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Abstract: Computation based on genomic data is becoming
increasingly popular today, be it for medical or other purposes.
Non-medical uses of genomic data in a computation often take
place in a server-mediated setting where the server offers the
ability for joint genomic testing between the users. Undeni-
ably, genomic data is highly sensitive, which in contrast to
other biometry types, discloses a plethora of information not
only about the data owner, but also about his or her relatives.
Thus, there is an urgent need to protect genomic data. This is
particularly true when the data is used in computation for what
we call recreational non-health-related purposes. Towards this
goal, in this work we put forward a framework for server-aided
secure two-party computation with the security model moti-
vated by genomic applications. One particular security setting
that we treat in this work provides stronger security guarantees
with respect to malicious users than the traditional malicious
model. In particular, we incorporate certified inputs into se-
cure computation based on garbled circuit evaluation to guar-
antee that a malicious user is unable to modify her inputs in
order to learn unauthorized information about the other user’s
data. Our solutions are general in the sense that they can be
used to securely evaluate arbitrary functions and offer attrac-
tive performance compared to the state of the art. We apply
the general constructions to three specific types of genomic
tests: paternity, genetic compatibility, and ancestry testing and
implement the constructions. The results show that all such
private tests can be executed within a matter of seconds or less
despite the large size of one’s genomic data.
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1 Introduction

The motivation for this work comes from rapidly expanding
availability and use of genomic data in a variety of applica-
tions and the need to protect such highly sensitive data from
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potential abuse. The cost of sequencing one’s genome has dra-
matically decreased in the recent years and is continuing to
decrease, which makes such data more readily available for a
number of applications such as:

— personalized medicine uses genomic tests prior to pre-
scribing a treatment to ensure its success;

— paternity testing uses DNA data to determine whether one
individual is the father of another individual;

— genomic compatibility tests allow potential or current
partners to determine whether their future children are
likely to inherit genetic conditions;

— determining ancestry and building genealogical trees is
done by examining DNA data of many individuals and
finding relationships among specific individuals.

Genomic tests are increasingly used for medical purposes to
ensure the best treatment. A number of services for what we
call the “leisure” use of DNA data has flourished as well (e.g.,
[1-3]) allowing for various forms of comparing DNA data, be
it for building ancestry trees, genomic compatibility or other.
It is clear that DNA is highly sensitive and needs to be
protected from abuse. It can be viewed as being even more sen-
sitive than other types of an individual’s biometry, as not only
does it allow for unique identification of the individual, but it
also allows for learning a plethora of information about the in-
dividual such as predisposition to medical conditions and rela-
tives of the individual thus exposing information about others
as well. Furthermore, our understanding of genomes is contin-
uously growing and exposure of DNA data now can lead to
consequences which we cannot even anticipate today. For that
reason, a number of publications that enable genomic compu-
tation while preserving privacy of DNA data have appeared
in the literature (see, e.g., [9-12, 15, 29]). Such publications
span several types of genomic computation including medical
(such as personalized medicine and disease risk computation)
and non-medical applications (such as paternity testing).
While protecting privacy of genomic data is important for
all applications, in our opinion, it is more difficult for an indi-
vidual to influence the way medical procedures are conducted
than services in which individuals decide to voluntarily par-
ticipate. That is, if genetic tests are necessary for a patient to
determine the most effective treatment and the procedures in
place are considered law-compliant, the patient has little pos-
sibility for influencing the way the DNA tests are conducted
(besides, perhaps, declining to take the test and risking that
the prescribed generic treatment is ineffective for her or has
severe side effects). With what we consider as “leisure” uses of
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DNA information, the situation is different. An individual who
meets a potential partner through a gene-based matchmaking
online service (such as [3]) might be reluctant to share her
DNA data with the service (or the partner) for the purpose of
genetic compatibility tests. However, if the user is assured that
no sensitive information about her DNA will be revealed to
any party throughout the computation other than the intended
outcome, she might revisit the decision to participate in such
services. Thus, in the rest of this work, when we refer to ge-
nomic computation, we focus on applications which are not
detrimental to the well-being of an individual and rather con-
sider tests in which individuals might choose to participate.

The first observation we make about such types of ge-
nomic computation is that they are normally facilitated by
some service or a third party. For example, both ancestry and
gene-based matchmaking web sites allow participants to inter-
act with each other through the service provider. Such service
providers serve as a natural point for aiding the individuals
with private computation on their sensitive genomic data. In
some prior publications on genomic computation (e.g., [12]),
it is assumed that computation such as paternity testing or ge-
netic compatibility is run between a client and a server, while
we believe that it is more natural to assume that such computa-
tion is carried out by two individuals through some third-party
service provider. Thus, in this work we look at private genomic
computation in the light of server-mediated setting and utilize
the server to lower the cost of the computation for the partic-
ipants. Throughout this work, we will refer to the participants
as Alice (A), Bob (B), and the server (S).

From the security point of view, participants in a protocol
that securely evaluates a function are normally assumed to be
either semi-honest (also known as honest-but-curious or pas-
sive) or malicious (also known as active). In our application
domain, we may want to distinguish between different secu-
rity settings depending on how well Alice and Bob know each
other. For example, if Alice and Bob are relatives and would
like to know how closely they are related (i.e., how closely
their genealogical trees overlap), it would be reasonable to as-
sume that they will not deviate from the prescribed compu-
tation in the attempt to cheat each other, i.e., they can be as-
sumed to be semi-honest. On the other hand, if Alice and Bob
meet each other through a matchmaking web site and do not
know each other well, it is reasonable for them to be cautious
and engage in a protocol that ensures security (i.e., correctness
and privacy) even in the presence of malicious participants.
The server can typically be expected not to deviate from its
prescribed behavior, as it would lose its reputation and con-
sequently revenue if any attempts at cheating become known.
If, however, adding protection against server’s malicious ac-
tions is not very costly, it can also be meaningful to assume a
stronger security model.

Another important consideration from a security point of
view is enforcing correct inputs to be entered in the computa-
tion when, for instance, the inputs are certified by some author-
ity. This requirement is outside the traditional security model
for secure multi-party computation (even in the presence of
fully malicious actors), and to the best of our knowledge certi-
fied inputs were previously considered only for specific func-
tionalities such as private set intersection [22, 31] or anony-
mous credentials and certification [19], but not for general se-
cure function evaluation (SFE). We bring this up in the context
of genomic computation because for certain types of genomic
tests it is very easy for one participant to modify his inputs
and learn sensitive information about genetic conditions of the
other party. For example, genetic compatibility tests evaluate
the possibility of two potential or existing partners of trans-
mitting to their children a genetic disease. Such possibility is
present when both partners are (silent) carriers of that disease
(see section 3.1 for more detail). Then if the partners can each
separately evaluate their DNA for a fingerprint of a specific
disease, the joint computation can consist of a simple AND of
the bits provided by both parties (for one or more conditions).
Now if a malicious participant sets all of his input bits to 1 and
the outcome is positive, the participant learns that the other
party is a carrier for a specific medical condition (or at least
one condition from the set of specific conditions). We thus
want to prevent malicious participants from modifying their
inputs used in genomic computation in cases such data can be
certified by certification authorities such as medical facilities.

In this work we address fairness, as one of the important
properties of secure computation. In particular, it is known that
full fairness cannot be achieved in the case of two-party com-
putation in the malicious security model [26], but it becomes
possible in the server-aided setting. Fairness has been con-
sidered in the server-aided literature in the past [38, 47] and
achieving fairness only adds minimal overhead to the solutions
in the settings we consider.

Contributions. While we draw motivation from genomic
computation, our results are general and can be applied to any
function. All constructions rely on garbled circuit evaluation
typically used in the two-party setting (see section 3.2), but
which we adopt to the three-party computation between the
server and two users. Based on the motivation given above,
we consider different adversarial settings, which we present
from the simplest and enabling most efficient solutions to the
most complex with added security.

1. Our most efficient solution is designed for the setting
where A and B are semi-honest (and S can be malicious),
as in ancestry testing. In this setting, the solution consists
of a single circuit garbling and evaluation and the need for
oblivious transfer (OT) is fully eliminated.
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2. Our second solution assumes that A and B can be mali-
cious, but S is semi-honest, as suitable for the paternity
test, and achieves fairness for A and B. In this solution,
the combined work for all participants is approximately
the same as the combined work of two participants in a
two-party protocol with semi-honest parties only.

3. Our last solution strengthens the model of malicious A
and B with input certification (applicable to the genomic
compatibility test). In more detail, in addition to being
able to behave arbitrarily, A and B may maliciously mod-
ify their true inputs. To combat this, the function being
evaluated is modified to mark any suitable subset of the in-
puts as requiring certification. At the time of secure func-
tion evaluation, A and B have to prove that the inputs they
enter in the protocol are identical to the values signed by
a trusted authority (a medical facility that performs ge-
nomic tests in our case). Achieving this involves the use
of additional tools such as a signature scheme and zero-
knowledge proofs of knowledge (ZKPKs). Handling of
the remaining inputs and the rest of the computation is
not affected by the shift to a stronger security model.

We assume that the participants do not collude.

All of our constructions offer conceptual simplicity and
at the same time achieve highly attractive performance. The
strongest of our models that enforces input correctness is novel
and has not been treated in the context of general secure multi-
party computation, and computation based on garbled circuits
in particular. Despite the drastic differences in the techniques
for garbled circuit evaluation and data certification, we show
how they can be integrated by using OT as the connecting
point or even when OT is not used.

Based on the solutions described above, we build imple-
mentations of three genetic tests, namely, genetic common an-
cestry, paternity, and genetic compatibility tests. Each test uses
a different security setting. We show through experimental re-
sults that each test is efficient with the worst runtime being
on the order of a couple of seconds. The performance favor-
ably compares to the state of the art (as detailed in section 7),
in some cases achieving orders of magnitude performance im-
provement over existing solutions.

2 Related Work

Literature on secure multi-party computation is extensive and
cannot be covered here. In what follows, we concentrate on (i)
secure server-aided two- or multi-party computation and (ii)
work on privacy-preserving solutions for genetic tests.

Server-aided computation. The closest to our work is that
of Herzberg and Shulman [38, 39] that considers two-party

SFE based on garbled circuits with the aid of weakly trusted
servers. The solution achieves security and fairness in the pres-
ence of malicious A and B. The authors also informally dis-
cuss (in [39]) extensions to guarantee security in the presence
of malicious servers or collusion. Compared to that work, our
solution in the presence of malicious A and B is more efficient
in that that [38, 39] require the parties to perform O(kn) sig-
nature verifications and engage in O(xkn) OTs, where & is the
security parameter and n is the number of (B’s) inputs. The
server’s work is also larger than in our solution. The use of
the server, however, is more constrained in [38, 39] (i.e., the
server is used to answer queries of different types, but it does
not participate in interactive computation).

