
Proceedings on Privacy Enhancing Technologies ; 2016 (3):136–154

Laurent Simon*, Wenduan Xu, and Ross Anderson

Don’t Interrupt Me While I Type: Inferring
Text Entered Through Gesture Typing on
Android Keyboards
Abstract: We present a new side-channel attack
against soft keyboards that support gesture typing on
Android smartphones. An application without any spe-
cial permissions can observe the number and timing of
the screen hardware interrupts and system-wide soft-
ware interrupts generated during user input, and ana-
lyze this information to make inferences about the text
being entered by the user. System-wide information is
usually considered less sensitive than app-specific infor-
mation, but we provide concrete evidence that this may
be mistaken. Our attack applies to all Android ver-
sions, including Android M where the SELinux policy
is tightened.
We present a novel application of a recurrent neural
network as our classifier to infer text. We evaluate
our attack against the “Google Keyboard” on Nexus
5 phones and use a real-world chat corpus in all our
experiments. Our evaluation considers two scenarios.
First, we demonstrate that we can correctly detect a
set of pre-defined “sentences of interest” (with at least
6 words) with 70% recall and 60% precision. Second,
we identify the authors of a set of anonymous messages
posted on a messaging board. We find that even if the
messages contain the same number of words, we cor-
rectly re-identify the author more than 97% of the time
for a set of up to 35 sentences.
Our study demonstrates a new way in which system-
wide resources can be a threat to user privacy. We in-
vestigate the effect of rate limiting as a countermeasure
but find that determining a proper rate is error-prone
and fails in subtle cases. We conclude that real-time
interrupt information should be made inaccessible, per-
haps via a tighter SELinux policy in the next Android
version.

Keywords: mobile, smartphone, android, side chan-
nel, interrupt, typing, gesture, gesture typing, SwiftKey,
Google keyboard, keyboard, procfs, virtual file system,
virtual file, artifical neural network, neural network, rec-
curent neural network, RNN, machine learning, ML

DOI 10.1515/popets-2016-0020

Received 2015-11-30; revised 2016-03-01; accepted 2016-03-02.

1 Introduction
We users expect a certain level of isolation between mo-
bile apps. For example, we do not expect sensitive in-
formation we enter in a messaging app to be read by an
apparently benign and permissionless weather app. In
this paper, we show that this basic assumption does not
hold on soft keyboards that support “gesture typing”.
This new feature can thus compromise users’ privacy.

Gesture typing was invented to improve usability on
smartphones with small touch screens. In this mode,
you swipe your finger from one character to another
rather than tapping each key individually (Section 2).
This feature is enabled by default on Samsung and
Nexus devices.

Our attack exploits supposedly harmless informa-
tion exposed by the operating system to every process
on the device, namely the system-wide screen hardware
interrupt counter and the system-wide software inter-
rupt (a.k.a. context switch) counter. Intuitively, when
a user interacts with the screen, such as by touching
it or moving a finger in contact with it, the Android
kernel receives a hardware interrupt from the interrupt
controller, which it can act on to retrieve the current fin-
ger location. The number of hardware interrupts leaks
information about what a user is typing (Section 2).
Now a soft keyboard app must track a user’s finger po-
sition on the screen in order to infer the word entered,
so it must retrieve information from kernel-land into
user-land, which in turn requires context switches. The
number of context switches (a.k.a. software interrupts)

*Corresponding Author: Laurent Simon: University of
Cambridge, E-mail: lmrs2@cam.ac.uk
Wenduan Xu: University of Cambridge, E-mail:
wx217@cam.ac.uk
Ross Anderson: University of Cambridge, E-mail:
rja14@cam.ac.uk

Don’t Interrupt Me While I Type 137

leaks information about what the user is typing (Sec-
tion 2), even when other processes are running – our
test phones have 200 running processes on average and
60 apps installed (Section 3).

Our attack monitors the system-wide interrupt
counters and uses supervised machine learning to infer
text entered by users. We borrow techniques from the
Natural Language Processing (NLP) community; we use
a sequence model based on a Recurrent Neural Network
(RNN) (Section 2.3). We train each user individually,
and evaluate the attack in two different scenarios:
1. Detection of pre-defined sentences: Given a

set of sentences of interest, we ask if we can detect
when a user enters them. This could be used by cu-
rious advertising libraries embedded in benign apps
to infer personal information entered e.g. in messag-
ing apps. For example, an ad library could detect
a search term such as “how to lose weight” into a
search engine or messaging app. We are able to cor-
rectly detect sentences containing at least 5 words
60% of the time with 55% accuracy (Section 3).

2. User identification: Given a set of sentences
and users, we ask if we can identify which users
typed which sentences. This could be used to de-
anonymize users of “anonymous” messaging apps
such as YikYak. Even if sentences have the same
number of words, we correctly re-identify their au-
thor 97% of the time (Section 3).

To mitigate this attack, we investigate rate limiting, but
find it is more prudent to prohibit access to interrupt
timing data entirely (Section 4).

In summary, our contributions are as follows:
– We present, design, and evaluate a new side-channel

attack against soft keyboards that support gesture
typing. These keyboards have been downloaded
hundreds of millions of times from Google Play, and
they come pre-installed in Samsung and Nexus de-
vices.

– We highlight the limitation of the current SELinux
policy in all Android versions, including the latest
stock Android M and customized versions used in
the Samsung KNOX security container. This allows
a permissionless benign app installed on an Android
smartphone to breach a user’s privacy.

– We propose practical enhancements to the OS plat-
form. After highlighting the imitations of rate limit-
ing, we suggest prohibiting access to interrupt tim-
ing data – as well as other global statistical resources
– altogether in the next Android version.

– On the scientific front, this is the first work to ap-
ply a Recurrent Neural Network (RNN) to a side-
channel problem. By using an RNN, we are able
to model sentences of arbitrary length naturally
and capture long-term dependencies between words
within a sentence.

2 Background and Threat Model

2.1 Android Soft keyboards & Gesture
Typing

The Android OS lets users install “keyboard apps”1 to
replace the default soft keyboard. The Android OS
allows only one keyboard app to be enabled at any
time, and this is configurable by a user (we refer to
the currently-enabled keyboard app as simply “the key-
board app” in what follows). When an app requires user
input (e.g. through displaying an EditText Java object),
the Android OS launches the keyboard app, which runs
in a different process under a different user ID. A user
effectively enters text in the keyboard app, which in
turn sends it back to the caller app via IPC (APIs are
standard and defined by the Android framework). A
keyboard app can be used to provide new features, such
as encryption [1] or novel input methods – which are
the focus of this paper.

Over the years, keyboards with a “gesture typing”
mode have emerged to ease user input on devices with
small touch screens. At the time of writing, two gesture-
typing keyboard apps are common: Swiftkey (50M-
100M downloads) is the default keyboard on Samsung
devices, used by both “untrusted” apps and apps run-
ning within the Samsung enterprise KNOX container,
while The Google Keyboard app (100-500M downloads)
now comes pre-installed in newer Android devices.

Gesture typing is a mode whereby a user slides her
finger from one letter to another without lifting it off
the screen. Fig. 1 shows the “path” that a finger would
typically follow to enter the word “hello” in the key-
board (red trace). First, she positions her finger on the
letter “h”, then drags it to the letter “e”, ’l’ and then ’o’,
at which point she lifts her finger off the screen. Each
subsequence (# »

he, #»

el, #»

lo) can be represented as a vec-
tor. When her finger transitions from one subsection

1 Technically, these keyboard apps are built on top of the An-
droid Input Method Editor (IME) API.

Don’t Interrupt Me While I Type 138

Fig. 1. Path of finger during input of word “hello” (red), “ask”
(green) and “très” (light blue).

(e.g. # »

he) to the next (e.g. #»

el), it often changes direction.
Fig. 1 also shows an exception to this – the word “ask”
(green trace).

When a user lifts her finger off the screen, the key-
board app interprets it as the end of a word and the
“space” character is automatically added to the text.
This process is repeated for each word in a sentence.
The keyword app keeps track of finger position and
infers the most likely word the user wanted to enter.
This is fairly accurate in practice. The keyboard app is
however limited by the dictionary of words it knows; it
never outputs misspelled words, unknown abbreviations
or slang words. If a user really wants to enter words that
are not recognized by the app (e.g. “lol”), she must add
them to the “personal dictionary” section of the phone
Settings.

2.2 Android & procfs

The Android OS is built on top of Linux. Its security
model is based on the concept of application sandboxes.
Prior to Android 4.3, application sandboxes were im-
plemented on top of Linux discretionary access control
(DAC). On installation, an Android app was given a
unique user ID (UID) and ran with the privileges of that
user every time it was started. The application-layer
permission model relied on this application sandbox. A
permission (e.g. “Camera”) was generally mapped to a
dedicated Linux group (e.g. the “permission” group).
Permissions had to be declared by app developers in
the AndroidManifest.xml file, and were used to restrict
access to system resources at run time. To these mech-
anisms, Android 4.3 adds the use of Mandatory Ac-
cess Control (MAC) through SELinux. In practice, the

SELinux policy is not as tight as one might expect, as
we shall see shortly.

