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Abstract: Modern mobile devices place a wide variety
of sensors and services within the personal space of their
users. As a result, these devices are capable of transpar-
ently monitoring many sensitive aspects of these users’
lives (e.g., location, health, or correspondences). Users
typically trade access to this data for convenient appli-
cations and features, in many cases without a full appre-
ciation of the nature and extent of the information that
they are exposing to a variety of third parties. Never-
theless, studies show that users remain concerned about
their privacy and vendors have similarly been increas-
ing their utilization of privacy-preserving technologies
in these devices. Still, despite significant efforts, these
technologies continue to fail in fundamental ways, leav-
ing users’ private data exposed.

In this work, we survey the numerous components of
mobile devices, giving particular attention to those that
collect, process, or protect users’ private data. Whereas
the individual components have been generally well
studied and understood, examining the entire mobile de-
vice ecosystem provides significant insights into its over-
whelming complexity. The numerous components of this
complex ecosystem are frequently built and controlled
by different parties with varying interests and incen-
tives. Moreover, most of these parties are unknown to
the typical user. The technologies that are employed to
protect the users’ privacy typically only do so within
a small slice of this ecosystem, abstracting away the
greater complexity of the system. Our analysis suggests
that this abstracted complexity is the major cause of
many privacy-related vulnerabilities, and that a funda-
mentally new, holistic, approach to privacy is needed
going forward. We thus highlight various existing tech-
nology gaps and propose several promising research di-
rections for addressing and reducing this complexity.
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1 Introduction

The rapid proliferation of mobile devices has seen them
become integral parts of many users’ lives. Indeed, these
devices provide their users with a variety of increasingly
essential services (e.g., navigation, communication, and
Internet connectivity), as well as useful functionality
(e.g., entertainment and photography). To accommo-
date these services, modern mobile devices are equipped
with various sensors, capable of collecting extremely rich
information about their users and their surroundings.
Users and developers alike have embraced these data-
collection technologies with open arms, in exchange for
the rich set of high-tech features that they enable. In
fact, many of the apps offering these services are pro-
vided for “free,” with an implicit exchange for access to
portions of this collected data, which is typically used
for advertising [1].

Unfortunately, there is also evidence that users do
not understand the extent of information being collected
about them or the personal details that can be inferred
from this information. For example, a recent study on
behavioral advertising showed that users did not un-
derstand how such advertising worked and found the
information that the advertisers had about them to
be “scary” and “creepy” [2]. Even when the users are
aware of the data collection, one cannot expect them
to fully realize the non-intuitive implications of sharing
their data. Researchers have shown that the sensors on
these devices can be used to covertly capture key presses
(taps) on the phone [3, 4] or a nearby keyboard [5], leak
the users’ location [6-9], record speech [10], or infer the
users’ daily activities [11].

Predictably, having millions of users carrying these
data-collection technologies presents numerous privacy
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concerns. The collected data may be accessible to a va-
riety of parties, often without the explicit permission of
the user. For example, companies that provide trusted
kernels [12-14], which are relatively unknown to the
user market, have the technical means to access most
of the private user data that flows through their de-
vices. Similarly, companies that advertise in mobile ap-
plications are able to learn a large amount of private
information about the user (e.g., gender, age, or home
address [15]), and some location-based applications have
been shown to expose the users’ fine-grained physical lo-
cation not only to the application provider, but to the
world [16, 17].

Recent high-profile data leaks have publicized com-
promising photographs [18], large numbers of credit
cards [19], and National Security Agency (NSA) docu-
ments [20]. Leaks of financial, authentication, or medical
data can be used to access costly services (such as medi-
cal operations [21]) and could result in damages that are
extremely difficult to fix [22]. In this climate, it is not
surprising that many users are concerned about their
privacy [23] and have strong incentives to keep at least
some of their data private. One survey, conducted in
2015, found that many Americans believed it to be “very
important” to “be able to maintain privacy and confi-
dentiality in [their] commonplace activities” [24], while
another found that 57% of users avoided or uninstalled
a mobile application because of privacy concerns [25].

In an attempt to address these concerns, numerous
privacy-preserving technologies (PPTs) already exist at
every level of the device stack (e.g., hardware, operating
system, application), and some companies even high-
light these privacy features as part of their marketing
campaigns [26]. However, the complexity of the modern
mobile-device environments, both hardware and soft-
ware, and the piecemeal solutions offered by the indi-
vidual components make security difficult to implement
correctly and privacy difficult to achieve. In fact, the
numerous components are produced and provisioned by
disjoint entities with differing interests and incentives.
In effect, complexity can be the enemy of both security
and privacy, and the current on-device mobile ecosys-
tem is especially complex.

In this work, we shed light on this complex system
by surveying the numerous existing privacy-preserving
technologies, the components that each relies upon, the
parties involved, and the overall ecosystem they all co-
habit. Our findings suggest that existing approaches
have had marginal successes, but are likely going to con-
tinue to fall short of users’ realistic privacy desires unless
they are accompanied with fundamental changes to the
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ways that these devices are produced, provisioned, and
regulated.

We scope our analysis to on-device technologies,
which we consider the users’ first line of defense. Still,
we recognize that a lot of private data may also leave
the device and enter a “cloud” infrastructure, introduc-
ing additional privacy concerns that we leave for fu-
ture work. We also focus on identifying gaps in today’s
systems and, rather than providing concrete solutions,
provide high-level and speculative suggestions for future
research. Finally, whereas other studies have analyzed
privacy on mobile devices (e.g., [3, 27-34]), we believe
our work is the first to examine the entire ecosystem
(i.e., hardware, software, human).

Mobile differentiators The problems that we have
outlined underscore the unique challenges of the mobile
device ecosystem with respect to privacy. These chal-
lenges arise from the very nature of the devices, which
are 1) extremely sensor-rich, 2) continually proximate
to their users, 3) often accessed in public and through a
limited interface, and 4) produced in a rapidly-changing
commercial environment. Neither laptops, with their
limited sensors, nor desktops, with their limited user
proximity, nor appliances, with their limited function-
ality and tightly controlled supply chain, provide the
same level of deep-seated risks to the user’s privacy.

Contributions Our work includes the following pri-
mary contributions, with the goal of painting a holistic
picture of the overwhelming complexity in the mobile
privacy space:

—  We inventory critical privacy-related components
on modern mobile devices, highlighting interactions
that are likely unintended or unexpected.

—  We identify the commercial entities currently re-
sponsible for deploying each technology.

—  We itemize the various privacy-preserving technolo-
gies currently in use, calling attention to existing
and historical flaws and gaps.

—  We enumerate the types of private data that are
currently accessible to the various parties.

—  We describe several novel experiments that we per-
formed to verify privacy-related claims.

—  We highlight promising proposals that could help
alleviate some of the existing problems.

Indeed, we conjecture that achieving privacy in the cur-
rent ecosystem is unlikely without fundamentally novel
technical and regulatory approaches.



2 Mobile Privacy Ecosystem

We begin our analysis by examining the components
that comprise the mobile ecosystem (see Figure 1 for
a brief summary). While mobile devices contain many
of the same components as traditional computing plat-
forms, and face many of the same privacy-related prob-
lems, there are fundamental differences at each layer
that can impact user privacy.