Kamara et al. [47] assume a different setting, where a
number of parties use a server to reduce computational bur-
den for some of them. Using a solution based on garbled cir-
cuits, the work achieves work sublinear in the circuit size for
some parties and work polynomial in the circuit size for the
remaining parties and the server. Security holds when either
the server and another party are malicious or when the server
is semi-honest and all but one party are malicious. The model
relies on non-colluding adversaries (termed non-cooperating
adversaries in [46, 47]), who even when behaving maliciously
do not collude with others. The work also addresses fairness.
While not directly comparable to our result, the work of [47]
uses what can be viewed as a more challenging security setting
because all of our security settings assume a fixed semi-honest
party and thus allow for more efficient constructions.

Beye et al. [14] supplement homomorphic encryption
with server-aided garbled circuit evaluation for a number of
building blocks using the solution from Kamara et al. [46] in
the presence of semi-honest participants. The latter work pro-
vides a protocol that is similar to our first solution with semi-
honest users (in performance and properties), but additionally
involves coin tossing that requires public-key operations.

Carter et al. [24] use the aid of a server to reduce the cost
of two-party SFE based on garbled circuits when any partici-
pant can be malicious. One party is assumed to be very weak
(e.g., a mobile phone), while the second participant and the
server are more powerful. The solution lifts most of the bur-
den of two-party SFE in the presence of malicious participants
from the weak party, but the work of the remaining parties is
still comparable to the work in regular two-party SFE based on
garbled circuits. Carter et al. [23] improve the result by build-
ing Whitewash, where the work performed by the weak party
is further reduced. In addition, Mood et al. [60] present a solu-
tion in a similar outsourced setting where garbled outputs can
be mapped to garbled inputs of another circuit to save on both
computation and communication for some functions.

Kolesnikov et al. [50] consider the problem of input con-
sistency in two-party SFE in the presence of malicious play-
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ers with the aid of a semi-honest server. The goal is to ensure
that both A and B enter the same input during multiple inter-
actions, which is enforced with the help of the semi-honest
server at low cost. This solution is not suitable for our goal of
guaranteeing input correctness as a malicious participant can
consistently provide incorrect inputs and by doing so violate
privacy of possibly multiple users. Furthermore, there may not
be multiple interactions between the same pair of users to en-
force input consistency. That work also mentions the possibil-
ity of input certification in secure two-party computation, but
we are not aware of realizations of this idea.

There are also publications [32, 43, 59] in the three-party
setting that utilize garbled circuits. Feige et al. [32] studied
minimal models for secure two-party computation and pro-
vided constructions for the setting in which a function f that
produces a bit is to be evaluated on the inputs of parties A and
B, but party C learns the result. Our first protocol for semi-
honest A and B is similar to one of the constructions sketched
in that work (see section 5.1). Two other concurrent to our
work and independent publications [43, 59] study secure three-
party computation in the presence of a single malicious party
and offer efficient constructions based on garbled circuits. The
solutions provided in both [43] and [59] are close in their effi-
ciency to two-party protocols based on garbled circuits in the
semi-honest setting, but neither can achieve fairness. In par-
ticular, [43] shows security in the selective abort model while
[59] shows security in the standard model with abort.

Lastly, publications such as [25, 44] put forward generic
constructions for outsourcing secure computation to multiple
servers. Unlike this work, the focus is on enabling clients to
verify the result of the computation with the overall cost being
insignificantly higher than the cost of securely evaluating the
function itself. [44] considers any number of clients and work-
ers, while [25] treats two-party computation that substantially
reduces the work of one party by employing an extra worker.

We summarize complexity of constructions from prior
and our work in Table 1. In the table, u denotes the number
of non-free gates in function f, k1 (k2) denotes a security pa-
rameter for symmetric (public key) cryptography, 1 (t2) is the
number of A’s (B’s) input bits, t3 is the number of output bits,
t{ (t5) is the number of certified bits in A’s (B’s) input, and

T = t1 —t{ ({5 = ta — t5) is the number of remaining in-
put bits of A (B), o and s are statistical security parameters
(for the number of garbled circuits and encoding bits of an in-
put bit in the malicious model). We use min(¢, 1) public key
operations for ¢ (1-out-of-2) OTs with an OT extension and
assume kg > ~1. The function is more complex in [38] and
u* > u. Similarly, v’ > wu in [23].

Genomic computation. There are a number of publications,
e.g., [9-11] and others, that treat the problem of privately com-

puting personalized medicine tests with the goal of choosing
an optimal medical treatment or drug prescription. Ayday et al.
[8] also focus on privacy-preserving systems for storing ge-
nomic data by means of homomorphic encryption. Because
personalized medicine is outside the scope of this work, we do
not further elaborate on such solutions.

To the best of our knowledge, privacy-preserving pater-
nity testing was first considered by Bruekers et al. in [15]. The
authors propose privacy-preserving protocols for a number of
genetic tests based on Short Tandem Repeats (STRs) (see sec-
tion 3.1 for detail). The tests include identity testing, paternity
tests with one and two parents, and common ancestry testing
on the Y chromosome. The proposed protocols for these tests
are based on additively homomorphic public key encryption
and are secure in the presence of semi-honest participants. Im-
plementation results were not given in [15], but Baldi et al.
[12] estimates that the paternity test in [15] is several times
slower than that in [12]. We thus compare our paternity test to
the performance of an equivalent test in [12].

Baldi et al. [12] concentrate on a different representa-
tion of genomic data (in the form of fully-sequenced human
genome) and provide solutions for paternity, drug testing for
personalized medicine, and genetic compatibility. The solu-
tions use private set intersection as the primary cryptographic
building block in the two-party server-client setting. They
were implemented and shown to result in attractive runtimes
and we compare the performance of our paternity and compat-
ibility tests to the results reported in [12] in section 7.

Related to that is the work of De Cristofaro et al. [28] that
evaluates the possibility of using smartphones for performing
private genetic tests. It treated paternity, ancestry, and person-
alized medicine tests. The protocol for the paternity test is the
same as in [12] with certain optimizations for the smartphone
platform (such as performing pre-processing on a more power-
ful machine). The ancestry test is performed by sampling ge-
nomic data as using inputs of large size deemed infeasible on
a smartphone. The implementation also used private set inter-
section as the building block. Our implementation, however,
can handle inputs of very large sizes at low cost.

Two recent articles [37, 40] describe mechanisms for pri-
vate testing for genetic relatives and can detect up to fifth de-
gree cousins. The solutions rely on fuzzy extractors. They en-
code genomic data in a special form and conduct testing on
encoded data. The approach is not comparable to the solutions
we put forward here as [37, 40] are based on non-interactive
computation and is limited to a specific set of functions.

Although not as closely related to our work as publica-
tions that implement specific genetic tests, there are also pub-
lications that focus on applications of string matching to DNA
testing. One example is the work of De Cristofaro et al. [30]
that provides a secure and efficient protocol that hides the
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Table 1. Complexity of constructions in prior and our work.

Party| Communication Sym. key/hash op. Public key operations| Security model
[38], A O(Kz (t]_ =+ S(t2 + K',]_)) + t3) O(S(tz + K/]_)) O(Rl) malicious
[39] B O(K',z(t]_ -I-S(Ii]_ +t2))+n1(u* +t3)) O(u* +S(t2 +I€1)) O(t]_ +S(t2 +K)1)) AorB,
S O(K‘Q(tl + S(tz —+ I<.',1)) —+ K1 (u* + t3)) O(u*) O(tl —+ 8(t2 + 1{1)) fairness
A O(Kl (a' ct1 +ta + t3)) O(a(tl + tz)) — malicious S,
[47]1 | B O(k1(o(u 4+ t2) 4+ t1 + t3)) O(o(u +t1 + t2)) - semi-honest A & B
S O(k1(o-u—+t1 +t2 +t3)) O(o - u) — OR semi-honest S,
[24], A 0(/11 (O’t3 + Stl) + Ko (O’tz + t3 + kl)) O(O’tg) O(O’t3 + I<.',1) malicious A or B,
[60] B O(Rl(d(stl + ta + t3)) + I‘éz(d’tz +ts + kl)) O(a’(u + st1 + t2 + t3)) O(O’(t2 =+ t3) + /@1) fairness
S O(k1(o(st1 +t2 +t3) + ka(ot2 +t3)) O(o(u + st1 + t3)) O(ots) in [47] only
A O(k1o(t1 + ts + k1)) O(o(t1 +ts + k1)) —
B O((Rl(a'-i-lil)(tl + t3 —|—I<L1) +0'u’) 0((0+I€1)(t3—|—l€1) O(Ii ) malicious A & S
[23] +ta(r1 + t2)) +ou’ + kit1 + t2) 1 or malicious B
s O((k1(o + k1) (t1 + t3 + K1) + ou') O((o + k1) (t1 + t3+ O(k1)
+t2(k1 + t2)) k1) + o(u' +t2))
O(k1(u+t3)+ . one
[43] any K2 (tl + to + min(t1 —+ ta, h‘,l))) O(u) O(mln(tl + t2, Kll)) malicious
[59] | any O(k1(u+t1 +t2 +t3)) O(u +t1 +t2) - party
Proto-| A O(k1 - t1 + t3) — — semi-honest A & B,
col1|B,S O(k1(u+t1 4+ t2 + t3)) O(u) — mal. S, fairness
Proto-| A O(k1(t1 +t3)) O(t3) — malicious A or B,
col2| B O(k1(u +t2 +t3) + k2 - min(t2, k1)) O(u) O(min(t2,k1)) semi-honest S,
S O(K‘,]_ (u +t1 +ta + t3) + Ko - min(tg, K/]_)) O(u + t3) O(min(tz, K‘,]_)) fairness
A O(k1(t1 +t3) + K2 - 19)) O(t3) O(tg) asin
Proto- B O(k1(t1 +t2 +t3)+ O(u) O(t] + t5+ protocol 2,
col 3 k2 (t5 + min(th, k1))) min(t%, k1) plus certified
O(k1(u+t1 +t2 +t3) o(tg + t5+ inputs for
S +r2( + 5 + min(t2, k1)) Ou+ts) min(t2, k1)) Aand B

size of the pattern to be searched and its position within the
genome. Another example is the work of Katz et al. [48] that
applies secure text processing techniques to DNA matching.

3 Preliminaries

3.1 Genomic testing

We next describe paternity, genetic compatibility, and ancestry
tests. Genomic background can be found in Appendix A.

Paternity test. This test is normally based on STRs (see Ap-
pendix A). One’s STR profile consists of an ordered sequence
of N 2-element sets S = <{.Z‘1,1,1’172}, {1’271,.73272}, ey
{zN1,znN,2}), where each value corresponds to the number
of repeats of a specific STR sequence at specific locations in
the genome. For each STR 4, one of x; 1 and x; 5 is inherited
from the mother and one from the father.

