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Abstract: Website fingerprinting allows a local, passive ob-
server monitoring a web-browsing client’s encrypted channel
to determine her web activity. Previous attacks have shown
that website fingerprinting could be a threat to anonymity net-
works such as Tor under laboratory conditions. However, there
are significant differences between laboratory conditions and
realistic conditions. First, in laboratory tests we collect the
training data set together with the testing data set, so the train-
ing data set is fresh, but an attacker may not be able to maintain
a fresh data set. Second, laboratory packet sequences corre-
spond to a single page each, but for realistic packet sequences
the split between pages is not obvious. Third, packet sequences
may include background noise from other types of web traffic.
These differences adversely affect website fingerprinting un-
der realistic conditions. In this paper, we tackle these three
problems to bridge the gap between laboratory and realis-
tic conditions for website fingerprinting. We show that we
can maintain a fresh training set with minimal resources. We
demonstrate several classification-based techniques that allow
us to split full packet sequences effectively into sequences cor-
responding to a single page each. We describe several new al-
gorithms for tackling background noise. With our techniques,
we are able to build the first website fingerprinting system that
can operate directly on packet sequences collected in the wild.
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1 Introduction

In 2009, Panchenko et al. [20] introduced a website finger-
printing (WF) attack that successfully achieved accurate web
page classification on Tor. WF threatens clients seeking to
hide their online behaviour from local adversaries—ones able
to monitor the network close to the client, such as ISPs,
wiretappers, and packet sniffers. Since then, researchers have
published more accurate attacks, improving the true positive
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rate (TPR) [3, 25] and cutting down the false positive rate
(FPR) [24] to practical levels (far below 1%). Researchers
have also applied WF techniques to circuit fingerprinting, al-
lowing adversaries to discover and identify Tor hidden ser-
vices [14]. They have shown that these attacks are compu-
tationally cheap and effective in the open-world setting [24].
However, some researchers remain unconvinced that these at-
tacks are effective in the wild [13, 21].

Indeed, the attacks have not been demonstrated to be ef-
fective in the wild; they were proven only under laboratory
conditions. Recently, Juarez et al. [13] identified significant
differences between attacks in the wild and attacks proven un-
der laboratory conditions. They noted that previous works on
WF attacks made five limiting assumptions:1

1. Closed world: Under the closed-world model, the WF at-
tack is never tested with web pages outside a fixed set
of monitored pages. A WF attack that operates under the
open-world model must be able to determine whether or
not a web page is in the set of monitored pages.

2. Replicability: The attacker’s classification training set is
collected under the same conditions as the client. Specif-
ically, a stale training set can cause WF accuracy to dete-
riorate.

3. Browsing behaviour: Users browse the web sequentially,
one page after the other.

4. Page load parsing: The adversary knows when pages start
and end. For example (related to the above), most users
may have significant time gaps between page loads.

5. No background traffic: The adversary can filter out all
background traffic.

Assumption 1 has been dealt with by previous work [20, 24,
25]. For example, the kNN attack by Wang et al. [24] can
achieve a true positive rate of 85% and a false positive rate
of 0.6% in the open-world model, with no limit on the number
of web pages. In this work, we tackle assumptions 2 to 5, as
follows:
Freshness (assumption 2). We determine empirically that

the attacker needs only a small amount of data to perform
WF effectively, and therefore it is easy to keep it fresh.

1 In their original work, they listed six assumptions, of which we omitted
the first because it only concerns one specific attack by Cai et al. [3] rather
than website fingerprinting attacks in general.
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Replicability is indeed possible. In addition, we propose
and test several schemes for updating the training set.

Splitting (assumptions 3 and 4). We show that it is indeed
possible for adversaries to know when pages start and end
from full realistic packet sequences, even if the user is vis-
iting multiple pages at once. We turn realistic packet se-
quences into laboratory packet sequences by splitting: dis-
tinguishing between different web pages that may occur
sequentially or even in parallel. We demonstrate the effec-
tiveness of time-based splitting and classification-based
splitting.

Background noise (assumption 5). We show several new al-
gorithms to deal with background noise, and we demon-
strate that an attacker who adjusts his training set can still
perform website fingerprinting accurately on traffic with
two types of high-bandwidth noise: audio streaming noise
and file download noise.

We emphasize that this work does not propose a new classi-
fier to improve the classification accuracy of known WF at-
tacks under laboratory conditions; rather, we augment any WF
attack with tools to operate under realistic conditions. Fur-
thermore, we do not know the final accuracy of website fin-
gerprinting in the wild (and thus whether or not this attack
is truly practical), because this depends significantly on user
behaviour for which we have limited information. Neverthe-
less we will evaluate each component of our system individ-
ually to show that we have made WF attacks more realistic.
The code and data for our system is available for download at
https://crysp.uwaterloo.ca/software/webfingerprint/.

Our results are presented as follows. In Section 2 we de-
scribe the related work that led to WF approaching practicality
and thus motivated this work. In Section 3 we give the back-
ground and terminology of this paper. In Section 4 we demon-
strate that an attacker can practically maintain a fresh training
set. In Section 5 we describe how we solve the splitting prob-
lem, and we present the results in Section 6. We tackle noise
removal in Section 7. Then in Section 8 we discuss the repro-
ducibility of our work, and we conclude in Section 9.

2 Related Work

In this section, we describe how WF progressed from a the-
oretical attack under specific situations towards a practical
threat for anonymous communications in general. This sec-
tion will focus on the practicality of the schemes; we refer the
reader to previous work [1–3, 5, 8, 11, 12, 15, 17, 20, 22, 24,
25] for a more technical description of the particular machine-
learning classifiers they used.

A practical WF attacker uses the open-world model,
where the attacker chooses a set of monitored pages for the
classifier. When the client visits any of the monitored pages,
the classifier attempts to identify the page. All other web pages
are non-monitored and the classifier only needs to identify
that non-monitored pages are non-monitored. This type of WF
could be used in a system like XKEYSCORE [9], for example,
where features of user traffic are scored to decide which ones
to flag for storage or further analysis. The open-world model
is in contrast to the closed-world model, where the client is
not allowed to visit non-monitored pages. As there are almost
a billion indexed web pages, the open-world model is of prac-
tical interest. The oldest WF attacks [5, 12, 15, 22] performed
closed-world experiments on simple encrypted channels, and
the newest [20, 24] give open-world results on Tor.

2.1 Closed world on encrypted channels

Cheng et al. [5] (1998), Sun et al. [22] (2002), and Hintz [12]
(2003) published some of the earliest WF attacks on clients
using a simple encrypted channel. In their works, the attacker
was able to determine which TCP connection each packet
came from, and at the time (before persistent HTTP connec-
tions) each resource on a web page was loaded on a differ-
ent connection. Therefore, the attacker was aware of the byte
length of each resource on the page. This is no longer a re-
alistic assumption of the attacker, so further works (including
ours) have weaker assumptions of the attacker’s capabilities.

Liberatore and Levine [15] (2006), Bissias et al. [1]
(2006) and Herrmann et al. [11] (2008) demonstrated success-
ful WF attacks for such a weaker adversary. For their attacks,
the attacker only needs to know the length of each packet. The
attacker is not aware of which connection each packet belongs
to. This is especially relevant to privacy technologies such as
VPNs or TLS-enabled proxies. These works showed that, in
the closed-world scenario, an attacker can distinguish among
a few hundred web pages.