From Linux, Android inherits the proc filesys-
tem (procfs), a virtual filesystem that provides aggre-
gated information about the system as well as de-
tailed information about processes. Android also adds
new entries within the procfs. The procfs infor-
mation can help app developers during troubleshoot-
ing, and also provide useful information for which
there is no Android API. Process-specific informa-
tion is generally accessible under /proc/[PID]/* and
/proc/pid_stat/[UID]/*, where PID is the process ID
and UID the unique user ID. The security implica-
tions of process-specific information have been demon-
strated in various papers [2–4] (Section 6). For exam-
ple, Zhou et al. [4] show how traffic volume information
gleaned through the file /proc/uid_stat/[UID]/tcp_snd
and /proc/uid_stat/[UID]/tcp_snd can be used to fin-
gerprint Twitter app traffic and identify a Twitter
user. Such attacks worked before Android M because
the SELinux security policy was too loose, i.e. certain
process-specific files remained readable by any app on a
device.

In Android M, however, the SELinux security policy
was tightened up to fix this, so that an app can no longer
access another process’s specific files in procfs. This ap-
peared to stop one app attacking another by relying on
process-specific information. But we decided to study
the details more carefully. For example, what are the
implications of exposing the file /proc/interrupts which
contains real-time interrupt counters received from pe-
ripheral? What are the security implications of exposing
the file /proc/stat that contains an aggregated software
interrupt (a.k.a. context switch) counter? As we shall
see, they open up side channels with real security and
privacy implications.

2.3 Attack Overview

Our threat model is a non-malicious but curious app
running on the victim’s device. This app does not re-
quire special permissions besides internet access (to send
gleaned data to remote attackers) which, from Android
M onwards, is automatically granted and non-revocable.
This app does not actively attempt to break out of
the sandbox; instead it observes and monitors publicly
available “events” from the system while a user enters
text in a victim app. Specifically, these “events” are
the variations of (1) the system-wide screen interrupt
counter and (2) the system-wide context-switch counter,

Don’t Interrupt Me While I Type 139

Samsung Galaxy S Plus with Swiftkey keyboard
$ cat /proc/interrupts
[...]
247: 7489 msmgpio qt602240-ts

Samsung Galaxy S3 with Google keyboard
$ cat /proc/interrupts
[...]
387: 31695 0 0 s5p_gpioint melfas-ts

Nexus 5 with Google keyboard
$ cat /proc/interrupts
[...]
362: 4016 msmgpio s3350

Fig. 2. Interrupt of interest in the file /proc/interrupts. The
counter is highlighted in red and underlined.

accessible through the files /proc/interrupts and /proc/-
stat respectively.

For each unique word entered by a user, we observe
in the system a series of events that can be used as
a “fingerprint” to recognize that word. The challenge
is that these events contain noisy data. So we use su-
pervised machine learning to create a word fingerprint.
The fingerprint is constructed from training data and
is used to infer sentences entered later in victim apps.
In certain attack scenarios, training data are not even
required (Section 3.4). In the general case, however,
we need a fingerprint, and we use both the screen inter-
rupt counter and the system-wide context switch (a.k.a.
software interrupt) counter as described in the following
subsections.

Screen Interrupt Counter. This is available
through the world-readable file /proc/interrupts. Fig. 2
shows the relevant line containing the screen interrupt
counter for different phones and keyboards. Fig. 3 (top)
shows variations of the screen interrupt counter while a
user types the word “hello” on a Nexus 5. The first sec-
tion (denoted as (1)) corresponds to a user positioning
her finger on the letter “h” and dragging it to the loca-
tion of the letter “e”: the interrupt counter increases lin-
early with the number of CPU cycles. When the number
of CPU cycles reaches 6.5, the interrupt counter stops
increasing and remains constant for a short period of
time. This corresponds to the user’s finger transition-
ing from subsection # »

he to #»

el. This transition gener-
ally involves the finger (1) slowing down, (2) reaching a
zero speed, and finally (3) re-accelerating to reach the
next letter. While the finger is idle (zero-speed), the
screen need not report any changes to the OS, so the
OS no longer receives screen interrupts. This explains
the plateau between each subsection (Fig. 3, top).

Fig. 3 (middle) depicts zero-speed positions of the
finger as inferred by an “ideal” processing routine.

(1) (2) (3)

h e l o

Fig. 3. Screen interrupt counter (top) for word “hello” on Nexus
5; the “ideal” zero-speed events of the user’s finger we would
ideally want to infer (middle); the zero-speed events detected in
practice (bottom). We assume that the user drags her finger to-
wards the letter “l” once only, hence the single “l”. The keyboard
app automatically infers the second “l”.

These zero-speed events are indicative of the word en-
tered so we use their positions as a feature for word
fingerprinting. In practice, zero-speed events often cor-
respond to a change of direction by the user’s finger (e.g.
to transition from subsequence # »

he to #»

el). Sometimes,
however, no change of direction is needed. This is illus-
trated in Fig. 1 (green trace) when entering the word
“ask” – 〈 # »as,

»

sk〉 = ‖ # »as‖‖ # »

sk‖ (i.e. cos(θ) = 1). Certain
users still voluntarily slow down their finger around the
letter “s”, which also creates an observable zero-speed
event. Note that the absence of zero-speed events can
also, by itself, be indicative of a specific word.

In practice, we may either miss zero-speed events
or detect false positive ones. For example, the path of
the finger may be a curve rather than a sequence of
straight-line vectors. This is often the case if the an-
gle θ between two consecutive subsequences is small, as
illustrated in Fig.1 (light blue trace; # »

tre to #»es corre-
spond to French word “très” which means “very”. For
this reason, some changes of direction (and their cor-
responding zero-speed events) may not be reliably ob-
servable. Therefore, in practice, we observe a probability
distribution of zero-speed events (Fig. 3, bottom), with
different zero-speed events giving different amounts of
information about words. Fig. 3 (bottom) illustrates
the zero-speed events that our detection routine would
typically detect in practice.

Global Context Switch Counter. From here on,
we use the terms “context switch” and “software inter-

Don’t Interrupt Me While I Type 140

$ cat /proc/stat
[...]
ctxt 1781433

Fig. 4. Software interrupt in the file /proc/stat.

h e l o
(1) (2) (3)

Fig. 5. Speed of the software interrupt counter during input of
the word “hello” by a user. We assume that the user drags her
finger towards the letter “l” once only, hence the single “l”. The
keyboard app automatically infers the second “l”.

rupt” interchangeably. The software interrupt counter
is accessible through the file /proc/stat. The relevant
line is shown in Fig. 4. Unlike the screen’s interrupt
counter, the line is the same on all devices as it is
hardware-independent. We found that its first deriva-
tive (i.e. its speed) provides information about text en-
tered in the keyboard. Before computing the derivative
of the counter, we first pass it through a Savitzky-Golay
smoothing filter [5]. The context switch counter speed
corresponding to Fig. 3 is shown in Fig. 5 (word “hello”).
During subsection (1) (# »

he), the user’s finger starts idle
at letter “h” (x-axis around 1). Its average speed then
increases until it reaches a local maximum and remains
roughly constant on the interval [4, 6]. Finally, its speed
decreases to a local minimum when the finger reaches
letter “e” at around 6.5. The same pattern repeats on
intervals [7, 12] and [12, 17] corresponding to subsections
#»

el and #»

lo respectively.
These patterns are rather intuitive. As it starts

idle, the finger must first accelerate. Half-way through
a subsection (say, # »

he), its speed starts to decrease un-
til it reaches a local minimum. At this point, a new
subsection starts and the pattern repeats itself. The
variation of the global switch counter is caused by the
keyboard app context-switching into kernel-land to re-
trieve the finger’s current location. The speed of the

i trust you

long zero-speed
events

oy u

Fig. 6. Screen’s hardware interrupt counter during input of the
sentence “I trust you” by a user. Long zero-speed events are used
to detect words.

finger is correlated with the speed at which the context
switch counter varies, as illustrated in Fig. 5. Therefore
this counter carries some information about the entered
text, and we use it as an additional feature for word
fingerprinting.

It is important to realize that monitoring (i.e. read-
ing) the context switch counter may affect the measure-
ments, since it involves invoking the syscall read() which
requires a context switch. However, this turns out to
have little effect on our attack for the following three
reasons:
1. We read the file at almost constant intervals, so the

number of context switches we generate is almost
constant over time. Since we use the first derivative
of the context switch counter, and the derivative of
a constant function is zero, the measurement effect
is to a first approximation removed;

2. Even if the interval between consecutive reads is not
exactly constant, the smoothing filter we use further
mitigates any artefacts generated by monitoring;

3. We use the same monitoring routine during the
training and attack phase, so any residual artefacts
we may add are taken into account when we create
the fingerprints.