Thus in the paternity test with a single parent, there are
two STR profiles S = ({;,1,2;,2}) and §" = ({2} 1,2} ,})
corresponding to the child and the contested father, respec-
tively. To determine whether S’ corresponds to the child’s fa-

ther, the test computes whether for each ¢ the set {x; 1,2; 2}
contains (at least) one element from the set {« ;,2.,}. In

other words, the test corresponds to the computation
N

/\ {16,224} N {x) 5,25 ;} # 0] = True
i=1
When testing with both parents is performed, for each STR i

ey

one of x; 1 and x; 2 must appear in the mother’s set and the
other in the father’s set. Using both parents’ profiles increases
the accuracy of the test, but even the single parent test has high
accuracy for a small number N of well-chosen STRs (e.g., the
US CODIS system utilizes N = 13, while the European SGM
Plus identification method uses N = 10).

Genetic compatibility test. Here we are interested in the ge-
netic compatibility test where potential (or existing) partners
would like to determine the possibility of transmitting to their
children a genetic disease with Mendelian inheritance. In par-
ticular, if a specific mutation occurs in one allele, one of the
alternative gene versions at a given location (called minor), it
often has no impact on one’s quality of life, but when the mu-
tation occurs in both alleles (called major), the disease man-
ifests itself in severe forms. If both partners silently carry a
single mutation, they have a noticeable chance of conceiving a
child carrying the major variety. Thus, a genetic compatibility
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test for a given genetic disease would test for the presence of
minor mutations in both partners.

The current practice for screening for most genetic dis-
eases consists of testing one SNP in a specific gene. It is, how-
ever, expected that in the future tests for more complex dis-
eases (that involve multiple genes and mutations) will become
available. Thus, a genetic disease can be characterized by a
set of SNP indices and the corresponding values (i1,b1), ...,
(it,bt), where i is the SNP index and b; € {0, 1} is the value
it takes. Then if the same values are found in the appropri-
ate SNPs of an individual, the individual is tested as positive
(i.e., the individual is the disease carrier). If both partners test
as positive, then the outcome of the genetic compatibility test
will be treated as positive and otherwise it is negative.

Ancestry test. There are a number of tests that allow for var-
ious forms of ancestry testing, for example, tests using Y-
chromosome STRs (applicable to males only), mitochondrial
DNA (mtDNA) test on the maternal line, and more general
SNP-based tests for common ancestry or one’s genealogy.
Many such tests are not standardized and current ancestry and
genealogy service providers often use proprietary algorithms.
The advantage of STR-based tests is that normally only a rela-
tively small number of STRs are tested, while SNP-based tests
often utilize a large number of (or even all available) SNPs, but
more distant ancestry can be learned from SNP-based tests.
For improved accuracy it is also possible to perform one type
of testing after the other. In either case, to determine the most
recent common ancestor between two individuals, the markers
from the two individuals are compared and their number de-
termines how closely the individuals are related. Certain tests
such as determining geographical regions of one’s ancestors
normally require genetic data from many individuals.

3.2 Garbled circuit evaluation

The use of garbled circuits allows two parties P; and P; to se-
curely evaluate a Boolean circuit of their choice. That is, given
an arbitrary function f(x1,2z2) that depends on private inputs
x1 and x9 of P; and Ps, respectively, the parties first repre-
sent it as a Boolean circuit. One party, say P, acts as a circuit
generator and creates a garbled representation of the circuit
by associating both values of each binary wire ¢ (including in-
put and output wires) with random labels ¢? and ¢}. The other
party, P», acts as a circuit evaluator and evaluates the circuit in
its garbled representation without knowing the meaning of the
labels that it handles during the evaluation. The output labels
can be mapped to their meaning and revealed to either or both
parties. Additional details can be found in Appendix A.

The basic approach is secure in the presence of a semi-
honest circuit generator and a malicious evaluator [36] (and

the knowledge of valid labels for the output wires implicitly
proves that the computation was performed correctly [35]).
However, extending the security to the malicious setting (when
either party can be malicious) requires additional techniques
which substantially degrade performance of the approach.

An important component of garbled circuit evaluation is
1-out-of-2 OT. It allows the circuit evaluator to obtain wire la-
bels corresponding to its inputs. In particular, in OT the sender
(i.e., circuit generator in our case) possesses two strings sg and
s1 and the receiver (circuit evaluator) has a bit . OT allows
the receiver to obtain string s, and the sender learns nothing.
An OT extension allows any number of OTs to be realized with
small additional overhead per OT after a constant number of
regular more costly OT protocols (the number of which de-
pends on the security parameter). The literature contains many
realizations of OT and its extensions, including recent work,
but in this work we primarily are interested in OT protocols
and OT extensions secure in the presence of malicious partici-
pants (such as [42, 61, 62] and others).

The fastest currently available approach for circuit gen-
eration and evaluation we are aware of is by Bellare et al.
[13]. It is compatible with earlier optimizations, most notably
the “free XOR” gate technique [52] that allows XOR gates to
be processed without cryptographic operations or communica-
tion, resulting in virtually no overhead for such gates.

3.3 Signature schemes with protocols
and commitment schemes

Our solution that enforces input correctness by means of user
input certification relies on additional building blocks, which
are signature schemes with protocols, commitment schemes,
and zero-knowledge proofs of knowledge.

From the available signature schemes, e.g., [16, 17] with
the ability to prove knowledge of a signature on a message
without revealing the message, the Camenisch-Lysyanskaya
scheme [16] is of interest to us. It uses public keys of the form
(n, a, b, c), where n is an RSA modulus and a, b, ¢ are random
quadratic residues in Z;,. A signature on message m is a tu-
ple (e, s,v), where e is prime, e and s are randomly chosen
according to security parameters, and v is computed to satisfy
v = a™b®c (mod n). A signature can be issued on a block
of messages. To sign a block of ¢ messages my, ..
public key needs to be of the form (n, a1, ..., at, b, ¢) and the
-a"*b%c (mod n).

Given a public verification key (n,a,b,c), to prove

., My, the
. . e — ma
signature is (e, s, v), where v¢ = a7"* -

knowledge of a signature (e, s,v) on a secret message m, one
forms a commitment ¢ = Com(m) and proves that she pos-
sesses a signature on the value committed in ¢ (see [16] for
detail). The commitment c can consecutively be used to prove
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additional statements about m in zero knowledge. Similarly,
if one wants to prove statements about multiple messages in-
cluded in a signature, multiple commitments will be formed.

The commitment scheme used in [16] is that of Damgérd
and Fujisaki [27]. The setup consists of a public key (n, g, h),
where n is an RSA modulus, £ is a random quadratic residue
in Zy,, and g is an element in the group generated by h. The
modulus 7 can be the same as or different from the modulus
used in the signature scheme. For simplicity, we assume that
the same modulus is used. To produce a commitment to x us-
ing the key (n, g, h), one randomly chooses r € Z,, and sets
Com(z,7) = ¢g°h" mod n. When the value of r is not essen-
tial, we may omit it and use Com(z) instead. This commit-
ment scheme is statistically hiding and computationally bind-
ing. The values x, r are called the opening of Com(x, r).

Zero-knowledge proofs of knowledge (ZKPKs) allow one
to prove a particular statement about private values without
revealing additional information besides the statement itself.
Following [20], we use notation PK{(vars) : statement} to
denote a ZKPK of the given statement, where the values ap-
pearing in the parentheses are private to the prover and the
remaining values used in the statement are known to both
the prover and verifier. If the proof is successful, the veri-
fier is convinced of the statement of the proof. For example,
PK{(a):y =g Vy = g3} denotes that the prover knows
the discrete logarithm of y to either the base g; or go. Lastly,
because a proof of knowledge of a signature is cumbersome
to write in this detailed form, we use abbreviation Sig(z) and
Com(z) to indicate the knowledge of a signature and com-
mitment, respectively. For example, PK{(«a) : Sig(a) Ay =
Com(a) A (« = 0V a = 1)} denotes a proof of knowledge
of a signature on a bit committed to in y. Because proving the
knowledge of a signature on z in [16] requires a commitment
to z (which is either computed as part of the proof or may
already be available from prior computation), we explicitly in-
clude the commitment into all proofs of a signature.

4 Security Model

We formulate security using the standard ideal/real model for
secure multi-party computation, where the view of any adver-
sary in the real protocol execution should be indistinguishable
from its view in the ideal model where a trusted party (TP)
evaluates the function. Because the server does not contribute
any input, it is meaningful to consider that either A or B is
honest since the goal is to protect the honest party.

As previously mentioned, we are primarily interested in
the setting where the server is semi-honest, but parties A and B
may either be semi-honest or fully malicious. Thus, we target

security models where S complies with the computation, with
the exception of the first setting of semi-honest A and B, where
we get security in the presence of a malicious server for free.
We similarly assume that the server will not collude with users
(putting its reputation at risk) or let users affect its operation.
We obtain security settings where (1) A and B can be cor-
rupted by a semi-honest adversary, while S can act on behalf
of a fully malicious adversary and (2) A and B can be mali-
cious, but the server is semi-honest. Because we assume that
the parties (or the adversaries who corrupt them) do not col-
lude, at any given point of time there might be multiple adver-
saries, but they are independent of each other. This is similar
to the setting used in [46, 47]. We note that based on the se-
curity settings listed above, at most one adversary would be
fully malicious. In other words, if in (2) A is malicious, the
goal is to protect B who is assumed to not be malicious and S
is semi-honest, while in (1) S can be malicious, while A and B
are semi-honest. Kamara et al. [46], however, show that in the
presence of non-cooperating adversaries who corrupt only one
party, showing security can be reduced to showing that the pro-
tocol is secure in the presence of semi-honest adversaries only,
followed by proving for each malicious adversary A; that the
solution is secure in the presence of .A; when all other parties
are honest. More precisely, we rely on the following lemma:

Lemma 1 ([46]). If a multi-party protocol 11 between n par-
ties P, .
dependent and semi-honest adversaries and (ii) a malicious

.., Py, securely computes f in the presence of (i) in-

Aj; and honest { A;}ji, then I is also secure in the presence
of an adversary A; that is non-cooperative with respect to all
other semi-honest adversaries.

This implies that in our setting (2) a solution secure in the
presence of malicious A or B will also remain secure when A
and B are corrupted by two independent malicious adversaries.
To model fairness, we modify the behavior of the TP in
the ideal model to send L to all parties if any party chooses
to abort (note that fairness is only applicable to A and B). We
assume that A and B learn the result of evaluation of a prede-
fined function f that takes input x; from A and x> from B,
and the server learns nothing. Because our primary motivation
is genomic computation, we consider single-output functions,
i.e., both A and B learn f(x1, x2) (but two of our constructions
support functions where A’s and B’s outputs differ and the re-
maining protocol in the present form loses only fairness).

