary fashion, but
he must only be able to combine signatures issued to
him and each such signature may only occur once and
in a single aggregate. However, homomorphic signatures

1 A typical communication protocol for our applications is Near
Field Communication (NFC), which has a data rate of up to 424
kB/s.

Black-Box Accumulation 64

typically allow everyone to compute arbitrary (linear)
combinations of given signatures. (2) signatures must be
issued in a blind fashion. To the best of our knowledge,
homomorphic signature schemes with these additional
properties have not been proposed yet.

Apart from the related cryptographic primitives
mentioned above, mechanisms related to the notion of
BBA have also been proposed as part of refund, loy-
alty, and incentive systems. One may distinguish be-
tween multi-use and single-use token systems. The for-
mer type allows to accumulate points from different col-
lection transactions and represent these points using a
single token, whereas in the latter type each collection
transaction leads to one or more new tokens. Multi-use
token systems typically have several important advan-
tages compared to the other system type: more compact
representations of points, no need to repeatedly execute
the point collection and redemption protocols in order
to issue or cash-in multiple points, less information leak-
age about the individual collection transactions during
redemption as all points are summed up2, etc. As we
propose a multi-use token system, we will first take a
closer look at prior work falling into this category be-
fore we briefly touch single-use token systems.
Multi-use token systems. In [26] Rupp et al. pro-
pose a refund collection mechanism based on BLS signa-
tures [10] as part of an interactive pre-payments with re-
funds scheme for public transport. Security and privacy
properties are only formalized for the overall scheme,
not individually for the refund scheme. Collecting and
redeeming a refund is very efficient: essentially only a
single exponentiation is required on the user’s side to
execute these operations. Also a token is pretty com-
pact as it only consists of two group elements and two
exponents. However, the refund scheme suffers from a
(potentially) large public key. The size of this key grows
linearly with the number of possible refund amounts
in the system. Furthermore, the security relies on a
strong non-standard interactive assumption and proofs
are only sketched.

Enzmann and Schneider introduce two privacy-
friendly loyalty systems for electronic market places in
[15]. Their counter-based solution corresponds to our
notion of a multi-use token system. Their scheme builds

2 In a single-use token system, by looking at the redeemed to-
kens, the operator may learn the number of collection transac-
tions a user did and how many points have been granted to him
per transaction. This may allow the operator to, e.g., deduce
where points have been issued and what has been purchased.

on RSA blind signatures to provide unlinkability and,
at first sight, appears to be very efficient: a token basi-
cally consists of two elements from Zn, collecting points
requires two exponentiations on the customer’s side and
redeeming a token only results in communication costs
for the customer. However, the bit size of the exponents
involved on the customer’s side grows linearly with num-
ber of points k to be issued or stored in a token, i.e.,
the exponent size equals k log(e), where e is the pub-
lic RSA exponent. Thus, exponents can quickly become
pretty large. Unfortunately, the authors also do not pro-
vide any security or privacy proof for their system nor
a formal framework.

Recently, Gong et al. proposed a privacy-preserving
incentive-based demand and response scheme [18] build-
ing on identity-based signatures, partially-blind signa-
tures as well as proofs of knowledge. The integrated in-
centive mechanism is only a smaller part of the over-
all scheme. It does not match our notion of a multi-
use token scheme but still allows to accumulate incen-
tives: The idea behind this mechanism is that incen-
tives granted to a user are first centrally collected in
a pseudonymous user account at the operators side. A
user can then anonymously withdraw a certain amount
from this account (showing that he owns the account)
leading to new token and redeem it using his real iden-
tity. The composition of these two steps is called a set-
tlement. Due to the high computational effort of gen-
erating and revoking pseudonyms, the use of long-term
pseudonyms is proposed. There are several privacy con-
cerns with this approach. First, the operator certainly
learns which incentives a pseudonymous user receives
from which parties. Second, by observing all withdrawal
and redeeming transactions he may also identify the real
user ID behind a pseudonym. A settlement requires 66
group exponentiations and 8 pairing computations at
the user’s side, while an incentive token essentially con-
sists of one group element and four exponents. The pa-
per lacks a formal treatment of security and privacy.

In [12], a scheme is proposed allowing customers
to buy database records anonymously and unlinkably
using digital rechargeable wallets. This interactive pro-
tocol is based on two different signature schemes [7,
9], the set membership protocol from [11], and other
zero-knowledge proofs. Concrete efficiency figures are
not given and cannot be easily extracted since zero-
knowledge proofs are not described in detail. A draw-
back of their system is that a customer needs to store
signatures on all possible balance values that may ap-
pear in the system (which are made public by the oper-
ator) in order to execute the set of membership proto-

Black-Box Accumulation 65

col. This lowers the practical applicability of the wal-
let mechanism in scenarios with resource-constrained
devices. In contrast to our incentive scheme, their
rechargeable wallet mechanism is an interactive proto-
col and relies on specific instantiations of cryptographic
building blocks. We leave it as an open problem to study
whether the techniques used in [12] may lead to an al-
ternative construction of a BBA scheme.
Single-use token systems. In [17] Blanco-Justicia
and Domingo-Ferrer propose a loyalty system which
uses partially-blind signatures in pairing-based groups
to ensure anonymity. Issuing a token results in essen-
tially two exponentiations for the customer, where a to-
ken consists of one group element and two exponents.
Redeeming a token only induces communication costs
on the customer’s side. Unfortunately, the authors do
not provide a formal model for loyalty systems nor a
formal security analysis.

In [28] a privacy-preserving communication and in-
centive system for V2G, called P 2, is proposed. Here an
incentive essentially consists in a partially-blind signa-
ture generated by the incentive issuer. When redeem-
ing a token, the identity of the issuer is revealed. Thus,
when a user redeems multiple tokens at the same time,
his corresponding movements during a certain period
can be traced.

In [24], Li and Cao propose a privacy-aware incen-
tive scheme for PPS. Their single-use token mechanism
is based on RSA blind signatures. The paper lacks a for-
mal treatment of security and privacy. In fact, it seems
that the ID of an incentive token (called credit token
identifier) being the message to be blindly signed is ac-
tually revealed to the token issuer what makes the use of
blind signatures pointless. Hence, as this ID also needs
to be revealed when redeeming the incentive, issuing
and redemption of an incentive are linkable.

Milutinovic et al. presented uCentive, an unlinkable
multi-purpose incentive scheme [25]. uCentive seems to
be fully implemented on a smartphone and some per-
formance figures are given. For example, the authors
state that earning and redeeming a single uCent (e.g.,
a loyalty point) requires about 150 and 200 ms on an
off-the-shelf Android smartphone. Again, uCentive’s se-
curity and privacy properties are only informally stated
and no rigorous proofs are given.

1.3 Basic Notation

Throughout the paper, k ∈ N denotes a security param-
eter. For a finite set S, we denote by s ← S the pro-

cess of sampling s uniformly from S. For a probabilistic
algorithm A, we denote with RA the space of A’s ran-
dom coins. y ← A(x; r) denotes the process of running
A on input x and with uniform randomness r ∈ RA,
and assigning y the result. We write y ← A(x) for
y ← A(x; r) with uniform R. If A’s running time is poly-
nomial in k, then A is called probabilistic polynomial-
time (PPT). We call a function η negligible if for every
polynomial p there exists k0 such that for all k ≥ k0
holds |η(k)| ≤ 1

p(k) .

2 Black-Box Accumulation
Before formally defining black-box accumulation (BBA)
schemes, we first give an informal overview of how BBA
schemes are intended to be used by the different parties
to realize privacy-preserving point accumulation and re-
demption.

2.1 Informal Description

Typically, there will be the following parties involved:
an issuer I who generates and redeems accumulation to-
kens of multiple users Ui as well as a number of accumu-
lators ACCj with whom users interact to add points to
their accumulation tokens. I and ACCj share the same
secret key in order to generate tokens and add points
to these tokens, respectively. They may even coincide
in some scenarios. The corresponding public key is used
by the issuer and the users (or potentially some external
party, e.g., an authority) to verify that a given token has
a certain claimed value. Users are not required to gen-
erate any key pair up front in order to participate in the
system. However, they will generate some short-term se-
crets on-the-fly to blind their accumulation tokens for
the different transactions.

The typical usage of a BBA scheme is illustrated in
Fig. 1 and described in the following. First, the following
steps are performed once to setup the system:
– Parameter generation: First, common system pa-

rameters are generated by running a setup algo-
rithm CRS ← Setup(1k). (For example, we will later
describe a construction where the CRS consists of a
description of an algebraic group and a common ref-
erence string for a non-interactive zero-knowledge
proof system.) We will assume that these param-
eters are generated in a trustworthy environment,
that is, not by a possibly malicious issuer or possi-

Black-Box Accumulation 66

Issuing token τ with serial number s and initial value v0

U(pk) I(sk)
Apply CheckTokVal to τ

τ, s, v0←−−−−−−

Accumulation of vi using token τ

U(pk, τ, s, w) ACCj(sk)

Blind τ yielding {τ}
{τ}

−−−−−−→ Apply Acc to {τ}

Unblind {τ̃} yielding τ
{τ̃}, vi←−−−−−− and vi yielding {τ̃}

Redeeming τ with value w

U(pk, τ, s, w) I(pk)
Apply PrepVer to τ
yielding ρ

ρ, s, w
−−−−−−→ Apply Ver to ρ

Fig. 1. Sketch: Typical usage of a BBA scheme (informal)

bly malicious users. This can be realized in practice
either by assuming an external trustworthy party
that generates these parameters once, or by letting
a set of mutually distrusting parties perform a mul-
tiparty computation protocol to compute the CRS .

– Issuer/Accumulator key generation: Once the CRS
is fixed, the issuer I generates a key pair by running
a key generation algorithm (pk, sk) ← Gen(1k). We
assume that the public key pk is publicly available
to all users Ui. The secret key sk is shared with all
ACCj .
After that, the different parties will be able to en-

gage in the following protocols to generate tokens, add
values to them, and redeem claimed amounts.
– Token issuing: I can generate a new accumulator

token τ with initial value v0 (usually equal to 0) and
unique serial number s by running some algorithm
Issue(sk, s, v0). A user U which is given τ along with
s and v0 may verify that indeed τ is a valid accu-
mulation token by running a verification algorithm
CheckTokVal(pk, τ, s, v0) = 1.

– Point accumulation: Let τ denote the accu-
mulation token of user U , and assume that
CheckTokVal(pk, τ, s, w) = 1, thus, τ has value w.
In order to add a value v to τ , U and ACC perform
the following steps:
1. U first runs a blinding algorithm ({τ}, r) ←

Blind(pk, τ, s, w) to create a blinded version of
the accumulation token τ , denoted by {τ}, and
an unblinding trapdoor r (i.e., a secret value
only known to the user which is required to
remove the blinding after accumulation). The

blinded token {τ} is sent to ACCj . Tokens are
blinded in order to achieve unlinkability of exe-
cutions of the accumulation protocol.

2. ACC runs {τ̃} ← Acc(sk, {τ}, v) and returns a
token {τ̃}. This token is supposed to have a
value of w + v points but might not be a valid
“regular” token in the sense of CheckTokVal yet.
To transform it to such a token an unblinding
operation might be required.