2.2 From encrypted channels to Tor

The above works showed that WF can succeed in the closed-
world setting on a simple encrypted channel, such as TLS
to a proxy, or a VPN. As suggested by Dyer et al. [8], such
a channel can also be defended by using dummy packets
to flood a constant stream of data in both directions (in an
amount independent of the actual traffic), which is provably
secure [24] against WF. However, both attacks and defenses
suffer on low-latency, resource-limited anonymity networks,
such as Tor. Expensive defenses are impractical as Tor is band-

https://crysp.uwaterloo.ca/software/webfingerprint/
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width starved [23], and attacks are harder [11] due to unpre-
dictable network conditions and Tor’s own defenses [24].

Panchenko et al. [20] (2009) demonstrated the first effec-
tive WF attack against Tor and other anonymity networks, us-
ing an SVM with a list of website features. They also showed
a 57% TPR and 0.2% FPR in the open-world setting if the at-
tacker monitors five pages. Dyer et al. [8] later showed that the
variable n-gram classifier is also effective for WF with a simi-
lar set of features. Cai et al. [3] improved the closed-world ac-
curacy by using the Damerau-Levenshtein distance. Their pa-
per however did not perform open-world experiments. Wang
and Goldberg [25] modified this algorithm and showed that
the more accurate, modified version has an open-world TPR of
97% and FPR of 0.2%, but only for a single monitored page.

2.3 Further improvements to
classification

The number of monitored pages used in early works on open-
world WF [3, 20, 25] has been too small for implications on
real-world practicality. Wang et al. showed [24] that their ear-
lier attack [25] would have an open-world TPR of 83% and
FPR of 6% when the number of monitored pages increased
from 1 to 100. Cai et al. [2] showed a way to convert closed-
world results to open-world results, which would result in a
FPR of around 15% for the best attacks. Both of those are too
high considering the low base incidence rate of the WF sce-
nario.

Wang et al. [24] (2014) showed a new attack using the k-
Nearest Neighbours (kNN) classifier and a new distance learn-
ing algorithm that achieved a significantly lower open-world
FPR than previous work. For 100 pages, TPR was around 85%
and FPR was around 0.6%. Furthermore, this attack is fast, as
it takes only minutes to train and test 4,000 instances compared
to several hundred CPU hours in some previous work [3, 25].
Newer advancemenets in page identification have further im-
proved classification accuracy [10, 19]. Previous work has
therefore shown that WF is effective in the open world under
laboratory conditions; in this paper, we enhance such works
with tools to operate in realistic settings.

3 Background

3.1 Tor and Tor Browser

Tor is a popular low-latency anonymity network supported by
volunteer nodes that relay traffic for Tor users. Tor users con-
struct a circuit of three nodes (the entry guard, the middle

node, and the exit node) and use multi-layered encryption; the
exit node is able to see the original TCP data sent by the client,
and the entry node knows the client’s identity. Without collu-
sion between entry and exit nodes of the same circuit, none of
the relays (or observers on those relays’ networks) should be
able to link the client’s identity with their packets.

Tor sends data in fixed-size (512-byte) cells. Each circuit
carries multiple streams corresponding to different TCP con-
nections. For flow control, Tor uses SENDME cells, which are
sent once per 50 incoming cells for each stream and per 100
incoming cells for each circuit.

Tor performs no mixing to keep latency minimal, which
renders it susceptible to timing attacks. While it is well known
that Tor’s anonymity guarantees can be broken using a tim-
ing attack by global adversaries observing both ends of the
user’s circuit, it is assumed that such adversaries are rare due
to Tor’s global nature [7]. However, the WF scenario assumes
a much weaker adversary: a local, passive adversary that only
observes the user’s end of the connection, such as the user’s
ISP, a packet sniffing eavesdropper, wiretapper, legally coer-
cive forces, or any Tor entry node itself.

3.2 Website Fingerprinting

In website fingerprinting, a local, passive eavesdropper (such
as an ISP) observes packets to and from a web-browsing client,
and attempts to guess which pages the client has visited. For
Tor, the eavesdropper is limited to only the time and direction
of each Tor cell; as each Tor cell is encrypted and has a fixed
size of 512 bytes, the attacker gains no further information
from each cell.

In the open-world setting, the attacker has a set of pages
that he is interested in (monitored pages), and he does not at-
tempt to identify any other web page (non-monitored pages).
The classification is positive when the attacker identifies any
page as a monitored page (and negative for non-monitored);
it is true if the identification is correct and false if not. Incor-
rectly classifying any monitored page as a different monitored
page counts as a false positive. The open-world setting allows
us to analyze a realistic attacker in a world where there may
be any number of possible web pages. As the base incidence
rate (the rate at which the client visits a page from the set of
monitored pages) is expected to be low, the false positive rate
must be low as well to avoid the base rate fallacy.

In this paper, we perform all experiments in the open
world, and we obtain our results using leave-one-out cross val-
idation.
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3.3 Experimental setup and evaluation

We used Tor Browser 3.6.4 with Tor 0.2.5.7 to collect the data
used in this paper. We used a custom Firefox profile to enable
automatic page loading and data collection, as otherwise Tor
Browser launches its own instance of Tor and often interrupts
page loading with error messages.

We collected data between September and October 2014.
As several of our experiments required loading two pages at
once in the same browser session, tcpdump did not pro-
vide us with enough information to distinguish between the
two pages. We collected direct cell logs by modifying Tor to
record stream and circuit numbers, and we use the direct cell
logs only to obtain the ground truth for splitting experiments.
Specifically, it should be noted that we only use those cell logs
to obtain ground truth; this does not change the fact that any
local passive attacker can perform splitting using our methods.

We disabled long-term entry guards to obtain a more com-
plete view of the network. We used one client located at a fixed
IP to collect our data. We collected several new data sets of raw
packet traces:
1. Sensitive data set. Contains 40 instances of 100 sensitive

pages that are censored in individual ISPs of the United
Kingdom, Saudi Arabia, or China. This data set was also
used by Wang et al. [24]; we updated the page list and re-
collected the data set because many of the pages are no
longer accessible.

2. Open world data set. Contains one instance each of
Alexa’s top 5,000 pages. These pages are used as the non-
monitored page set to test the false positive rate.

In the above data sets, we correctly split instances into separate
pages upon collection. We also collected additional data to test
splitting (Section 5) and background noise (Section 7), which
will be described in detail at the start of the relevant sections.

4 Training Set Maintenance

In this section we demonstrate that it is practically feasible for
a low-resource attacker to maintain an updated training set for
WF attacks on Tor. Our experimental results show that:
1. Training set size: We empirically determine that a WF at-

tacker can perform WF with a small training set. To do so,
we examine how accuracy (TPR and FPR) varies with the
size of the training set.