The first differentiator between mobile and tradi-
tional computing platforms is the users’ relationship
with the devices, and the interfaces that they use to in-
teract with them. More precisely, users typically carry
their mobile devices, in a powered-on state, with them at
all times, which is significantly different from the more
stationary use-cases of both laptops and desktops. Sub-
sequently, many user’s have developed a unique psycho-
logical connection with their mobile device, in extreme
cases developing an addiction [35]. Furthermore, while
having a small form-factor is convenient for mobility, it
also restricts potential user interactions. For example,
while computers use separate input and output devices
(e.g., keyboard, mouse, screen), these interfaces are fre-
quently integrated and overlapping in mobile devices
(e.g., touch screen), leading to various alternative in-
terfaces (e.g., audio, vibration, motion). Moreover, this
smaller, integrated, interface also restricts the amount
of information that can be conveyed to or received from
the user, which can lead to sub-optimal privacy imple-
mentations (e.g., omission of security indicators [36]).

The applications and operating systems that users
interact with on mobile devices are also fundamentally
different from traditional platforms. Historically, com-
puters have provided relatively open environments, per-
mitting developers essentially unfettered access to the
system and similarly allowing users to install any ap-
plication and modify their system in any way that they
desired. However, mobile-device providers have adopted
a more closed ecosystem, typically restricting the device
to a single, pre-installed operating system, which is de-
signed to only run applications written in a specific lan-
guage (e.g., Java, Objective-C). These applications sub-
sequently have very limited access to the system, using
pre-defined application program interfaces (APIs), and
are cryptographically attributed to an author. Mobile
devices have also attracted a significant amount of at-
tention from advertisers, due to the rich data available
on these devices that can be used to perform targeted
advertising [37]. This advertising-focused profit model
has led to a significantly different economic model from
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Fig. 1. High-level abstraction of the components that constitute
modern mobile devices.

that of traditional computers, as the users’ private data
has become the primary currency for most developers.
Finally, mobile devices include a diverse medley of
hardware components to provide the rich experience
that users have come to expect. Due to the relative com-
plexity of each component, they are typically produced
by individual manufactures and then later combined
into one unified device. Most of these hardware compo-
nents have access to a lot of private information, which is
not necessarily managed by the higher-level components
on the device. Moreover, these hardware providers typi-
cally provide their own firmware and drivers to interact
with their component, introducing even more complex-

ity into the software environment.

2.1 Hardware Components

Mobile devices contain a plethora of individual hard-
ware components that interact using various protocols.
In some cases, the components can interact and ex-
pose sensitive user data in ways that were not intended.
While the general hardware architecture of these sys-
tems has become extremely complex and varies wildly
between devices, there are still some overarching simi-
larities in both the included technologies and their in-
terconnections. Figure 2 diagrams the typical hardware
configuration found in modern smartphones.

Application Processor (AP) The application pro-
cessors (APs) on mobile devices are very similar to cen-
tral processing units (CPUs) found in traditional com-
puters, with a few caveats. First, because of the strin-
gent power requirements of mobile devices, many of the
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Fig. 2. Typical hardware configuration for a modern mobile device.

APs are designed with specialized low-power compo-
nents and employ aggressive power-saving techniques
(e.g., halting cores). Second, unlike legacy CPUs, many
mobile devices utilize the system on a chip (SoC) model,
wherein various sub-components (e.g., connectivity, me-
dia, location) are all included in a single silicon chip.
Components within the SoC frequently share resources
(e.g., memory), which can potentially leak private data.
Finally, many of the newer APs include a trusted ex-
ecution environment (TEE), which provides hardware-
enforced isolation for “trusted” code, as well as the abil-
ity to arbitrate access to hardware components. These
TEEs can be leveraged to enhance both security and
privacy, but also present another layer of complexity.

Mobile Coprocessors In addition to the main AP,
modern devices are equipped with additional coproces-
sors (e.g., Motorola’s X8 [38] and Apple’s M7 [39]) that
assist the AP with various functions, each accompanied
with their own firmware. More specifically, devices have
recently been incorporating a natural language proces-
sor (NLP) for audio processing, and a contextual com-
puting processor (CCP) for processing environmental
information (e.g., motion, light). These coprocessors are
typically used to offload computation from the AP and
enable “always on” applications (i.e., the device can
still be aware of it’s surroundings while the AP and
screen are in a power-saving state), which only wake
the AP when a trigger event happens (e.g., saying “OK,

’ or handling the device). This always-on state

Google,’
could have serious privacy implications, as the users’
devices are likely collecting data about them even when

they believe the device to be “off.”

Baseband Processor (BP) The baseband proces-
sors (BP) are typically multi-core processors that run
a propriety real-time operating system (RTOS) as their
firmware, which is provided by the BP vendor. Their
sole purpose is to handle cellular communications, and
they are thus typically isolated from the rest of the hard-
ware on the device, with the exception of the micro-
phone, speaker, and subscriber identity module (SIM).
This permits the BP to remain performant when han-
dling voice calls, regardless of the load on the other com-
ponents. While the ideal implementation would enforce
hardware isolation, it is typically cost effective to in-
clude the AP and BP on the same SoC, which could
allow the BP to access main memory [40], and subse-
quently a lot of private user data, in addition to the
cellular communications that it inherently controls.

Universal Integrated Circuit Cards (UICCs) A
typical mobile device will contain at least two UICCs,
a SIM card for authentication to a mobile carrier, and
a secure element (SE) for handling user credentials on
the device itself. Both of these units contain yet another
completely self-contained processing unit in a security-
hardened environment [41]. These components can be
leveraged to protect user data and credentials by pro-
viding an isolated environment for cryptographic oper-
ations, which is typically leveraged for authentication
and encryption. However, modern SIM cards can also
perform other actions on the device (e.g., send short
message service (SMS) messages, open a web browser,
and send messages over the network [42, 43]), which
could be used to violate the users’ privacy.



Cryptographic Hardware In addition to SEs, some
manufacturers have recently begun including dedicated
cryptographic hardware for data encryption and au-
thentication. For example, modern Apple devices have
a dedicated module for encryption, using keys that are
fused into the application processor during manufactur-
ing to make them inaccessible from software [44]. These
cryptographic modules can be utilized to protect the
user’s private data when the device is “locked.”

Sensors Modern mobile devices are far more sensor-
rich than traditional computers, and are equipped with
a wide variety of sensing capabilities (e.g., movement,
location, light). Additionally, numerous peripherals, or
wearables, also enable access to pedometers, heart rate
monitors, and even sensors to detect blood oxygen lev-
els. These sensors are the source of much of the private
data collected by mobile devices, as even access to a
few of these sensors can provide incredible insights into
the user’s private life. For example, with just location
and accelerometer data, Google is able to provide users
with a complete log of their travels, including the mode
of transportation [45].

2.2 Software Components

While the general software architecture of mobile de-
vices is similar to that of traditional computers, there
are a few key differences, which we briefly highlight.

Trusted Kernel Unlike historic computers, which only
contained a single operating system, mobile devices fre-
quently contain a separate, feature-rich, trusted kernel
which is used inside the TEE. This trusted kernel is the
most trusted code on the device. Its job is to create an
isolated “non-secure,” or “normal,” world for the main
operating system (e.g., Android, iOS) to execute within.
The trusted kernel and the main operating system inter-
act using very limited interfaces (e.g., shared memory
regions), and the trusted kernel always maintains con-
trol of the non-secure world and has access to its entire
memory space. Thus, the trusted kernel can undermine
any data protections or privacy-preserving technology
deployed by the OS provider.