Sentence Decomposition into Words. A require-
ment of our attack is to be able to chop a sentence
(i.e. its corresponding series of “events”) into its corre-
sponding words. To this end, we re-use the global screen
interrupt counter. Recall from Section 2.1 that the key-
board app detects the end of a word when a user lifts
her finger off the screen. While the finger is raised, no

Don’t Interrupt Me While I Type 141

activity on the screen is reported to the OS. Therefore
the screen interrupt counter remains constant.

The zero-speed events induced by raising the finger
last a lot longer than those caused by transitions be-
tween word subsequences. This is illustrated in Fig. 6
for the sentence “I trust you”. We use this heuristic to
detect the start and end of words. Through our evalua-
tion (Section 3), we find this works more than 99.5% of
the time in practice. This allows us to reliably chop a
sentence signal into its constituent word signals. These
are then passed through our fingerprinting routine as
detailed next.

Supervised Training & Classification.
We first investigated a standard SVM classifier to

classify each word signal on its own. An SVM ignores
wider contexts in a sentence: it takes as input a single
word signal and outputs a predicted word. The results
were unsatisfactory: for half the users, word predictions
were correct less than 10% of the time. So instead of in-
ferring words in isolation, we now consider all the words
in a sentence.

This lends itself to a Recurrent Neural Network
(RNN), which can naturally model sequences of arbi-
trary length and consider long-range contextual infor-
mation in a sentence beyond a local context-window.
As described in the natural language processing liter-
ature [6, 7], it can propagate a potentially unbounded
history of previous words and use this history for word
prediction. An RNN is more general than a Markov
chain, or a traditional n-gram language model [8], both
of which are limited by simplistic independence assump-
tions – namely that the current word only depends on a
limited number of predecessors. Most importantly, the
history of words in a sentence is learned automatically
during supervised training with an RNN, without the
need to hard-code any indicator features, as we have to
do for classifiers such as SVMs.

We use the RNN as a supervised classifier; that is,
we train it using labelled examples to minimize classifi-
cation errors on our training data. But unlike with an
SVM, we train the RNN using lists of word signals rep-
resenting sentences rather then individual word signals.
At attack time, we use the trained RNN to classify de-
composed word signals from intercepted keyboard swip-
ing. The architecture of our RNN is shown in Fig.7a; it
is an Elman recurrent neural network [9] that consists
of an input layer xt, a hidden layer ht with a recurrent
connection to the previous hidden layer ht−1 and an
output layer yt.

The input layer is a real-valued vector representing
a context window of word signals, with the current word

signal at position t in the middle. The hidden layer ht−1
keeps a representation of all a sentence’s context history
up to the current word signal. The current hidden layer
ht is computed using the current input xt and hidden
layer ht−1 from the previous position. The output layer
represents probability scores of all possible words, with
the size of the output layer being equal to the size of
the vocabulary set.

To train the RNN, we feed to it all sentence signals
in our training data one at a time, where each sentence is
represented as a list of decomposed word signals. More-
over, each word signal has a corresponding ground-truth
word label from our vocabulary set. The goal of training
is to make the RNN as accurate as possible at predict-
ing ground-truth words, according to some loss function
that measures classification error on the training data.

Concretely, let Si = s0, s1, . . . , sn be a list of word
signals for sentence i in the training data, and Wi =
w1, w2, . . . , wn be the ground-truth words for Si. To
train the RNN on (Si,Wi), it reads all the signals in Si

in a left-to-right manner, and at each position t such
that 0 ≤ t ≤ n, the input xt fed into the network is:

xt = [st−bk/2c; . . . st; . . . ; st+bk/2c], (1)

where the right-hand side is the concatenation of all
signals in a size k context window (we use k = 5 in all
our evaluations). As the RNN moves across the input
signals in Si, it keeps a representation of all previously
seen signals in its hidden layer up to the current step t,
and it uses the values stored in ht−1 plus xt to make a
new prediction. Fig. 7b shows the RNN unfolded over
an entire input sequence. Note that, the history stored
in the hidden state of the RNN is potentially unbounded
and the context windows enhance this history.

The RNN is trained with a cross-entropy objective,
so does maximum-likelihood estimation over the train-
ing data. We use the backpropgation through time al-
gorithm [10, 11] and stochastic gradient descent to min-
imize the cross-entropy error:

L(Θ) = −
∑

i

log pi, (2)

where Θ is the parameterization of the network and con-
sists of three matrices that are learned during supervised
training2. Matrix U contains weights between the input

2 Note that the matrices are carried over across all predictions,
and it is not the case that three new matrices are created for
each new prediction. After each prediction, the values in these
matrices are updated by backpropagation.

Don’t Interrupt Me While I Type 142

xt

ht-1

ht
yt

U

W

V

(a)

st-2 st-1 st... ...st+1 st+2

(b)

Fig. 7. The architecture of our recurrent neural network. (a) shows the state of the RNN at any given time step. (b) shows the RNN
unfolded across the entire input sequence. A context-window size k = 5 is used, and the middle of the context-window is st; the
bottom layer is the input layer, the middle and top layers are the hidden and output layers, respectively.

and hidden layers, V contains weights between the hid-
den and output layers, and W contains weights between
the previous hidden layer and the current hidden layer.
Minimizing the loss in Eq. 2 maximizes the probabilities
of desired output in the training data and minimizes the
probabilities of incorrect output.

To make a prediction, the following recurrence3 is
used to compute the hidden layer activations at input
position t:

ht = f(xtU + ht−1W), (3)

where f is a non-linear activation function; here we use
the sigmoid function f(z) = 1

1+e−z . The output activa-
tions are calculated as:

yt = g(htV), (4)

where g is the softmax activation function g(zi) =
ezi∑
j

ezj
that squeezes raw output activations into a prob-

ability distribution. The probability scores at the out-
put layer represent the probability of a word given all
previous words, p(wt | wt−1, wt−2, . . . , w0), and are used
in the attack scenarios that we describe in later sections.

Training Phase. In the general case, our attack
requires a preliminary “training phase” during which
we build a set of word fingerprints using the RNN. Con-
cretely, as word fingerprint features, we use the following
information for each word:
– The length (in CPU cycles) that it spans. This

is extracted from the system-wide screen interrupt
counter.

3 We assume the input to any layer is a row vector unless oth-
erwise stated.

– The location of its zero-speed events. This is also
extracted from the system-wide screen interrupt
counter.

– A stream of discretized values (sampled at regular
time intervals) of the first derivative of the system-
wide context switch counter.

In certain attack scenarios, the training phase is not
even needed (Section 3.4). When it is needed, this phase
requires users to enter lists of words in the keyboard app
while another app collects the corresponding signals (i.e.
the counters). These are used to train the RNN classifier
and create the fingerprint set. Obviously, this phase re-
quires knowledge of the words that are entered by users
in order to map them to their corresponding signal.
Currently, we build the fingerprint set (i.e. a training
model) for each user in order to evaluate the efficiency
of the attack (Section 3). In practice, the training phase
could be performed by apps that receive enough genuine
user input. For example, a school might require pupils
to use approved apps extensively for everything from
online discussion forums to homework submission, and
then use the fingerprints generated from them to iden-
tify kids who send inappropriate messages via other so-
cial apps. And perhaps eventually it could be possible
to eliminate the need for per-user training by building
the fingerprint set with enough users – such that the
resulting fingerprint set works for most users. In this
study, however, we focus on evaluating the feasibility of
the attack rather than scaling it.

Attack Phase. In the attack phase, a malicious
permissionless app records the counters from procfs
while a user enters text in another victim app on the

Don’t Interrupt Me While I Type 143

phone. Note that the attack could also be performed
by a “normal” app against a “secure” app running in a
KNOX container. Unlike in the training phase, the ma-
licious app can only observe the signals (i.e. the coun-
ters) but not the words themselves. Using the finger-
print set at its disposal, it matches the observed signals
against this set using the RNN – through the scores
ouput by the output layer. More specifically, for a given
sentence signal, the RNN outputs, for each word signal
in a sentence signal, a probability that the word signal
corresponds to a particular dictionary word.

The malicious app must first determine when to
start collecting the signals. When it detects that the
user interacts with a “screen view” of interest (e.g. the
conversation screen of WhatsApp where users enter chat
messages), it starts signal collection. The means of de-
tecting the current “screen view” (a.k.a. “Activity” in
Android parlance) are not a contribution of our study.
They have been explored in previous work [3, 12–14].