2. Training set update: We test several algorithms to update
the training set, and show that a WF attacker can maintain
the above small training set by updating all data points
on a single desktop-class computer. The resulting training

Table 1. TPR and FPR for varying ninst (between 0 and 90) and
nnmsite (between 0 and 9000). Each block contains the mean
TPR (upper) and FPR (lower) for data points where ninst and
nnmsite average to the respective row and column headings, and
no data point contributes to two different cells. For example, the
top-left block has data for 0 < ninst ≤ 10 and 0 < nnmsite ≤
1500.

nnmsite

750 2250 3750 5250 6750 8250

ninst

5
0.235 0.163 0.229 0.229 0.253 0.244
0.001 0.001 0.001 0.000 0.000 0.000

15
0.641 0.646 0.653 0.621 0.621 0.627
0.007 0.005 0.003 0.002 0.001 0.001

25
0.722 0.709 0.703 0.699 0.696 0.693
0.011 0.006 0.004 0.003 0.002 0.001

35
0.753 0.753 0.747 0.743 0.737 0.733
0.011 0.006 0.003 0.002 0.002 0.002

45
0.776 0.767 0.765 0.756 0.752 0.751
0.017 0.008 0.006 0.004 0.003 0.002

55
0.792 0.785 0.781 0.777 0.773 0.771
0.019 0.010 0.007 0.004 0.003 0.003

65
0.801 0.794 0.788 0.786 0.781 0.779
0.027 0.012 0.007 0.005 0.003 0.003

75
0.811 0.804 0.801 0.796 0.794 0.791
0.019 0.011 0.008 0.005 0.003 0.003

85
0.814 0.809 0.806 0.804 0.801 0.798
0.018 0.011 0.007 0.005 0.004 0.003

set is fresh enough that the attacker will lose very little
accuracy due to the age of the training set.

4.1 Training set size

The number of packet traces the attacker needs to gather for
the training set is nmsite · ninst + nnmsite. Here, nmsite is
the number of monitored sites (which we set to 100), ninst

is the number of instances of each site, and nnmsite is the
number of non-monitored sites used to train the classifier. (The
client is of course allowed in the open world to visit other non-
monitored sites, and indeed in our experiments will never visit
a non-monitored site that was used for training.) The attacker
controls ninst and nnmsite to improve the accuracy of classifi-
cation. We are interested in knowing how large those variables
must be to ensure accurate classification.

We performed experiments on Wang et al.’s kNN (with the
number of neighbours set to 5) and the data set they used for
their experiments as a basis of comparison with their exper-
imental results [24]. Their data set contains 18000 elements
(90 instances each of 100 sites, and 9000 non-monitored in-
stances), collected throughout two weeks. We evaluate the ef-
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fect of both ninst and nnmsite on TPR and FPR, and we show
the results in Table 1.

We can see that TPR and FPR increase with increasing
ninst (going down in each column) and decreasing nnmsite

(going left in each row). Furthermore, we find that a larger data
set in general benefits TPR and FPR, but the benefit decays
quickly with larger data sizes. Peculiarly, with the first two
columns, FPR decreases after a point with increasing ninst,
possibly because greater information allowed the attacker to
classify more accurately, overcoming the effect that increasing
ninst would bias the attacker towards making positive guesses.
For instance, increasing ninst from 35 to 85 and nnmsite from
3750 to 8250 more than doubles the training set size, but only
increases the TPR from 0.747 to 0.798 with no change to the
FPR at 0.003. Having a smaller but more frequently updated
training set can be beneficial to the attacker. Previously, Wang
et al. [24] had only studied the effect of varying nnmsite on
TPR and FPR.

The optimal data set size to use depends on the attacker’s
specific need. We present the accuracy at a specific point,
where nnmsite = 100, ninst = 31 and nnmsite = 3700,
where the accuracy is high enough to be a threat to web-
browsing privacy.2 At this point the TPR is 0.77 ± 0.01 and
the FPR is 0.003 ± 0.001. This requires a total of only 6800
elements in the data set, instead of all 18000 elements. If the
attacker loads more web pages, the accuracy still increases,
but at a slowing rate. The attacker can further trade off an in-
creased TPR for an increased FPR by intentionally including
fewer non-monitored data points (so neighbours of each point
are less likely to originate from the non-monitored class) or
by decreasing the number of neighbours (as a page can only
be classified as a monitored page only if all of its neighbours
originated from that page). Therefore, we have shown that the
attacker can maintain high accuracy with a fairly small data
set.

4.2 Training set update

In the above, we showed that an attacker can classify 100 sites
accurately by maintaining a data set with approximately 6800
elements in it. We are interested in knowing whether or not
maintaining a fresh data set of such a size is practical.

While collecting this data set, the mean amount of time
to load each page was 12 s, which would mean that the whole
training set could be re-collected once per 0.9 days on a sin-
gle dedicated machine. We have experimentally confirmed that

2 Our rationale for choosing this specific point is that it represents a rea-
sonable data set size, and gives a sufficiently threatening accuracy value.

this can be done. If we were to continuously load data and up-
date the data set with a single dedicated machine, the data set
itself will be on average half a day old for classification.

It is interesting to study how the accuracy of the kNN at-
tack would change based on the age of the data set. In previous
work, Juarez et al. observed a decrease in accuracy (in a dif-
ferent algorithm) if data was collected 10 days apart, but they
did not experiment on fresher data [13]. We will experiment
on fresher data to observe a finer change in accuracy. The data
set of 18000 elements was collected over a span of two weeks,
and we will vary the chosen training set in order to test the
effect of age on accuracy. We separate out the 2000 newest
elements as the testing set, leaving 16000 potential elements
for the attacker for his training set. Note that the results in this
section are therefore necessarily worse than the results above:
none of the 2000 newest elements are available to the attacker
at all, creating a minimal time gap of around a day.

The attacker follows a simple algorithm in order to main-
tain a training set of n < 16000 elements:
1. The attacker starts with the oldest n elements as his train-

ing set.
2. Each other element in the rest of the set is presented to the

attacker, in order of age (oldest first). For each element,
the attacker decides whether or not to update, by including
the element in his training set.

3. If the attacker decides to update, the attacker takes the
element, reads it, and throws away one element from his
training set, maintaining its size.

Note that in Step 2 above the attacker is not allowed to look
at the element before deciding whether or not to take it, since
looking at the element means loading the page. The attacker’s
options in updating the training set are therefore limited. We
consider three simple training set update schemes:
1. No update: The attacker never updates his training set,

keeping the oldest.
2. Update oldest: For each element, the attacker takes the el-

ement with probability p, and then throws away the oldest
element in his training set. For p = 1, this is equivalent to
choosing the newest elements of the training set.

3. Update least consistent: For each element, the attacker
takes the element with probability p, and then throws
away the least consistent element in his training set. The
attacker calculates the consistency score of each element
as follows: the consistency score of an element is the num-
ber of neighbours that belong to the same class, out of its
100 closest neighbours. The higher the number, the more
consistent that element is.

When the attacker chooses the newest elements of the training
set (which are approximately one to three days old), the TPR
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Fig. 1. TPR and FPR when p varies between 0 and 1 for two
training set update schemes: updating the oldest elements first
(“O-TPR” and “O-FPR”), and updating the least consistent ele-
ments first (“L-TPR” and “L-FPR”).

is 0.77 ± 0.01 and the FPR is 0.023 ± 0.002. We note that the
FPR has increased significantly compared to the result in the
previous subsection, despite having a training set of the same
size: the difference is that in our experimental setup; here, the
attacker is not allowed to include the latest 2000 elements at all
in his training set, whereas in the previous subsection the at-
tacker could include all elements but the testing element. With
no update for two weeks, the TPR is 0.62 ± 0.01 and the FPR
is 0.035±0.003, which is markedly weaker though still threat-
ening to privacy.