3. U runs τ̃ ← Unblind(pk, {τ̃}, s, r, w+v) to obtain
an unblinded version of his updated token {τ̃}.
Note that Unblind may return ⊥ in case it is
not able to return a valid token in the sense of
CheckTokVal.

– Token verification and redemption. Finally, in or-
der to convince any party (either the issuer or some
other third party) that an accumulation token τ

has a certain value w in a privacy-preserving way
(that is, unlinkable to any execution of the ac-
cumulation protocol), user U runs algorithm ρ ←
PrepVer(pk, τ, s, w) to prepare a so-called verifica-
tion token for τ . Then it sends (ρ, s, w) to the veri-
fying party. A verification token can be publicly ver-
ified by running a verification algorithm Ver. Given
(ρ, s, w), the token is accepted with serial number s
and value w if and only if Ver(pk, ρ, s, w) = 1.

2.2 Formal Definitions

The following definition specifies the different algo-
rithms we have already seen in use above in a more
formal fashion.

Definition 2.1 (BBA Scheme). A non-interactive
black-box accumulation scheme BBA with serial number
space S and aggregation value space V ⊂ N0 consists of
the following PPT algorithms:
– Setup(1k) takes a security parameter 1k as input
and returns some public parameters CRS , called the
common reference string. We assume that CRS is
given as implicit input to all other algorithms de-
scribed below.

– Gen(1k) takes a security parameter 1k as as input
and returns a public and private key pair (pk, sk).

– Issue(sk, s, v0) is given a secret key sk, a serial num-
ber s ∈ S, and a value v0 ∈ V and returns an accu-
mulation token τ .

Black-Box Accumulation 67

– CheckTokVal(pk, τ, s, w) is given a public key pk, ac-
cumulation token τ , serial number s, and a value
w ∈ V. It returns 0 or 1.

– Blind(pk, τ, s, w) is given the public key pk, an accu-
mulation token τ , a serial number s ∈ S, and the
current token value w ∈ V and returns ({τ}, r) or
⊥, where {τ} is a blinded accumulation token and r
is an unblinding-trapdoor.

– Acc(sk, {τ}, v) takes the secret key sk, a blinded ac-
cumulation token {τ}, and a value v ∈ V as input
and returns an updated blinded accumulation token
{τ̃} or ⊥.

– Unblind(pk, {τ̃}, s, r, w) is given the public key pk, a
blinded accumulation token {τ̃}, a serial number s ∈
S, an unblinding-trapdoor r, and the current token
value w ∈ V and returns an unblinded accumulation
token τ̃ or ⊥.

– PrepVer(pk, τ, s, w) is given the public key pk, an ac-
cumulation token τ , a serial number s ∈ S, and the
current token value w ∈ V and returns some veri-
fication token ρ for τ (which might be τ itself) or
⊥.

– Ver(pk, ρ, s, w) takes the public key pk, a verification
token ρ, a serial number s ∈ S, and some value
w ∈ V as input and returns 1 or 0.
BBA is correct if all the following properties hold for

all k, n ∈ N, s ∈ S, CRS ← Setup(1k), and (pk, sk) ←
Gen(1k).
Correctness of issuing. For all values v0 ∈ V

and tokens τ ← Issue(sk, s, v0) holds that
Pr[CheckTokVal(pk, τ, s, v0) = 1] = 1.

Correctness of accumulation. For all w ∈ V and to-
kens τ with Pr[CheckTokVal(pk, τ, s, w) = 1] = 1 and
all v ∈ V with w + v ∈ V, we have

Pr [CheckTokVal(pk, τ̃ , s, w + v) = 1] = 1

Here, τ̃ is computed by first running ({τ}, r) ←
Blind(pk, τ, s, w), and then {τ̃} ← Acc(sk, {τ}, v),
followed by τ̃ ← Unblind(pk, {τ̃}, s, r, v + w).

Correctness of token verification. For all w ∈ V
and tokens τ with Pr[CheckTokVal(pk, τ, s, w) = 1] =
1 we have Pr [Ver(pk, ρ, s, w) = 1] = 1, where ρ ←
PrepVer(pk, τ, s, w).

Security. Our security definition will capture the fol-
lowing notion: an adversary (who possibly impersonates
a group of colluding malicious users) should not be able
to redeem more points than actually issued to him. To
reach his goal the adversary is not restricted to use a sin-

gle accumulation token but he may use as many tokens
in parallel as he needs. This seems to properly model
an adversary’s capabilities in many practical scenarios.
Note that we will not consider it a security breach if an
adversary (or regular user) may be able to “transfer”
points from one accumulation token to another as long
as these point cannot be redeemed twice.3

Our formal security definition is inspired by the
indistinguishability-based security definition for a pre-
payments with refunds scheme proposed in [26]. In se-
curity experiment (cf. Fig. 2), we consider a PPT ad-
versary A interacting with an (honest) Issue oracle is-
suing m tokens and an (honest) Acc oracle performing
n accumulations. Note that all other operations do not
depend on the secret key of the issuer and, thus, the
adversary can perform those operations on its own. In
this way, the adversary may generate an arbitrary (but
polynomial) number of accumulation tokens which he
can use to collect an arbitrary (but polynomial) number
of points. In the end, the adversary outputs an arbitrary
number of verification tokens including the claimed se-
rial numbers and accumulated points corresponding to
these tokens: (ρ∗1, s∗1, w∗1), . . . , (ρ∗` , s∗` , w∗`). He wins if all
tokens are valid and (1) one of these tokens belongs to
a new serial number which has not been issued or (2)
the claimed total amount of collected points is higher
than what has actually been issued during the game.
Of course, in the formal definition also some side condi-
tions need to be satisfied (a claimed serial number may
not appear twice, etc.).

Definition 2.2 (Security). A BBA scheme BBA is
called accumulation secure if for all PPT adversaries
A in the experiment Expacc-sec

BBA,A(k) from Figure 2 the ad-
vantage of A defined by

Advacc-sec
BBA,A(k) := Pr[Expacc-sec

BBA,A(k) = 1]

is negligible in k.

Privacy (informal). Intuitively, we want to ensure
that it is not possible to “track users”, that is, to link a
given accumulation token to any accumulation or oper-
ation. This should hold even if the issuer and the accu-
mulator collude and the issuer generates its public key
in a malicious way (to enable tracking of users).

3 In fact, it seem to be pretty difficult to model non-
transferability in a scenario where an adversary may use multiple
tokens in parallel as blinded accumulation transactions do not
allow to associate an issued refund with a specific token.

Black-Box Accumulation 68

Experiment Expacc-sec
BBA,A(k)

CRS ← Setup(1k)
(pk, sk)← Gen(1k)
(ρ∗1, s∗1, w∗1), . . . , (ρ∗` , s∗` , w∗`)
← AIssue(sk,·,·),Acc(sk,·,·)(1k,CRS , pk)
Let (s1, u1), . . . , (sm, um) denote A’s inputs to the
Issue oracle and v1, . . . , vn its inputs as third pa-
rameter to the Acc oracle during the execution.
The experiment returns 1 iff the following condi-
tions are satisfied:
– s∗1, . . . , s

∗
` are pairwise distinct elements of S

– w∗1 , . . . , w
∗
` are elements of V

– for all 1 ≤ i ≤ ` it holds that
1← Ver(pk, ρi, s∗i , w∗i)

– there exists i ∈ {1, . . . , `} such that s∗i 6∈
{s1, . . . , sm} or

∑`
i=1 w

∗
i >

∑m
i=1 ui +

∑n
i=1 vi

Fig. 2. A security experiment for BBA.

To formally capture this intuition, we model the col-
lusion of issuer and accumulator as an adversary in the
security experiment described in Fig. 3. We want to en-
sure that any two blinded tokens that the adversary re-
ceives in the accumulation protocol “look independent
of each other” (for the adversary), which implies the
desired unlinkability. Moreover, we want that it is not
possible to link a given verification token to any previ-
ous accumulation operation.

To this end, we compare this “real” experiment with
an “ideal” experiment (defined in Fig. 4). The main dif-
ference in the ideal experiment is that blinded tokens
are generated differently. In particular, all blinded to-
kens are generated independent of each other, and in-
dependent of any sequence number or token value, only
depending on the adversary’s public key. Moreover, the
token verification at the end of the experiment depends
only on the final accumulated value and serial number of
the token. Thus, blinded tokens and verification tokens
are trivially unlinkable in the “ideal” experiment.

If we can show that indeed both these experiments
are computationally indistinguishable for a given BBA
scheme, then this implies that no collusion of issuer and
accumulator is efficiently able to link any two transac-
tions (neither two accumulation operations, nor a veri-
fication operations and any accumulation operation).
Privacy definition. More precisely, we define privacy
by two experiments Exppriv-real

BBA,A and Exppriv-ideal
BBA,A involv-

ing an adversary A and a BBA scheme BBA, cf. Fig. 3

and 4. In the “real” experiment Exppriv-real
BBA,A we consider

an adversary A = (A0,A1,A2) which first generates a
public key pk along with a triplet (τ0, s, w0). The triplet
consists of an accumulation token τ0 with serial num-
ber s and initial token value w0. Note that τ0 may be
generated by A by running τ0 ← Issue(sk, s, w0) for ar-
bitrary (s, w0), however, A may also have computed τ0
completely differently, possibly maliciously in order to
break privacy. Then the adversary interacts with a user
U to accumulate points.

In the “ideal” experiment Exppriv-ideal
BBA,A , we replace

procedures Setup, PrepVer, and Blind with “simulated”
procedures SimSetup, SimPrepVer, and SimBlind. The
main difference is that SimSetup produces a CRS along
with an additional trapdoor td. This trapdoor is used
in SimBlind and SimPrepVer. In particular, note that the
blinded tokens {τi−1} computed by SimBlind in exper-
iment Exppriv-ideal

BBA,A depend only on pk, and thus in par-
ticular are independent of s, w, and any previously re-
ceived tokens. This guarantees unlinkability of differ-
ent executions of the accumulation protocol. Moreover,
SimPrepVer does not depend on any previously received
tokens, but only on the serial number s and the cor-
responding accumulated value w. This guarantees that
the adversary learns only the trivial information that
the token with serial number s has value w, but it is
impossible to link it to previous executions of the accu-
mulation protocol, because they are independent.

For the privacy definition it is sufficient to consider
a single serial number, because it implies privacy in a
setting with many serial numbers.

Definition 2.3. We say that a BBA scheme BBA
achieves privacy, if there exist PPT algorithms
(SimSetup,SimBlind,SimPrepVer) such that for all PPT
adversaries A in the experiments from Fig. 3 and 4, the
advantage Advpriv

BBA,A(k) of A defined by∣∣∣Pr[Exppriv-real
BBA,A (k) = 1]− Pr[Exppriv-ideal

BBA,A (k) = 1]
∣∣∣

is negligible in k.

Not that the security model allows the attacker to shift
points among different users. We believe that this is suf-
ficient for many applications, as it guarantees the total
number of points redeemed must not exceed the total
number of points issued.