Execution in the real model. The execution of protocol II in
the real model takes place between parties A, B, S and a subset
of adversaries A4, Ap, Ag who can corrupt the correspond-
ing party. Let A denote the set of adversaries present in a given
protocol execution. A and B receive their respective inputs x;
and a set of random coins ;, while S receives only a set of
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random coins 73. All parties also receive security parameter
1%. Each adversary receives all information that the party it
corrupted has and a malicious adversary can also instruct the
corresponding corrupted party to behave in a certain way. For
each Ax € A, let VIEW 4, denote the view of the adver-
sary Ax at the end of an execution of II. Also let OUT{‘{:; de-
note the output of the honest parties (if any) after the same ex-
ecution of the protocol. Then for each Ax € A, we define the
partial output of a real-model execution of II between A, B, S
in the presence of A by REALy 4, (k, %1, %2,71,72,73) def
VIEW 4, UOUTY.

Execution in the ideal model. In the ideal model, all parties
interact with a TP party who evaluates f. Similar to the real
model, the execution begins with A and B receiving their re-
spective inputs x; and each party (A, B, and S) receiving se-
curity parameter 1”. Each honest (semi-honest) party sends to
the TP 2, = z; and each malicious party can send an arbi-
trary value x; to the TP. If 1 or x2 is equal to L (empty)
or if the TP receives an abort message, the TP returns L to
all participants. Otherwise, A and B receive f(z],z)). Let
OUT?%l denote the output returned by the TP to the hon-
est parties and let OUT 4, denote the output that corrupted
party Ax € A produces based on an arbitrary function of its
view. For each Ax € A, the partial output of an ideal-model
execution of f between A, B, S in the presence of A is denoted

by IDEAL 4y (, 21, 22) < OUT; 4 UOUTHL.

Definition 1 (Security). A three-party protocol Il between A,
B, and S securely computes f if for all sets of probabilistic
polynomial time (PPT) adversaries A in the real model, for
all x; and Kk € Z, there exists a PPT transformation Sx for
each Ax € A such that REALn 4, (K, 1, %2,71,72,73) ~
IDEALy s, (K, x1, x2), where each r; is chosen uniformly at

C
random and = denotes computational indistinguishability.

To model the setting where some of the inputs of A and/or B
are certified, we augment the function f to be executed with
the specification of what inputs are to be certified and two ad-
ditional inputs y; and y2 that provide certification for A’s and
B’s inputs, respectively. Then in the ideal model execution, the
TP will be charged with additionally receiving y;’s. If the TP
does not receive all inputs or if upon receiving all inputs some
inputs requiring certification do not verify, it sends _L to all par-
ties. In the real model execution, verification of certified inputs
is built into II and besides using two additional inputs y; and
y2 the specification of the execution remains unchanged.

Definition 2 (Security with certified inputs). A three-party
protocol 11 between A, B, and S securely computes f if for all

sets of PPT adversaries A in the real model, for all z;, y;, and

K € 7Z, there exists a PPT transformation Sx for each Ax €
A such that REALn 4, (k,21,%2,y1,Y2,71,72,73) ~
IDEALf s, (K, %1, 2, y1,Y2), where each 1; is chosen uni-
formly at random.

5 Server-Aided Computation

In this section we detail our solutions for server-aided two
party computation based on garbled circuits. The current de-
scription is general and can be applied to any function f. In
section 6 we describe how these constructions can be applied
to genomic tests to result in fast performance.

5.1 Semi-honest A and B, malicious S

Our first security setting is where A and B are semi-honest
and S can be malicious. The main intuition behind the solu-
tion is that when A and B can be assumed to be semi-honest
and a solution based on garbled circuit evaluation is used, we
will charge S with the task of evaluating a garbled circuit.
That is, security is maintained in the presence of malicious
server because garbled circuit evaluation techniques are secure
in the presence of a malicious evaluator. Next, we notice that
if A and B jointly form garbled representation of the circuit
for the function f they would like to evaluate, both of them
can have access to the pairs of labels (Z?, E}) corresponding
to the input wires. Thus, they can simply send the appropri-
ate label éé’ to S for evaluation purposes for their value of the
input bit b for each input wire. This eliminates the need for
OT and results in a solution that outperforms a two-party pro-
tocol in the presence of only semi-honest participants. The
same idea was sketched in [32] (with the difference that S
was to learn the output). The use of a pseudo-random function
PRF : {0,1}"* x {0,1}* — {0, 1}" with security parameter
for deriving wire labels in the scheme is as in [59].

A more detailed description of the solution, which we de-
note as Protocol 1, is given next. In what follows, let m de-
note the total number of wires in a circuit (including input and
output wires), wires 1,...,¢; correspond to A’s input, wires
t1+1,...,t1+t2 correspond to B’s input, and the last ¢3 wires
m—ts+1,...,m correspond to the output wires. We also use
K to denote security parameter (for symmetric key cryptog-
raphy). Notation a &£ U means that the value of a is chosen
uniformly at random from the set U. The protocol is written to
utilize the free XOR technique, where ¢9 @ ¢} must take the
same value A for all circuit wires ¢ and the last bit of A is 1.

In Protocol 1, the easiest way for A and B to jointly choose
random values is for one party to produces them and commu-
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Input: A has private input z1, B has private input x2, and S has no
private input.

Output: A and B learn f(z1,z2), S learns nothing.

Protocol 1:

1. A and B jointly choose § bl {0,1}*" 1,k bl {0,1}*, and set
A = §]|1. They jointly produce m pairs of garbled labels as Z? =
PRF(k, 1) and £} = ¢2 & A for i € [1,m)], garble the gates to
produce garbled circuit G for f, and send Gy to S.

2. Foreachi € [1,¢1], A locates the th bit b; of her input and sends
to S the label Ef" of the corresponding wire ¢ in the garbled circuit.

3. Similarly, for each bit j € [1,t2], B locates the jth bit b; of his

input and sends to S the label E?j_ t of the corresponding wire
i + t1 in the garbled circuit.

4. S evaluates the circuit on the received inputs and returns to B the
computed label £¢ for each output wire i € [m — t3 + 1,m]. B
forwards all received information to A.

5. For each Ki? returned by S (z € [m — t3 + 1, m]), A and B do the
following: if Zf = Z?, set (¢ — m + t3)th bit of the output to 0, if

é’i’ = 611, set (¢ —m + t3)th bit of the output to 1, otherwise abort.

nicate to the other party. In this solution, the combined work
of A and B is linear in the size of the circuit for f. The work,
however, can be distributed in an arbitrary manner as long as
S receives all garbled gates (e.g., a half of Gy from A and the
other half from B). Besides equally splitting the work of cir-
cuit garbling between the parties, an alternative possibility is
to let the weaker party (e.g., a mobile phone user) to do work
sublinear in the circuit size. Let A be a weak client, who del-
egates as much work as possible to B. Then B generates the
entire garbled circuit and sends it to S, while A will only need
to create ¢ label pairs corresponding to her input, to be used in
step 2 of the protocol. Upon completion of the result, A learns
the output from B (i.e., there is no need for A to know labels
for the output wires). Thus, the work and communication of
the weaker client is only linear in the input and output sizes.
Security of this solution can be stated as follows, and the
proof is deferred to the full version due to space constraints.

Theorem 1. Protocol 1 fairly and securely evaluates function
f in the presence of semi-honest A and B and malicious S.

5.2 Semi-honest S, malicious A and B

To maintain efficiency of the previous solution by avoiding
the cost of OT, we might want to preserve the high-level struc-
ture of the computation in the first solution. Now, however,
because A and B can be malicious, neither of them can rely on
the other party in garbling the circuit correctly. To address this,
each of A and B may garble their own circuit for f, send it to
S, and S will be in charge of evaluating both of them and per-
forming a consistency check on the results (without learning
the output). With this solution, A would create label pairs for

her input bits/wires for both garbled circuits and communicate
one set of pairs to B who uses them in constructing his circuit.
What this achieves is that now A can directly send to S the
labels corresponding to her input bits for circuit evaluation for
both circuits. B performs identical operations. There is still no
need to perform OT, but two security issues arise: (1) A and
B must be forced to provide consistent inputs into both cir-
cuits and (2) regardless of whether the parties learn the output
(e.g., whether the computation is aborted or not), a malicious
party can learn one bit of information about the other party’s
input (by constructing a circuit that does not correspond to f)
[41, 57]. While the first issue can be inexpensively addressed
using the solution of [50] (which works in the presence of ma-
licious users and semi-honest server), the second issue will
still stand with this structure of the computation.

Instead of allowing for (1-bit) information leakage about
private inputs, we change the way the computation takes place.
If we now let the server garble the circuit and each of the re-
maining parties evaluate a copy of it, the need for OT (for both
A and B’s inputs) arises. We, however, were able to eliminate
the use of OT for one of A and B and construct a solution that
has about the same cost as a single two-party solution in the
semi-honest model. At a high-level, it proceeds as follows: A
creates garbled label pairs (é?, Ell) for the wires corresponding
to her inputs only and sends them to S. S uses the pairs to con-
struct a garbled circuit for f and sends it to B. S and B engage
in OT, at the end of which B learns labels corresponding to
his input bits. Also, A sends to B the labels corresponding to
her input bits, which allows B to evaluate the circuit. We note
that because A may act maliciously, she might send to B in-
correct labels, which will result in B’s inability to evaluate the
circuit. This, however, is equivalent to A aborting the protocol.
In either case, neither A nor B learn any output and the solu-
tion achieves fairness. Similarly, if B does not perform circuit
evaluation correctly, neither party learns the output.

The next issue that needs to to addressed is that of fairly
learning the output. We note that S cannot simply send the
label pairs for the output wires to A and B as this would al-
low B to learn the output and deny A of this knowledge. In-
stead, upon completion of garbled circuit evaluation, B sends
the computed labels to A. With the help of S, A verifies that the
labels A possesses are indeed valid labels for the output wires
without learning the meaning of the output. Once A is satis-
fied, she notifies S who sends the label pairs to A and B, both
of whom can interpret and learn the result. We note that mali-
cious A can report failure to S even if verification of the valid-
ity of the output labels received from B was successful. Once
again, this is equivalent to A aborting the protocol, in which
case neither party learns the output and fairness is maintained.