In Figure 1 we show the accuracy (both TPR and FPR)
of each scheme when varying p, along with the error bars re-
sulting from the randomness of selecting elements with prob-
ability p. There is a steady increase in accuracy with increas-
ing probability p if the attacker should update the oldest ele-
ments first; the correct p to choose depends on the attacker’s
resources, though as earlier noted, even p = 1 is feasible for
a single dedicated machine to maintain a training set size of
6800; a lower p proportionally reduces the amount of time the
attacker must spend in maintaining the training set, or it opens
up the option of maintaining a larger training set. Interestingly,
updating the least consistent training points first actually de-
creases the accuracy of the scheme, with a notably high false
positive rate, and the accuracy worsens when more updating
is done. We hypothesize that throwing out inconsistent points
makes the training set “closed-minded”: all retained points are
close neighbours of each other, limiting the perspective of-
fered by a fuller and fresher data set. We tested several other
schemes for attempting to throw out “bad” training points first,
and all such results proved similarly less effective than simply
throwing out the oldest elements first.

Juarez et al. showed that if the classifier trains on one ver-
sion of Tor Browser but tests on another, the accuracy may
deteriorate. [13] While Tor Browser displays warnings to re-
mind its clients to update their browsers, some clients may
nevertheless continue to use outdated versions. In the worst

case, the attacker can collect data corresponding to the client’s
browser version. This increases the size of the data set the at-
tacker must maintain, which, for the same attacker resources,
makes the data set less fresh, leading to a loss in classification
accuracy. An outdated client is more difficult to attack with
website fingerprinting.

5 Splitting Algorithms

Current WF techniques only accept cell sequences corre-
sponding to a single page as input; under laboratory condi-
tions, the researcher uses the ground truth of the data collection
system to decide where to split the full sequence of cells into
single-page cell sequences. These attacks cannot operate in the
wild unless we can split accurately without this ground truth.
To verify this claim, we combined pairs of random web pages
in Alexa’s top 100 sites, and asked the kNN classifier to iden-
tify one of them. In this experiment, each class corresponds to
one real web page, and each instance of the class is a packet
sequence including the real page and another randomly cho-
sen page. The kNN classifier had a drastically lowered TPR of
15% when attempting to classify this site, indicating that split-
ting is necessary for us to recover the accuracy of the kNN
classifier.

In this section, we tackle the splitting problem. Solving
the splitting problem incorrectly could result in a cell sequence
with extra or fewer cells (harder to classify); missing a split al-
together almost certainly results in two negatives (two pages
classified as a non-monitored page that the attacker is not
aware of). We explain the terminology used in this paper, out-
line our strategy to solve the splitting problem, and then dis-
cuss the specific algorithms we use. In Section 6 we will see
the results of the algorithms.

5.1 Terminology

In this work we introduce some new terminology in order to
explain our splitting solution.

Tor delivers data in fixed-size Tor cells on the application
layer before it is packaged by TCP, and so our splitting al-
gorithm uses sequences of Tor cells rather than raw TCP/IP
packets. To do so, we reconstruct TLS records from TCP seg-
ments and infer the number of Tor cells from the record length
of each TLS record. When a user visits a web page, the se-
quence of incoming and outgoing Tor cells that result from the
page visit is referred to as a cell sequence. A single cell se-
quence corresponds to a single web page. The user may visit
many web pages over a long period of time (for example, an



On Realistically Attacking Tor with Website Fingerprinting 27

Full 
Sequence

Single-page
Segment

Multi-page
Segment

Time-
based

Splitting

Classification-
based

Splitting

Page
Identification

Fig. 2. Splitting process, with ideal results. Overall, the attacker
wants to obtain single-page segments from the full (raw) se-
quence.

hour), and the attacker collects the sequence of incoming and
outgoing cells as a full sequence.

In splitting, the attacker wants to divide the full sequence
into cell segments. The ultimate goal is to have cell segments
that each contain a single cell sequence (corresponding to one
web page). These are referred to as single-page segments. Cell
segments that contain more than one page, possibly in error or
as a temporary transitional state between the full sequence and
single-page segments, are referred to as multi-page segments.

To obtain single-page segments, the attacker needs to find
the correct splits. A split is a location in the full sequence
where the cells before the split and the cells after the split
belong to different web pages. In multi-page segments where
multiple pages may overlap, we define a split as the location of
the first cell of the latter page. In such a case, splitting correctly
would still result in some overflow of cells into the latter seg-
ment. We do not attempt to split between different streams (for
example, different images or scripts) of the same web page.

5.2 Splitting process

There are three steps in our splitting process, as shown in Fig-
ure 2:
1. Time-based splitting. The full sequence is split with a

simple rule: if there is a time gap between two adjacent
cells greater than some amount of time tsplit, then the
sequence is split there into individual cell segments.

2. Classification-based splitting. Time-based splitting may
not be sufficient to split multi-page segments with a
smaller time gap than tsplit. We use machine learning
techniques both to decide whether or not to split them fur-
ther (split decision) and where (split finding).

3. Page identification. The objective of the first two steps
is to split the full sequence into single-page segments as
accurately as possible. Then, we may attempt to identify
the page corresponding to the cell segment. In this work
we will investigate the effect of background noise, incor-
rect splitting, and incomplete pages on known page iden-
tification techniques, but developing more powerful page
identification techniques is outside the scope of this work.

The following types of segments may result from time-based
splitting:
1. Single-page segments. In this case we should not attempt

to split the segment further.
2. Two-page segments. We attempt to split these cell seg-

ments by finding the point where the second page starts.
3. Multi-page segments containing three or more pages.

We apply classification-based splitting in two steps in order
to split two-page segments further into single-page segments.
First, in split decision, we attempt to distinguish between
single-page and two-page segments with machine learning.
Then, in split finding, we take two-page segments and find the
optimal location to split them. To find a split in a two-page seg-
ment, the classifier looks at each outgoing cell and assigns a
score based on features of its neighbouring cells. The classifier
guesses that the maximally scored cell is the correct split.

We do not split multi-page segments containing three or
more pages. Our methods may apply to these segments as well,
but the accuracy would be lower, and it complicates our pre-
sentation. Rather, in Section 6.2 we show how we minimize
their occurrence probability as an explicit strategy.

5.3 Time-based splitting

Cell sequences from page loading may be separated by a time
gap during which there is no web activity. We therefore split
the full sequence at all points in the sequence where no traf-
fic is observed for some amount of time tsplit. Our choice of
tsplit seeks to minimize the chance of splitting single-page
segments, which should not be split any further. A larger tsplit

reduces such a risk but renders multi-page segments more
likely if the client’s dwell time is small.3 To split these we
need to apply classification-based splitting, which we discuss
in the next section.

To obtain the correct tsplit we consider two potential er-
rors resulting from splitting with tsplit:

3 The dwell time is the amount of time a user stays on a page between
two page visits.
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1. Splitting a single-page segment with tsplit. The attacker
should not split single-page segments further. We will
consider the consequences of such a split: it is still pos-
sible to classify a cell sequence correctly even with only
part of the cell sequence.

2. Failing to split a multi-page segment with tsplit. The
probability of this error occurring depends on dwell time.
We must proceed to classification-based splitting in order
to split two-page segments, which is less accurate than a
simple time-based rule.

We want either source of error to be unlikely. A smaller tsplit

increases the chance of the former and decreases the chance of
the latter, and vice-versa, so a suitable value must be chosen.
We will show how we choose tsplit and how it affects accuracy
values in Section 6.2.

5.4 Classification-based splitting

Cell segments used in classification-based splitting can consist
of web pages organized in four possible ways:
Class 1. Two pages, positive-time separated. This is where

the user dwells on a web page for an amount of time be-
fore accessing the next, thus causing a lull in web activ-
ity and a noticeable time gap in traffic. This noticeable
time gap is, however, less than tsplit used by time-based
splitting; otherwise it would have been split in time-based
splitting.