We note that our construction described below
might even achieve a stronger security notion, where
shifting of points should not be possible. However, there
is a technical difficulty in defining this form of security
properly in a formal model. The reason is essentially

Black-Box Accumulation 69

Experiment Exppriv-real
BBA,A (1k)

CRS ← Setup(1k)
(pk, (τ0, s, w0), state0)← A0(1k,CRS)
If CheckTokVal(pk, τ0, s, w0) = 0 set τ0 := ⊥
state1 ← AU(pk,(τ0,s,w0))

1 (state0)
ρ← PrepVer(pk, τn, s, wn)
b← A2(state1, ρ)
Here U is a stateful oracle, which interacts with A1
exactly n times to mimic a user of the BBA scheme.
The i-th interaction between A1 and U proceeds as
follows:
1. A1 outputs vi ∈ V,
2. U runs ({τi−1}, ri) ← Blind(pk, τi−1, s, wi−1)

and outputs {τi−1} to A1. A1 responds with
an accumulated blinded token {τ̃i}.

3. U sets wi := wi−1 + vi and computes τi by
running τi ← Unblind(pk, {τ̃i}, s, ri, wi).

Fig. 3. A real privacy experiment for BBA.

that in the security experiment all tokens observed by
the challenger are blinded, in order to achieve privacy.
Therefore the challenger has no way to learn which to-
ken should have which value at the end of the exper-
iment. This makes it difficult for the challenger (or a
reduction simulating the challenger in a security proof)
to determine whether the adversary “wins” by shift-
ing points from one token to another: the challenger
knows only the total value of issued points and sees
only blinded tokens. We consider it as an interesting
open problem to overcome this issue.

3 A Generic Construction
In the following, we will present our generic construction
of a BBA scheme building on abstract cryptographic
building blocks. We start by reviewing these standard
building blocks in Section 3.1 before considering the
construction in Section 3.2. The proofs of security and
privacy for the scheme can be found in the appendix in
Sections B and C, respectively.

3.1 Building Blocks

We will make use of homomorphic commitments, (or-
dinary) digital signatures, and non-interactive proofs of

Experiment Exppriv-ideal
BBA,A (1k)

(CRS , td)← SimSetup(1k)
(pk, (τ0, s, w0), state0)← A0(1k,CRS)
If CheckTokVal(pk, τ0, s, w0) = 0 set τ0 := ⊥
state1 ← AUsim(pk,s,w0)

1 (state0)
ρ← SimPrepVer(td, pk, s, wn)
b← A2(state1, ρ)
Here Usim is a stateful oracle, which interacts with
A1 exactly n times. The i-th interaction between
A1 and Usim proceeds as follows:
1. A1 outputs vi ∈ V,
2. Usim runs ({τi−1}, ri) ← SimBlind(td, pk) and

outputs {τi−1} to A1. A1 responds with {τ̃i}.
3. Usim sets wi := wi−1 + vi and computes τi by

running τi ← Unblind(pk, {τ̃i}, s, ri, wi).

Fig. 4. An ideal privacy experiment for BBA.

knowledge. In the following, these building blocks are
only described in an informal fashion. Formal definitions
can be found in Appendix A.
Commitment schemes. A commitment scheme al-
lows a user to commit to a message and publish the
result, called commitment, in a way that the message is
hidden from others, but also the user cannot change the
message he has committed to afterwards when he opens
the commitment.

More precisely, a non-interactive commitment
schemes consists of two algorithms Setupcom and Com.
Setupcom generates some public parameters CRScom
for the scheme. Com takes a message m and a ran-
domness r besides the public parameters and out-
puts a commitment c to m. To open the commit-
ment, i.e., prove that c contains m, it suffices to re-
veal m, r (called opening information) and check that
Com(CRScom,m, r) indeed yields c. On the one hand,
the value c should not reveal information about m

(hiding) to an efficient adversary. On the other hand,
it should also be hard to find (m′, r′) 6= (m, r) such
that c = Com(CRScom,m

′, r′) (binding). A commit-
ment scheme is called additively homomorphic if given
two commitments c = Com(CRScom,m, r) and c′ =
Com(CRScom,m

′, r′), one can efficiently combine these
commitments, using an algorithm CAdd, resulting in c′′

such that c′′ = Com(CRScom,m+m′, r + r′).
Digital signatures. A digital signature scheme con-
sists of a key generation algorithm Gensig which outputs

Black-Box Accumulation 70

a secret key sk and a public key pk, a signing algorithms
Sign which outputs a signature σ on input of a message
m and sk, and the verification algorithm Versig which on
input pk, m, and σ decides whether σ is a correct sig-
nature on m. A signature scheme is called EUF-CMA
secure if for any efficient adversary given pk and access
to a signature oracle which signs arbitrary messages of
his choice, the adversary is not able to compute a sig-
nature to a new message.
NIZK-PoK. Let R be a witness relation for some NP
language LR = {x | ∃z s.t. (x, z) ∈ R} (e.g, (x, z) ∈ R
if gz = x for some fixed group generator g). Informally
speaking, a zero-knowledge proof of knowledge scheme
is a system that allows a prover P to convince a verifier
V that he knows a witness z to some x given to V , i.e.,
that (x, z) satisfies the relation R, without V learning
anything beyond that fact. In a non-interactive zero-
knowledge proof of knowledge (NIZK-PoK) only one
message is sent from P to V for that purpose.

More precisely, a NIZK-PoK consists of three al-
gorithms Setuppok,Prove,Verpok. Setuppok(1k) outputs a
common reference string (CRS) CRS . Prove(CRS , x, z)
on input of a statement x and a witness z outputs a
proof π, and Verpok(CRS , x, π) outputs 1 if π is a valid
proof for x ∈ LR, and 0 otherwise. The proof system
is called complete if Verpok(CRS , x, π) always accepts
proofs generated by Prove(CRS , x, z) for (x, z) ∈ R. It
is called extractable (or sound) if there exists an extrac-
tor algorithm that is able to (1) output some special
CRS (including trapdoor information) indistinguishable
from a real CRS and (2) extract a witness from a valid
proof that has been generated using this special CRS.
The proof system is called zero-knowledge if there exists
a simulator algorithm that is able to (1) output some
special CRS (including trapdoor information) indistin-
guishable from a real CRS and (2) by means of this
special CRS and the trapdoor to generate a valid proof
for x ∈ LR without knowing a witness for x.

3.2 Our Construction

In the following, we present a generic construction of a
BBA scheme building on homomorphic commitments,
signatures, and NIZK-PoKs. The underlying idea of our
scheme is as follows: An initial accumulation token τ

essentially consists of a commitment c1 on the serial
number s of the token, a commitment c2 on its initial
value v0, and a signature σ on these two commitments
generated by the issuer. Note that all these values, and
in particular τ , are known to the issuer. The signature

certifies that τ is a valid token with value v0. To blind
τ before accumulation, the two commitments are re-
randomized, yielding c′1 and c′2. Additionally, the signa-
ture is replaced by a NIZK-PoK π showing that the new
commitments are indeed re-randomizations of commit-
ments for which the user knows a valid signature. This
yields the blinded token {τ}. During accumulation, the
homomorphic property of the commitment c′2 is used
to blindly add the value v to the token, yielding a new
commitment c′′2 . To certify the new token value, c′1 and
c′′2 are simply signed by the accumulator. The result-
ing token {τ̃} is a valid accumulation token again which
does (actually) not need to be unblinded to be used
to accumulate further values. To prepare an accumu-
lation token for verification, the blinding procedure as
described above is applied, but additionally the content
of the token, i.e., the serial number s and the value w,
are revealed.
Details of our scheme BBA. The algorithms of our
BBA scheme are described in Figures 5 to 7. More pre-
cisely, Figure 5 specifies the setup and key generation
algorithms, Figure 6 describes the algorithms required
by the issuer/accumulator party, and Figure 7 gives the
details of the algorithms required by the user.

The scheme has serial number space S ⊂ N0 and
aggregation value space V ⊂ N0, which both may de-
pend on the security parameter. As an important in-
gredient, we need an additively homomorphic com-
mitment scheme COM := (Setupcom,Com,CAdd) that
is perfectly binding and computationally hiding (cf.
Definition A.1). Its message space needs to include
S and V and addition of messages needs to coincide
with the usual addition over N0.4 Furthermore, we
make use of an EUF-CMA secure signature scheme
SIG := (Gensig, Sign,Versig) to sign commitments. Fi-
nally, we need a non-interactive zero-knowledge proof
of knowledge (NIZK-PoK) to show that two given
commitments c′1, c′2 are re-randomizations of commit-
ments c1, c2 for which a valid signature σ is known.
More precisely, we consider a NIZK-PoK POK =
(Setuppok,Prove,Verpok) for a witness relation R describ-

4 Actually, to be even more generic, we could let S be an ar-
bitrary set for which there is a (separate) re-randomizable com-
mitment scheme.

Black-Box Accumulation 71

Setup(1k)

CRScom ← Setupcom(1k)

CRSpok ← Setuppok(1k)

CRS := (CRScom,CRSpok)

return CRS

Gen(1k)

(pk, sk)← Gensig(1k)

return (pk, sk)

Fig. 5. Our BBA scheme: setup and key generation

ing the language Lpok
(CRScom,pk) defined by(c′1, c′2)

∣∣∣∣∣∣∣∣
∃c1, c2, σ, t

′
1, t
′
2 :

c′1 = CAdd(c1,Com(CRScom, 0, t′1))
c′2 = CAdd(c2,Com(CRScom, 0, t′2))
Versig(pk, σ, c1||c2) = 1


Here, CRScom ← Setupcom(1k) and (sk, pk) ←
Gensig(1k). We demand that for any (x, z) ∈ R the
witness z contains c1, c2, and σ in “plain” but not
necessarily the commitment randomness t′1 and t′2.
That means, the witness may be of the form z =
(c1, c2, σ, φ1(t′1), φ2(t′2)), where φ1, φ2 are some functions
from R to R′ ⊂ {0, 1}poly(k) for some polynomial poly.
In the simplest case, R′ = R and φ1 = φ2 is the iden-
tity function. For understanding the construction it is
best to think of this case. However, when we use Groth-
Sahai proofs for implementing the NIZK-PoK later, φ1
and φ2 will be some injective functions, mapping t′1 and
t′2 to a unique implicit representation, respectively. For
our security proofs, we will only need to be able to ex-
tract c1, c2, and σ and do not care about the rest of the
witness.
Correctness. Let s ∈ S, v0, v, w, v + w ∈ V and let us
assume the system has been properly setup, i.e., CRS ←
Setup(1k), (pk, sk)← Gen(1k).

Correctness of issuing: Consider the accumulation
token τ = (c1, c2, σ, t1, t2) ← Issue(sk, s, v0). Here
c1 is a commitment on s with randomness t1, c2
is a commitment on v0 with randomness t2 and σ

is a signature under sk on the two commitments.
This is exactly what CheckTokVal checks, so clearly
CheckTokVal(pk, τ, s, v0) = 1.