Operating Systems The major differentiator between
mobile OSs and their ancestors is primarily their closed
nature. They are typically more restrictive in both polic-
ing which apps are allowed to be installed, and subse-
quently restricting the app’s access once it is installed
and executed. In order to restrict this access, mobile
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OSs employ sophisticated permissions models and ap-
plication sandboxing techniques.

Mobile Applications In addition to the closed envi-
ronment and advertising-focused economic model, the
types of applications available on mobile devices are
also significantly different from traditional computers.
Specifically, mobile applications are very likely to make
heavy use of their access to the various sensors. For ex-
ample, numerous popular social applications leverage
the users’ precise location, and health-related applica-
tions collect intimate details about the users’ personal
lives. However, many of these applications are devel-
oped quickly with functionality as their primary focus
and little thought given to user privacy, which can lead
to this personal data being mishandled (e.g., users’ in-
timate encounters appearing on search engines [46]).

Third-Party Libraries
available for mobile devices make use of third-party li-

Many of the applications

braries, such as targeted advertising libraries [33], for
both functionality and profit. However, users are often
unaware of the existence of these third-party libraries
in the apps. What’s worse, because there is currently
no hard isolation between the components of an appli-
cation, these libraries have the same access to data and
sensors as their parent application, which is frequently
leveraged to collect sensitive user data [15, 47].

2.3 Parties Involved

Numerous parties are typically involved in the deploy-
ment and provisioning of mobile devices, each respon-
sible for different components. This significantly com-
plicates privacy protection as the different parties may
have varying incentives. Moreover, these parties often
retain control of their components after deployment
through over-the-air (OTA) updates. Understanding the
parties involved, and their access to, and control of, the
device is critical when analyzing the privacy assurances
that are provided for mobile device data.

Chip Vendors Unlike the AP, which typically runs
software that was provided by the device provider, both
the BP and UICCs typically come with pre-installed
software from their respective manufacturers. Because
of these hardware components’ privileged access in the
device, a vulnerability or backdoor could provide access
to private user data. In fact, Gemalto, a popular UICC
manufacturer, recently made allegations that the United
States’ and Britain’s intelligence agencies attempted to
compromise their devices [48]. Furthermore, the area



of malicious hardware has been gaining attention re-
cently with recent publications showing just how practi-
cal these attacks are [49]. Detecting malicious hardware,
if it exists, has been shown to be extremely difficult [50].

OS Provider The operating system (OS), and thus
its provider, generally has access to a great deal of sen-
sitive data. The OS is also responsible for ensuring ad-
equate software-based segregation of applications and
data sources. Most mobile OS vendors also employ re-
mote administration capabilities, permitting them to
provide updates post-deployment, as well as install and
remove applications [51, 52]. This could enable them
to change their protections or the amount of private
data they collect, without informing users. More inter-
estingly, many of the OS providers (e.g., Google, Apple)
also have a strong incentive to collect private user data
to leverage for advertising or their own services [53].

Trusted Kernel Manufacturers Recently, the desire
to use the TEE has led to the advent of “trusted ker-

> which come pre-installed on our mobile devices.

nels,’
Companies like Trustonic [54] and TrustKernel [13] pro-
vide this kernel to the device vendor, which then al-
low developers to install trusted applications within the
TEE. Trustonic claims to have their kernel installed on
more than 400 million devices, and permits over-the-air
(OTA) updates of “Trusted Services”[14]. These parties
have considerable power over mobile devices and an ex-
ploit in their firmware could be leveraged to completely

compromise most security and privacy protections.

OEMs and ODMs The vendor that assembles the in-
dividual components into a mobile device for end users
is called the Original Equipment Manufacturer (OEM)
or Original Design Manufacturers (ODM) (e.g., Apple,
Samsung, HTC, LG). These vendors design the hard-
ware system architecture, the connections between the
individual components, and often provide the first-stage
boot loader (FSBL). In the case of the Android, OEMs
typically modify the OS to incorporate specific hard-
ware functionality, pre-install applications, add or re-
move features, and add services to ensure continued
control over the device once it is deployed. Recently,
OEM vendors have also started including their own in-
terfaces and functionalities (e.g., Samsung’s Knox[55])
in the TEEs of their devices. Even when the OEMs have
the best of intentions, they are still capable of intro-
ducing severe vulnerabilities [56] as they are frequently
increasing the complexity and attack surface of the OS.

Mobile Internet Service Providers (MISPs) Most
modern devices rely heavily on Internet access provided
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by mobile Internet service providers (MISPs). In fact,
many of the mobile devices on the market today are
sold directly by MISPs. These MISPs inherently can ob-
serve all unencrypted traffic, and can trivially ascertain
the rough physical location of devices using triangula-
tion with their broadcast towers. The 3GPP, a partner-
ship of communications interests, outlines the specifi-
cations for lawful interception of communications [57].
Many MISPs have far more access on devices than their
role of providing Internet access would suggest. In many
cases, they can remotely update the functionality of the
SIM [58], which has access to numerous functions on the
device enabling it to obtain global positioning system
(GPS) coordinates, open a browser, and communicate
with the BP and the AP.

Application Developers Mobile application devel-
opers inherently have the least-privileged access to the
private data. However, most of the device’s functionality
to users is provided through these applications. Thus,
exposing hardware sensors and other data sources to
these applications is typically necessary. While most of
these queries for data (e.g., GPS coordinates) will alert
the user, it has been shown that most users will blindly
accept these requests without much concern for how the
data will be used [29].

Third-party Library Providers Instead of develop-
ing entire applications, some developers focus on creat-
ing libraries that can be included in other applications
to provide specific functionality (e.g., cryptography, ad-
vertising, or graphics). Many developers use these li-
braries, exposing their data to the library provider.
In particular, in exchange for monetary compensation,
numerous applications include advertisement libraries.
Researchers found that as many as 52.1% of appli-
cations utilize ad libraries [33]. Therefore, these ad-
library providers can access a vast amount of user data
spanning numerous applications and operating systems.
Zang et al. found that 73% of Android apps shared per-
sonal information (e.g., name and email) and that 47%
of i0S apps shared location data with third parties [59].

Mbobile Device Management Many employers ei-
ther provide mobile devices to their employees, or en-
courage them to bring your own device (BYOD), al-
lowing employees to use their personal devices for busi-
ness purposes. In both cases, the employer typically re-
quires a mobile device management (MDM) solution to
be installed, which provides the employer with a great
deal of control over the device (e.g., install/blacklist ap-
plications, modify security settings, and location track-



ing). Employees storing personal data on MDM-enabled
phones, and carrying them during off-business hours,
presents some interesting privacy concerns that, to the
best of our knowledge, have been left mostly unexplored.

2.4 Summary

The mobile-device ecosystem is a unique environment
with numerous perils for user privacy. Unlike most desk-
top and laptop computers, mobile devices are filled with
sensors that can collect a vast amount of sensitive data
since the devices are typically always on and always with
their user. Complicating things further, the hardware
components of the mobile-device ecosystem, and their
associated drivers, are provided by multiple vendors and
potentially give these providers access to sensitive user
data. Furthermore, software developers are allowed to
distribute their own code to these devices in the form
of apps with many of these monetizing the available
user data through third-party advertisement libraries.
The result is an ecosystem with multiple agents that
have access to private user data and a clear incentive to
gather, exploit, and share this private data.