Class 2. Two pages, zero-time separated. This is where the
user clicks on a link from a web page that is loading, thus
halting the web page and sending out requests for the next
immediately, so that there is a clear division between two
web pages but it is not marked by a time gap.

Class 3. Two pages, negative-time separated. This is where
the user is loading two pages at once in multiple tabs.
In this case, we consider a correct split to be the time at
which the second page starts loading. This is the hard-
est class to split as there is no noticeable gap nor a clear
pattern of cells indicating the gap. However, we can still
split cell sequences in this class using machine classifica-
tion by extracting useful features. We list our feature set
in Appendix A.

Class 4. One page. In this case time-based splitting was suffi-
cient to isolate a page into its own cell segment. We need
to avoid splitting such a page.

To split two-page segments properly is a two-step process. The
first step is split decision, where we distinguish between two-
page segments and single-page segments. This is necessary to

perform the second step, split finding, where we find the split
in two-page segments.

Split decision. The algorithm for split decision takes as
input a page segment, and returns a binary “yes” (it is a two-
page segment) or “no” (it is a single-page segment). It is
trained on two classes: a class of two-page segments, and a
class of single-page segments. If split decision returns “no”,
we believe the sequence comes from class 4, so we skip split
finding and go straight to page identification. For split deci-
sion, we tried kNN, Time-kNN, and SVM:
1. kNN: kNN with features and weight learning. This is simi-

lar to the approach used by Wang et al. for website finger-
printing [24], where features are extracted from the cell
segment and used by a weight learning algorithm that de-
termines the distance function, which is used by a kNN
classifier. We tested this algorithm with their original fea-
ture set.

2. Time-kNN: Time-based kNN. We added a number of
features to the above that are related to inter-cell tim-
ing. These include the largest and smallest inter-cell times
in the cell segment, the mean and standard deviation for
inter-cell timing, and others.

3. SVM: SVM with features. This is similar to the approach
used by Panchenko et al. for website fingerprinting [20].
The chief difference is that we choose a different cost and
gamma value (as this is a different problem); in addition,
we do not append the entire cell segment onto the feature
list. We selected parameters for the SVM as it is highly
sensitive to incorrect parameters. We chose the radial ba-
sis function with γ = 10−13 and cost for incorrect classi-
fication C = 1013 to maximize accuracy.

Split finding. When the split decision algorithm returns “yes”,
we move on to split finding. The correct split location is the
point at which the second page begins loading (i.e., an outgo-
ing request cell is sent to the server of the second page). To
find the correct split, we score every outgoing cell in the cell
segment based on its neighbourhood of cells, and return the
highest-scoring outgoing cell as the location of the guessed
split. The split-finding algorithm takes as input a cell and its
neighbourhood of cells, and returns a score representing its
confidence that this cell marks the start of the second page.
For split finding, we tried kNN, LF-kNN and NB:
1. kNN: A kNN classifier with a scoring system. As the fea-

tures used by Wang et al. [24] are not suitable for split-
ting, we used a set of 23 features based on timing and
cell ordering, given in Appendix A. We score each can-
didate cell by finding 15 closest neighbours: Neighbours
from the “correct split” class increase the score and neigh-
bours from the “incorrect split” class decrease the score.
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We guess that the highest-scoring candidate cell is the real
split.

2. LF-kNN: A kNN classifier that uses the last cells before
splits and first cells after splits to classify elements. The
classifier recognizes four classes: correct-before, the last
25 cells before a correct split; correct-after, the next 25
cells after a correct split, and similarly incorrect-before
and incorrect-after for incorrect splits. When evaluating a
candidate split, the last 25 cells before the candidate split
are scored against correct-before and incorrect-before and
the next 25 cells are scored against correct-after and
incorrect-after. All four scores are then added together for
a final score.

3. NB: Naive Bayes with features. The Naive Bayes classi-
fier involves explicit probabilistic scoring, which is suit-
able for this purpose, and it was used successfully by Lib-
eratore and Levine [15] for WF. Features are trained and
tested with the assumption that they follow independent
normal distributions. We use the same feature set as kNN
above. Each potential split will have a score indicating the
possibility that it belongs to the first class, and the poten-
tial split with the highest score is picked out.

We based our methods on attacks that succeeded for WF as
we find that there are similarities between splitting and WF.
Specifically, both are classification problems that take web
packet sequences as input, and relevant features include packet
directions, timing, and ordering. We did not attempt to use
SVMs with Damerau-Levenshtein distance (like Cai et al. [3])
because the Damerau-Levenshtein distance ignores timing,
and timing is important in finding splits.

6 Splitting Results

In this section, we experimentally validate our splitting algo-
rithms and show their accuracy. The main results are:
1. Time-based splitting (Section 6.2). Empirically, we find

that we can perform time-based splitting with tsplit = 1 s,
at no cost to page identification accuracy. We will discuss
previous research, which suggests that most web page ac-
cesses have a higher dwell time than this value.

2. Classification-based splitting (Section 6.3). If the above
fails to split a two-page segment (i.e., the time gap is
smaller or did not exist), we find that we can still perform
split decision to identify two-page segments and split find-
ing to split them correctly with high accuracy.

Combined, these results mean that we can split full sequences
into single-page segments with high accuracy.

6.1 Experimental setup

We collected data as described in Section 3.3. To acquire
ground truth for splitting, we instrumented Tor to log cell in-
formation: in particular, we needed the stream ID and data
type of each cell.4 To distinguish between cells from two dif-
ferent pages, we recorded the time when the request for the
second page was sent, and marked the first outgoing STREAM
BEGIN cell at or after that time as the start of the second page.
All new streams started after that cell were marked as belong-
ing to the second page, whereas streams before that cell were
marked as belonging to the first page. This allows us to record
ground truth of which page each cell belonged to.

We loaded zero-time separated pages (class 2) by loading
two pages in the same tab, and we loaded negative-time sep-
arated pages (class 3) by loading two pages in different tabs,
with a time gap between 5 and 10 seconds. We chose this time
gap to give enough time for the first page to start loading, and
to ensure that the chance that the first page finishes loading
before the second page starts is small. If the first page finishes
loading before the second page starts, then these two pages
are actually separated by a positive time gap. We processed all
cell sequences to find positive-time separated two-page seg-
ments this way, and moved them from their original classes to
positive-time separated pages (class 1). Overall, the number of
elements in classes 1, 2, 3 and 4 were about 1800, 1200, 1500,
and 1600 respectively.

6.2 Time-based Splitting

The first step in processing the full sequence into single-page
segments is to split the full sequence with a simple time-based
rule: if the difference in time between two cells exceeds tsplit,
then we split the sequence there.

We argued in Section 5.3 that there are two opposing fac-
tors affecting the choice of tsplit:
1. Increasing tsplit decreases the chance of splitting single-

page segments, which should not be split.
2. Decreasing tsplit increases the chance of splitting multi-

page segments, which should be split.

We will present our experimental results in this section ac-
cordingly. First, we will increase tsplit until there is almost
no chance of splitting single-page segments. Then, we will
decrease tsplit to increase the chance of splitting multi-page
segments. It may seem that those two steps should be taken in

4 Any local, passive attacker can use our splitting method from tcpdump

info; we only need cell data for experimental ground truth.