Correctness of accumulation: Let us assume
we have some τ = (c1, c2, σ, t1, t2) such that
CheckTokVal(pk, τ, s, w) = 1. Blinding τ results in {τ} :=
(c′1, c′2, π), r := (t1 + t′1, t2 + t′2), where due to the homo-
morphic property of COM, c′1 = Com(CRScom, s, t1 + t′1)
and c′2 = Com(CRScom, w, t1 + t′1) are re-randomizations
of c1 and c2. Moreover, π is a NIZK-PoK showing
that c′1 and c′2 are indeed re-randomizations for which

Issue(sk, s, v0)

t1, t2 ←R

c1 := Com(CRScom, s, t1)

c2 := Com(CRScom, v0, t2)

σ := Sign(sk, c1||c2)

return τ := (c1, c2, σ, t1, t2)

Acc(sk, {τ}, v)

parse (c′
1, c

′
2, π) := {τ}

If Verpok(CRSpok, π, (c′
1, c

′
2)) = 0 then return ⊥

c1 := c′
1, c2 := CAdd(c′

2,Com(CRScom, v, 0))

σ := Sign(sk, c1||c2)

Return {τ̃} := (c1, c2, σ)

Ver(pk, ρ, s, w)

parse (c′
1, c

′
2, r1, r2, π) := ρ

if c′
1 = Com(CRScom, s, r1) and

if c′
2 = Com(CRScom, w, r2) and

if Verpok(CRSpok, π, (c′
1, c

′
2)) = 1

return 1

else return 0

Fig. 6. Our BBA scheme: Issuer/Accumulator algorithms

the user knows the original commitments c1 and c2
as well as a signature σ on those. This proof is valid
as it has been generated with a correct witness z =
(c1, c2, σ, φ1(t′1), φ2(t′2)). The result of Acc(sk, {τ}, v) is
{τ̃} := (c′′1 , c′′2 , σ′′) as the verification of π will pass when
everything is generated honestly. As COM is additively
homomorphic, it holds that c′′2 = Com(CRScom, w +
v, t1 + t′1). The commitment c′′1 equals c′1 from before
and σ′′ is a valid signature on c′′1 and c′′2 . Finally,
Unblind(pk, {τ̃}, s, r, w+ v) will yield τ̃ = (c′′1 , c′′2 , σ′′, t1 +
t′1, t2 + t′2), a valid accumulation token with value w+v.
Hence CheckTokVal(pk, τ̃ , s, w + v) will return 1.

Correctness of token verification: Let us as-
sume we have some τ = (c1, c2, σ, t1, t2) such
that CheckTokVal(pk, τ, s, w) = 1. When we apply
PrepVer(pk, τ, s, w), we obtain ρ := (c′1, c′2, r1, r2, π)
which results from simply running Blind(pk, τ, s, w). As
we argued before, Blind will output valid re-randomized
commitments c′1 and c′2 to s and w with randomness
r1 and r2, respectively, as well as a valid NIZK-PoK π.
Hence, Ver(pk, ρ, s, w) = 1.
Security and Privacy. Informally speaking, the se-
curity of our scheme follows from the fact that the in-
tegrity and authenticity of an accumulation token is

Black-Box Accumulation 72

CheckTokVal(pk, τ, s, w)

parse (c1, c2, σ, r1, r2) := τ

if c1 = Com(CRScom, s, r1) and
if c2 = Com(CRScom, w, r2) and
if Versig(pk, σ, c1||c2) = 1

return 1

else return 0

Blind(pk, τ, s, w)

If τ = ⊥ return ⊥
parse (c1, c2, σ, t1, t2) := τ

t′1, t
′
2 ←R

c′
1 := CAdd(c1,Com(CRScom, 0, t′1))

c′
2 := CAdd(c2,Com(CRScom, 0, t′2))

π := Prove(CRSpok, (c′
1, c

′
2), (c1, c2, σ, φ1(t′1), φ2(t′2)))

{τ} := (c′
1, c

′
2, π), r := (t1 + t′1, t2 + t′2)

return ({τ}, r)

Unblind(pk, {τ̃}, s, r, w)

parse (c1, c2, σ) := {τ̃}

parse (r1, r2) := r

τ̃ := (c1, c2, σ, r1, r2)

if CheckTokVal(pk, τ̃ , s, w) 6= 1 return ⊥
return τ̃

PrepVer(pk, τ, s, w)

if τ = ⊥ return ⊥
((c′

1, c
′
2, π), (r1, r2))← Blind(pk, τ, s, w)

return ρ := (c′
1, c

′
2, r1, r2, π)

Fig. 7. Our BBA scheme: User algorithms

protected at any time by a “chain of certificates” (real-
ized by means of the binding property of the commit-
ment, the security of the signature, and the soundness
of the NIZK-PoK): The initial content of the two com-
mitments which are part of the token, i.e., the serial
number and the initial value, as well as the commit-
ments itself are known to the issuer which certifies the
token by signing the commitments. In the first accumu-
lation, the accumulator can be sure that it has received
a well-formed re-randomization of a certified token (due
to the NIZK-PoK). It then manipulates the token by
adding v points and certifies this altered token. This
add-and-certify step is repeated until the token is fi-
nally redeemed, where the verifier can also be sure that
it received a certified token.

Privacy essentially follows from the fact that the
commitments belonging to a token are always re-
randomized before they are handed over to an accumu-
lator. This prevents a trivial way of linking a blinded to-
ken to the original token by means of the contained com-
mitments. Moreover, the commitment scheme (compu-
tationally) hides the content of these randomized com-
mitments. Finally, the zero-knowledge property of the
proof of knowledge contained in the blinded token also
does not reveal anything about the original commit-
ments nor the signature on those commitments.

More formally, we can prove the following theorems.
Their proofs can be found in Appendix B and C. The
security reduction is tight (cf. Eq. (3) in Appendix B),
whereas in the privacy reduction we lose a factor equal
to the number of interactions with the user oracle in the
real/ideal experiment (cf. Eq. (12) in Appendix C).

Theorem 3.1 (Accumulation Security). If COM is
perfectly binding, SIG is EUF-CMA secure, and POK is
extractable (sound), then BBA is accumulation secure.

Theorem 3.2 (Privacy). If COM is computationally
hiding and POK is zero-knowledge, then BBA achieves
privacy.

4 Instantiation and Efficiency

Pairings. Both the Groth-Sahai-based proof system
and the signature scheme that we will use to instantiate
our generic construction are based on algebraic groups
with bilinear pairing maps. Pairings are a widely-used
standard tool in cryptography, therefore we recall their
definition only briefly.

Let G1,G2,GT be groups of prime order p with
generators g1, g2. Let e : G1 × G2 → GT be a map
which (i) is efficiently computable, (ii) it holds that
e(ga1 , gb2) = e(g1, g2)ab for all a, b ∈ Zp, and (iii) e(g1, g2)
is a generator of GT .

Bilinear maps are useful, because they allow to com-
pute a single “multiplication in the exponent”. That is,
given two group elements ga1 and gb2, we can efficiently
compute e(ga1 , gb2) = gabT , where e(g1, g2) = gT .
Implicit notation. In the sequel we use the “im-
plicit” notation introduced in [16] to simplify our no-
tation. That is, for groups G1,G2,GT of prime order
p with generators g1, g2, gT , respectively, and pairing
e : G1 × G2 → GT , we define

[a]i := gai

Black-Box Accumulation 73

for a ∈ Zp and i ∈ {1, 2, T}. We generalize this notation
to vectors and matrices, writing

[a]i := (ga1
i , . . . , gan

i)> and [A]i := (gau,v

i)u,v ∈ Gn×mi

for a = (a1, . . . , an)> ∈ Znp and A = (au,v)u,v ∈ Zn×mp .
Note that we use bold-face notation for vectors and ma-
trices.

We use additive notation to denote the group opera-
tion for group elements in implicit representation. That
is,

gai · gbi = [a]i + [b]i
We use the multiplication symbol · to denote the ap-
plication of the bilinear map for elements in implicit
representation. That is,

[a]1 · [b]2 = e(ga1 , gb2) = gabT = [ab]T

for e(g1, g2) = gT . This notation generalizes to vectors
and matrices in the natural way.
Complexity assumption. Our construction relies on
the SXDH assumption in bilinear groups, which essen-
tially asserts that the DDH assumption holds in both
source groups of the pairing.

Definition 4.1. We say that the DDH assumption
holds in group G of order p, if

AdvDDH
A (1k) := Pr

[
b = b′ : a, b, c← Zp; b← {0, 1}

b′ ← A([(1, a, b, c)])

]
is a negligible function in k for all polynomial-time al-
gorithms A.

We say that the SXDH-assumption holds in groups
G1,G2 with pairing e : G1 × G2 → GT , if the DDH as-
sumption holds in both G1 and G2.

4.1 Building Blocks

Let us instantiate the abstract building blocks intro-
duced in Section 3.1.
Additively and multiplicatively homomorphic
commitments. For G ∈ {G1,G2}, we use the SXDH-
based (cf. Definition 4.1) commitment scheme of [20] to
commit to elements of G. This commitment scheme can
be viewed both as an additively-homomorphic commit-
ment scheme with message space Zp, or alternatively as
a multiplicatively-homomorphic scheme with message
space G. A commitment to a single G-element (or Zp-
element) consists of two elements of G.

A commitment to [m] ∈ G (resp. m ∈ Zp) is com-
puted as follows.

– Setupcom defines CRScom := [U] =
(

1 β
α αβ

)
for uni-

formly random α, β ← Zp, and outputs CRScom.
– Com takes as input CRScom = [U], message [m] ∈ G,

and randomness r← Z2
p, and computes the commit-

ment as c := [(0
m) + Ur] ∈ G2.

Theorem 4.2 ([20]). The above commitment scheme is
perfectly binding and computationally hiding under the
SXDH-assumption.

Groth-Sahai proofs for pairing-product equa-
tions. Classical non-interactive proof systems for gen-
eral NP languages are rather theoretical tools, because
known constructions are too inefficient to be used in
practice. At Eurocrypt 2008, Groth and Sahai [20] pre-
sented very efficient proof systems for certain, restricted
languages defined over algebraic groups (actually mod-
ules, which is more general). In particular, Groth and
Sahai described efficient proof systems for the satisfia-
bility of so-called pairing-product equations (PPEs, for-
mally defined below). Many useful languages can be
described as sets of PPEs. In particular, when we in-
stantiate our generic BBA construction with the “right”
building blocks (namely, compatible commitment and
signature schemes), then we can use the very efficient
Groth-Sahai proof system for PPEs to efficiently instan-
tiate our generic BBA construction.

In the sequel let G1,G2,GT be groups of prime or-
der p with pairing e : G1 × G2 → GT and fixed gener-
ators g1, g2, gT defining our implicit notation. We con-
sider the special case of the SXDH-based instantiation
of GS-proofs from [20].

Definition 4.3. A pairing product equation (PPE) has
the form

[a]1 · [y]2 + [x]1 · [b]2 + [x]1 · Γ [y]2 = [t]T (1)

where [a]1 ∈ Gn1 , [b]2 ∈ Gm2 , Γ ∈ Zm×np , and [t]T ∈
GT are constants, and [x]1 ∈ Gm1 and [y]2 ∈ Gn2 are
variables.