User input is indicated by a signal similar to Fig. 6,
i.e. with consecutive screen activity periods interleaved
with short/long zero-speed events. The initial finger
tap to pop the keyboard and the last finger tap cor-
responding to the “Send” button provide the attacker
with further cues to find the start and end of target
input. These tap events show up as short-lived peaks
in the hardware interrupt trace. None of the chat apps
we looked at automatically open the virtual keyboard
(Viber, WhatsApp, Line, YikYak etc.). Therefore the
initial tap is visible for all these apps. We suspect these
apps do not open the virtual keyboard automatically
for usability reasons, as it covers a large part of the
screen. When returning to an open conversation, users
tend to scroll through the latest chat messages received,
so opening the keyboard automatically would signifi-
cantly affect usability.

3 Evaluation

3.1 Methodology

The Corpus. We use the NPS Internet Chatroom Con-
versations corpus (Release 1.0) [15] available through
the NLTK framework [16]. It consists of around 10000
English sentences gathered from age-specific chat rooms
of various online chat services in October and Novem-
ber 2006. Within the corpus, we restrict ourselves to the
most common 200 words, to which we refer as the “dic-
tionary” from here on. The choice of 200 words strikes

a balance between testing our techniques and the bur-
den we put on study participants; by entering dictionary
words 15min every day, it took no less than three weeks
to collect these samples for each participant.

Participants. We recruited participants through
word-of-mouth among acquaintances. We went for this
option so we could meet them regularly if need be.
When improvements to the software were suggested by
participants, we could patch our software and deploy it
rapidly. We had 8 participants in our study, three fe-
males and five males. Two of them used the gesture fea-
ture on their own phone. Their age was between 25 and
40 years old. Three of them have a Computer Science
degree, while the others have backgrounds in Psychol-
ogy, Criminology, Biology, Electronics, and Telecommu-
nications. All have at least a Bachelor’s degree, and five
have a PhD. Five are native English speakers. These
demographics are not representative of the general pop-
ulation. However, our study is radically different from
behavioural studies where demographics play a signifi-
cant role. In this study, we are only interested in simple
characteristics, such as finger speed, when people enter
words in gesture-based keyboards. This is a pilot study
and in any case we believe the results will generalize (as
we will discuss later).

Before the experiment, we asked participants if they
used gesture typing on their phone. Those who did were
told they could start immediately. The rest were asked
to familiarize themselves with it and only start once
they felt at ease with it. That typically took a few
hours or days. We did this because we wanted to as-
sess our attack on people who actually know how to use
the feature. If we tested beginners who drag their fin-
ger slowly from one letter to another, it could create a
bias in our favour, and artificially improve the efficiency
of our attack: recall from Section 2.3 that the slower
a user’s finger, the easier it is to detect “zero-speed”
events reliably to build a word fingerprint. After this
preliminary requirement, we assumed that participants’
typing characteristics did not vary significantly over the
experiment period. So we did not retrain users over the
course of the experiment. If changes in typing charac-
teristics were a concern, one could update the model
with the most recent data. The task that participants
completed is described next.

Data Collection. We built a proof-of-concept
(PoC) victim app and malicious app to run side-by-side
on the Android platform. These apps run in different
processes under different UIDs. Therefore they belong
to different sandboxes, as would be the case in practice

Don’t Interrupt Me While I Type 144

(Section 2.2). We gave a Nexus 5 (OS ≥ 4.4) to the
participants we recruited for the study.

Each participant enters lists of dictionary words in
the victim app while the malicious app runs in the back-
ground and collects signals (i.e. the counters) from the
files /proc/interrupts and /proc/stat. In the list of words
entered by participants, each dictionary word appears
20 times, resulting in 4000 (20 ∗ 200) word samples. On
average, these samples represent 40MB per user when
zip-compressed. We discuss how a curious app could up-
load this data stealthily to a remote server in Section 5.
It takes three weeks for each participant to complete the
data-collection task. The phones given to participants
have about 60 apps installed on them, and an average
of 200 processes running (as reported by the ps com-
mand). WiFi is enabled at all times. During the course
of the experiment, participants witnessed the Android
OS downloading updates; news apps regularly pushing
articles; and games showing notifications. Our mali-
cious app only monitors the PoC victim app, for ethical
reasons.

Fingerprint Creation & Testing. These steps
are run on a desktop in our evaluation (we discuss the
feasibility of doing them on phones in Section 5). Signals
collected from participants correspond to lists of words,
so first, we chop each signal into its constituent word
signals, using the heuristics presented in Section 2.3.
This works over 99.5% of the time in practice. Once we
have individual word signals, we randomly pick 85% of
them as the training set, i.e. to create the corresponding
word fingerprint. The other 15% are used as the testing
set, that is, as unknown input we attempt to predict.
For both the training and testing sets, we combine word
signals to construct sentences in the corpus. These sen-
tence signals are then used as input to the RNN (either
for training or prediction). A trained model needs be-
tween 1.1 and 1.3MB worth of data when compressed,
and up to 3MB without compression.

3.2 Word Prediction

We first want to understand how well words are inferred
within a sentence. In this scenario, the RNN takes as
input unknown sentence signals from users (i.e. from the
testing set), and ranks each dictionary word in order of
likelihood for each constituent word signals. The word
that appears in the first position is the most likely word
entered by the user given the signal, while the one that
appears last is the least. For evaluation, we use all the
word signals in our testing set. Fig. 8 shows the position

0 5 10 15 20

Position of correct word in ranked list

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

ba
bi

lit
y

Fig. 8. Distribution of the position of correct word guess.

0 50 100 150 200

Position in ranked-word list

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Fig. 9. Cumulative distribution of the position of correct word
guess.

of the correct word in the ranked list. About 34% of the
time, the correct word appears in first position (first bin
of the histogram); this is ≈ 68 times better than a ran-
dom guess (prandom_guess = 1

200 = 0.5%). The correct
word appears in second position 9% of the time (sec-
ond bin of histogram), etc. Fig. 9 shows the cumulative
distribution of the position of the correct word in the
ranked list. About 80% of the time, the correct word
appears in the first 22 positions. Of course, there were
some variations among participants, but the results did
not indicate a correlation between users who had previ-
ously used swipe keyboards, and those who had not.

Don’t Interrupt Me While I Type 145

3.3 Detection of Sentences of Interest

Given a set of pre-defined sentences of interest (e.g. “I’m
pregnant” or “I want to lose weight”), we ask if we can
efficiently detect if a user enters them. A practical at-
tack could be a school looking for pupils who sent mes-
sages bullying other students; parents trying to monitor
the topic of discussion of their kids on social media; or
just a curious app peeking at text entered by a user
in the Google search bar. For the evaluation, we ran-
domly select a set of sentences from our chat corpus. A
sentence of interest (“SoI” from herein) need not span
an entire sentence though; it may only be a subset of
a longer sentence. For example, for the SoI “I’m preg-
nant”, we want to detect it within longer sentences such
as “I think I’m pregnant too”. Our detection routine
outputs a match if, for each word in an SoI, the word
appears in the first N positions in the ranked list output
by the RNN. For the evaluation, we vary the parameter
N .

Fig. 10 shows the True-Positive-Rate (TPR) vs.
False-Positive-Rate (FPR), a.k.a. the ROC curve for
SoIs. For SoIs containing at least 4 words, we cor-
rectly detect them 50% of the time with a False Positive
Rate (FPR) close to 0. The results are similar for SoIs
containing at least 5 and 6 words. An important met-
ric missing from the ROC plot is the precision of our
matching algorithm, that is, when we output a match,
how often are we correct? Fig. 11 answers this question.
For SoIs containing at least 4 words, we correctly detect
them 50% of the time (TPR = 0.5); and when we output
a match we are correct 35% of the time (PPV = 0.35).
This corresponds to a False Positive Rate (FPR) near
0 on the ROC curve of Fig. 10. For SoIs containing at
least 5 words, the results improve: we correctly detect
them 60% of the time (TPR = 0.6); when we output a
match, we are correct 55% (PPV = 0.55). This corre-
sponds to a False Positive Rate below 0.5% on the ROC
curve. Intuitively, as the number of words in a sentence
increases, we have more information to distinguish sen-
tences. Therefore, for sentences with at least 6 words,
results further improve to a TPR = 0.7 and PPV = 0.6
corresponding to a FPR ≤ 0.05 on the ROC curve.

3.4 De-Anonymization of Users

Given a list of known sentences entered by a set of users,
we ask if we can efficiently map each sentence to the
user that entered it. As per our threat model outlined
in Section 2.3, we assume that each user has our curi-

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

Po
si

tiv
e

R
at

e
(T

P
R

)

ROC curve 4 words (area = 0.92)
ROC curve 5 words (area = 0.95)
ROC curve 6 words (area = 0.94)

Fig. 10. TPR-FPR curve (ROC) of known sentence detection.
The shadow area represents the standard deviation for sentences
containing at least 4 words.