On Realistically Attacking Tor with Website Fingerprinting 30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.25  0.5  0.75  1  1.25  1.5

T
P

R

tsplit (seconds)

Fig. 3. TPR of kNN when splitting cell sequences with tsplit.
The solid line represents an attacker who adjusts for splitting by
splitting his own training set, and the dashed line represents an
attacker who does not adjust for splitting.

tandem with each other to find an optimal solution; however,
we will in fact find that tsplit is so small after the first step that
we do not need to take the second step at all.

6.2.1 Increasing tsplit

To experimentally determine the suitable tsplit, we applied
time-based splitting to single-page segments, and tested page
identification with the kNN classifier by Wang et al. [24] on
the resulting segments while varying tsplit from 0.01 s to 1.5 s.
We ran our experiments on the splitting data set, on which the
TPR of kNN was 0.89.

If tsplit splits a single-page segment into several seg-
ments, we chose the largest segment to keep to classify, and
assign the smaller segments to the non-monitored class. The
attacker applies splitting to his own training set as well, under
the same tsplit, in order to maximize his accuracy in classify-
ing split segments; we will also consider an attacker who does
not change his training set. We do not make any adjustments
to kNN itself for splitting.

In Figure 3 we plot the resultant negative effects on the
true positive rate (the effect on the false positive rate is very
small). We see from Figure 3 that classification accuracy
reaches the maximum after around tsplit = 1 s. At this value,
the TPR is 0.88 compared to the maximal 0.89. There are in
fact time gaps still greater than 1 s, but removing them did not
affect classification accuracy.

If the attacker does not adjust, the accuracy is significantly
lower. For example, at tsplit = 0.5 s, splitting with adjustment
gives a TPR of 0.83, while splitting without adjustment gives
a TPR of 0.68. At tsplit = 1 s they were 0.88 and 0.81 respec-
tively. It is realistic to allow the attacker to apply splitting to
his data set.

We have therefore found that there is almost no loss in
classification accuracy with tsplit = 1 s. The implication is
that even if the client only waits 1 s between two page loads,

we can distinguish between them by time-based splitting.
Next, we want to know if we should reduce tsplit any further.

6.2.2 Decreasing tsplit

Figure 3 suggests that t′split can be reduced below 1 s with
only a small loss in TPR, so it may be argued we should re-
duce tsplit below 1 s, to trade an increased chance of split-
ting single-page segments for an increased chance of splitting
multi-page segments.

Reducing tsplit to some t′split < 1 s has a benefit if the
client’s dwell time tdwell is between t′split and tsplit. Recall
that classification-based splitting does not handle segments
with three or more pages, which will occur if there are two
or more dwell times less than tsplit in a row; we want this sit-
uation to be rare after time-based splitting, so we want to know
the probability t′split < tdwell < 1 s.

As we cannot collect information on Tor clients, we do
not know the true dwell time distribution of Tor clients, so
we must defer to previous work on dwell time for web traffic
(without Tor). It has long been established that dwell time has
a heavy tail [6]. Previous authors have found dwell time to be
well-fitted by Pareto [4], lognormal [18] and “negative-aging”
Weibull [16, 18] distributions with the mean being around 60 s.
The probability of 0 s < tdwell < 1 s is thus very small, so any
choice of t′split is not likely to produce a benefit. This also
implies that the probability of failing to split a time gap twice
in a row (for multi-page segments with three or more pages)
will be even smaller.

Furthermore, we will next see that when there exists a
small time gap between packet sequences (under 1 s), denoted
as Class 1 in our terminology (see Section 5.4), classification-
based splitting is very accurate. This further contributes to our
argument that reducing tsplit further would produce no no-
table benefit in splitting multi-page segments.

6.3 Classification-based splitting

In this section, we present our results on splitting two-page
segments with classification. We used two metrics to evaluate
the effectiveness of splitting:
1. Split accuracy. We consider the split correct if it is within

25 incoming and outgoing cells of the correct split. We
choose 25 as a range range within which the page iden-
tification TPR remains above 50–60% (we will show this
later). Randomly guessing any outgoing cell as the cor-
rect split will result in a split accuracy of 4.9% (computed
from our data set). We also show the standard deviation of
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Fig. 4. Absolute decrease in TPR if the split is guessed incor-
rectly. A negative split deviance indicates that the guessed split
was before the correct split, and a positive split deviance indicates
it was after. There are two lines: The thicker line is for the segment
that received extra cells because the split was in the wrong place;
the thinner line is for the segment that lost cells. The false positive
rate did not change significantly.

Table 2. Split decision accuracy. The number in row i, column j

is the probability that the classifier thought an element of class i

belonged to class j. A greater value in the diagonal is better.

Class 1/2/3 Class 4

kNN
Class 1/2/3 0.92 ± 0.04 0.08 ± 0.04

Class 4 0.022 ± 0.006 0.978 ± 0.006

Time-kNN
Class 1/2/3 0.96 ± 0.05 0.04 ± 0.05

Class 4 0.03 ± 0.02 0.97 ± 0.02

SVM
Class 1/2/3 0.93 ± 0.01 0.07 ± 0.01

Class 4 0.10 ± 0.03 0.90 ± 0.03

split accuracy by choosing random subsets of the data set
for training and testing.

2. Split deviance. This is the number of cells the guessed
split was from the correct split. We present the three quar-
tiles of this value. A larger deviance increases the diffi-
culty of page identification.

We measured the effect of split deviance on page identifica-
tion accuracy with Wang et al.’s kNN. First, we took the last `
cells from a single-page segment and prepended it to another
single-page segment, and tested the effect of varying ` on the
accuracy of identifying either page; this simulates the situation
where the split was too early. Similarly we tested the effect of
varying ` on accuracy when the split was too late. We show
the results in Figure 4. We see that under 5 cells the absolute
decrease in TPR is negligible, with the exception that a cell
segment which lost its first few cells is significantly harder to
classify (due to the fact that the kNN uses the first few cells as
an important feature). Under 25 cells the decrease in TPR is
around 20% except for this specific case.

Table 3. Split finding accuracy. We show the accuracy for each
of the three types of two-page segments (Class 1: positive-time,
Class 2: zero-time, Class 3: negative-time). We show the first,
second, and third quartiles of the absolute split deviance in paren-
theses, separated with slashes.

Class 1 Class 2 Class 3

kNN
0.92 ± 0.02 0.66 ± 0.04 0.34 ± 0.04

(0/0/1) (2/8/59) (9/87/332)

LF-kNN
0.94 ± 0.01 0.61 ± 0.03 0.18 ± 0.02

(0/0/2) (3/13/53) (60/205/526)

NB
0.16 ± 0.03 0.09 ± 0.02 0.04 ± 0.02

(67/339/1507) (237/851/2126) (388/1385/3922)

6.3.1 Split decision

We evaluate the accuracy of split decision: distinguishing be-
tween single-page segments and two-page segments. We col-
lected 5,000 two-page segments by randomly choosing pages
from the sensitive site list and accessing them one after the
other. We also chose 5,000 single-page segments from the
sensitive site list. We tested kNN, Time-kNN, and SVM (de-
scribed in Section 5.4) for this problem, and show the split
accuracy and absolute split deviance.

The three classifiers had similar performance, except that
SVM had trouble identifying class 4 (single-page segments).
Since identifying class 4 as class 1/2/3 means that it will un-
dergo splitting by the split finding process, and splitting a
single-page segment makes classification significantly harder,
we want class 4 to be identified correctly. Therefore the other
two methods are superior; we chose Time-kNN for further
experiments. We present the complete data in Table 2.