As explained in [20], GS-proofs are zero knowledge
for pairing product equations with [t]T = [0]T . More-
over, GS-proofs can be set up in a “witness-extractable”
mode, so that they form efficient proofs-of-knowledge.
Thus, they possess all required properties from Defini-
tion A.3. In the SXDH-based setting, proofs consist of
two group elements for each variable, plus eight group
elements for each pairing product equation.

Black-Box Accumulation 74

Structure-preserving signatures. We finally need
a signature scheme which is “compatible” with Groth-
Sahai proofs to instantiate our construction. We need
a signature scheme, where public keys, messages, and
signatures are group elements, and verification corre-
sponds to checking whether a given set of PPEs is
satisfied. Such signature schemes are called “structure-
preserving” [5].

We use the optimal structure-preserving signature
scheme of Abe et al. [6], which currently is the most
efficient known structure-preserving signature scheme
(and shown to be optimal in [6]), to instantiate the
signature scheme in the generic construction from Sec-
tion 3.2. The scheme of Abe et al. has a security proof in
the generic group model [27], which we consider as rea-
sonable to find an as-efficient-as-possible instantiation.
Alternatively, we could have used the currently most-
efficient standard model scheme of [23], which, however,
is significantly less efficient than [6].
Key generation. The key generation algorithm

Gensig takes as input group parameters ΠG =
(p,G1,G2,GT , e, [1]1 , [1]2) (which are assumed to
be generated according to a given security parame-
ter 1k) and integers µ, ν ∈ N0 defining the message
space of the signature scheme as Gν1 ×G

µ
2 . It chooses

random vectors g ← Zµp and h ← Zνp and integers
λ, λ′ ← Zp. The public verification key pk is defined
as

pk := ([g]1 ,
[
h, λ, λ′

]
2) ∈ Gµ1 × G

ν+2
2

and the corresponding secret key is sk as

sk := (g,h, λ, λ′) ∈ Zµ+ν+2
p

Signing. Given a secret key sk = (g,h, λ, λ′) and a
message ([m]1 , [n]2) ∈ Gν1 × G

µ
2 , the signing algo-

rithm Sign chooses r ← Zp computes σ1 = [r]1 and

σ2 =
[
λ′ − rλ−m>h

]
1 , σ3 =

[
(1− n>g)/r

]
2

and returns σ = (σ1, σ2, σ3).
Verification. The verification algorithm Versig is given

a verification key pk = ([g]1 , [h, λ, λ′]2) and a pur-
ported signature σ = (σ1, σ2, σ3) as input, and re-
turns 1 if and only if

σ1 · [λ]2 + σ2 · [1]2 +
[
m>

]
1 · [h]2 =

[
λ′
]
T

and
σ1 · σ3 +

[
g>
]

1 · [n]2 = [1]T

Remark 1. We will instantiate this scheme later with
ν = 4 and µ = 0, because we will only sign 4-tuples of
elements of G1. In this case we have σ3 = 1/r.

Theorem 4.4 ([6]). The above signature scheme is
(strongly) EUF-CMA secure in the generic group model.

Note that the generic group model (cf. [27], for exam-
ple) heuristically assumes that a given group essentially
forms an “ideal group”, which does not exhibit any
structure that could be exploited by an adversary be-
yond the properties of an abstract algebraic group. This
is of course a strong idealization, but it may be consid-
ered a reasonable idealization for certain groups (like
for example the type of elliptic curve groups considered
in [6] and this paper). Nevertheless, of course security
proofs in the generic group rely on this strong heuris-
tic, and thus provide weaker security guarantees than
proofs in the standard model.

4.2 Instantiation

We instantiate our generic scheme from Section 3.2 with
the commitment scheme from Section 4.1, where com-
mitments to s and v live in G1, and the structure-
preserving signature scheme from Section 4.1 with mes-
sage space G4

1 (that is, we instantiate the more gen-
eral construction from Section 4.1 with ν := 4 and
µ := 0). It remains to construct a NIZK-PoK for lan-
guage Lpok

(CRScom,pk) defined in Section 3.2.
Our NIZK-PoK consists of two components:

1. A GS-based ZK-PoK of commitments c1 = [c1]1 ∈
G2

1 and c2 = [c2]1 ∈ G2
1 which commit to the same

values as the commitments c′1 = [c′1]1 ∈ G
2
1 and c′2 =

[c′2]1 ∈ G
2
1 from the proof statement, respectively.

2. A GS-based ZK-PoK of a signature σ over (c1, c2) =
([c1]1 , [c2]1) ∈ G4

1 .

First component. We first show how to prove knowl-
edge of a commitment [c]1 = Com(CRScom, s, r) =
[(0
s) + Ur]1 ∈ G

2
1 , which commits to the same value as

a public commitment [c′]1 = [(0
s) + Ur′]1 ∈ G

2
1 , using r

and r′ as witnesses.
Since the commitment scheme is additively homo-

morphic, we can achieve this by proving that [c]1− [c′]1
is a commitment to zero. That is, we prove that

[c]1 −
[
c′
]

1 =
[
Ur′′

]
1 ⇐⇒

[c]1 −
[
c′
]

1 −
[
Ur′′

]
1 = [0]1 ⇐⇒[

c− c′
]

1 · [1]2 + [U]1 ·
[
r′′
]

2 = [0]T (2)

Note that Eq. (2) consists of two pairing-product equa-
tions (PPEs), where [U]1 (given by the CRS of the com-
mitment scheme) and [1]2 are constants and [r′′]2 =
[(r− r′)]2 ∈ Z2

p and [c− c′]1 are variables.

Black-Box Accumulation 75

Since we have to prove the above for two commit-
ments, namely [c′1] and [c′2], in total the first component
of the proof consists of
– 4 G1-elements for the statement

[
(c′1, c′2)>

]
1 ∈ G

4
1

– 8 G1-elements for the component-wise commitments
to variables

[
(c1, c2)>

]
1 ∈ G

4
1 .

– 4 G2-elements containing the component-wise com-
mitment to variables [r′′]2

– 16 G1-elements plus 16 G2-elements for the proofs
for two PPEs for each of the two commitments.

Second component. It remains to prove knowledge of
a signature σ = (σ1, σ2, σ3) ∈ G2

1×G2 over
[
(c1, c2)>

]
1 ∈

G4
1 that verifies under pk. Note that the verification

equation of the signature scheme from Section 4.1 con-
sists of two PPEs. The first PPE is

σ1 · [λ]2 + σ2 · [1]2 +
[
m>

]
1 · [h]2 − [1]1 ·

[
λ′
]

2 = [0]T

where σ1 and σ2 and m =
[
(c1, c2)>

]
1 ∈ G

4
1 are vari-

ables and all other values are constants. The second
PPE is

σ1 · σ3 − [1]1 · [1]2 = [0]T
where σ1 ∈ G1 and σ3 ∈ G2 are variables.

Since a commitment to
[
(c1, c2)>

]
1 is already con-

tained in the first part of the proof, we have only two
additional variables σ1, σ2 ∈ G1 and one additional vari-
able σ3 ∈ G2. This contributes the following additional
group elements to the proof:
– 4 G1-elements for commitments to σ1 and σ2,
– 2 G2-elements for the commitment to σ3, and
– 8 G1-elements plus 8 G2-elements for the proofs for

two PPEs.

4.3 Efficiency Analysis

Finally, let us analyze the efficiency of our con-
struction. We consider pairing-friendly Barreto-Naehrig
(BN) curves [8] defined over a 256-bit field, which cor-
responds to “128-bit security”. We assume for simplicity
that each element of G1 can be represented by 256 bits,
and each element of G2 by 512 bits. We base the anal-
ysis of the computational efficiency on mobile devices
of our scheme on the work of Grewald et al. [19], who
presented a software implementation of bilinear pair-
ings with BN curves, and analyzed this implementa-
tion on various mobile devices, including a Samsung
Galaxy Nexus smartphone with TI OMAP 4460 Cortex-
A9 CPU (1.2 GHz) and an Apple iPad 2 with Apple A5

Cortex-A9 CPU (1 GHz). Grewald et al. [19] report that
a pairing computation in this setting takes below 15 ms
on these devices. Depending on the implementation (C
or assembler) and the representation of elliptic curve
points (affine or projective coordinates), even below 10
ms are achievable, however, in the sequel we will calcu-
late with the “worst case” 15 ms. A full exponentiation
costs below 4 ms in G1 and 6 ms in G2.
Analysis of User-algorithms. Let us first consider
the user algorithms of our scheme. We envision that
in typical application scenarios these algorithms will
be implemented as smartphone apps that run on hard-
ware comparable to the devices considered by Grewald
et al. [19] and its successors. In order to be useable in
practice, we consider an expected running time below
0.5 seconds of each single algorithm as acceptable.
CheckTokVal: The running time of this algorithm is

dominated by the computation of 2 commitments
(which requires to compute 4 exponentiations in
G1) and the verification of one digital signature over
four group elements, which takes 7 pairing compu-
tations. In total, we expect these two steps to take
about 121 ms.
The output of this algorithm is a single bit.

Blind: This algorithm is dominated by the computation
of the GS-proof, which takes 24 exponentiations in
G1 and 20 exponentiations in G2 to compute the first
component of the proof, plus 12 G1-exponentiations
and 10 G2-exponentiations for the second compo-
nent. This sums up to about 324 ms.
The output of this algorithms is a blinded token
(two commitments and a proof), which consist of
44 G1-elements and 22 G2-elements (total size ≈ 23
kb), and two tuples of Zp-elements (1 kb).

Unblind: This procedure is dominated by running algo-
rithm CheckTokVal.
The unblinded token consists of two commitments
(four G1-elements), one digital signature (two G1-
elements and one G2-element), and two tuples
(t1, t2) ∈ Z2

p × Z2
p. Thus, the total size is about 3

kb.
PrepVer: This procedure is dominated by running algo-

rithm Blind.
The size of a publicly verifiable token, which consists
of two commitments, a proof (44 G1-elements and
22 G2-elements), and two tuples of Zp-elements, is
about 24 kb.

Analysis of Issuer/Accumulator-algorithms. Now
let us consider the algorithms for issuing and accumu-

Black-Box Accumulation 76

lation of tokens. Even though these algorithms may in
practice be executed on more powerful machines, we use
the same hardware platform as for the user algorithms
for simplicity. Moreover, for some application scenarios
it may even be desirable to use relatively inexpensive
devices here as well. Again, we consider an expected
running time below 0.5 seconds as acceptable in prac-
tice.
Issue: The running time of this algorithm is dominated

by the computation of two commitments (each cor-
responding to 4 exponentiations) in G1 and the com-
putation of one signature (5 exponentiations in G1),
which in total cost about 36 ms.
The output of Issue is a token τ := (c1, c2, σ, t1, t2)
that consists of two commitments (c1, c2) (4 G1-
elements), one signature (2 G1-elements plus one G2-
element) and two tuples (t1, t2) ∈ Z2

p×Z2
p. Thus, the

total size of a token is about 3 kb.
Acc: This algorithm computes one commitment (2 exp.)

and one signature (5 exp.) in G1, which takes about
28 ms. The most expensive step here is the veri-
fication of the Groth-Sahai proof, which takes 16
pairing evaluations that cost about 240 ms. Thus,
in total we expect a running time of this algorithm
of about 268 ms.
The output of this algorithm is a token, which con-
sists of two commitments (four group elements of
G1) and one digital signature (two G1-elements and
one G2-element), which sums up to 2 kb.