0.0 0.2 0.4 0.6 0.8 1.0

Precision (PPV)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
Po

si
tiv

e
R

at
e

(T
P

R
)

sentences with at least 4 words
sentences with at least 5 words
sentences with at least 6 words

Fig. 11. Precision-Recall curve of known sentence detection.

ous app running on their device. A practical attack sce-
nario could be to identify users of “anonymous” messag-
ing board apps such as YikYak messenger4, which has
more than 1M downloads on Google Play. Such apps let
users write “anonymous” posts on a messaging board. A
school could try to find which pupil posted an inappro-
priate message. YikYak messaging boards are arranged
by location: posts are visible to all users in the vicinity
of the sender. Posts are anonymous in the sense that
they do not contain a name, pseudonym or location data
that would link them to their author (Fig. 12). Posts
do contain a time, but this is not very precise. During

4 http://www.yikyakapp.com/

http://www.yikyakapp.com/

Don’t Interrupt Me While I Type 146

Fig. 12. YikYak messaging board example.

a time period T , U users may post anonymously to the
board. Assuming these U users are infected by a curious
app, we ask if it can identify which user entered which
post. We first used the YikYak app ourselves to see how
many messages were posted on average over time. We
found that within one minute, no more than a dozen
messages were posted in our area.

Let N be the number of sentences posted during
a time period T on an anonymous messaging board.
We denote a sentence as Seni,1≤i≤N . On each user’s
device, the curious app observes a signal Sigi,1≤i≤N as
described in Section 2.3. Since there are N posts, there
are exactly N signals that correspond to them. Note
that certain users could be the author of multiple posts,
that is, the number of users U ≤ N .

3.4.1 Sentences of different lengths

If sentences on the messaging board each contain a dif-
ferent number of words, it becomes straightforward to
map them to their corresponding signal Sigi by simply
counting the number of words in each Sigi. As detailed
in Section 2.3, we detect the number of words contained
in a signal by counting “long” zero-speed events in the
signal. Once we have the number of words entered by
each user, we just map these to the length of sentences
on the messaging board. No matter how many words
each sentence contains, so long as each of them contains
a different number of words, we can identify their au-
thor virtually all the time. The only condition is that
we manage to properly count the number of words in
a sentence, and our experiment reveals this works over
99.5% of the time in practice. Interestingly, in this at-
tack, we neither need the user training phase nor the
fingerprint. To make the task challenging, we study the
case where all sentences have the same length.



sc1,1 sc1,2 · · · sc1,N−1 sc1,N

· · ·
· · ·

· · · · · · sci,j · · · · · ·
· · ·
· · ·

scN,1 scN,2 · · · scN,N−1 scN,N


Fig. 13. Score matrix.

3.4.2 Sentences with same length

This is the worst-case scenario for the attacker. Let L
be the number of words in all sentences posted on the
messaging board. The first step of our re-identification
routine is to compute, for every signal Sigi and every
sentence Seni, a score that represents the likelihood that
the signal Sigi corresponds to Seni. Recall from Sec-
tion 2.3 that our fingerprint routine outputs, for any of
the L word signals Sigi[k], 1 ≤ k ≤ L in a sentence Sigi

and a dictionary word DW, the probability that Sigi[k]
corresponds to DW. We define the score scorei,j for
sentence Seni and signal Sigj as:

scorei,j
def==

L∑
k=1

log(proba(Sigi[k] == Senj [k])), (5)

where Seni[k] is the kth word of Seni, Sigj [k] is the
kth word-signal of Sigj , and proba(WS == DW) is the
probability that word-signal WS corresponds to dictio-
nary word DW, as output by the RNN.

We then build a square “score matrix” where each
row i represents a signal, each column j represents a
sentence, and each element in the matrix is the score
scorei,j (sci,j) as illustrated in Fig. 13.

Sentence Prediction. We first evaluate how well
we can infer the correct sentence given a sentence signal.
Specifically, for each signal Sigi (i.e. for each row i in the
score matrix), we rank each sentence score (sci,j,1≤j≤N)
in increasing order. That is, the first sentence in the
ranked list corresponds to the sentence with the highest
score, and the last with the lowest score. Fig. 14 shows
the position of the correct sentence in the ranked list
for a set of N = 35 sentences. Recall that in practice,
about a dozen messages are posted every minute. We
nevertheless raise the bar to up to N = 35 messages for
our evaluation. For sentences containing 3 words, the
correct sentence appears in first position about 63% of
the time. This increases to 77% and 86% for sentences
containing 4 and 5 words respectively.

Don’t Interrupt Me While I Type 147

1 2 3 4 5
Position in ranked list

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac

tio
n

of
se

nt
en

ce
s

3 words
4 words
5 words

Fig. 14. Position of correct sentence in ranked list (35 sen-
tences).

Naive Re-Identification Algorithm. Given
a signal Sigi and its corresponding list of scores
sci,j,1≤j≤N , a simple solution to de-anonymize users is
to select the top score in the list. We call this solu-
tion the naive solution. In our experimental setup, we
randomly select N sentences each containing L words.
Then we run the naive algorithm. We repeat this 200
times and average the results. These are presented in
Fig. 15. For example, for sentences containing 5 words
and for a set of 35 sentences, we correctly re-identify
their author 86% of the time. This is consistent with
the results of Fig. 14. In order to increase readability,
and since the mean error between individual runs was
always below 10%, we omit error bars. As the number of
sentences in the set decreases, the results improve: for
a set of 10 sentences each containing 5 words, we reach
92% de-anonymization. Intuitively, the more words a
sentence contains, the more information we have about
it. Therefore, as the number of words increases in a sen-
tence, the re-identification improves (Fig. 15). We next
show how to improve these results significantly.

Optimal Re-Identification Algorithm. Naive
re-identification is not optimal, so here we describe a
better method. Our goal is to maximize the sum of the
scores when selecting sentences corresponding to sig-
nals. Looking back at the score matrix (Fig. 13), this
means our goal is to select a set of optimal scoresi,j .
Since each sentence corresponds to a single signal, each
row and column must have exactly one score selected;
and the sum of the selected scores must be optimal.

Practically speaking, this means there are N ! pos-
sible assignments to test. For N = 20 sentences, this
means more than 1018 ≈ 260 candidates; and for N = 35

1 2 3 4 5

words in sentence

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
se

nt
en

ce
s

co
rr

ec
tly

de
-a

no
ny

m
is

ed

Naive, 35 sentences
Naive, 25 sentences
Naive, 20 sentences
Naive, 15 sentences
Naive, 10 sentences

Fig. 15. De-anonymization of sentences using the “naive”
method.

sentences, this means 1040 ≈ 2130 candidates. This is
greater than the strength of a 1024-bit RSA key (280).
Fortunately, our problem is equivalent to the so-called
“assignment problem” [17] for which there exist solu-
tions that run linearly in the size of the input, i.e.
in O(N). More specifically, we use the Munkres algo-
rithm [17] that runs in O(N) with O(N2) space require-
ments.

As in the naive method, we randomly select N sen-
tences each containing L words and run the Munkres
algorithm. We repeat this 200 times and average the
results. These are presented in Fig. 16. For a set of 35
sentences each containing 4 words, we correctly guess
the author of more than 92% of the signals (it is around
77% with the naive method). Regardless of the set size,
we correctly guess the author of more than 97% of the
signals when sentences contain 5 words.

4 Countermeasures
App-level. At the app level, we are limited. An app
cannot disable gesture typing from the default keyboard
app. However Android allows arbitrary apps to in-
clude their own custom keyboard layout/code through
the KeyboardView API. This way an app could pro-
vide its own keyboard without the gesture typing fea-
ture. However, re-implementing a keyboard can be te-
dious, and removing gesture typing could greatly incon-
venience users who have grown accustomed to it.

Zhang et al.[18] suggest killing apps that may be
collecting side-channel information in the background

Don’t Interrupt Me While I Type 148

1 2 3 4 5

words in sentence

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
se

nt
en

ce
s

co
rr

ec
tly

de
-a

no
ny

m
is

ed

Munkres, 35 sentences
Munkres, 25 sentences
Munkres, 20 sentences
Munkres, 15 sentences
Munkres, 10 sentences

Fig. 16. De-anonymization of sentences using “Munkres algo-
rithm”.

while the foreground app performs sensitive tasks. This
provides some level of protection without changing the
OS or the apps being protected. However it comes with
several caveats. First, their approach relies on the as-
sumption that a malicious app must monitor resources
at high frequency to be successful. But Michalevsky et
al. [19] show that high sampling is not always necessary:
by sampling the power consumption once a second, they
can infer the route driven by a user (we discuss subsam-
pling in the case of our attack later). Second, their tech-
niques only protect foreground apps, not background
processes. Third, they rely on monitoring app-specific
procfs files; these are no longer accessible in Android M.

We conclude that app-level countermeasures are
fragile and limited, so we investigate OS-level counter-
measures next.