6.3.2 Split finding

We evaluate the accuracy of split finding in two-page seg-
ments. We tested kNN, LF-kNN, and NB for this problem (de-
scribed in Section 5.4), and similarly present the split accuracy
and absolute split deviance.

For both cases, our results showed that NB was only
slightly better than random guessing, even though it used the
same features as kNN. This is possibly because kNN was more
tolerant to bad features than NB, as the kNN weight-learning
process filtered out bad features. LF-kNN was overall slightly
worse than kNN in terms of finding the correct split. This may
be because LF-kNN is only allowed to train on a maximum
of 25 cells before and after true splits, so it has no access to
features relating to the remainder of the cell sequence (such as
total number of cells in the sequence). We present the complete
data in Table 3.
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Table 4. Overall split accuracy for the best algorithms (Time-kNN
for split decision, kNN for split finding). Classes 1, 2, and 3 are
positive-time, zero-time, and negative-time separated two-page
segments respectively; Class 4 is single-page segments. For class
4, split accuracy is simply the chance that it was identified as class
4 (i.e. split decision returned “no”).

Class 1 Class 2 Class 3 Class 4
0.88 ± 0.05 0.63 ± 0.05 0.32 ± 0.04 0.97 ± 0.02

6.3.3 Together

Finally, we combine all the results in this section and present
split accuracy using the best algorithms (Time-kNN for seg-
ment classification and kNN for split finding) in Table 4. The
table shows that classification of Class 3 is indeed the most dif-
ficult: in fact, we cannot expect to correctly split overlapping
pages.

7 Removing Noise

In this section, we will discuss another aspect of realistic
cell sequences that may hamper website fingerprinting: back-
ground noise. The client may, for example, download a file,
listen to music, or watch a video while browsing. These ac-
tivities are persistent and may interfere with both splitting and
page identification if the noise bandwidth rate is high enough.
We characterize noise in Section 7.1, and we demonstrate that
only noise requiring high bandwidth (“loud” noise, such as
videos and streams) can affect website fingerprinting. Then,
we present two strategies for the website fingerprinting at-
tacker to adjust for loud noise:
1. Removing noise from testing elements (Section 7.2). We

propose a number of classification-based and counting-
based approaches to remove loud noise. We find that many
of them fail to remove noise accurately. Analytically, we
show that there are inherent difficulties in removing loud
noise due to variation in intercell timing.

2. Adding noise to training elements (Section 7.3). Instead of
removing noise from testing elements, the attacker can at-
tempt to add noise to training elements for more accurate
classification. The accuracy of such schemes is dependent
on the ability of the attacker to generate or find the type
of noise used by the client, and we present our results in
terms of the attacker’s ability to do so.

We tested our algorithms against two types of loud noise: au-
dio streaming and file downloading noise, and we will show
that we can still successfully classify under such noise.
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Fig. 5. Absolute decrease in TPR of the CUMUL and kNN classi-
fiers when random noise is added.

7.1 Characterizing loud noise

We first characterize loud noise by identifying the number of
noise cells per second that is necessary for WF accuracy to
drop. To do so, we add random cells to cell sequences. Then,
we ask the CUMUL classifier [19] and kNN classifier [24] to
identify the original page. The attacker in this case is not aware
of the noise and does not attempt to adjust for it; his training
set has no noise cells. This is a conservative assumption for
the attacker’s accuracy. We add noise cells at bnoise cells per
second, with each intercell time selected uniformly randomly
between 0 and 2/bnoise seconds.

We show the results in Figure 5. CUMUL is more sen-
sitive to noise, and its accuracy decreases more quickly. For
kNN, the absolute decrease in TPR becomes significant after
5 cells per second (20 kbps), and the TPR has dropped signif-
icantly at around 20 cells per second (80 kbps). Video stream-
ing, audio streaming and file downloading may exceed this bit
rate, while other sources of noise such as chatting, AJAX and
Tor protocol overhead may not. For the rest of the section, we
will examine two types of noise: audio streaming noise, and
file downloading noise.

7.2 Removing noise from testing
elements

We collected two instances of noise over Tor. First, we down-
loaded a 10 GB file from a web site that offered speed testing
for users (file download noise). Second, we downloaded 10
minutes of audio from a music site (audio noise). Considering
the number of cells loaded over time for both types of noise,
our audio noise is a step function, whereas our file download
noise is continuous.

We use the sensitive data set to obtain packet sequences
from web browsing, and we refer to cells from this data set
as real cells. We merged the cell sequences for noise cells and
real cells (keeping timing and ordering), and attempted to re-
move only the noise cells from the merged cell sequence. We
attempted two approaches to noise removal: the classification-
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based approach, and the counting-based approach. In the
classification-based approach, the attacker attempts to use ma-
chine learning to decide whether a given cell is noise or not.
In the counting-based approach, the attacker counts the total
number of cells per interval of time and removes a number of
noise cells in each interval.

7.2.1 Classification-based approach

First, we show a classifier that failed to remove noise accu-
rately, using feature extraction in an approach similar to split-
ting and WF. For this experiment, we scaled down the file
download rate to the web browsing rate by multiplicatively in-
creasing the intercell time, so that the number of cells of each
class is about equal: otherwise, the attacker could obtain high
accuracy in removing file download noise just by removing all
cells.

This problem is similar to split finding, so we will use a
similar algorithm: we extract a neighbourhood of cells from
each candidate cell, and use a scoring classifier to score the
candidate cell. We used 65 features, similar to the features we
used for split finding, and we give the full list in Appendix A.
To attempt to classify this set, we used SVM with the radial
basis kernel, and parameters γ = 10−13 and cost for incorrect
classificationC = 1013 to maximize accuracy. We chose SVM
because it has been used successfully in the past for website
fingerprinting [3, 20].

There were two classes: noise cells and real cells. With
400 testing and 400 training elements for each, we ran the
SVM 100 times on random subsets of the sensitive data set
(which has 4800 elements). The accuracy was 67 ± 10% for
both types of noise. These values are low compared to what
is necessary for accurate page identification after noise re-
moval. Figure 5 suggests that at around 20 cells per second
(about 8% of web-browsing traffic rate) page identification
deteriorates significantly. If the noise cell rate is about equal
to the real cell rate, we found that the classification accuracy
needs to be above 92% for the kNN attack to succeed. Alter-
natively, the attacker needs to use a more noise-resilient clas-
sification algorithm. We have therefore shown that our attempt
at a classification-based approach failed to remove noise.

7.2.2 Counting-based approach

We devised two counting-based algorithms, one for removing
continuous noise and one for removing step-function noise.
We reduced the file download noise rate to the same as the
audio noise rate, so that a comparison could be made between

Table 5. Noise removal accuracy for our counting-based algo-
rithm. Noise and real cells removed are percentages of their to-
tals. A higher value for the former and a lower value for the latter
indicates more accurate noise removal.

Noise cells removed Real cells removed
File download 55% ± 16% 39% ± 21%

Audio 66% ± 14% 32% ± 12%

continuous noise and step-function noise. Then, we mixed real
cells and noise cells together, as above.

For continuous noise, we calculated the noise cell rate,
and attempted to remove the noise by removing 1 incoming
cell every t seconds, where 1/t is the observed noise rate.
More precisely, we divided the noisy cell sequence into por-
tions of t seconds, and removed the first incoming cell from
each portion. If there was no cell within a portion, we also
attempted to remove an extra incoming cell from the next por-
tion.

To remove step-function noise, we used an algorithm that
learned the properties of each step, including the average du-
ration of the step, the number of cells in the step, and the
amount of time between steps. Then, we removed noise with
a counting-based algorithm similar to the one for continuous
noise, parametrized by the properties we learned.