Ver: This algorithm computes two commitments in G1
(four exponentiations in G1) and verifies one GS-
proof (16 pairing evaluations), which in total takes
about 256 ms.
The output of this algorithm is a single bit.

Analysis of algorithms for setup and key gener-
ation. Finally, let us consider the algorithms for pa-
rameter and key generation. Since these algorithms are
executed only once, we could in principle accept a much
longer running time here (say, several minutes). How-
ever, this is not necessary for our construction.

Essentially, the Setup algorithm generates commit-
ment keys for G1 and G2. Generating a commitment key
for G1 takes three exponentiations in G1 (about 12 ms),
the key consists of four G1-elements (1 kb). Generating
a commitment key for G2 takes three exponentiations in
G2 (about 18 ms), the key contains four G2-elements of
size 2 kb. Thus, the total size of the parameters is 3 kb
(not counting the description of the BN curve).

The key generation algorithm Gen essentially gener-
ates a key pair for the digital signature scheme, which
takes ν + 2 = 6 exponentiations in G2 (about 36 ms). A
public key consists of 6 G2-elements (3 kb), a secret key
of 6 Zp-elements (≈ 1.5 kb).

5 Conclusion

Summary of results. We formalize the functional-
ity, security and privacy properties of a point collection
mechanism, an important building block implicitly used
in numerous applications. We provide a generic con-
struction for this building block along with a full proof
for its security and privacy. The efficiency analysis shows
that one may expect a reasonable efficiency of our in-
stantiation in smartphone-based application scenarios.
Even though our estimates do not include the time to
perform minor operations (like random sampling), our
upper bound of 0.5 seconds on the running time of each
algorithm appears achievable for “128-bits of security”
in practice. The size of the data to be transmitted dur-
ing accumulation and verification also seems reasonable
for a typical communication protocol in real-world ap-
plications, like Near Field Communication (achieving a
data rate of up to 424 kb/s).
Future work. The computations that need to be per-
formed on the user’s side are too costly for a smartcard-
based implementation, which may be desirable in some
scenarios. We leave a provably-secure construction for
such applications with extreme resource constraints as
an open problem. Also, an experimental reference im-
plementation of our scheme in form of a smartphone
app on state-of-the-art hardware is left for future work.
The main focus of this paper lies on the first founda-
tional formal definition and provably-secure construc-
tion of BBA.

Acknowledgments
The authors would like to thank Dennis Hofheinz for
very helpful discussions on various versions of the BBA
scheme. We also appreciate the detailed feedback of the
anonymous PETS reviewers. This work was supported
by the DFG grant RU 1664/3-1.

Black-Box Accumulation 77

References
[1] The German Big Brother Award. https://bigbrotherawards.

de/en.
[2] The Nectar loyalty program. https://www.nectar.com/,

2015.
[3] The Payback loyalty program. https://www.payback.de/,

2015.
[4] The Coop Supercard loyalty program. https://www.coop.

ch/pb/site/supercard/node/80441723/Lde/index.html?
secure=true, 2015.

[5] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and
M. Ohkubo. Structure-preserving signatures and commit-
ments to group elements. In Proceedings of CRYPTO 2010,
number 6223 in Lecture Notes in Computer Science, pages
209–236. Springer, 2010.

[6] M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. Op-
timal structure-preserving signatures in asymmetric bilinear
groups. In Proceedings of CRYPTO 2011, number 6841
in Lecture Notes in Computer Science, pages 649–666.
Springer, 2011.

[7] M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic
k-taa. IACR Cryptology ePrint Archive, 2008:136, 2008.

[8] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic
curves of prime order. In Proceedings of Selected Areas
in Cryptography 2005, number 3897 in Lecture Notes in
Computer Science, pages 319–331. Springer, 2005.

[9] D. Boneh and X. Boyen. Short signatures without random
oracles. In , Advances in Cryptology - EUROCRYPT 2004,
International Conference on the Theory and Applications
of Cryptographic Techniques, Interlaken, Switzerland, May
2-6, 2004, Proceedings, volume 3027 of Lecture Notes in
Computer Science, pages 56–73. Springer, 2004.

[10] D. Boneh, B. Lynn, and H. Shacham. Short signatures from
the weil pairing. In ASIACRYPT, volume 2248 of LNCS,
pages 514–532. Springer, 2001.

[11] J. Camenisch, R. Chaabouni, and A. Shelat. Efficient pro-
tocols for set membership and range proofs. In , Advances
in Cryptology - ASIACRYPT 2008, 14th International Con-
ference on the Theory and Application of Cryptology and
Information Security, Melbourne, Australia, December 7-11,
2008. Proceedings, volume 5350 of Lecture Notes in Com-
puter Science, pages 234–252. Springer, 2008.

[12] J. Camenisch, M. Dubovitskaya, and G. Neven. Unlinkable
priced oblivious transfer with rechargeable wallets. In , Fi-
nancial Cryptography and Data Security, 14th International
Conference, FC 2010, Tenerife, Canary Islands, January 25-
28, 2010, Revised Selected Papers, volume 6052 of Lecture
Notes in Computer Science, pages 66–81. Springer, 2010.

[13] D. Christin, A. Reinhardt, S. S. Kanhere, and M. Hollick.
A survey on privacy in mobile participatory sensing applica-
tions. Journal of Systems and Software, 84(11):1928–1946,
2011.

[14] P. Dutta, P. M. Aoki, N. Kumar, A. M. Mainwaring, C. My-
ers, W. Willett, and A. Woodruff. Common sense: partici-
patory urban sensing using a network of handheld air quality
monitors. In SenSys, pages 349–350. ACM, 2009.

[15] M. Enzmann and M. Schneider. A privacy-friendly loyalty
system for electronic marketplaces. In 2004 IEEE Inter-

national Conference on e-Technology, e-Commerce, and e-
Services (EEE 04), 29-31 March 2004, Taipei, Taiwan, pages
385–393. IEEE Computer Society, 2004.

[16] A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. L. Villar.
An algebraic framework for Diffie-Hellman assumptions. In
Proceedings of CRYPTO (2) 2013, number 8043 in Lecture
Notes in Computer Science, pages 129–147. Springer, 2013.

[17] Data Privacy Management, Autonomous Spontaneous Se-
curity, and Security Assurance - 9th International Workshop,
DPM 2014, 7th International Workshop, SETOP 2014, and
3rd International Workshop, QASA 2014, Wroclaw, Poland,
September 10-11, 2014. Revised Selected Papers, volume
8872 of Lecture Notes in Computer Science, 2015. Springer.

[18] Y. Gong, Y. Cai, Y. Guo, and Y. Fang. A privacy-preserving
scheme for incentive-based demand response in the smart
grid. IEEE Transactions on Smart Grid, 2015.

[19] G. Grewal, R. Azarderakhsh, P. Longa, S. Hu, and D. Jao.
Efficient implementation of bilinear pairings on ARM pro-
cessors. In Proceedings of Selected Areas in Cryptography
2012, number 7707 in Lecture Notes in Computer Science,
pages 149–165. Springer, 2012.

[20] J. Groth and A. Sahai. Efficient non-interactive proof sys-
tems for bilinear groups. In Proceedings of EUROCRYPT
2008, number 4965 in Lecture Notes in Computer Science,
pages 415–432. Springer, 2008.

[21] R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Ho-
momorphic signature schemes. In Proceedings of CT-RSA
2002, number 2271 in Lecture Notes in Computer Science,
pages 244–262. Springer, 2002.

[22] W. Kempton and J. Tomic. Vehicle-to-grid power funda-
mentals: Calculating capacity and net revenue. Elsevier
Journal of Power Sources, 144(1):268–279, 2005.

[23] E. Kiltz, J. Pan, and H. Wee. Structure-preserving signa-
tures from standard assumptions, revisited. In , Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part II, volume 9216 of Lecture Notes in Com-
puter Science, pages 275–295. Springer, 2015.

[24] Q. Li and G. Cao. Providing efficient privacy-aware incen-
tives for mobile sensing. In IEEE 34th International Con-
ference on Distributed Computing Systems, ICDCS 2014,
Madrid, Spain, June 30 - July 3, 2014, pages 208–217. IEEE
Computer Society, 2014.

[25] M. Milutinovic, I. Dacosta, A. Put, and B. De Decker. ucen-
tive: An efficient, anonymous and unlinkable incentives
scheme. In IEEE TrustCom-15, 2015.

[26] A. Rupp, F. Baldimtsi, G. Hinterwälder, and C. Paar. Cryp-
tographic theory meets practice: Efficient and privacy-
preserving payments for public transport. ACM Trans. Inf.
Syst. Secur., 17(3):10:1–10:31, 2015.

[27] V. Shoup. Lower bounds for discrete logarithms and related
problems. In Proceedings of EUROCRYPT 1997, number
1233 in Lecture Notes in Computer Science, pages 256–266.
Springer, 1997.

[28] Z. Yang, S. Yu, W. Lou, and C. Liu. P2: Privacy-preserving
communication and precise reward architecture for v2g net-
works in smart grid. IEEE Trans. Smart Grid, 2(4):697–706,
2011.

https://bigbrotherawards.de/en
https://bigbrotherawards.de/en
https://www.nectar.com/
https://www.payback.de/
https://www.coop.ch/pb/site/supercard/node/80441723/Lde/index.html?secure=true
https://www.coop.ch/pb/site/supercard/node/80441723/Lde/index.html?secure=true
https://www.coop.ch/pb/site/supercard/node/80441723/Lde/index.html?secure=true

Black-Box Accumulation 78

A Formal Definition of Building
Blocks

In the following we provide formal and standard defi-
nitions for homomorphic commitments, signatures, and
NIZK-PoKs.

Definition A.1. A commitment scheme
(Setupcom,Com) consists of two algorithms.
– Setupcom is a PPT algorithm, which takes as in-
put a security parameter 1k and outputs parameters
CRScom.

– Com is a deterministic polynomial-time algorithm,
which takes as input parameters CRScom, message
m, and randomness r, and outputs a commitment
c = Com(CRScom,m, r) to m.

Note that given (CRScom, c,m, r) where c =
Com(CRScom,m, r), one can efficiently verify that
c is a commitment to m by checking that c =
Com(CRScom,m, r).

We say that a commitment scheme (Setupcom,Com)
is additively homomorphic, if there exists an ad-
ditional PPT algorithm CAdd which takes as input
two commitments c = Com(CRScom,m, r) and c′ =
Com(CRScom,m

′, r′), and outputs a commitment c′′

such that c′′ = Com(CRScom,m+m′, r + r′).
We say that a commitment scheme (Setupcom,Com)

is secure, if it has the following two properties.
1. Binding: For all probabilistic polynomial-time ad-

versaries A holds that the advantage Advbind
A (1k) de-

fined by

Pr

 c = Com(CRScom,m, r)
∧

c = Com(CRScom,m′, r′)

∣∣∣∣∣∣∣
Π← Setupcom(1k)

(c,m, r,m′, r′)
← A(1k,Π)

(m′, r′) 6= (m, r)


is negligible in k. We say that the commitment

scheme is perfectly binding if this advantage is al-
ways 0.