OS-level. OS-level countermeasures are more re-
liable since the OS can enforce a global policy that an
app cannot. On Android, there have been inconsisten-
cies between what resources are available through the
framework APIs vs. those available through virtual files.
The framework APIs enforce the permission model but
the same is not always true for virtual files – certain
permissions can be bypassed. For example, the virtual
file /proc/net/arp exposes the BSSID (i.e. the MAC ad-
dress) of the WiFi Access Point a phone is currently
connected to. This allows a curious app on the phone
to find the location of a user’s phone without requiring
location permissions [4]. There are other pieces of in-
formation available through app-specific and global files
in the virtual file system procfs (as well as /sys). These
represent the main source of leaks and inconsistencies
that break the permission model. Therefore, we advo-

cate restoring consistency, that is, we advocate prohibit-
ing access to any virtual files (except those “owned” by
the requesting app), perhaps through a stricter SELinux
policy. Recall from Section 2.2 that the SELinux pol-
icy still allows access to certain global virtual files as of
Android M. Of course, denying access to global virtual
files could break apps that rely on them. In practice,
we think this should affect only a very small number
of apps, if any, as global virtual files exposed by procfs
only provide admin-like information for troubleshoot-
ing, rather than relevant information for mobile apps.
A trade-off could be to allow users to toggle this feature
on and off for certain apps through an additional option
within the “Developer” menu in phone Settings.

When we responsibly disclosed this work to Google,
it became clear that they worried that protecting global
procfs entries could break some utility apps. So might it
be possible to have the OS rate-limit virtual file access,
rather than prohibit it entirely? We study this for both
attack scenarios in the following sections.

Rate-Limiting to Protect SoIs. Recall from
Section 3.3 that in this scenario, an attacker has a pre-
defined set of sentences of interest (SoIs), and wants to
detect when these are entered by a user. Our current
attack relies on the ability of an attacker to chop the
sentence signal into its constituent word signals. For
this, we used the zero-speed events extracted from the
screen’s interrupt counter (Section 2.3). If all word sig-
nals look “enough” like the words of an SoI, we output a
match. Therefore one way to defend against our current
implementation is to make it infeasible for an attacker
to correctly infer the number of words entered by a user.
Note however that this may not thwart more advanced
attacks that build a fingerprint based on the entire sen-
tence signal rather that its constituent word signals.

Fig. 17 shows the effect that subsampling (i.e. rate
limiting) has on our detection routine. With a reduction
of the sampling rate by 2 (“2 subs”), we correctly detect
the number of words in an 8-word sentence about 80%
of the time only. This drops down to 10% for a 10-fold
reduction, which corresponds to about 10ms on a Nexus
5. Therefore a 10-15ms rate-limiting policy appears to
already provide good security.

However, looking back at our data, we found that we
could improve our original word-splitting routine to use
the software interrupt rather than the screen hardware
interrupt. Fig. 18 illustrates the effect that subsam-
pling has on the first derivative of the software interrupt
counter. The top signal shows the original signal cor-
responding to a 4-word sentence. Even with a 500-fold
reduction of the sampling rate, the number of words

Don’t Interrupt Me While I Type 149

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
words detected

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

ba
bi

lit
y

2 subs
4 subs
6 subs
8 subs
10 subs

Fig. 17. Distribution of the number of words detected using the
screen interrupt counter, for sentences containing 8 words.

is till clearly visible. With a 1000-fold reduction, the
detection becomes unreliable, and appears impossible
with a 3000-fold reduction. Fig. 19 shows the number
of words detected by our new routine subjected to sub-
sampling (for all samples collected from users). Even
with a 200-fold sampling rate reduction, more than 60%
of the time we correctly detect the number of words (8).
As we further reduce the sampling rate, the number of
words detected moves towards zero. But even with a
3000-fold reduction of the sampling rate, we detect the
presence of one word (50% of the time) rather than no
word at all. A rate limit of 1.4-3s (“1400 subs”-“3000
subs” in Fig. 19) thwarts our attack on SoI detection,
since with such sampling rates we never correctly detect
the number of words in a sentence. Of course, this only
defeats our current implementation, and it would be
more prudent to prohibit access to virtual files entirely
as suggested earlier.

Rate-Limiting to Protect User Anonymity.
In this scenario, we have a list of sentences posted on
an “anonymous” messaging board by a set of users. We
try to determine which user entered which sentence. We
have extensively studied the re-identification of users
when sentences contain the same number of words, as
this is the worst-case scenario for an attacker (Sec-
tion 3.4). If we apply the 1.4s rate limiting policy as
for SoI detection, an attacker can no longer detect the
number of words reliably, so this seems to thwart re-
identification attacks on sentences with the same num-
ber of words. Recall that without the right number of
words, we cannot extract where words start and end in
the signal stream, as a result of which we cannot ex-
tract the features necessary for fingerprint. The 1.4s

word 1 word 2 word 3 word 4

Fig. 18. Effect of subsampling on the first derivative of the num-
ber of software interrupts measured by a malicious app.

0 1 2 3 4 5 6 7 8 9 10 11
words detected

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

ba
bi

lit
y

200 subs
600 subs
1000 subs
1400 subs
2000 subs
3000 subs

Fig. 19. Distribution of the number of words detected using the
software interrupt counter, for sentences containing 8 words.

rate, however, is still not enough if sentences contain
a different number of words. As we mentioned in Sec-
tion 3, in this case an attacker need not train on users,
but only detect the number of words. Let us consider
2 signals Sig1 and Sig2 corresponding to 2 sentences
Sen1 and Sen2 containing L1 = 3 and L2 = 8 words
respectively. Even if an attacker cannot reliably infer
the number of words in each Signi, she may be able to
re-identify users solely based on the estimated number
of words detected. Fig. 20 shows the number of words
detected for sentences containing 3 and 8 words respec-
tively, when subjected to subsampling. For example, for
a 1000-fold reduction of sampling rate, if an attacker de-
tects 5 words, she is sure the signal corresponds to Sen2
containing 8 words, since our routine never detects more

Don’t Interrupt Me While I Type 150

0 1 2 3 4 5 6 7 8 9 10 11
words detected

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

ba
bi

lit
y

8 words, 1000 subs
8 words, 3000 subs
3 words, 1000 subs
3 words, 3000 subs

Fig. 20. Distribution of the number of words detected using
the software interrupt counter, for sentences containing 8 and
3 words.

than 3 words for a signal corresponding to a 3-word sen-
tence. So let us consider the following re-identification
heuristics:

Sigi =

{
Sen1, if NdetectedW ord ≤ Ncutt−off ,

Sen2, otherwise.
(6)

where Ncutt−off = 3 and Ncutt−off = 0 for 1000-
fold reduction and 3000-fold reduction of sampling rate
respectively. This allows an attacker to correctly re-
identify users 84% and 43% of the time respectively. In
other words, even a rate limit of 3s is not enough to
thwart re-identification attacks that are based on the
number of words and, in effect, on phrase length. We
conclude that finding the right rate that thwarts all at-
tacks – including those still unknown to us – is non-
trivial. It is more prudent to simply prohibit access to
virtual files as we first suggested.

5 Discussion
The dictionary set we used was limited by experimental
constraints (Section 3). In terms of dictionary size, the
practical limiting factor was the burden put on study
participants. We were unable to test our techniques
for larger set sizes. This is an area that will no doubt
attract more work in the future.

We also attempted to recover arbitrary words. How-
ever, this turned out to be challenging. We investigated
language models in combination with the RNN, but did
not achieve satisfying results. One major issue was the

lack of a large chat dataset to create a language model.
We think our corpus was too small. We thought of us-
ing other sources of chat data such as Twitter, but were
put off by the restrictions on the use of the data. In
fact, Twitter now blocks large-scale downloads entirely
to prevent data mining.

For now, we have demonstrated that aggregated in-
terrupt counters consitute a threat. We are confident
that our results could be improved in two ways. First,
as noted above, a larger chat corpus would help an at-
tacker develop good language models. These are typi-
cally trained over millions of entries, while our corpus
had only a few thousand. It would be very valuable to
understand the full implications of such attacks under
ideal conditions.

Second, we believe fine tuning the classifier param-
eters could also improve our results. More data from
users could help to take advantage of deep learning
capabilities of the RNN. Again, artifical neural net-
works excel at understanding complex data relationship
through millions of samples, but we trained ours with
less than 20 occurrences of each word for each user.
The restricted number of participants made it difficult
to assess the feasibility of creating a “master” model
that works for most users to avoid the per-user training
phase. Realisticallly, this may require hundreds or even
thousands of users. It was out of scope of this paper,
since we focused on piloting the attack, rather than scal-
ing it. Consequently, with our current implementation,
predictions made through a model trained on one user
simply do not work for another. But the history of HCI
suggests that, with enough users, we can move from
user-dependent recognition to user-independent opera-
tion.

As well as scaling the attack across users, it may be
worth while trying to scale the attack across devices. We
demonstrated it on the Nexus 5, but we are confident it
will generalize; we have looked at various phone mod-
els, and their counter streams all show similar properties
during user input. However, different phones have dif-
ferent hardware and software characteristics. So could
we build a model by training users on one phone, and
predict text entered on a different one? This is another
topic for further research.