3 Protecting Private Data

In this section, we review the numerous privacy-
preserving technologies and techniques employed on
modern mobile devices, across all levels of the stack.
These protections are deployed in an effort to add secu-
rity and privacy to the various components of the mobile
ecosystem discussed in Section 2. In our presentation,
we highlight the aspects of the technologies that make
them particularly interesting on mobile devices. Addi-
tionally, we restrict our analysis to Google’s Android
and Apple’s i0OS platforms, which account for 97.8% of
the smartphone market [60].

3.1 Hardware-based Mechanisms

Both Android and iOS leverage hardware-based features
for protecting the privacy and security of sensitive data.
3.1.1 Trusted Execution Environment (TEE)

TEEs provide a hardware-enforced isolated execution
environment for security-critical code, which can pro-
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vide a safe haven for storing and processing sensitive
data. The general concept behind TEEs is that this
“trusted,” or “secure,” world, can be verified using tech-
niques like secure or authenticated boot [61] and can be
leveraged to maintain a root of trust on the device, even

i

when the “normal,” or “non-secure,” world is compro-
mised. The most popular of these, due to their market
dominance, is ARM’s TrustZone [62].

This functionality is available on all modern ARM
cores and has only recently started to be leveraged to
protect user data. For example, both Android [63] and
i0S [44] are using this technology to protect fingerprint
templates and Samsung has deployed Knox [55], which
is used to provide segregation between the user’s per-
sonal and work-related data on the device. However,
vendors have only begun to scratch the surface, as this
technology could also be leveraged to arbitrate access
to the hardware-based sensors, potentially employing
other privacy-preserving technologies to help thwart un-
intended disclosures. Similarly, it is possible to leverage
the TEE to provide a secure trusted path (e.g., by dy-
namically reconfiguring the hardware permissions) for
users to both input and digest sensitive information
(e.g., passwords, private messages, pictures).

3.1.2 Data at Rest Encryption

Similarly, both Android and iOS leverage hardware-
backed technologies to implement full-disk encryption,
which protects all of the data on the device when it is
“locked” or powered off. Specifically, both Android and
iOS use the TEE to prevent the underlying encryption
keys from off-device brute force attacks [44, 64]. Apple
takes this protection a step farther by introducing a ded-
icated cryptographic hardware unit between the volatile
system memory and non-volatile flash storage. Because
the cryptographic hardware is separated from the AP,
the TEE can provide it with encryption keys without ex-
posing them to the OS. This protects the user’s privacy
by ensuring that even if an attacker can compromise
the iOS kernel, they will be unable to steal the encryp-
tion keys needed to recover the data [44]. Android, on
the other hand, implements full-disk encryption via the
Linux kernel, based on dm-crypt [65], which stores the
encryption key in kernel memory while in use.

The effectiveness of these techniques was recently
demonstrated in a high-profile case, wherein the Fed-
eral Bureau of Investigation (FBI) was unable to recover
data from an iOS device [66].



3.2 Software and User-based Mechanisms

‘We now describe the various tools used to control which
applications may run on a mobile device, restrict the pri-
vate data that these applications may access and collect,
and protect the sensitive data once it is collected.

3.2.1 Application Vetting

One of the main selling points of modern mobile de-
vices is their ability to run applications. In fact, the
Android and iOS app markets both tout over 1.5 mil-
lion apps, offered by a variety of third-party develop-
ers [67]. However, these developers can be untrustwor-
thy or downright malicious [31, 68-72]. Therefore, both
Google and Apple employ strict application vetting pro-
cesses for their app stores, which check for violations
of the developer policies and privacy-invasive behavior.
While their approaches are quite similar, previous work
suggests that vetted Android apps end up accessing less
sensitive data than iOS apps [27].

Android Google offers an official app store, which
it calls Google Play [73]. However, Google also allows
users to purchase apps from a number of third-party
app stores (e.g., Amazon [74]). In fact, the Google Play
store is not available at all in China [75], forcing all Chi-
nese users to obtain their apps from third-party stores.

Before being included in Google Play, an applica-
tion must pass Google’s vetting process, which ensures
that the app does not violate the Google Play devel-
oper policies, many of which restrict the use of private
user data [76]. Recently, Google’s app-vetting process
has started to include manual, human, checks [77] (sim-
ilar to Apple’s review process), in addition to their au-
tomated analysis.

However, this app-vetting process still suffers from a
few deficiencies. First, the Android vetting process was
historically only performed on applications that were
submitted to Google Play. Thus, if the application was
submitted to another app store or downloaded from an
unknown source, the vetting was not performed; how-
ever, installing these applications still required explicit
user consent. Nevertheless, Google recently introduced
Verify Apps Protection, which automatically uploads
and scans applications before installing from unknown
sources [78]. Second, Android does not require the appli-
cation code to be cryptographically signed before execu-
tion (i.e., developers can dynamically load program code
after the vetting process). Therefore, a privacy-invasive
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application could pass the Google Play app vetting pro-
cess, and then, when executed, download malicious code
and run it. In fact, this technique has been abused by
privacy-invasive malware in the wild [79].

iOS Unlike Android, iOS only allows apps to be in-
stalled from the Apple App Store, which requires the
app to have passed their vetting process. In addition to
scanning for known malware and functionality checks,
one of the major components in the Apple vetting pro-
cess is to scan for applications that are using private
APIs. While internally the low-level iOS Objective-C
and C libraries contain many private methods, which
are not documented in the official iOS API, iOS appli-
cations submitted to the App Store are required to only
use the publicly documented APIs. Because these meth-
ods are called from within the public APIs, they can-
not be completely removed from production. However,
many of these methods are dangerous and have the abil-
ity to retrieve private information. For example, in our
experimentation (detailed in Section 4.3.2), we found
private API classes (i.e., ACDServer) that when initial-
ized causes the main GUI on iOS 9.0 to crash. Addition-
ally, previous work has found that many of these private
APIs can be used to retrieve private data [72, 80-83].

3.2.2 Application Sandboxing

Both Android and iOS provide isolation mechanisms,
called application sandboxes, which prevent applica-
tions from interfering with one another and from access-
ing resources that they do not possess permissions for.
Both OSs reuse kernel-level security features that were
previously designed for commodity operating systems
to provide separation and a mechanism for enforcing
mandatory access control (MAC).

Android Android’s sandboxing capabilities center
around Linux’s user separation [84]. Android leverages
this separation by assigning each installed application a
unique user identifier (UID). The Linux kernel then en-
forces resource isolation to ensure that one application
cannot interfere with another application (e.g., read-
ing/writing their files, sending signals, debugging, etc.).
Furthermore, Linux also provides Android with a mech-
anism to restrict an application’s resource consumption
(e.g., memory and CPU) and its access to the various
device sensors. More recently, Android has also been
employing SELinux’s MAC framework to apply more
fine-grained access control policies to applications [85].



iOS Unlike Android, far less is known about the mech-
anisms behind iOS’s sandboxing implementation. The
majority of what is known about Apple’s sandbox im-
plementation was learned through reverse engineering
the implementation [86-88]. However, the underlying
technology, TrustedBSD, is open source and detailed
in Robert Watson’s PhD Dissertation [89]. i0S’s Trust-
edBSD MAC framework introduces additional checks
in the kernel against the MAC profile’s policy for var-
ious actions (e.g., reads and writes to a file, listing the
files in a directory). These policies are provided by two
kernel extensions: Apple Mobile File Integrity (AMFT),
which implements the code signing and permission sys-
tem; and Sandbox.kext, which implements the sandbox-
ing components. Sandbox.kext implements sandboxing
through the use of many built-in Scheme-like policies,
which describe precisely what a process can and cannot
do. There were 95 unique sandbox profiles found in iOS
8.0, and all third-party apps were assigned the “con-
tainer” profile, which generally restricts the application
to only access files within its own directory [88].