Our solution is given as Protocol 2 and uses a hash func-
tion H : {0,1}* — {0, 1}" that we treat as a random oracle.
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Input: A has private input 1, B has private input z2, and S has no
private input.
Output: A and B learn f(x1,z2), S learns nothing.
Protocol 2:
1. S chooses § 5 {0,1}%71, kg it {0,1}", ko it {0,1}" and
sets A = §]|1. S sends A and k1 to A.
2. S computes wire labels £ = PRF(ky,4) fori € [1,¢1], €2 =
PRF(kg2,i — t1) for ¢ € [t1 4+ 1,m], and sets 611 = Z? @ A for
i € [1,m]. S then constructs garbled gates Gy and sends G ¢ to B.
3. S and B engage in t2 instances of 1-out-of-2 OT, where S assumes
the role of the sender and uses t2 label pairs (Egl oy 6%1 4y) for
i € [1,t2] corresponding to B’s input wires as its input and B
assumes the role of the receiver and uses his ¢ input bits b; as the
input into the protocol. As the result of the interaction, B learns
garbled labels Z?jH fori € [1,t2].
4. A computes labels £ = PRF(ky, 1) for i € [1,¢;] and sends to
B E’Z"' for her input bits b;, where E} = K? @ A for any b; = 1.
5. After receiving the labels for his own and A’s input, B evaluates
the circuit, learns the output labels Zfi fori € [m —t3 + 1,m)|
and sends them to A.
6. A requests from S output verification constructed as follows: For
each output wire 4, S computes H (¢9), H(¢}), randomly permutes
the tuple, and sends it to A.
7. For each label ¢; received from B in step 5, A computes H (¢;)
and checks whether the computed value appear among H (Z?),
H (é;_b) received from S in step 6. If the check succeeds for all
output wires, A notifies S of success and aborts otherwise.
8. Upon receiving confirmation of success from A, S sends (f?, E})
for all output wires 4 to A and B, who recover the output.

We show security of this solution in a hybrid model where the
parties are given access to a trusted entity computing OT. The
proof can be found in Appendix C.

Theorem 2. Protocol 2 fairly and securely evaluates function
f in the presence of malicious A or B and semi-honest S in the
hybrid model with ideal implementation of OT and where H is
modeled as a random oracle.

5.3 Semi-honest S, malicious A and B
with input certification

We next consider an enhanced security setting in which ma-
licious A and B are enforced to provide correct inputs in the
computation. This enforcement is performed by requiring A
and B to certify their inputs prior to protocol execution and
prove the existence of certification on the inputs they enter.
The basic structure of our solution in this stronger secu-
rity model remains the same as in Protocol 2, but we extend it
with a novel mechanism for obliviously verifying correctness
of the inputs. The intricate part of this problem is that signa-
ture schemes use public-key operations, while garbled circuit
evaluation deals with randomly generated labels and symmet-

ric key operations. In what follows, we describe the intuition
behind our solution followed by more detailed explanation.

Suppose that the party whose inputs are to be verified par-
ticipates in an OT protocol on her inputs as part of garbled cir-
cuit evaluation (i.e., the party is the circuit evaluator and acts as
the receiver in the OT). Then if we use the variant of OT known
as committed oblivious transfer (COT) (also called verifiable
OT in some literature), the party will submit commitments to
the bits of her input as part of OT computation and these com-
mitments can be naturally tied to the values signed by a third
party authority by means of ZKPKs (i.e., without revealing
anything other than equality of the signed values and the val-
ues used in the commitments). Several COT schemes that we
examined (such as in [45, 49]), however, had disadvantages in
their performance and/or complex setup assumptions (such as
requiring the sender and receiver to hold shares of the decryp-
tion key for a homomorphic public-key encryption scheme).
We thus choose to integrate input certification directly with a
conventional OT protocol by Naor and Pinkas [61].

Before we proceed with further description, we discuss
the choice of the signature scheme and the way knowledge of
a signature is proved. Between the main two candidates of sig-
nature schemes with protocols [16] and [17], we chose the one
from [16] because it uses an RSA modulus. In application like
ours, zero-knowledge statements are to be proved across dif-
ferent groups. This requires the use of statistically-hiding zero-
knowledge proofs that connect two different groups through a
setting in which the Strong RSA assumption (or, more gener-
ally, the difficulty of eth root extraction) holds [18, 27, 34].
Thus, the public key of the third party certification authority
can be conveniently used as the common setup for other in-
teraction between the prover and verifier. This has important
implications on the use of such solutions in practice. (If multi-
ple signatures are issued by multiple authorities, i.e., medical
facilities in our application, one of the available public keys
can be used to instantiate the common setup.)

Recall that in Protocol 2, B obtains the labels correspond-
ing to his input from S via OT, while A knows all label pairs
for her input wires and simply sends the appropriate labels to
B. Now both of them have to prove to S that the inputs they
enter in the protocol have been certified by a certain authority.
For simplicity, in what follows we assume that all of A’s and
B’s inputs are to be verified. (If this is not the case and only a
subset of the inputs should be verified, the computation associ-
ated with input verification described below is simply omitted
for some of the input bits.) Let us start with the verification
mechanism for B, after which we treat the case of A.

B engages in the Naor-Pinkas OT in the role of the re-
ceiver. The details of the OT protocol are given in Appendix A.
As part of OT, B forms two keys PKy and PK, where PK,
is the key that will be used to recover m,,. Thus, if we want to
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enforce that o corresponds to the bit for which B has a signa-
ture from a certification authority, B must prove that he knows
the discrete logarithm of P K, where o is the signed bit. More
formally, the statement B has to prove in zero knowledge is
PK{(0,pB) : Siglc) ANy = Com(c) A ((c = 0 A PKy =
3®)V (¢ = 1 A PKy = 37))}. In other words, B has a signa-
ture on 0 and knows the discrete logarithm of P Ky to the base
g (i.e., constructed PKy as gk) or B has a signature on 1 and
knows the discrete logarithm of PK to the same base. Using
a technically more precise PK statement for showing that o is
0 or 1 would result in the PK statement above be re-written as
PK{(o,, ) : Sig(e) Ny = Com(c,a) = g°h® A ((y =
h* APKo = §%)V (y/g = h* ANPK; = §7))}. We note that
it is known how to realize this statement as a ZKPK as it uses
only conjunction and disjunction of discrete logarithm-based
sub-statements (see, e.g., [21]). Executing this ZKPK would
allow S to verify B’s input for a particular input wire if B has a
signature on a bit. In practice, however, a signature is expected
to be on messages from a larger space than {0, 1} and thus a
single signature will need to be used to provide inputs for sev-
eral input wires in the circuit. This can be accomplished by, in
addition to using a commitment on the signed message, creat-
ing commitments to the individual bits and showing that they
correspond to the binary representation of the signed message.
Then the commitments to the bits of the message are linked to
the keys generated in each instance of the OT. More formally,
the ZKPK statement for a ¢-bit signed value would become:
PK{(o,01,...,0t,a,1,...,0q) : Sig(o) Ay = g7 h%A
t
y1 =g h** A Ay = g%th®t Ao = 221;10@} )
i=1

PE{(05, 01, 8:) : i = g7 h A((yi = h™ APKSY = §7)
Vyi/g =% APKY = §%)). (3)

Notation PK(()i) and PK {i) denotes the public keys used in
the ¢th instance of Naor-Pinkas OT. [21] shows how to prove
that discrete logarithms satisfy a given linear equation.
Furthermore, it is likely that signatures will contain mul-
tiple messages (e.g., a genetic disease name and the outcome
of its testing). In those cases, multiple messages from a single
signature can be used as inputs into the garbled circuit or, de-
pending on the function f, there might be other arrangements.
For instance, one message can be used to provide inputs into
the circuit and another be opened or partially open. It is not
difficult to generalize equations 2 and 3 to cover such cases.
We now can proceed with the description of the mecha-
nism for verifying A’s inputs. Recall that for each bit ¢ of her
input, A has label pairs (€9, £}) and later sends to B the label

)

E?i corresponding to her input bit b;. As before, consider first

the case when A holds a signature on a single bit. To prove
that the label E?i sent to B corresponds to the bit for which she
possesses a signature, we have A commit to the label Efi and
prove to S that either the commitment is to é? and she has a
signature on 0 or the commitment is to é;‘ and she has a sig-
nature on 1. Let the commitment be ¢; = Com(f,}i’i ,7i). Then
if verification of the ZKPKs for each input bit was successful,
S forwards each ¢; to B together with the garbled circuit. Now
when A sends her input label E?i to B, she is also required to
open the commitment ¢; by sending r; to B. B will proceed
with circuit evaluation only if ¢; = géfi R for each bit i of
A’s input, where ff and 7; are the values B received from A.

More formally, the statement A proves to S in ZK is
PK{(0,,B,7) : Sig(o) Ny = gh® Az = gPh7 A ((y =
he A z/g% = hY)V (y/g = h® A z/g% = hY))}. Similar
to the case of B’s input verification, this ZKPK can be gen-
eralized to use a single signature with multiple bits input into
the circuit. More precisely, the statement in equation 2 remains
unchanged, while the second statement becomes:

PK{(0s, o, Bi,7vi) 1 ys = g7 hY ANz = gﬁih%'/\

(g = hAzi /g% = W)WV (/g = b Azi/gh = W)},
“4)

We summarize the overall solution as Protocol 3 in Ap-
pendix B. Its security can be stated as follows:

Theorem 3. Protocol 3 fairly and securely evaluates function
f in the presence of malicious A or B and semi-honest S in the
hybrid model with ideal implementation of OT and where H is
a hash function modeled as a random oracle and inputs of A
and B are verified according to definition 2.

Because the structure of the computation in Protocol 3 is the
same as in Protocol 2 and primarily only ZKPKs have been
added (that have corresponding simulators in the ideal model),
we defer the proof to the full version of this work.

Before we conclude this section, let us comment on the
possibility of using OT extensions in combination with certi-
fied inputs. First, notice that when only a subset of the input
bits is to be verified, OT and OT extensions for the remaining
input bits can be used as before. Second, if there is a compu-
tational benefit to using an OT extension instead of individual
instances of OT, the benefit of an OT extension is not going to
be as pronounced as in the regular case with no input certifica-
tion. OT extensions allow the number of public key operations
to be bounded by the security parameter and be independent of
the number of input bits, while with certified inputs the num-
ber of public key operations is inevitably linear in the number
of input bits being verified. For example, jumping ahead to ex-
perimental results, we see that computation in Protocol 3 in
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Table 8 is 1 to 5 orders of magnitude larger for any given party
than in Protocol 2 in Table 7 due to the use of certified inputs.
This tells us that employing an OT extension in combination
with certified inputs will have a negligible effect on the perfor-
mance of Protocol 3. Furthermore, applicability of each indi-
vidual OT extension mechanism to the case of certified inputs
will likely need to be considered on a case by case basis and
we leave this as a direction for future research. Publications
that adapt OT extensions to new models (such as [51]) can be
used as a starting point, but do not easily apply to our setting.

6 Private Genomic Computation

For all types of genomic computation we assume that A has
information extracted from her genome, which she privately
stores. Similarly, B stores data associated with his genome. A
and B may enter some or all of their data into the computation
and they may also compute a function of their individual data,
which will be used as the input into the joint computation.

Ancestry test. This test would often be invoked when A and B
already know to be related or have reasons to believe to be re-
lated. Under such circumstances, they are unlikely to try to
cheat each other. For that reason, we use the solution with
semi-honest A and B to realize this test. (Under the circum-
stances that this security model is not acceptable for some
users A and B, they can always proceed with an alternative
solution from this or other work, but we use the first protocol.)
Because SNP-based tests are most general and can provide in-
formation about recent as well as distant ancestry, we build a
circuit that takes a large number of SNPs from two individuals
and counts the number of positions with the same values. The
computed value is then compared to a number of thresholds to
determine the closest generation in which the individuals have
the same ancestor.