As detailed in Section 3, our current implementation
collects data on phones, but data pre-processing, finger-
print creation and prediction are performed offline on a
desktop. But the processing power of current smart-
phone is not a barrier; we could do all the data process-
ing locally. Model creation on a standard desktop takes
a few minutes at most with code written in python. We

Don’t Interrupt Me While I Type 151

believe the same computation would be feasible on a
smartphone if we reimplemented it in C, albeit with a
slight performance hit. The prediction phase is a lot
faster and takes at most a few seconds on our desktop.
Software that can collect data and build a model locally
opens up the prospect that a malware writer could col-
lect data at scale and use it for the methodological im-
provements described here, including building a better
language model and developing user-independent recog-
nition techniques.

Stealthy malware must blend in its environment
in terms of energy consumption, network activity, and
data storage. Energy consumption during data collec-
tion would be negligeable because the curious app mon-
itors input only when needed. There is no busy loop
constantly executing to drain the battery. Where en-
ergy consumption could become an issue is during model
training if this was done on the phone. To be stealthy,
malware could do this in steps, rather than all at once,
e.g. by spreading the computation over several days, or
doing it only when the phone is plugged in to a power
socket. In terms of storage, models take a bit over
1MB at rest (i.e. compressed) and about 3MB when
used (uncompressed). Data collected for the training
phase is about 40MB when compressed (Section 3). Al-
though this is not small, neither is it big enough to make
users suspicious. In the case where data processing is
offloaded to a server, network activity should also be
camouflaged, e.g. by uploading data over several days,
or only when in wifi.

We use phones with around 60 apps for our eval-
uation. The apps generate noise for the counters we
monitor. Our results show that under normal condi-
tions, this noise is negligible. We also investigated our
attack under heavy load while the browser was down-
loading a 100MB file. The download spanned the entire
user input. Under this condition, our attack did not
work. So our current implementation is very sensitive
to ambient noise. But this does not mean that all such
attacks will be. Even if the side channel turns out to be
inherently sensitive to high loads, users generally only
interact with one app at a time on smartphones. So
maybe most of the time the system is under low load
and the attack remains feasible, or maybe the curious
app can just discard data when heavy load is detected.

Another interesting question is how we could com-
bine sensor-based side channels with our attack. This
is something we have not attempted yet. Another kind
of attack that may become possible through monitor-
ing interrupt counters is inference of what users type on
normal keyboards. Attacks based on keystroke dynam-

ics would benefit from the interrupt-based side channel
described in this paper. The screen’s hardware interrupt
counter may also be used to infer other user activities
on the screen. It could also have been used, for exam-
ple, by PIN Skimmer [20] – where the authors used the
microphone to detect user taps.

In short, the attack we have presented in this paper
is really just an early prototype, and can probably be
improved and extended in all sorts of interesting ways.
Rather than waiting for this to happen, it may be pru-
dent to tackle the problem now.

6 Related Work
Side channels have been widely studied for many years.
Power-analysis side channels, introduced by Kocher [21],
recover keys by monitoring power consumption dur-
ing cryptographic operations. Cryptographic keys can
also be recovered through cache-timing attacks if the
code path or data access is data-dependent, e.g. unpro-
tected RSA modular exponentiation [22] or AES table
lookups [23, 24]. Acoustic and EM side channels have
also been used to recover what people type on physical
keyboards [25, 26] and data being printed [27].

Mobile sensors and peripherals also carry their share
of novel side channel risks. Mäntyjärvi et al. [28] use
the accelerometer to identify users through their gait.
Michalevsky et al. [29] infer a person’s gender by re-
covering spoken words using smartphone accelerome-
ters. Sarfraz et al. [30] infer a user’s location through
their smartphone accelerometer. Michalevsky et al. [19]
also infer a person’s location by monitoring the power
consumption of their smartphone. TapLogger [31],
TouchLogger [32], TapPrint [33], and Aviv et al. [34] in-
fer a PIN entered on a smartphone by monitoring phone
motion inferred from real-time accelerometer data. Si-
mon and Anderson [20] work out the PIN using the
phone camera to infer device motion during user input.
Dey et al. [35] fingerprint devices based on their ac-
celerometer characteristics. Marquardt et al. [36] show
how a smartphone app can abuse accelerometer read-
ings to infer text entered on a nearby keyboard.

Another category of side-channels are those based
on protocols. Cache [37] statistically fingerprints
802.11 implementations through their duration field.
Nmap [38] sends a series of network packets to a ma-
chine and infers its operating system based on its net-
work stack behaviour.

Don’t Interrupt Me While I Type 152

Another category of side-channels are those based
on radio. Perta et al. [39] abuse the different radio states
of cellular phones to infer the phone IP address; the time
it takes a phone to reply to incoming traffic depends on
its level of radio activity. Brik et al. [40] identify the
source network card of an IEEE 802.11 frame through
passive radio-frequency analysis.

Another category of side-channels are those based
on traffic. Stöber et al. [41] identify smartphones based
on their traffic. Conto et al. [42] infer a smartphone
user’s activity based on their internet traffic. More gen-
erally, internet packet length and timing characteristics
are also used for webpage fingerprinting [43] and to iden-
tify protocols such as Tor [44]. Traffic analysis can also
be used to infer voice content in encrypted VoIP traf-
fic [45, 46].

At the API level, Zhou et al. [4] infer the location of
a user’s smartphone through its software voice assistant.
Specifically, they exploit the mutually exclusive access
control of the audio API to infer the length of spoken
words, and from these deduce the directions taken by a
user.

The last category of side channels are those based on
virtual filesystems such as procfs. Zhang and Wang [2]
demonstrate how an app’s stack pointer exposed by
procfs can be used to fingerprint keystroke events and
infer a user’s password. Jana and Shmatikov [47] infer
information contained in a web page by monitoring the
memory footprint of the web browser while it loads the
page. More recently, Zhou et al. [4] show how traffic
information gleaned through virtual files can be used to
fingerprint the Twitter app traffic and identify a Twitter
user.

To the best of our knowledge, our work is the first
that uses real-time hardware and software interrupts to
infer what users actually type on their phone.

7 Conclusion and Future Work
We present a novel attack against Android soft key-
boards that support gesture typing. By monitoring the
number of screen hardware interrupts and aggregated
software interrupts during user input, we show that it is
possible to breach a user’s privacy, both by identifying
some sentences a target user types and by identifying
which user typed some incriminating sentence.

To the best of our knowledge, our work is the first to
exploit global information exposed by procfs. This falsi-
fies the general belief that non-app-specific information

exposed through virtual files is harmless. Our attack
works on the latest Android version where app-specific
virtual files are inaccessible.

We investigate the efficiency of rate limiting as a
countermeasure. We find that determining a proper rate
limit is nontrivial and fails in subtle use cases. Therefore
we advocate removing access to global virtual files in the
next Android version.

Future work could improve the performance of our
attack by using a larger chat corpus to build better lan-
guage models, and by using more user data to train
our recogniser better and to develop a user-independent
recogniser. It could also study whether our techniques
can be applied to normal (non-swipe) keyboards, e.g.
using keystroke dynamics. Another area worth investi-
gating is the extent to which we can infer a user’s ac-
tivity through the side channel presented in this paper.
Finally, more work is required to assess the security and
privacy implications of global virtual files under /proc,
/sys, etc.

8 Acknowledgements
We thank the anonymous reviewers for their valuable
suggestions and comments. We also thank Dongt-
ing Yu for his valuable suggestions regarding the de-
anonymization of users. This work was partially sup-
ported by the Samsung Electronics Research Institute
(SERI), Thales, and the Carnegie Trust for the Univer-
sities of Scotland.

References
[1] A. T. Ozcan, C. Gemicioglu, K. Onarlioglu, M. Weissbacher,

C. Mulliner, W. Robertson, and E. Kirda, “BabelCrypt: The
Universal Encryption Layer for Mobile Messaging Applica-
tions,” in Financial Cryptography and Data Security (FC),
01 2015.

[2] K. Zhang and X. Wang, “Peeping tom in the neighbor-
hood: Keystroke eavesdropping on multi-user systems,” in
Proceedings of the 18th Conference on USENIX Security
Symposium, SSYM’09, (Berkeley, CA, USA), pp. 17–32,
USENIX Association, 2009.

[3] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your
app without actually seeing it: UI state inference and novel
android attacks,” in Proceedings of the 23rd USENIX Secu-
rity Symposium, San Diego, CA, USA, August 20-22, 2014.,
pp. 1037–1052, 2014.

[4] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan,
X. Wang, C. A. Gunter, and K. Nahrstedt, “Identity, lo-

Don’t Interrupt Me While I Type 153

cation, disease and more: Inferring your secrets from android
public resources,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Secu-
rity, CCS ’13, (New York, NY, USA), pp. 1017–1028, ACM,
2013.