3.2.3 Permissions Models

While sandboxing applications prevents them from in-
terfering with the device or stealing the users’ data,
there are plenty of legitimate reasons that apps may
need to access sensitive resources. Both Android and
iOS have run-time permissions models that require users
to explicitly approve an application’s request to access
private data or potentially dangerous functionality.

Android The Android architecture divides permissions
into two categories: normal and dangerous permissions.
Dangerous permissions are needed for actions that ap-
pear to pose a risk to a user’s privacy or the device’s op-
erations (e.g., location, phone operations, microphone),
whereas normal permissions correspond to less risky ac-
tions (e.g., access the Internet, vibrate, set timezone),
and may be revoked at any time. For dangerous per-
missions, user approval is required for all permission-
controlled actions that it may undertake before the app
will even be installed. Starting with Android 6.0, the
user must also approve dangerous permissions the first
time they are actually utilized; however, in the interest
of usability, approval of one permission provides access
to an entire group of permissions. For example, run-
time approval of coarse-grain localization also covers
later actions involving fine-grain localization. An exam-

ple of one such permission dialog in Android is given
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Allow "Weather" to access
'your location even when you
are not using the app?

Your location is used to show local
weather like in “Weather” app and in
Notification Center.

@, Allow Keep to access
your Microphone?

DENY  ALLOW

Don’t Allow Allow

(a) Android (b) iOS

Fig. 3. User permission dialogs for Android [93] and iOS [94].

in Figure 3a. This more recent permissions model re-
sembles the permissions dialogs in iOS and aims to re-
duce over-permissioning [90], which arises when appli-
cations request a large number of permissions up front,
in case they may be useful later. Previous research has
shown that users often did not understand the install-
time permissions dialogs and were often surprised by
the data that these over-permissioned apps could ac-
cess [29, 91, 92]. On the other hand, normal permissions
don’t pose such a risk, and are automatically granted at
install time (i.e., the user is not prompted).

iOS The permission system in iOS uses two sepa-
rate mechanisms to delegate access to the system, en-
titlements and permissions. Entitlements are rights set
in an application’s configuration and give the applica-
tion a specific capability that it would otherwise not
have (e.g., background processes, iCloud access) [95].
These entitlements are set in the app bundle that gets
signed by Apple and therefore cannot be modified af-
ter the application is submitted to the App Store. Per-
missions, alternatively, are only approved at run-time,
when the application actually attempts to access the
restricted resource. When an application first attempts
to access any restricted functionality or data (e.g., lo-
cation, microphone, user contacts), iOS will prompt the
user for approval (see Figure 3b), and the access will
be granted only if the user agrees. The user’s response
to this prompt is saved, and any future attempt to ac-
cess the same resource is subsequently approved. Unlike
entitlements, which are approved by Apple when the
application is submitted to the App Store, these per-
missions can be approved or revoked by the user at any
time though iOS’s menu system.



3.2.4 Data in Transit Encryption

Both Android and iOS provide APIs that allow ap-
plications to make secure network connections using
SSL/TLS [96, 97]. These APIs ensure that applications
do not leak private data to the MISP, a WiFi provider,
or any malicious party that may be listening to exter-
nal communications. In order to prevent the use of weak
and broken cryptography, which may be vulnerable to
cryptanalysis, Android disabled the use of weak cipher
suites starting with Android 5.0 [98]. Apple has gone a
step further, by mandating that applications on iOS 9.0
and later must use transport layer security (TLS) 1.2
with forward secrecy or an exception will be thrown,
and the connection will not be made [99]. Additionally,
in an attempt to reduce the number of unencrypted con-
nections, Apple has begun forcing developers to specif-
ically whitelist any domains that an application wants
to make any unencrypted web requests to.

3.2.5 Privacy Policies

In addition to the technical tools for controlling ac-
cess to private data, mobile devices also make use of
regulatory mechanisms in an effort to protect users’
privacy. Specifically, application developers often have
privacy policies that govern the collection and use of
private data by their apps. These policies are required
by Apple and Google when accessing specific data on
a device [100, 101], and are intended to inform users
about how their information will be collected, stored,
and used. Privacy policies can also sometimes be used
for regulatory and legal action to enforce privacy protec-
tions; however, this is beyond the scope of this paper.

3.3 Summary

This section describes many of the tools currently de-
ployed for protecting user privacy on mobile devices.
An interesting observation is that there has been a sig-
nificant focus on user-in-the-loop permissions to regu-
late access to this data (i.e., requiring explicit input
from users). Moreover, regulating this access to private
data is made even more important by the sheer num-
ber, and general untrustworthiness, of application de-
velopers. It is also worth noting that, for the most part,
these privacy-preserving technologies exist in isolation,
assuming the soundness of each other to ensure user pri-
vacy. For example, 1) the OS assumes that the vetting
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process was successful, that the user will act appropri-
ately when prompted for access to sensitive data (e.g.,
Figure 3), and that the application will not leak this data
in unintended ways; 2) the app assumes that the OS’s
sandboxing will protect it’s data, and 3) both the OS
and app assume that the TEE and full-disk encryption
will protect their stored data. While there have propos-
als that take a more system-wide approach for protect-
ing user data [102, 103], we are unaware of any that are
able to also account for the hardware components.

4 Remaining Privacy Leaks

Despite the best efforts of both the users and the tech-
nology providers, mobile devices continue to fail at
protecting user data. Many of the issues stem from
the complexity of the mobile ecosystem and have re-
sulted in vulnerable implementations and fundamental
design flaws. This section describes the remaining pri-
vacy leaks, within the various layers of the device, and
the types of data leakages that result. These leakages
are broadly summarized in Table 1, which demonstrates
the significant exposure of vast amounts of private data,
at all levels of abstraction, to a variety of parties.

4.1 Hardware Components: Baseband,
SIM, and TEE

Many of the hardware components in mobile devices
present unique challenges to the protection of user’s pri-
vate data. For instance, the Baseband Processor, SIM
devices, and TEE are all generally considered black
boxes; however, they can all access a substantial amount
of user data, without much limitation.

The BP’s role in the device’s infrastructure allows
it to observe all of the communications between the de-
vice and the MISP. This means that not only can it leak
this private communication elsewhere, but that the BP
can also be accessed and exploited through the same
channel (e.g., via a nearby malicious cellular base sta-
tion [126]). Xenakis et al. [30] showed that, once compro-
mised, the BP can be used to access the device’s GPS
coordinates, calling number, international mobile sub-
scriber identity (IMSI), and even the keys that are used
to encrypt communication with the MISP via the SIM.
Miller et al. [115] demonstrated a vulnerability in a BP’s
firmware that converted affected iPhones into a remote
listening device, and a similar vulnerability was recently
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Table 1. Enumeration of which parties have been shown to have access to specific types of private data on modern mobile devices.

demonstrated against the Samsung’s Galaxy S6 running
Android [112]. In fact, the baseband on the iPhone has
been exploited repeatedly to “unlock” iPhones, which
were locked to a specific MISP [127]. Moreover, depend-
ing on the implementation, the BP could also be used
to obtain data from user applications through the AP,
or directly, using direct memory access (DMA) [113].