To compute the number of SNPs which are equal in the
DNA of two individuals, the circuit first proceeds by XORing
two binary input vectors from A and B (recall that the value
of each SNP is a bit) and then counts the number of bits that
differ in a hierarchical manner. That is, in the first round of
additions, every two adjacent bits are added and the result is a
2-bit integer. In the second round of additions, every two ad-
jacent results from the first round are added resulting in 3-bit
sums. This process continues in [log, ¢] rounds of additions,
where ¢ is the size of A’s and B’s input, and the last round per-
forms only a single addition. As mentioned earlier, the result
can be interpreted by performing a number of comparisons at
the end, but the cost of final comparisons is insignificant com-
pared to the remaining size of the circuit.

Paternity test. We assess that the security setting with mali-
cious users A and B is the most suitable for running paternity
tests. That is, the participants may be inclined to tamper with
the computation to influence the result of the computation. It
is, however, difficult to learn the other party’s genetic infor-
mation by modifying one’s input into the function. In partic-
ular, recall from equation 1 that the output of a paternity test
is a single bit, which indicates whether the exact match was
found. Then if a malicious participant engages in the compu-
tation with the same victim multiple times and modifies the
input in the attempt to discover the victim’s genomic data, the
single bit output does not help the attacker to learn how his in-
puts are to be modified to be closer to the victim’s input. The
situation is different when the output of the computation re-
veals information about the distance between the inputs of A
and B, but we do not consider such computation in this work.
Thus, we do not use input certification for paternity tests.

This test would normally be run between an individ-
ual and a contested father of that individual according to
the computation in equation 1. We thus implement the com-
putation in equation 1 using a Boolean circuit. For each
i, the circuit XORs the vectors (z;1,; 2, 1,%;2) and
<x;71,w271, x;z, m;z) and compares each of the four value in
the resulting vector to 0. The (in)equality to O testing is per-
formed using k£ — 1 OR gates, where k is the bitlength of all
;,;’s and ; ;’s. Finally, we compute the AND of the results
of the 4 equality tests, OR the resulting bits across ¢’s, and
output the complement of the computed bit.

Genetic compatibility test. When A and B want to perform
a compatibility test, we assume that they want to evaluate the
possibility of their children inheriting at least one recessive ge-
netic disease. Thus, we assume that A and B agree on a list of
genetic diseases to be included in the test (this list can be stan-
dard, e.g., suggested by S or a medical association). Because
performing a test for a specific genetic disease is only mean-
ingful if both parties wish to be tested for it, we assume that A
and B can reconcile the differences in their lists.

To maximize privacy, we construct the function f to be as
conservative as possible. In particular, given a list of genetic
diseases L, A and B run a compatibility test for each disease
D € L, and if at least one test resulted in a positive outcome,
the function will output 1, and otherwise it will output 0. That
is, the function can be interpreted as producing 1 if A and B’s
children have a chance of inheriting the major variety for at
least one of the tested diseases; and producing 0 means that
their children will not inherit the major variety for any of the
diseases in L. Evaluating this function can be viewed as the
first step in A and B’s interaction. If the output was 1, they may
jointly decide to run more specific computation to determine
the responsible disease or diseases themselves.
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The above means that for each D € L, A can locally run
the test to determine whether she is a carrier of D. B performs
the same test on his data. Thus, A’s and B’s input into f con-
sists of | L| bits each and the result is 1 iff 3i such that A’s and
B’s ith input bits are both 1. This computation can be realized
as a simple circuit consisting of | L| AND and | L|—1 OR gates.

Next, notice is that it is easy for malicious A or B to learn
sensitive information about the other party by using certain in-
puts. That is, if a malicious user sets all his input bits to 1,
he will be able to learn whether the other party is a carrier of
least one disease in L. This poses substantial privacy concerns,
particularly for matchmaking services that routinely run ge-
netic compatibility tests between many individuals. Thus, we
require that A and B certify the results of testing for each ge-
netic disease on the list (e.g., by a medical facility) and enter
certified inputs into the computation. (Note that the medical
facility that performs sequencing can also certify the test re-
sults; alternatively, the medical facility performing test certifi-
cation will require genome certification from the facility that
performed sequencing.) This means that the server-aided solu-
tion with certified inputs will be used for secure computation.

For each disease D € L, the signature will need to include
the name of the disease D and the test outcome o, which we
assume is a bit. Then if we target efficient the computation, the
disease names will not be input into the circuit, but instead S
will verify that A’s signature used for a particular input wire
includes the same disease name as B’s signature used for an
equivalent input wire. A simple way to achieve this is to reveal
list L to S and reveal the name of the disease including in each
signature (without revealing the signature itself). If we assume
that each issued signature is on the tuple (D, o), i.e., the sig-
nature was produced as v¢ = aP’agb*c, all that is needed is to
adjust the value used in the ZKPK of the signature by é by
both the sender and the verifier for each D € L (we refer the
reader to [16] for details). S will need to check that all condi-
tions appear in the same order among A’s and B’s inputs (i.e.,
the sequences of diseases are identical) before proceeding with
the rest of the protocol. Revealing the set of diseases used in
the compatibility test would not constitute violation of privacy
if such a set of conditions is standard or suggested by S itself.

When, however, the parties compose a custom set of ge-
netic diseases for their genetic compatibility testing and would
like to keep the set private, they may be unwilling reveal the set
of diseases to S. We propose that the parties instead prove that
they are providing results for the same conditions without re-
vealing the conditions themselves to the server. The difficulty
in doing so arises from the fact that S interacts independently
with A and B (possibly at non-overlapping times) and A and B
are not proving any joint statements together. Our idea of prov-
ing that inputs of A and B correspond to the same sequence of
diseases consists of forming a sequence of commitments to the

diseases in L, the openings of which are known to both A and
B. That is, A and B jointly generate a commitment to each dis-
ease using shared randomness and used those commitments at
the time of proving that their inputs have been certified. Then
if A supplies commitments Comy, ..., Com; and proves that
the committed values correspond to the diseases in her signa-
tures, S will check that B supplies the same sequence of com-
mitments and also proves that the committed values are equal
to the diseases in the signatures he possesses. This will ensure
that A and B supply input bits for the same sequence of dis-
eases. To jointly produce the commitments, we have both A
and B contribute their own randomness and the resulting com-
mitment will be a function of A’s and B’s contribution. It can
proceed as follows (recall that A and B can be malicious):
1. A chooses arandom r 4 and sends to B c4 = Com(r 4, 2).
2. B chooses arandom 5 and sends to A cg = Com(rp, 2’).
3. A and B open their commitments by exchanging (r 4, 2)
and (r g, 2’) and verify that they match c4 and cp, resp.
4. They form joint randomness as 7 = r 4 @ rp and use it to
construct commitment Com(D, r).
Then the (high-level) statement that A and B prove about their
inputs is PK{(a,0) : Sig(a,0) Ay1 = Com(a) A y2 =
Com(o)} using y; shared between A and B, while the remain-
ing portion is specific to A and B as detailed in section 5.3.

7 Performance Evaluation

In this section, we report on the results of our implementa-
tion. The implementation was written in C/C++ using Miracl
library [5] for large number arithmetic and JustGarble library
[4] for garbled circuit implementation. We provide experimen-
tal results for ancestry, paternity, and compatibility tests im-
plemented as described in section 6 as well as additional func-
tions, on all of which we further elaborate below. The security
parameters for symmetric key cryptography and statistical se-
curity were set to 128. The security parameter for public key
cryptography (for both RSA modulus and discrete logarithm
setting) was set to 1536. Additionally, the security parame-
ter for the group size in the discrete logarithm setting was set
to 192. All tests (for A, B, and S) were run on a quad-core
3.2GHz machine with Intel i5-3470 processor running Red
Hat Linux 2.6.32 in a single core. Note that in practice S is
expected to have more powerful hardware and the runtimes
can be significantly reduced by utilizing more cores. All ex-
periments were run 5 times, and the mean value is reported.
To provide additional insights into which protocol com-
ponent is main performance bottleneck, we separately report
computation times for different parts of each solution (e.g.,
garbled circuit evaluation, OT, etc.). Furthermore, we sepa-
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Table 2. Performance of ancestry test without/with half-gates.

Party Garbled circuit Communication ‘

garble (offline) | eval (online) sent | received

A 1.8ms - 2MB oMB ‘
B 19.8/18.4ms — 8/6MB oMB

] - 12.5/15.9ms | OMB | 10/8MB ‘

rately list the times for offline and online computation, where,
as in other publications, offline computation refers to all oper-
ations that can be performed before the inputs become avail-
able. Lastly, because the speed of communication channels can
greatly vary, we separately report the size of communication
for each party and communication time is not included in the
runtimes. In several cases overlaying computation with com-
munication is possible (e.g., S can perform OT computation
and simultaneously transmit the garbled circuit) and the over-
all runtime does not need to be the sum of computation and
communication time. We first discuss ancestry, paternity, and
compatibility tests in their respective settings and then proceed
with evaluating additional functions in all three settings.

7.1 Ancestry test

Recall that the ancestry test is implemented in the setting
where A and B are semi-honest, but S can be malicious. We
ran this test using 2'7 SNPs as the input for A and B. The
resulting circuit used 655,304 XOR gates and 131,072 non-
XOR gates. The computation time and communication size are
given in Table 2. We used the original JustGarble implementa-
tion as well as implement a variant with the recent half-gates
optimization [63], which reduces bandwidth associated with
transmitting garbled circuits.! Both variants are listed in Ta-
ble 2. In the context of this work, the half-gates optimization
has the largest impact on the performance of the first proto-
col, as in the remaining protocols other components of SFE
are likely to dominate the overall time.

The implementation assumes that A only creates labels for
her input wires and communicates 2'7 labels to B. B performs
the rest of the garbling work and interacts with S. As expected,
the time for circuit garbling and evaluation is small, but the
size of communication is fairly large because of the large input
size and consecutively circuit size. Nevertheless, we consider
the runtimes very small for the computation of this size.

1 In both the original and half-gates implementations, garbling a non-free
gate involves calling AES on 4 blocks, while evaluation of a half gate
calls AES on 2 blocks and on 1 block in the original implementation.
Any deviations in the run time from these expectations are due to non-
cryptographic operations.

To provide insights into performance gains of our solution
compared to the regular two-party computation in the semi-
honest setting, we additionally implement the garbled circuit-
based approach in the presence of semi-honest A and B only.
In addition to circuit garbling and evaluation, this also requires
the use of OT, which we implement using a recent optimized
OT extension construction from [7] (including optimizations
specific to Yao’s garbled circuit evaluation). As in [7], we use
Naor-Pinkas OT for 128 base OTs [61]. The results are given
in Table 3. Compared to the server-aided setting, computation
is higher by at least two orders of magnitude for each party
and communication is noticeably increased as well.