[5] A. Savitzky and M. J. E. Golay, “Smoothing and Differentia-
tion of Data by Simplified Least Squares Procedures.,” Anal.
Chem., vol. 36, pp. 1627–1639, July 1964.

[6] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and
S. Khudanpur, “Recurrent neural network based language
model.,” in INTERSPEECH 2010, 11th Annual Conference
of the International Speech Communication Association,
Makuhari, Chiba, Japan, September 26-30, 2010, pp. 1045–
1048, 2010.

[7] T. Mikolov, S. Kombrink, L. Burget, J. H. Černockỳ, and
S. Khudanpur, “Extensions of recurrent neural network
language model,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2011 IEEE International Conference on,
pp. 5528–5531, IEEE, 2011.

[8] C. D. Manning and H. Schütze, Foundations of Statistical
Natural Language Processing. Cambridge, MA, USA: MIT
Press, 1999.

[9] J. L. Elman, “Finding structure in time,” Cognitive science,
vol. 14, no. 2, pp. 179–211, 1990.

[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learn-
ing representations by back-propagating errors,” Cognitive
modeling, vol. 5, no. 3, p. 1, 1988.

[11] P. J. Werbos, “Backpropagation through time: what it does
and how to do it,” Proceedings of the IEEE, vol. 78, no. 10,
pp. 1550–1560, 1990.

[12] “Android apps in sheep’s clothing.” http://www.modzero.
ch/modlog/archives/2015/04/01/android_apps_in_
sheeps_clothing/index.html.

[13] “Currentapp.java.” https://gist.github.com/jaredrummler/
07a3f723e96ec06fb761.

[14] “Activitymanager.” https://developer.android.com/
reference/android/app/ActivityManager.html#
getRunningTasks%28int%29.

[15] E. N. Forsythand and C. H. Martell, “Lexical and discourse
analysis of online chat dialog,” in Proceedings of the In-
ternational Conference on Semantic Computing, ICSC ’07,
(Washington, DC, USA), pp. 19–26, IEEE Computer Soci-
ety, 2007.

[16] S. Bird, E. Klein, and E. Loper, Natural Language Process-
ing with Python. O’Reilly Media, Inc., 1st ed., 2009.

[17] J. Munkres, “Algorithms for the assignment and transporta-
tion problems,” 1957.

[18] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang,
“Leave me alone: App-level protection against runtime infor-
mation gathering on android,” 2015.

[19] Y. Michalevsky, G. Nakibly, A. Schulman, and D. Boneh,
“Powerspy: Location tracking using mobile device power
analysis,” arXiv preprint arXiv:1502.03182, 2015.

[20] L. Simon and R. Anderson, “Pin skimmer: Inferring pins
through the camera and microphone,” in Proceedings of the
Third ACM Workshop on Security and Privacy in Smart-
phones & Mobile Devices, SPSM ’13, (New York, NY,
USA), pp. 67–78, ACM, 2013.

[21] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power anal-
ysis,” in Proceedings of the 19th Annual International Cryp-

tology Conference on Advances in Cryptology, CRYPTO ’99,
(London, UK, UK), pp. 388–397, Springer-Verlag, 1999.

[22] P. C. Kocher, “Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems,” in Proceedings of
the 16th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’96, (London, UK, UK),
pp. 104–113, Springer-Verlag, 1996.

[23] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: The case of aes,” in Proceedings of the
2006 The Cryptographers’ Track at the RSA Conference
on Topics in Cryptology, CT-RSA’06, (Berlin, Heidelberg),
pp. 1–20, Springer-Verlag, 2006.

[24] D. J. Bernstein, “Cache-timing attacks on aes,” tech. rep.,
2005.

[25] M. Vuagnoux and S. Pasini, “Compromising electromagnetic
emanations of wired and wireless keyboards.,” in USENIX
security symposium, pp. 1–16, 2009.

[26] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic
emanations revisited,” ACM Transactions on Information
and System Security (TISSEC), vol. 13, no. 1, p. 3, 2009.

[27] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and
C. Sporleder, “Acoustic side-channel attacks on printers.,”
in USENIX Security Symposium, pp. 307–322, 2010.

[28] J. Mäntyjärvi, M. Lindholm, E. Vildjiounaite, S. marja
Mäkelä, and H. Ailisto, “Identifying users of portable de-
vices from gait pattern with accelerometers,” in in IEEE
International Conference on Acoustics, Speech, and Signal
Processing, 2005.

[29] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone:
Recognizing speech from gyroscope signals,” in Proceedings
of the 23rd USENIX Conference on Security Symposium,
SEC’14, (Berkeley, CA, USA), pp. 1053–1067, USENIX
Association, 2014.

[30] S. Nawaz and C. Mascolo, “Mining users’ significant driving
routes with low-power sensors,” in Proceedings of the 12th
ACM Conference on Embedded Network Sensor Systems,
SenSys ’14, (New York, NY, USA), pp. 236–250, ACM,
2014.

[31] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs
on smartphone touchscreens using on-board motion sen-
sors,” in Proceedings of the fifth ACM conference on Secu-
rity and Privacy in Wireless and Mobile Networks, pp. 113–
124, ACM, 2012.

[32] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on
touch screen from smartphone motion.,” in HotSec, 2011.

[33] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R.
Choudhury, “Tapprints: your finger taps have fingerprints,”
in Proceedings of the 10th international conference on Mo-
bile systems, applications, and services, pp. 323–336, ACM,
2012.

[34] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practi-
cality of accelerometer side channels on smartphones,” in
Proceedings of the 28th Annual Computer Security Applica-
tions Conference, pp. 41–50, ACM, 2012.

[35] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi,
“Accelprint: Imperfections of accelerometers make smart-
phones trackable,” in Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), 2014.

[36] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)
iphone: decoding vibrations from nearby keyboards using

http://www.modzero.ch/modlog/archives/2015/04/01/android_apps_in_sheeps_clothing/index.html
http://www.modzero.ch/modlog/archives/2015/04/01/android_apps_in_sheeps_clothing/index.html
http://www.modzero.ch/modlog/archives/2015/04/01/android_apps_in_sheeps_clothing/index.html
https://gist.github.com/jaredrummler/07a3f723e96ec06fb761
https://gist.github.com/jaredrummler/07a3f723e96ec06fb761
https://developer.android.com/reference/android/app/ActivityManager.html#getRunningTasks%28int%29
https://developer.android.com/reference/android/app/ActivityManager.html#getRunningTasks%28int%29
https://developer.android.com/reference/android/app/ActivityManager.html#getRunningTasks%28int%29

Don’t Interrupt Me While I Type 154

mobile phone accelerometers,” in Proceedings of the 18th
ACM conference on Computer and communications security,
pp. 551–562, ACM, 2011.

[37] J. Cache, “Fingerprinting 802.11 Implementations via Statis-
tical Analysis of the Duration Field,” tech. rep., 2006.

[38] “Nmap security scanner.” https://nmap.org/. Accessed:
2015-07-31.

[39] V. C. Perta, M. V. Barbera, and A. Mei, “Exploiting delay
patterns for user ips identification in cellular networks,” in
Privacy Enhancing Technologies, pp. 224–243, Springer,
2014.

[40] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless de-
vice identification with radiometric signatures,” in Proceed-
ings of the 14th ACM international conference on Mobile
computing and networking, pp. 116–127, ACM, 2008.

[41] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic, “Who
do you sync you are?: smartphone fingerprinting via applica-
tion behaviour,” in Proceedings of the sixth ACM conference
on Security and privacy in wireless and mobile networks,
pp. 7–12, ACM, 2013.

[42] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde,
“Can’t you hear me knocking: Identification of user actions
on android apps via traffic analysis,” in Proceedings of the
5th ACM Conference on Data and Application Security and
Privacy, pp. 297–304, ACM, 2015.

[43] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel
leaks in web applications: A reality today, a challenge to-
morrow,” in Security and Privacy (SP), 2010 IEEE Sympo-
sium on, pp. 191–206, IEEE, 2010.

[44] S. Khattak, L. Simon, and S. J. Murdoch, “Systemization
of pluggable transports for censorship resistance,” arXiv
preprint arXiv:1412.7448, 2014.

[45] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M.
Masson, “Spot me if you can: Uncovering spoken phrases
in encrypted voip conversations,” in Security and Privacy,
2008. SP 2008. IEEE Symposium on, pp. 35–49, IEEE,
2008.

[46] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose,
“Phonotactic reconstruction of encrypted voip conversations:
Hookt on fon-iks,” in Security and Privacy (SP), 2011 IEEE
Symposium on, pp. 3–18, IEEE, 2011.

[47] S. Jana and V. Shmatikov, “Memento: Learning secrets
from process footprints,” in Security and Privacy (SP), 2012
IEEE Symposium on, pp. 143–157, IEEE, 2012.

https://nmap.org/