2. Hiding: For all probabilistic polynomial-time adver-
saries A holds that the advantage Advhide

A (1k) defined
by∣∣∣∣∣∣∣∣∣

Pr

b = b′

∣∣∣∣∣∣∣∣∣
Π← Setupcom(1k)

(m0,m1, state)← A(1k,CRScom)
b← {0, 1}; r ← {0, 1}k

c := Com(CRScom,mb, r)
b′ ← A(c, state)

− 1
2

∣∣∣∣∣∣∣∣∣
is negligible in k. We say that the commitment

scheme is perfectly hiding if this advantage is al-
ways 0.

Definition A.2. A digital signature scheme
(Gensig,Sign,Versig) consists of three PPT algorithms.
– Gensig takes as input a security parameter 1k and
outputs a key pair (pk, sk).

– Sign takes as input the secret key sk and a message
m, and outputs a signature σ ← Sign(sk,m).

– Versig takes as input the public key pk, a message
m, and a purported signature σ, and outputs a bit
Versig(pk, σ,m) ∈ {0, 1}.
We say that a digital signature scheme is EUF-CMA

secure if for all PPT adversaries A holds that the ad-
vantage Adveuf-cma

A (1k) defined by

Pr

[
Versig(pk, σ∗,m∗) = 1

∧
m∗ 6∈ {m1, . . . ,mq}

∣∣∣∣∣ (pk, sk)← Gensig(1k)
(m∗, σ∗)← ASign(sk,·)(1k, pk)

]

is negligible in k, where Sign(sk, ·) is an oracle that, on
input m, returns Sign(sk,m), and {m1, . . . ,mq} denotes
the set of messages queried by A to its oracle.

Definition A.3. Let R be a witness relation for some
NP language LR. Let POK := (Setuppok,Prove,Verpok)
be a tuple of PPT algorithms such that
– Setuppok takes as input a security parameter 1k and
outputs public parameters CRS .

– Prove takes as input the parameters CRS , a witness
x, and a statement z with (x, z) ∈ R and outputs a
proof π.

– Verpok takes as input the parameters CRS , a state-
ment z, and a proof π and outputs 1 or 0.

POK is called a non-interactive zero-knowledge proof of
knowledge (NIZK-PoK) system for R if completeness,
extractability, and zero-knowledge as defined below are
satisfied.
1. Completeness: For all CRS ← Setuppok(1k) and

(x, z) ∈ R, Verpok(CRS , x, π) = 1 for all proofs π ←
Prove(CRS , x, z).

2. Extractability (Soundness): There exists a
polynomial-time extractor algorithm E = (E1, E2)
such that for all PPT adversaries A
(a) the advantage Advpok-ext-setup

POK,A (k) defined by∣∣∣∣ Pr[1← A(CRS) | CRS ← Setuppok(1k)]
− Pr[1← A(CRSe) | (CRSe, ζe)← E1(1k)]

∣∣∣∣
is negligible.

(b) the advantage Advpok-ext
POK,A(k) defined by

Pr

[
Ver(CRSe, x, π) = 1

∧
(x, z) 6∈ R

∣∣∣∣∣ z ← E2(CRSe, ζe, x, π)
(x, π)← A(CRSe)

(CRSe, ζe)← E1(1k)

]

Black-Box Accumulation 79

is negligible.
Perfect extractability is achieved if both advantages
are 0.

3. Zero-knowledge: There exists a polynomial-time
simulator algorithm S = (S1, S2) such that for
all PPT adversaries A holds that the advantage
Advzk

POK,A(k) defined by∣∣∣∣ Pr[1← AS
′
2(CRSs,ζs,·,·)(1k,CRSs)]

− Pr[1← AProve(CRS,·,·)(1k,CRS)]

∣∣∣∣
is negligible, where (CRS s, ζs) ← S1(1k), CRS ←

Setuppok(1k), and S′2(CRS s, ζs, ·, ·) is an oracle which
on input (x, z) ∈ R, returns S2(CRS s, ζs, x). Both
S′2 and Prove return ⊥ on input (x, z) 6∈ R. Perfect
zero-knowledge is achieved if the advantage is zero.

B Proof of Security
In the following we prove Theorem 3.1 from Section 3.2.

We prove this theorem by showing that for any PPT
adversary A against the security of our BBA scheme
there exist PPT adversaries B, C against the extractabil-
ity of the NIZK-PoK and D against the security of the
signature scheme such that

Advacc-sec
BBA,A(k) ≤ Advpok-ext-setup

POK,B (k)
+ Advpok-ext

POK,C (k) + Adveuf-cma
SIG,D (k)

(3)

We proceed in a sequence of games. We start with
the real experiment Expacc-sec

BBA,A(k), and then gradually
modify this experiment, until we reach an experiment
where A has no chance to win. We show that if any two
consecutive games would significantly differ, this would
also result in effective adversaries against the security
of the building blocks.

LetGame 1 be the Expacc-sec
BBA,A(k) experiment, where,

in addition, we assume that records are kept of every
input, output, and random choice that the challenger or
the Issue or Acc oracle gets or makes. Let AdvGamei

BBA,A(k) =
Pr[ExpGamei

BBA,A(k) = 1] denote the advantage of A in Game
i. Thus, by definition,

Advacc-sec
BBA,A(k) = AdvGame1

BBA,A(k) (4)

In Game 2, we generate the common reference
string of POK by running the corresponding extractor
setup algorithm which returns (CRSpok, τpok)← E1(1k).
Clearly, from a distinguisher between Games 2 and 1,
we can immediately build an adversary B against the

extractability setup property of POK having advantage

Advpok-ext-setup
POK,B (k) =

∣∣∣AdvGame1
BBA,A(k)− AdvGame2

BBA,A(k)
∣∣∣ (5)

In Game 3, we try to extract a witness from
all verifying proofs of knowledge contained in the in-
puts {τ} to the Acc oracle as well as in the final out-
put (ρ∗1, s∗1, w∗1), . . . (ρ∗` , s∗` , w∗`) of A, where each ρi con-
tains such a proof. For a given {τ} = (c′1, c′2, π) or
ρ := (c′1, c′2, r1, r2, π) with VerPOK(CRSpok, π, (c′1, c′2)) =
1, we run the extractor E2(CRSpok, τpok, π, (c′1, c′2))
which returns a witness z = (c1, c2, σ, φ1(t′1), φ2(t′2)). If
R((c′1, c′2), z) = 0 we say that the adversary loses and
let the experiment return 0. We call this event failure
event F1. Note that we can easily build an adversary C
against the second extractability property of POK with
advantage

Advpok-ext
POK,C (k) = Pr[F1] (6)

Moreover, we have

AdvGame3
BBA,A(k) = Pr[ExpGame2

BBA,A(k) = 1 ∧ ¬F1] (7)

In Game 4, for each valid witness z =
(c1, c2, σ, φ1(t′1), φ2(t′2)) we extract, we check the previ-
ous output records of the Issue and Acc oracle if there
is a match for both c1 and c2 (within the same record).
If there is no match, we say the adversary loses and let
the experiment return 0. We call this event failure event
F2. In this case we know that σ is a valid signature for
a new message m := c1||c2, the adversary created on its
own. Hence, we can construct an EUF-CMA adversary
D against SIG with advantage

Adveuf-cma
SIG,D (k) = Pr[F2] (8)

Moreover, we have

AdvGame4
BBA,A(k) = Pr[ExpGame2

BBA,A(k) = 1 ∧ ¬(F1 ∨ F2)] (9)

Game 5 is a transitional game, where we do not
actually modify the experiment but introduce some ad-
ditional bookkeeping. We will associate each output of
Issue and Acc with a serial number s and amount w.
Note that since we assume that our commitment scheme
is perfectly binding, there is a unique s and a unique w
for each given commitments c1 and c2 (output of Issue)
or c′′1 and c′′2 (output of Acc), respectively. For outputs
of Issue this is easy since s and w are given as input. As-
suming m calls to the Issue oracle, we denote the serial
numbers given as input to this oracle by s1, . . . , sm and
the initial values by u1, . . . , um.

Black-Box Accumulation 80

Let us now consider the first call to the Acc oracle
and let us assume that none of the failures defined before
happened. As there is a valid signature on the extracted
values c1 and c2, we know that there must be (at least)
one match with the output records of the previous Issue
calls and thus those values are indeed commitments. If
there is more than one match, we know by the perfect
binding property that these output records must be as-
sociated with the same serial number and amount. So
for the bookkeeping it does not matter which of the
previous records is considered. Let si and ui denote the
associated values for the extracted commitments. Then
by the soundness of POK and the homomorphic prop-
erty of COM, we know that c′1 and c′2 are re-randomized
commitments to the same values. Thus the output of
Acc will be associated to si and w1 := ui + v1, where
v1 denotes the value that is accumulated in the current
call to Acc.

Similarly, during the j-th call to the Acc oracle,
we need to consider the output records of all previous
calls to the Acc oracle as well as the Issue oracle. Then,
again, for the extracted commitments there needs to be
a match among the considered records and it does not
matter which of these matches we consider. Assuming n
calls to the Acc oracle, we denote the values to be accu-
mulated during the calls by v1, . . . , vn. Furthermore, let
si and w, denote the associated values for the extracted
commitments. Then the output of j-th call to Acc is
associated with si and wj := w+ vj . Hence, each wj as-
sociated with si is of the form wj = ui+vk1 +. . .+vk`

+vj
for some k1, . . . , k` ∈ {1, . . . j−1}. There are a few other
important observations to make about these accumula-
tion sums wj : (1) a specific vt (considered as a variable)
with t ∈ {1, . . . , n} may appear at most once in wj ,
i.e., k1, . . . , k` are pairwise distinct values. (2) for any
two sums wj and wj′ with j 6= j′ that are associated
with distinct serial numbers si 6= s′i, it holds that any
variable vt may not appear in both wj and wj′ as sum-
mand. (In other words, any vt is uniquely associated
with some si.) (3) the same holds for any variable ui
with i ∈ {1, . . . ,m}.

Now, let us consider the final output
(ρ∗1, s∗1, w∗1), . . . (ρ∗` , s∗` , w∗`) of A assuming that no failure
event occurred and the winning condition is satisfied.
For any ρ∗i = (c′1, c′2, r1, r2, π) (omitting the index i

in the tuple for readability), we consider the commit-
ments c1 and c2 extracted from π. Now, we know that
c′1 and c′2 are re-randomizations of c1 and c2, where
the latter commitments have occurred previously as
output of Issue or Acc. Thus, following our argument
from before, also this c′1 and c′2 can be uniquely asso-

ciated with some sk and w := uk +
∑
j∈M vj for some

M ⊂ {1, . . . , n}. Moreover, as the commitment scheme
is perfectly binding, it holds for the claimed serial num-
ber s∗i ∈ S and amount w∗i ∈ V that indeed s∗i = sk
and w∗i = w provided that opening the commitments
c′1 and c′2 with s∗k and w∗k succeeded. In particular, the
case s∗i 6∈ {s1, . . . , sm} cannot occur here.5 So to satisfy
the winning condition it must hold that∑̀

i=1
w∗i >

m∑
i=1

ui +
n∑
i=1

vi (10)

where the corresponding s∗i are pairwise distinct. How-
ever, as observed before, each w∗i is of the form w∗i =
uk +

∑
j∈M vj , where the uk and vj ’s will not occur in

any other w∗i′ with i′ 6= i. Thus, Eq. (10) cannot be
satisfied.