The great care given to the security of SIM devices
makes them very difficult to analyze (e.g., most produc-
tion SIMs do not permit the installation of third-party
applications). Nevertheless, researchers have found vul-
nerabilities in SIM’s protocols [128] and software [119],
in addition to physical attacks [120], which permit ac-
cess to the critical on-board data. These vulnerabilities
could permit attackers to clone the device or decrypt
network traffic, in addition to the other SIM capabilities
(e.g., capturing GPS coordinates, sending messages, and
displaying content on the users’ screen [42, 43, 119]). In
fact, a recent proof-of-concept malware was created that
could obtain sensitive data from the SIM by querying it
from the AP via the BP [30].

Finally, numerous vulnerabilities have been discov-
ered in the implementation of the “secure world” code
in TEEs (e.g., Huawei’s HiSilicon [117], Qualcomm’s
MSM8974 [118] and Snapdragon [116, 129]). With ac-
cess to code execution in this trusted world, an attacker

can gain access to all of the data available on the device,
including cryptographic keys, application data, biomet-
ric data, and sensor data. Thus, some research has fo-
cused on shrinking the trusted elements [130], so that
they can be verified formally or by hand. Nevertheless,
the popularity and trust placed in the TEE continues
to grow together with the concern for privacy breaches.

4.1.1 Firmware/Drivers

Many of these hardware components contain their own
firmware and are accompanied with drivers to enable
communication with them. Most OS-providers blindly
include these drivers, trusting them with privileged ac-
cess to the system. However, drivers have long been ex-
ploited [131], and could pose a serious a risk to the
user’s privacy if they expose a vulnerability. In previ-
ously unpublished work, we analyzed the attack surface
of near-field communication (NFC) interfaces on mobile
devices by developing and exercising a physical-layer
NFC fuzzing framework [132]. In this work, we exam-
ined the Nexus S and the Nexus 4, two flagship Android
phones (running version 4.1.2 and 4.2.2 respectively).
We conducted over 132,000 fuzz tests on the Nexus S,
observing 856 crashes, and over 150,000 fuzz cases on



the Nexus 4, observing only 7 crashes. Many of these
crashes appeared in the drivers themselves, indicating
that the significant difference in the number of observed
crashes is likely due to the NFC chipset and their ac-
companying drivers, as the software versions were essen-
tially identical. This experiment further emphasizes the
compounded complexity that occurs in mobile devices,
with their various third-party hardware dependencies.

4.2 Sensors

Unlike general purpose computers, almost all mobile de-
vices contain a GPS sensor for detecting physical loca-
tion. In some cases, this location information could be
used to infer a significant amount about the user’s ac-
tivities (e.g., illegal, embarrassing, or “secret” locations)
or personal characteristics (e.g., at a club that caters to
particular social interests). While numerous protections
exist to protect this valuable data (e.g., requiring ex-
plicit user-granted permission), numerous side-channels
have been shown, which still leak accurate location data.
For example, proximity-based dating apps share the
user’s location with the provider to find potential nearby
dates, and these providers have been shown to leak the
user’s location (with varying granularities) to anyone
with an app-related connection to the user [16, 114].
Furthermore, local WiFi network signal strength [6] or
availability [133], accelerometers [7], and even ambient
sound and light [9] have also been shown to leak location
information.

Users also frequently enter private credentials into
their devices through user-interfaces such as the touch-
screen, camera, or microphone. These user-interfaces,
restricted by the size of the device and commonly ac-
cessed in public venues, can leak access to data over
significantly more channels than their less-mobile desk-
top and laptop counterparts. Beyond a bystanders’ abil-
ity to view the screen or overhear conversations, it has
been shown that the keyboards on touch screens are in-
herently susceptible to being observed [124], even when
direct line-of-sight is not available [125]. Similarly, data
from the device’s accelerometer and/or microphone has
been leveraged to infer user key presses [4] and tap lo-
cations [3, 123] on the touch screen. These methods
could be used to covertly intercept users’ passwords, fi-
nancial information, and private communications from
a background app with access to the sensors. Further,
Michalevsky et al. [10] recently demonstrated that the
gyroscope, which is accessible to applications and web-
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sites in both Android and iOS, could be utilized to iden-
tify speaker information and even parse speech.

4.3 Operating System

Due to the OS’s visibility, and its position as the first
line of defense against malicious applications, it is un-
surprising that almost every aspect of the OS has sub-
sequently been targeted and exploited to obtain private
data. We highlight the most notable examples below.

4.3.1 Bloatware and Updates

One of the major distinctions between Apple and An-
droid devices relates to their control over the device: Ap-
ple has significantly more control over many of the com-
ponents with which iOS interacts (including hardware),
whereas Android is more commonly modified and dis-
tributed by various third-party vendors before it reaches
the user. For example, Apple restricts the applications
that are bundled with the device, whereas Android de-
vices typically come with a variety of such applications
pre-installed, often with unwanted and unknown (to
the user) privacy-invasive features [34, 134, 135]. Un-
like desktops and laptops, which may also come with
pre-installed bloatware, users on mobile devices often
have no means to remove it, resulting in a much longer
sustained privacy invasion. These Android modifications
have led to vulnerabilities [136], and some vendors have
abused this privilege by adding “special features” (e.g.,
remote access) to the devices [137, 138]. Most notably,
Samsung was recently accused of modifying the ver-
sion of Android running on their devices to implement
remote-control functionality from the BP [139].

because of the distributed Android
ecosystem, system updates can take a much longer time

Similarly,

to apply to all devices than for iOS, where Apple can
push updates unilaterally. The result of these delayed
updates was shown in a recent study of the Android
ecosystem, which found that 87.7% of devices were vul-
nerable to at least one critical vulnerability [140], par-
tially due to the slow updates. This is in stark contrast
to general purpose computing, where patches for critical
vulnerabilities are often deployed as quickly as possible.



4.3.2 Permissions and Sandboxing

As described previously, both Android and iOS have
sandboxes and permissions systems to restrict third-
party application developers from accessing the private
sensor data available on the mobile platforms.

Android The Android permissions model is designed
to allow users of Android devices to control what data
may be collected by the applications installed on their
devices [141]. In principal, this should allow the user to
be aware of all sensitive data accessed by any applica-
tion installed on their device. However, as our exper-
iments detailed below indicate, this is not always the
case. Often times, unintended side-channel attacks per-
mit the recovery of more information than was orig-
inally intended (e.g., taps [3, 4], keypresses [5], posi-
tion [6, 7, 9, 10], current activity [11]). For instance,
Michalevsky et al. recently demonstrated the ability to
recover a phone’s location from the seemingly innocent
ability of an application to measure the phone’s aggre-
gate power use [8].

iOS As mentioned in Section 3.2.1, Apple has specif-
ically forbidden the use of private APIs by applica-
tions, because they may leak private user data. How-
ever, there has been a large body of work on bypassing
the application vetting process in order to allow pri-
vate API usage. For example, Han et al. [80] were able
to get several privacy-invasive apps (e.g., secret filming
and screen capturing) through Apple’s vetting by uti-
lizing private API calls in dynamically loaded and ob-
fuscated libraries. Other applications have successfully
evaded the vetting process by implementing hidden re-
mote vulnerabilities, which, post-vetting, permitted re-
mote agents to divert execution into a previously “dead”
code branch that would dynamically load the needed li-
braries to make private API calls [81].