We show the results in Table 5. The results show very poor
accuracy in removing noise, even though we verified that we
learned the parameters of the noise correctly: our counting-
based algorithms removed significant numbers of real cells.
This can be compared to a baseline of 50% for file download
noise and 42% for audio noise if cells were simply removed
randomly, at a rate proportional to the total number of noise
cells and real cells. Results from both counting-based algo-
rithms are unrecognizable by the kNN page identification clas-
sifier (accuracy is close to random guessing).

7.2.3 Difficulties in noise removal

We identified two reasons why both our classification-based
algorithm and our counting-based algorithm failed.
1. Short-term cell rate variation. Specifically for file

download noise, we found a very large variation in inter-
cell time. The mean time was 0.0004 s, but the stan-
dard deviation was 0.003 s which is seven times higher.
Classification-based algorithms may also be confused by
such an inconsistent feature. If we were to use a counting-
based algorithm that removes one cell per 0.0004 s in ac-
cordance with the mean noise rate, we would incorrectly
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Table 6. Accuracy when attacker adds noise to his training set,
when classifying testing elements with noise.

Noise type TPR FPR
Audio 0.686 ± 0.007 0.026 ± 0.003

File download 0.481 ± 0.008 0.033 ± 0.003

remove a real cell or fail to remove a noise cell with high
probability.

2. Long-term cell rate variation. We also found that there
was significant variation in the number of cells sent over
time in the long term. We took our noise data and cal-
culated the number of cells sent for every 5 second in-
terval. For file download noise, we observed a mean of
11800 ± 1200 cells per 5 seconds; for audio noise, we
observed 540 ± 30 cells per 5 seconds. Both of these vari-
ations are high enough that the attacker may not be able to
guess the cell rate correctly, thus failing to remove signifi-
cant amounts of noise or removing significant numbers of
real cells.

7.3 Adding noise to training elements

In the above, the attacker attempted to remove noise from
packet sequences collected from the client. This did not work
well and resulted in poor classification accuracy. In this sec-
tion, we investigate a different strategy, where the attacker
adds the client’s background noise to his training set, and we
evaluate the effectiveness of this approach.

The attacker does not need to identify the type or ori-
gin of the client’s background noise. Instead, he simply takes
background noise packets directly from the client’s packet se-
quence, and adds them to his training set with the same order-
ing and timing. To match the length of packet sequences in his
training set, he either cuts or expands the noise sequence in a
trivial manner.

We experiment with an attacker who adds noise to his
training set for both audio noise and file download noise. To
measure classification accuracy, we use the sensitive data set.
In Table 6, we show the accuracy of the classifier when the
attacker adjusts his training set as above.

We see that an attacker can still identify pages somewhat
accurately if he adds noise to his data set. The bandwidth rate
of file download noise (9 Mbps) was much higher than that of
audio noise (680 kbps). This suggests that the attacker can still
classify packet sequences with high levels of noise by finding
the noise packets from the client’s packet sequence and adding
them to his data set. Some attackers may find it difficult to
do so; for example, an attacker who tries to block web page

accesses as they happen or shortly after they happen may not
have time to train on the noise-added dataset.

8 Discussion

8.1 Reproducibility of our work

Our experiments were performed on Tor Browser 3.6.4 with
Tor 0.2.5.7.

We have built a small system that allows WF attacks to
operate in the wild. The system takes any full sequence as in-
put, and performs splitting and page identification to identify
the web page(s) in the full sequence, if any of the pages is
in the monitored set. The reader may download and test our
system at https://crysp.uwaterloo.ca/software/webfingerprint/.

Furthermore, to ensure scientific reproducibility of the re-
sults in our paper, the following is available at the same URL:
Classifiers. We provide the code for our three split deci-

sion classifiers, our three split finding classifiers, and our
classification-based and counting-based noise removal al-
gorithms. They include Python and C++ code.

Data. We provide the sensitive and open-world page data set
we used (as well as the list of sensitive pages), the multi-
page segments we collected for splitting, and the noise we
collected for noise removal.

Data collection tools. We provide our data collection tools
with instructions on how to use them. These include a
modification to Tor to collect ground truth for cell traces
and test our WF system above.

8.2 Future work

In this paper, we did not use cell sequences collected in the
wild from real clients. While it is technically possible to ob-
tain such cell sequences at a large scale from Tor exit nodes,
there are both ethical and legal barriers present; honest Tor
exit nodes should not be examining the contents of the traffic
passing through them. Furthermore, as it is necessary for us
to obtain the client’s consent for such data collection, client
behavior may change significantly for our experiments, which
hurts experimental quality. If these barriers are overcome, our
methods could be more thoroughly tested on live Tor clients.

Our work does not propose new page identification tech-
niques, but better page identification techniques can strengthen
our algorithms. There is potential for future work in page iden-
tification techniques that are resistant to adverse conditions
that can negatively affect website fingerprinting, such as a stale
training set and background noise.

https://crysp.uwaterloo.ca/software/webfingerprint/
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9 Conclusion

In this work we have tackled three issues in website finger-
printing described by Juarez et al. [13] that separate laboratory
conditions and realistic conditions: maintaining a fresh train-
ing set, splitting the sequences, and removing noise.

We showed that effective WF training sets can be small
enough for an attacker to naively update all data points in a cy-
cle, keeping it fresh. For the splitting problem, we found that
splitting based on a time gap of 1 s causes no loss of website
fingerprinting accuracy. Previous studies show that the user
dwell time has a high probability of being higher than 1 s. We
have further demonstrated that a number of machine classi-
fiers can split the sequence with high accuracy when there is
no time gap, such as when a user interrupts the loading of one
page to load another. To deal with background noise, we pro-
posed several new algorithms, and we found that the attacker
can adjust for background noise if he can add the same noise
to his data set, although it is hard for the attacker to remove
noise accurately.

Overall, we have overcome a number of previously iden-
tified barriers to deploying WF in the wild, and demonstrated
that even clients using state-of-the-art privacy software like the
Tor Browser are subject to snooping by local passive eaves-
droppers under realistic conditions.
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A Split and Noise Removal
Features

First, we list the 23 features we used for split finding with kNN.
For a candidate cell, we decide if that cell is indeed the correct
split by using these features. The feature list is as follows:
1. Five intercell times around the candidate cell. (5)
2. The mean, standard deviation, and maximum intercell

time for fifty cells before and after the candidate cell, and
the time between the candidate cell and the cell fifty cells
before the candidate cell. (4)

3. Time between candidate cell and the next incoming cell.
(1)

4. The difference in time between the cell two cells after the
candidate cell and the cell two cells before the candidate
cell; the cell four cells after and four cells before; and so
on, up to eighteen cells. (9)

5. Number of incoming and outgoing cells five and ten cells
before and after the candidate cell. (4)

For classification-based noise removal, we used a set of 65
features, as follows:
1. Ten intercell times around the candidate cell. (10)
2. The mean and standard deviation of intercell times for

four and twenty-four cells around the candidate cell. (4)
3. Total number of outgoing cells. (2)
4. Directions of all cells within twenty-four cells before and

after the candidate cell, including the candidate cell itself.
(49)

We include the code for extracting these features in our pub-
lished data set as in Section 8. The feature set for LF-kNN
is very similar to the feature set for kNN, except that it only
involved cells in one direction, either before or after the can-
didate cell.

https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://metrics.torproject.org/