Hence, we have

AdvGame5
BBA,A(k) = AdvGame4

BBA,A(k) = 0 (11)

Putting things together. By considering Eq. (4) to
Eq. (11), we get

AdvGame1
BBA,A(k) ≤

∣∣∣AdvGame1
BBA,A(k)− AdvGame2

BBA,A(k)
∣∣∣

+ AdvGame2
BBA,A(k)

= Advpok-ext-setup
POK,B (k) + AdvGame2

BBA,A(k)
= Advpok-ext-setup

POK,B (k)
+ Pr[ExpGame2

BBA,A(k) = 1 ∧ ¬(F1 ∨ F2)]
+ Pr[ExpGame2

BBA,A(k) = 1 ∧ (F1 ∨ F2)]
≤ Advpok-ext-setup

POK,B (k) + AdvGame5
BBA,A(k)

+ Pr[F1] + Pr[F2]
= Advpok-ext-setup

POK,B (k) + Pr[F1] + Pr[F2]
= Advpok-ext-setup

POK,B (k)
+ Advpok-ext

POK,C (k) + Adveuf-cma
SIG,D (k)

As we assume that the three advantages in the last equa-
tion are negligible our theorem follows.

C Proof of Privacy
In this section we prove Theorem 3.2 from Section 3.2.

We prove our theorem by showing that there exist
PPT algorithms (SimSetup,SimBlind,SimPrepVer) such
that from each privacy-adversary A we can construct
adversaries B and C such that

Advpriv
BBA,A(k) ≤ Advzk

POK,B(k) + 2n · Advhide
C (1k) (12)

5 In this case, A would have forged a signature what we already
excluded at this point.

Black-Box Accumulation 81

where n is the number of interactions ofA with its oracle
(oracle U in the “real” experiment, oracle Usim in the
“ideal” experiment).

We proceed in a sequence of games. We start with
the real experiment Exppriv-real

BBA,A , and then gradually mod-
ify this experiment, until we reach an experiment which
is identical to Exppriv-ideal

BBA,A . The theorem then follows by
showing that any PPT adversary has only an at most
negligible advantage in distinguishing any two consec-
utive games. We write Setupi, Blindi, and PrepVeri do
denote the implementations of Setup, Blind, and PrepVer
in Game i. Moreover, we write Xi to denote the event
that A outputs 1 in Game i.

We define Game 1 identical to Exppriv-real
BBA,A . Thus we

have Setup1 = Setup, Blind1 = Blind, and PrepVer1 =
PrepVer.

In Game 2 we modify algorithm PrepVer1. Note
that PrepVer1 runs algorithm Blind1 as a subroutine.
Now we change this, by including all these operations
directly in PrepVer1. This is a preparation for our mod-
ifications to algorithm Blind1 in subsequent games.

More precisely, we define Setup2 := Setup1 and
Blind2 := Blind1, and we let PrepVer2 be the following
algorithm.

PrepVer2(pk, τ, s, w)

If τ = ⊥ return ⊥
parse (c1, c2, σ, r1, r2) := τ

t′1, t
′
2 ←R

c′
1 := CAdd(c1,Com(CRScom, 0, t′1))

c′
2 := CAdd(c2,Com(CRScom, 0, t′2))

π := Prove(CRSpok, (c′
1, c

′
2), (c1, c2, σ, φ1(t′1), φ2(t′2)))

{τ} := (c′
1, c

′
2, π), (r1, r2) := (t1 + t′1, t2 + t′2)

return ρ := (c′
1, c

′
2, r1, r2, π)

This change is purely conceptual, so we have

Pr[X2] = Pr[X1]

Game 3 is identical to Game 2, except for
the following. Recall that in Setup2 we compute
CRS = (CRScom,CRSpok) by computing CRScom ←
Setupcom(1k) and CRSpok ← Setuppok(1k). In Game 3
we replace Setup2 with algorithm Setup3, which works
identical, except that it computes CRSpok by running
the simulation algorithm S1 of the NIZK proof system
to compute (CRSpok, τsim)← S1(1k).

Moreover, recall that in Blind2 and
PrepVer2 we compute proofs as π ←
Prove(CRSpok, (c′1, c′2), (c1, c2, σ, φ1(t′1), φ2(t′2))). We re-
place these algorithms with Blind3 and PrepVer3,

which instead run the simulation algorithm S2 of the
NIZK proof system to compute simulated proofs as
π ← S2(τsim, (c′1, c′2)).

We have |Pr[X3]− Pr[X2]| = εnizk for some εnizk ∈
[0, 1]. We show that any adversary A distinguishing
Game 3 from Game 2 implies an adversary B breaking
the zero-knowledge property of the NIZK proof system
with advantage Advzk

POK,B(k) = εnizk. Adversary B works
as follows. It runs adversary A as a subroutine by sim-
ulating the security experiment exactly as in Game 2,
except for the following two differences. First, B does
not generate a common reference string for the proof of
knowledge on its own, but instead uses the CRS CRSpok
that it receives from the NIZK security experiment. Sec-
ond, instead of computing proofs in Blind2 by running
π ← Prove(CRSpok, (c′1, c′2), (c1, c2, σ, φ1(t′1), φ2(t′2))),
B obtains the proof by querying its S′2-oracle
on statement (c′1, c′2) with corresponding witness
(c1, c2, σ, φ1(t′1), φ2(t′2)).

If CRSpok is computed using Setuppok and S′2 in-
ternally uses algorithm Prove to compute proofs, then
the view provided by B to A is identical to Game 2. If
CRSpok is computed using S1 and S′2 internally uses al-
gorithm S2 to compute proofs, then the view provided
by B to A is identical to Game 3. Thus, we have

|Pr[X3]− Pr[X2]| ≤ Advzk
POK,B(k)

Game 4 is identical to Game 3, in particular we
have Setup4 = Setup3 and Blind4 = Blind3, but we
change the way how commitments are computed in
PrepVer4. Recall that the commitments c′1 and c′2 in
PrepVer3 are computed by re-randomizing c1 and c2 us-
ing the fact that the commitments are additively homo-
morphic in both the message space and the randomness
space. Thus, c′1 and c′2 are uniformly random commit-
ments to the messages committed in c1 and c2.

In Game 4 we now replace algorithm PrepVer3
with algorithm PrepVer4, which proceeds exactly as
PrepVer3, except that c′1 and c′2 are computed as c′1 ←
Com(CRScom, s, t

′
1) and c′2 ← Com(CRScom, w, t

′
2) for

uniformly random t′1, t
′
2. Thus, in PrepVer4 the commit-

ments c′1 and c′2 are uniformly random commitments to
s and w, independent of c1 and c2.

Note if PrepVer3 and PrepVer4 are called on in-
put a token τ 6= ⊥, then it is guaranteed that τ =
(c1, c2, σ, r1, r2) 6= ⊥ where c1 is a commitment to s and
c2 is a commitment to w. This is because correctness
of the commitments is checked after A0 has output the
first token and after each invocation of Unblind. Thus,
we either have τ = ⊥, or the commitments contained in
τ are commitments to s and w, respectively. Therefore

Black-Box Accumulation 82

again this modification is purely conceptual, so we have

Pr[X4] = Pr[X3]

Note that PrepVer4 now depends only on (pk, s, w), but
not on token τ anymore.

In Game 5 we replace all commitments c′1 and
c′2 computed in algorithm Blind4 with commitments
to zero, using the hiding property of the commitment
scheme and the fact that proofs are simulated. More pre-
cisely, recall that the commitments c′1 and c′2 in Blind4
are computed by re-randomizing c1 and c2 using the
fact that the commitments are additively homomorphic
in both the message space and the randomness space.
Thus, c′1 and c′2 are uniformly random commitments to
the messages committed in c1 and c2.

In Game 5 we now replace algorithm Blind4 with al-
gorithm Blind5, which proceeds exactly as Blind4, except
that c′1 and c′2 are computed as c′1 ← Com(CRScom, 0, t′1)
and c′2 ← Com(CRScom, 0, t′2) for uniformly random
t′1, t
′
2. Thus, in Blind5 the commitments c′1 and c′2 are

uniformly random commitments to 0, independent of c1
and c2.

We show that any adversary A distinguishing Game
5 from Game 4 implies an adversary C breaking the
hiding-property of Definition A.1 of the commitment
scheme.

Since A interacts exactly n times with its oracle U ,
and thus in total 2n commitments are replaced with
zero-commitments, we use a hybrid argument. In the
sequel let experiment H0 be identical to Game 4. In hy-
bridHi we compute the first i commitments as in Blind5,
and the remaining 2n − i as in Blind4. Thus, the first i
commitments in Hi are commitments to zero, while the
remaining commitments are commitments to s and w,
respectively. Clearly, hybrid H2n is identical to Game 4.

Suppose there exists an algorithm A distinguishing
Hi−1 from Hi for some i ∈ {1, . . . , 2n}. We construct
algorithm C as follows. C runs A as a subroutine, by
simulating hybrid Hi−1, with the following two excep-
tions. First, instead of generating a commitment key by
running Setupcom, C instead uses the commitment key
CRScom that it receives from the commitment security
experiment. Second, when the BBA privacy experiment
has to compute the i-th commitment to some value γ,
C does not compute this commitment itself. Instead it
defines m0 := γ and m1 := 0, outputs (m0,m1) to the
commitment security experiment, and uses the commit-
ment to message mb it receives back. If b = 0, then A’s
view is identical to Game 4, while if b = 1 then it is iden-
tical to Game 5. Since there are 2n hybrid experiments,

we have εhiding ≤ 2n · Advhide
C (1k) and thus

|Pr[X5]− Pr[X4]| ≤ 2n · Advhide
C (1k)

Note that algorithm Blind5 now depends only on pk, but
not on (τ, s, w) anymore.

In Game 6 we make a conceptual modification to
algorithms Blind5 and PrepVer5. We remove all argu-
ments from algorithms which are not used inside the
algorithms. Thus, Blind6 receives as input only pk, and
PrepVer6 receives only (pk, s, w).

Note that we changed only the concrete implemen-
tation of the security experiment, but this is completely
oblivious to the adversary, thus we have

Pr[X6] = Pr[X5]

Now we are in a game where Blind6 and PrepVer6
have the correct syntax and functionality such that we
can define SimSetup := Setup6, SimBlind := Blind6, and
SimPrepVer := PrepVer6. Note that Game 6 with these
algorithms is identical to Exppriv-ideal

BBA,A . The theorem fol-
lows.