7.2 Paternity test

Next, we look at the paternity test, implemented as described
in section 6 in the presence of malicious A and B and semi-
honest S. The inputs for both A and B consisted of 13 2-
element sets, where each element is 9 bits long. We use OT
extension from [7] with 128 Naor-Pinkas base OTs. The circuit
consisted of 468 XOR and 467 non-XOR gates. The results of
this experiment are reported in Table 4. The computation for
output verification is reported only as part of total time. Not
surprisingly, the cost of OT dominates the overall runtime, but
for A the overhead is negligible (the cost of generating input
labels and verifying the output labels returned by B). Thus, it
is well-suited for settings when one user is very constrained.
Compared to two-party computation in the presence of
malicious participants, our solution reduces both computation
and communication for the participants by at least two orders
of magnitude. This is because practical constructions rely on
cut-and-choose (and other) techniques to ensure that the party
who garbles the circuit in unable to learn unauthorized infor-
mation about the other participant’s input. Recent results such
as [6, 56, 58] require the circuit generator to garble on the or-
der of 125 circuits for cheating probability of at most 274,
some of which are checked (i.e., re-generated) by the circuit
evaluator, while the remaining circuits are evaluated. Thus, the
work of each of A and B will have to increase by at least two
orders of magnitude just for circuit garbling and evaluation,
not counting other techniques that deter a number of known
attacks and result in increasing the input size and introducing
expensive public key operations. A notable exception to the
above is the work of Lindell [54] that reduces the number of
circuits to 40 for the same cheating probability. The construc-
tion, however, results in savings only for circuits of large size
as it introduces a large number of additional public key opera-
tions. Thus, for paternity tests using constructions with a larger
number of circuits is very likely to be faster in practice, which
results in a drastic difference between our solution and regular
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Table 3. Performance of ancestry test without server without/with half-gates.

Garbled circuit oT Total time Comm ]
Party - - - - -
garble eval offline online offline online sent received
A 21.6/20.2ms — 195.2ms | 1983ms | 216.8/215.4ms 1983ms 10.02/8.02MB 2.03MB
B - 12.5/15.9ms | 2003ms | 218.6ms 2003ms 231.1/234.5ms 2.03MB 10.02/8.02MB\

Table 4. Performance of paternity test (no half-gates); work is in
ms, communication is in KB.

GC
garble
0.003

oT
offline |online

Total time
offline|online
0.003
515.5
196.1

Par-
ty
A
B
S

Comm |
sent |recvd
3.7 | 0.06
31.67|56.88
53.32|31.66

eval

515.5
196.1

201.7
260.9

201.7
260.9

0.01

0.03

two-party protocol with malicious participants. This difference
in performance can be explained by the fact that in our setting
one party is known not to deviate from the protocol allowing
for a more efficient solution. We also provide a comparison to
recent general three-party constructions in section 7.4.

Baldi et al. [12] also provide a private paternity test in
the two-party setting (between a client and a server). It uses a
different computation based on Restriction Fragment Length
Polymorphisms (RFLPs) and relies on private set intersec-
tion as a cryptographic building block. Both offline and online
times for the client and the server are 3.4 ms and the communi-
cation size is 3KB for the client and 3.5KB for the server when
the test is performed with 25 markers. All times and communi-
cation sizes double when the test is run with 50 markers. While
the runtimes we report are higher, the implementation of [12]
did not consider malicious participants. If protection against
malicious A and B in our solution is removed, the work for all
parties reduces to well below 0.1 millisecond and communica-
tion becomes a couple of KBs.

7.3 Genetic compatibility test

The last genetic compatibility test is run in the setting where
A and B are malicious and their inputs must be certified. We
choose the variant of the solution that reveals the list of dis-
eases L to the server (i.e., a standard list is used). We im-
plement the signature scheme, OT, and ZKPKs as described
earlier. All ZKPKs are non-interactive using the Fiat-Shamir
heuristic [33]. We used |L| = 10 and thus A and B provide 10
input bits into the circuit accompanied by 10 signatures. The
circuit consisted of only 19 non-XOR gates. The performance
of the test is given in Table 5. We divide all ZKPKs into a proof
of signature possession (together with a commitment), denoted
by “Sign PK” in the table, and the remaining ZK proofs, de-

noted by “Other PK.” As it is clear from the table, input cer-
tification contributes most of the solution’s overhead, but it is
still on the order of 1-3 seconds for all parties.

As mentioned earlier, we are not aware of general re-
sults that achieve input certification for comparison. However,
the comparison to general two-party computation in the pres-
ence of malicious parties or server-aided two-party computa-
tion from sections 7.2 and 7.4 applies here as well.

Baldi et al. [12] also build a solution and report on the
performance of genetic compatibility test. In [12], testing for
presence of a genetic disease that client carries in the server
genome consists of the client providing the disease fingerprint
in the form of (nucleotide, location) pairs (which is equiva-
lent to a SNP) and both parties searching whether the disease
fingerprint also appears in the server’s DNA. This requires
scanning over the entire genome, which our solution avoids.
As a result, the solution of [12] incurs substantial offline over-
head for the server (67 minutes) and large communication size
(around 4GB) even for semi-honest participants. The solution
utilizes authorized private set intersection, which allows inputs
of one party (as opposed to both in our work) to be verified.
Compared to [12], in our framework, testing for a single dis-
ease requires a fraction of a second for each party with mali-
cious A and B, where inputs of both of them are certified. The
computation is greatly simplified because the list of diseases is
assumed to be known by both users. When this is the case, the
cost of input certification greatly dominates the overall time.

7.4 Additional functions

To better understand performance of our solutions for a variety
of functions, we next present the results of evaluating a number
of functionalities in all three settings put forward in this work.
We evaluate AES (standard test), hamming distance (addition-
heavy), matrix multiplication (multiplication-heavy), and edit
distance (comparison-heavy) as representative functions used
in related literature. Tables 6, 7, and 8 provide performance re-
sults for protocols 1, 2, and 3, respectively, (no half gates) and
table 10 in Appendix D reports on the performance of protocol
1 with half-gates (recall that this optimization has the most im-
pact on the first protocol). The inputs are either n-bit strings,
n X n matrices of 32-bit integers, or n-bit strings of 8-bit char-
acters for the choice of n listed in the tables.
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Table 5. Performance of compatibility test (no half-gates).

Garbled circuit oT Sign PK Other PK Total time Comm ]
Party - - - - - - - - -

garble eval offline | online | offline | online | offline | online | offline | online sent received
A Oms — — — 1170ms | 42.1ms | 616.8ms | 20.6ms | 1790ms | 62.7ms | 34.35KB | 0.06KB
B — 0.001ms | 15.4ms | 14.6ms | 1170ms | 42.1ms | 282.4ms | 15.7ms | 1470ms | 72.4ms | 36.41KB | 2.98KB
S |0.003ms — 29.3ms | 15.2ms 0 2060ms Ooms 756ms | 29.3ms | 2830ms | 2.87KB | 70.59KB

All of [23, 24, 38, 47, 60] provide server-aided secure
computation schemes for general functionalities that could be
compared to our constructions. The solution of [38] has the
closest setting to our work (protocol 2) that assumes two mali-
cious users and a semi-honest server. While no implementation
was provided in [38], the construction of [38] would require A
and B to verify on the order of O(kn) signatures and engage
in O(kn) OTs (where n is the number of input bits), which
translates into tens of thousands of public key operations even
for simple functions and significantly larger volume of com-
munication than in protocol 2. The server’s work in [38] is
larger than in our solution as well. The way the server is used,
however, is more constrained than in our work.

Whitewash [23] improves on the result of Carter et al. [24]
and thus we include performance comparison only for the for-
mer. In addition, Mood et al. [60] improves on the result of
[24] by allowing a garbled value from one circuit to be trans-
formed to a garbled input of another circuit, thus allowing for
computation to be performed in stages and reusing values from
one circuit in a different circuit. This allows for savings associ-
ated with input transfer and validation. However, for the func-
tions we report in this section (such as matrix multiplication
and edit distance), [60] did not show observable improvement
in runtime per circuit when multiple circuits are executed in-
stead of a single circuit. Thus, we do not provide a direct com-
parison of our results with the performance of [60]. The tech-
niques of [60] appear to be most effective for circuits with a
high ratio of input bits to the circuit size.

Because of the limitations of the underlying PCF compiler
[53] on which Whitewash builds, we were able run White-
wash only on the circuits included with the tool. In particular,
we were unable to run AES and edit distance experiments, as
well as matrix multiplication for 4 x 4 matrices. The details
of Whitewash performance on the same setup as in our other
experiments are provided in table 9. The security setting of
Whitewash is the closest to our protocol 2. If we then compare
the overhead in tables 7 and 9, we see that computation time is
at least 3 orders of magnitude less in protocol 2 for all parties
(phone in Whitewash corresponds to our party A) and com-
munication is 2 to 3 orders of magnitude less in protocol 2.
Our savings are possible because the security model of [60] is
more challenging (where any participating party can act mali-

ciously). Furthermore, the goal of [60] was not to optimize the
overall work, but rather lower the overhead of the weak party.
Kamara et al. [47] uses server-aided computation with any
number of participants in a somewhat different security model.
The authors of [47] we unable to share their implementation
with us and thus we compare performance with the numbers
reported in [47]. In the 2-party plus server setting, [47] reports
simplified AES performance (without key expansion) on the
order of 40 seconds and hundreds of MBs in communication,
while we obtain about 1 second total time and communication
less than 0.5MB. For 50-character edit distance, [47] reports
240 seconds runtime with over 1GB communication, while we
achieve on the order of 1 second runtime with 24MB commu-
nication for 64-character strings. Once again, the performance
gap can be justified by the differences in the security model.