To prevent these attacks, Bucicoiu et al. used static
binary rewriting to modify an iOS application’s code to
include a reference monitor to restrict the use of private
APIs [82]. Similarly, Deng et al. developed a system, us-
ing static analysis, dynamic analysis, and forced execu-
tion, to detect private API use and found 146 approved
that were using private APIs [83]. Furthermore, an-
other system, that used static analysis and simple string
de-obfuscation techniques, was able to identify 256 ap-
proved apps using these privacy-invasive APIs [142].

A design flaw in Apple’s enterprise app model has
been shown to permit the publication of completely un-
vetted applications to the public [111]. Because these
applications are signed with an enterprise certificate,
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they are not vetted by Apple and can utilize private
APIs without restriction. Recent research analyzing
these publicly distributed enterprise apps found that
80% of the analyzed apps do, in fact, utilize private
APIs, primarily to obtain private user information [111].
Unsurprisingly, iOS malware has also utilized this tech-
nique to infect un-jailbroken devices [72, 143, 144].

Experiment In order to analyze the existing permis-
sions models for sensitive data leakage, we conducted
an experiment to determine the amount of private data
that is currently available to applications with no ex-
plicit permissions [145].

On Android (version 5.1.1), we used Java’s reflec-
tion to traverse the class hierarchy in the runtime en-
vironment, allowing each of the fields and methods for
all of the available classes to be accessed and analyzed
for private data. While complications arise from the
need to supply the correct arguments for object con-
structors and other methods, these can be mitigated
by recursively creating the needed arguments and uti-
lizing the results of previous method calls. This tech-
nique identified numerous unique identifiers that could
be used to fingerprint the device (e.g., directory struc-
tures and account authenticators), discern the user’s in-
terests (e.g., installed applications and associated meta-
data), obtain the user’s personal information (e.g., de-
vice wallpaper), and learn the fine-grained per applica-
tion network throughput, which can be exploited for a
number of side-channel attacks (e.g., decrypting voice
over IP (VoIP) [146-148], website fingerprinting [149]).

This experiment was similarly conducted on iOS
(versions 8.1.3 and 9.0); however, the effectiveness
was hindered by a number of complications, such as
Objective-C’s lack of memory safety, type safety, and
complete reflection support. However, our unprivileged
test application was still able to obtain a few note-
worthy results: modifying the device’s volume without
user interaction; causing the main GUI, SpringBoard,
to crash; causing other processes, such as geod (the lo-
cation provider service daemon) to crash; and causing
the OS kernel to crash.

Over-Permissioning One of the simplest methods of
collecting private data from a user is to simply request
access to it upon installation. Once the user agrees to
the permissions, future updates of the app can then ex-
ercise those permissions. Various studies have approxi-
mated that a significant amount of Android applications
(one-third of 940 [90], 44% of 10,000 [150]), in fact, re-
quest permissions that they do not use. Moreover, this
trend of over-permissioning appears to be increasing in



applications [151] and the use of these permissions has
been similarly growing in advertisement libraries [152].

Data collected by an over-permissioned application
can typically be exfiltrated to the Internet, since such
access is provided by default on both Android and iOS.
To combat this risk, several systems attempt to iden-
tify user data that is sent off device by an application.
PiOS uses static analysis on iOS applications to detect
code flows which first access user data and then utilize
that data in network API calls [153]. TaintDroid took
this analysis one step further by modifying Android to
conduct system-wide dynamic taint tracking to detect
network transmission of user data [103].

4.3.3 Full Disk Encryption (FDE)

On Android, the OS is also responsible for managing
the full disk encryption, which is based on the Linux
kernel’s dm-crypt. Previous work has shown that once
an application can read the Linux kernel’s memory, it is
possible to steal these encryption keys [154], revealing
the sensitive data. Similarly, Android is also vulnerable
to memory dumps, as shown by Miiller et al. [104], who
obtained the encryption keys via a cold boot attack.

4.4 Application

In addition to the various OS-level protections, appli-
cation developers also have a strong incentive (i.e., rep-
utation) to protect the private user data that they are
legitimately collecting, and thus employ various tech-
niques to implement these protections.

4.4.1 Data in Transit Encryption

Unless network encryption is properly used, any pri-
vate data sent over the network could be trivially inter-
cepted (e.g., by a Man-in-the-Middle (MitM) or wireless
provider). As such, there have been a large number of
studies investigating applications’ use of encryption in
transit on both iOS and Android [75, 121, 122, 155-163],
revealing a wide range of flaws that leaked user data.
More precisely, mallodroid [164], an open-source
static analysis tool for Android, found that 1,074 out
of 13,500 analyzed applications were improperly using
cryptographic certificates (41 of the 1,074 were man-
ually verified) [122]. Similarly, SMV-Hunter [165], an-
other open-source analysis tool for Android, found 1,453
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potentially vulnerable apps using static analysis (726
of which were confirmed using dynamic analysis) to be
vulnerable to MitM attacks [155]. Moreover, numerous
applications (87.9% of the analyzed Android apps [156]
and 65.3% of analyzed i0S apps [157]) also have poorly
implemented cryptographic constructs (e.g., using ECB
mode for encryption or hard-coded encryption keys),
which could expose private user data through relatively
simple attacks.

Experiment While Google and Apple have since taken
some steps to reduce the misuse of SSL/TLS, as de-
scribed in Section 3, they do not appear to have com-
pletely solved the problem. Our analysis of 50 recent
banking applications (with both Android and iOS ver-
sions) found 4 apps on iOS and 2 apps on Android incor-
rectly validating SSL/TLS certificates. In this work, we
were using a Samsung Galaxy S6 and an iPhone 6s, both
with the latest versions of the applications at the time
for Android 5.1.1 and iOS 8.1.3. One noteworthy anec-
dote from our analysis suggests things are improving
however; one application had originally appeared vul-
nerable when analyzed statically, but before we could
analyze the application dynamically it required an up-
date that properly utilized TLS.

4.4.2 Privacy Policies

As mentioned previously, privacy policies are used to
govern an applications’ use of private user data and
to inform users of how their data is being used. In
principal, these policies should enable users to make
informed decisions about what applications to install,
based on their privacy preferences. However, their effi-
cacy is solely dependent on the users’ ability to under-
stand the information contained within these policies.
To examine their effectiveness, we analyzed the privacy
policies of the top 50 paid and top 50 free apps for An-
droid and the top 100 paid and top 100 free apps for iOS
(56 unique Android policies and 126 unique iOS poli-
cies) for their readability using the Flesch Kincaid Grade
Leve (FKGL) [166]. Our results indicate that privacy
policies on both Android and iOS, on average, require a
college reading level, and that very few of the policies,
on either platform, were understandable at a high-school
reading level. Thus, while these policies are supposed to
serve as the primary tool for conveying privacy-related
information to users, they are likely incomprehensible
for a large fraction of the population and, for the most
part, ineffective.



4.5 A Data-Centric View

It is also interesting to take a data-centric view of this
privacy picture (i.e., the rows in Table 1). That is, for
specific classes of data, to consider how this data can be
accessed and at what level of the platform.

The first class of data that we examine are unique
identifiers. These can be used to track users across ser-
vices, applications, or devices potentially allowing a ma-
licious party to learn a person’s history through such
connections. Note that such identifiers are accessible at
all levels of the stack. The different components of the
hardware layer are given this data as part of their oper-
ations. As our experiments showed, many types of iden-
tifiers can be accessed without any permissions, thus
giving access to any applications or third-party libraries
that may be installed on the device. Additionally, sev-
eral works have shown how this private data can be
accessed by an eavesdropper or the MISP [108].

Another interesting class of data to look at is lo-
cation data, which is clearly very sensitive, as access
to it allows parties to locate and track the user of
the mobile device. Unfortunately, a number of prior
works [16, 42, 43, 56, 59, 104, 105, 113, 114] have shown
that the picture here isn’t much better. Location data
is largely available via various attacks and leakages for
most devices across the different levels of the stack, re-
vealing this private information to unintended parties.
For instance, advertising libraries were able to obtain a
user’s location by appearing in an application with loca-
tion permissions [33], MISPs can obtain a user’s location
through normal operations [57], as can the BP and SIM.
It was also recently shown that even a passive observer
is able to locate a particular user by intercepting un-
authenticated communication with the MISP [28, 109].

4.6 Summary

As this section shows, despite the many privacy pro-
tections employed, privacy leaks continue to persist on
mobile devices. This problem is exacerbated by the var-
ious channels, both explicit (i.e., user permissions) and
implicit (i.e., a side-channel), that this data is accessi-
ble through. Subsequently, because the various parts of
the mobile stack are built and controlled by different
providers, this private data is accessible to a wide vari-
ety of parties. Furthermore, the abundance of sensors on
mobile devices leads to the collection and possible leak-
age of much more private data than would be available
in other computing environments. By examining the pri-
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vacy gaps (both component-focused and data-focused)
at each level of the stack, we are able to appreciate the
overwhelming complexity that exists within these de-
vices. To this end, while protecting user data that is ex-
plicitly exposed may be a tractable problem, a solution
that is also able to protect data from the more implicit
interactions will require significantly more effort.

5 A More Private Future

As can be easily gleaned from our survey, the current
mobile-device ecosystem is extremely complex, with
many components that are controlled by a variety of
parties. This complexity leads to a number of pri-
vacy leaks, which are not entirely addressed by existing
privacy-preserving technology. In this section, we sug-
gest a few possible research directions, aimed at reduc-
ing this complexity to improve mobile privacy. We note
that our recommendations are very high-level and are
meant to suggest broad research directions, rather than
prescribe specific solutions or guaranteed fixes.

Reducing Trust Relationships One way to reduce
the complexity of the mobile device ecosystem is to re-
duce the number of trust relationships that must be
established between the users and the various compo-
nents of the ecosystem. One particularly promising way
to do this is through the use of advanced cryptographic
techniques such as homomorphic encryption [167], se-
cure multi-party computation [168, 169], and functional
encryption [170]. There are already surveys presenting
the current state of these technologies (e.g., [171, 172]).
These techniques would allow users to directly control
who can access their private data and what they can do
with it, without relying on any other privacy-preserving
component to enforce these policies. While these tech-
niques are all currently in the early research stages, we
believe that in the near future some of these technolo-
gies will make a major impact in this space.

Other ways to reduce these trust relationships in-
clude tools such as information flow control [102, 173],
secure programming languages [174], and formal pro-
gram verification [175]. Systems enforcing information-
flow control (e.g., [176]) can ensure that sensitive data is
only accessed by certain prescribed components, and in
appropriate ways, without requiring trust in these com-
ponents. Similarly, secure programming languages and
program verification can be used to ensure that low-level
firmware and applications are built in ways that do not
expose significant privacy vulnerabilities.



Guiding Users Toward Privacy In addition to re-
ducing the number of trust relationships, there is a
need to help end users make good privacy-related de-
cisions to protect their own private data. For example,
both Android and iOS currently prompt users when an
app would like to access specific data. However, it has
been shown that users generally do not understand the
implications of these decisions [29, 92]. Several sugges-
tions for helping users understand these decisions have
been proposed in the literature. Wang et al. [177] pro-
posed adding purposes to permissions requests to in-
form users what their data will be used for, while Agar-
wal et al. [178] used crowdsourcing to help users de-
termine which permissions were really necessary for a
given application. Another suggested approach aims to
help users by splitting permissions needed for the core
application and any third-party libraries that these ap-
plications may include [179-182], thus reducing any con-
fusion as to which parties will be accessing the data.

Mechanism Design for Privacy Finally, with all of
the parties and complexity in the mobile ecosystem, we
could use a self-regulating approach to preserving pri-
vacy. One such approach could be to leverage game the-
ory, specifically the area of mechanism design to incen-
tivize privacy-preserving behavior from selfish agents.
This is similar (in principle) to how Bitcoin [183] encour-
ages cooperation from its untrusted users. One sugges-
tion to move toward such economic incentives would be
to impose financial punishments on culpable parties in
case of a private-data leak, possibly also leveraging tools
such as data provenance to identify and punish all par-
ties involved in collecting the leaked data. Alternative
approaches include setting up auctions for permissions
to collect user data, and allowing users to charge more
for access to more-sensitive data. Of course a highly non-
trivial part of this approach would be to identify parties
to enforce the penalties and rules of such mechanisms.
One suggestion may be to leverage the Bitcoin crypto
currency to enforce such punishments without relying
on any centralized trusted party as in the work on fair
exchange [184].

6 Conclusions

In this work, we holistically analyzed the current mo-
bile ecosystem and the impact that it is having on users
privacy. Our analysis uncovered the overall complex-
ity of these devices and the numerous parties associ-
ated with the components at each layer in the stack
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(e.g., hardware, software, third-parties), each with their
own, sometimes conflicting, perspectives on user pri-
vacy. While many of these parties have taken significant
efforts to introduce protections for their individual com-
ponents, these protections have not generally withstood
attack from the research community. In fact, data leak-
age has been found in every layer of the stack, compro-
mising a wide variety of components, and in many cases
leveraging a vulnerability in one component to leak data
from another, otherwise protected, component. We thus
codified how personal, environmental, and credentialing
data are often de facto accessible to hardware, software,
and network providers that service the mobile phones,
meaning that a privacy failure of any of these providers
can lead to significant leakage of private data.

In effect, our survey and experiments have demon-
strated that, despite great efforts by companies with
exceptional resources, existing privacy-preserving tech-
nologies have fallen short of ensuring user privacy in
an age were unprecedented amounts of data about our
most intimate moments has become available to our om-
nipresent mobile devices. We have argued that the main
cause for this failure has been the enormous complex-
ity of the mobile device ecosystem with its multitude
of involved components and parties. In our view, the
current approach, wherein each component attempts to
manage its own privacy protections, will not ensure user
privacy going forward. Instead, we believe a fundamen-
tally different approach is needed, which expressly ad-
dresses the complexity and unique capabilities of this
mobile ecosystem. To this end, we have proposed sev-
eral potential research directions, with the hope that
they will eventually lead to a more private tomorrow.
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