8 Conclusions

This work is motivated by the need to protect sensitive ge-
nomic data when it is used in computation, especially in vol-
untary non-health related computation. Because computation
over one’s genome often happens in server-facilitated settings,
we study server-aided secure two-party computation in a num-
ber of security settings. One of such security settings assumes
that users A and B may act arbitrarily and, in addition to re-
quiring security in the presence of malicious users, we also en-
force that A and B enter their true inputs based on third party
certification. We are not aware of any prior work that combines
input certification with general secure multi-party computation
based on Yao’s garbled circuits. We develop general solutions
in our server-aided framework. Despite their generality, they
lead to efficient implementations of genetic tests. In particular,
we design and implement genetic paternity, compatibility, and
common ancestry tests, all of which run in a matter of seconds
or less and favorably compare with the state of the art.
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Table 6. Performance of protocol 1 (no half-gates); work is in ms. Table 7. Performance of protocol 2 (no half-gates); work is in ms
unless noted otherwise.
. Input|Par| Computation Communication
Function | . - —
size | ty | offl. | onl. [total| sent | recvd | total Function Input|Par| Computation Communication
A |0.02| — [0.02| 2KB |0.01KB| 2KB size | ty | offl. |onl. total| sent | recvd | total
AES 128 | B |0.46| — |0.46|272KB [0.11KB| 272KB A [0.02| — |0.02| 2KB 8KB 10KB
S — 10.15(0.15|0.11KB| 274KB | 274KB AES 128 | B | 201 (191|392 | 30KB | 300KB | 330KB
A |0.06] — |0.06| 64KB 0 64KB S [382(205|587| 304KB | 28KB | 332KB
212 | B (0.34| — |0.34|256KB | 0.2KB | 256KB A |0.06| — |0.06| 64KB |0.75KB| 65KB
S | — [0.17]0.17|0.19KB| 320KB | 320KB 212 | B [ 200 (381|581 |92.2KB| 408KB | 500KB
Hamming A (0.11] — |0.11|128KB 0 128KB S | 561 (205|766 | 345KB | 92KB | 437KB
distance | 213 | B [0.73| — [0.73| 507KB | 0.2KB | 507KB | |Hamming A |0.11] — | 0.1 | 128KB |0.81KB| 129KB
(bits) S — 10.38(0.38| 0.2KB | 635KB | 636KB distance | 213 | B | 200(429]629 | 156KB | 787KB | 943KB
A |0.22] — |0.22| 256KB 0 256KB (bits) S (604 (206|810 | 660KB | 156KB | 437KB
214 | B [1.83] — |1.83| 1.0MB 0KB 1.0MB A |0.22| — |0.22| 256KB |0.88KB| 257KB
S| — [1.1]1.1| 0.4KB |[1.25MB|1.25MB 214 | B [ 201 [537| 738 | 284KB [1.45MB|1.72MB
A (0.01] — [0.01] 8KB |0.06KB| 8KB S | 701 (208|909 (1.27MB| 369KB |1.63MB
4 B (14.5| — |14.5| 9.0MB 8KB 9.0MB A [0.01| — |0.01| 8KB 32KB | 40KB
S — |7.49|7.49| 8KB 9.0MB | 9.0MB 4 B [214(335|549| 42KB [9.18MB|9.18MB
Matrix A |0.03] — [0.03| 32KB |0.25KB| 32KB S (523(212|735|9.08MB| 36KB [9.11MB
multipli- 8 B |116| — |116| 72MB | 32KB | 72MB Matrix A |0.03| — |0.03| 32KB | 128KB | 160KB
cation S — 159.7(59.7| 32KB | 72MB | 72MB multipli- 8 B |316(355|671| 92KB |72.2MB|72.3MB
(nXxn A (0.11] — [0.11|128KB| 1KB |129KB cation S (540 (265|805 |72.2MB| 60KB |72.3MB
ints) 16 | B |926| — [926|576MB | 128KB | 576MB (nxn A [0.11| — | 0.1 | 128KB | 512KB | 640KB
S — |476|476 | 128KB | 576MB | 576 MB ints) 16 | B |1.1s|429|1.6s| 184KB |577MB | 577MB
A (0.00| — |0.00| 4KB 0 4KB S (604 |682|1.3s|577MB | 156KB | 577MB
32 | B |9.52| — |9.52| 61MB | 0.1KB | 61MB A |0.00| — |0.00| 4KB |0.31KB|4.31KB
S — 13.33|3.33/0.08KB| 61MB | 61MB 32 | B |209 (333|542 | 32KB |6.13MB|6.13MB
Edit A |0.01| — [0.01| 8KB 0 8KB S (522(208|730|6.13MB| 32KB [6.13MB
distance | 64 | B |38.1| — [38.1| 24MB | 0.9KB | 24MB Edit A [0.01| — |0.01| 8KB |0.37KB| 8.4KB
(chars) S — [13.3(13.3| 0.9KB | 24MB | 24MB distance | 64 | B (237 (335|572 |36.1KB|24.4MB|24.4MB
A (0.01] — [0.01]| 16KB 0 16KB (chars) S (523 (218|741 |24.4MB| 36KB |24.4MB
128 | B |153| — |153|97.5MB|0.11KB|97.5MB A |0.01| — |0.01| 16KB |0.44KB|16.4KB
S — |53.5|53.5/0.11KB|97.4MB|97.4MB 128 | B | 352 (342|694 |44.1KB|97.6MB|97.6MB
S (528 (258|786 |97.6MB| 44KB [97.6MB
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Table 8. Performance of protocol 3 (no half-gates); work is in sec
unless noted otherwise.

Table 9. Performance of Whitewash [23].

. |Input Total Total Total
- —— Function | . Party . . R
Function Input|Par| Computation Communication size comp time|comm size |exec time
size | ty | offl. | onl. |total| sent | recvd | total Eval 861s 450MB
A |8.07|0.28|8.35| 145KB | 8KB | 153KB 2'2 | Gen | 1008s | 450MB | 1077s
AES 128 | B |{3.99| 0.4 |4.39| 173KB | 300KB | 473KB Phone| 3.46s 60.2MB
S |0.38/10.2|10.6| 304KB | 313KB | 617KB Hamming Eval 1716s 901MB
A | 253 (8.48| 261 |4.43MB|0.75KB|4.43MB distance | 213 | Gen 1999s 901MB 2117s
212 | B (116 |6.85| 123 [4.46MB| 408KB [4.86MB (bits) Phone| 6.86s 121MB
S (0.56|311|312 | 345KB [8.83MB|9.17MB Eval 3362s 1.54GB
Hamming A 506 [16.9|523 |8.87MB|0.81KB|8.87MB 2'4 | Gen | 3918s | 1.54GB | 4128s
distance | 213 | B [ 233 [13.4| 246 |8.89MB| 879KB |9.75MB Phone| 13.7s 241MB
(bits) S |0.60|622|623 | 660KB |17.6MB|18.3MB Eval 97.7s 230MB
A [0.02(33.9/33.9|17.8MB|0.88KB|17.8MB 3 Gen 124s 230MB 176s
214 | B | 465 (26.4] 491 [17.7MB|1.44MB|19.2MB Phone| 0.29s | 4.26MB
S (0.70/21m|21m|1.27MB|35.4MB|36.7MB Eval 300s 1.00GB
A [31.7(1.07|32.8| 569KB | 32KB | 601KB Matrix 5 | Gen 357s 1.00GB 520s
4 B |14.8(|1.15(15.9| 603KB (9.18MB|9.77MB multipli- Phone| 0.71s 11.8MB
S (0.52|39.3/39.8/9.08MB|1.14MB|10.2MB cation Eval 922s 4.01GB
Matrix A | 127 (4.24|131 |2.22MB| 128KB |2.32MB (nxn 8 Gen 1007s 4.01GB 1615s
multipli- 8 B |58.5|3.60(62.1|2.28MB|72.2MB|74.5MB ints) Phone| 1.76s 30.2MB
cation S |0.54|156 | 157 |'72.2MB|4.43MB|76.4MB Eval 5613s 31.5GB
(nxn A | 506 (16.9| 523 |8.87MB| 512KB |9.37MB 16 | Gen 5991s 31.5GB 10716s
ints) 16 | B |234(13.4| 247 |8.92MB|577MB | 586MB Phone| 6.87s 121MB
S |0.60|622|623 |577MB (17.6MB| 594MB
A |16.0/0.54|16.5| 286KB |0.31KB | 286KB
32 | B |7.61/0.75/8.36| 314KB |6.13MB|6.44MB in Dynamic Environments, pages 25-37, 2006.
S ]0.52|19.9/20.4|6.13MB| 596KB |6.72MB| [20] J. Camenisch and M. Stadler. Efficient group signature
Edit A |31.7(1.07|32.8| 569KB |0.37KB | 569KB schemes for large groups. In CRYPTO, 1997.
distance | 64 | B |14.9|1.15/16.0| 597KB | 24.4MB|25.0MB| [21] J. Camenisch and M. Stadler. Proof systems for general
(chars) S |0.52|39.3|39.8|24.4MB|1.14MB|25.5MB statements about discrete logarithms. Technical report, Insti-
A 63.3|2.12/65.4|1.11MB|0.44KB |1.11MB tute for Theoretical Computer Science, ETH Zurich, 1997.
128 | B |29.4/1.96|31.4|40.2MB|97.5MB| 138MB | [22] J. Camenisch and G. Zaverucha. Private intersection of
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A Additional Background

Genomic background. Genomes represent complete heredi-
tary information of an individual. Information extracted from
one’s genome can take different forms. One type is called Sin-
gle Nucleotide Polymorphisms (SNPs), each of which corre-
sponds to a well known variation in a single nucleotide (a nu-
cleotide can be viewed as a simple unit represented by a letter
A, C, G, or T). Because SNP mutations are often associated
with how one develops diseases and responds to treatments,
they are commonly used in genetic disease and disorder test-
ing. The same set of SNPs (i.e., nucleotides in the same po-
sitions) would be extracted for each individual, but the values
associated with each SNP differ from one individual to an-
other. Normally each SNP is referenced by a specific index
and its value in a individual is represented as a bit, while rep-
resentations consisting of 3 values 0, 1, 2 are used as well.
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Input: Sender S has two strings mgo and m1, receiver R has a bit .
Common input consists of prime p, generator g of subgroup of Zg of
prime order g, and a random element C' from the group generated by §
(chosen by S).

Output: R learns m, and S learns nothing.

OT Protocol:

1. S chooses random r € Z4 and computes C” and §".

2. Rchooses k € Z;, sets public keys PK, = §’“ and PK1_, =
C/PKq, and sends PK to S.

3. After receiving PKo, S computes (PKp)" and
(PK1)" = C"/(PKo)". S sends to R §" and two en-
cryptions H((PKo)",0) & mo and H((PK1)",1) & my,
where H is a hash function (modeled as a random oracle).

4. R computes H((§")*) = H((PKy)") and uses it to recover

Me.

Fig. 1. 1-out-of-2 Oblivious Transfer of [61].

Another type of data extracted from a genome is based on
Short Tandem Repeats (STRs). STRs occur when a short re-
gion consisting of two or more nucleotides is repeated and the
occurrences are adjacent to each other. Unrelated individuals
are likely to have a different number of repeats of a given STR
sequence in certain regions in their DNA and thus STRs are of-
ten used for identity testing or testing between close relatives
(such as paternity testing).

Garbled circuit evaluation. The basic idea behind garbled
circuit evaluation is as follows (here we present only an
overview of the approach and refer the reader to, e.g., [55] for
technical details and security analysis): For each wire ¢ of the
Boolean circuit corresponding to f, the circuit generator cre-
ates a pair of randomly chosen labels é? and ¢} (of sufficient
length that depends on the security parameter) which map to
the values of 0 and 1, respectively, of this wire. Let g be a bi-
nary gate that takes two input bits and produces a single bit;
also let the input wires to g have indices ¢ and j and let the
output wire have index k. Then to create a garbled represen-
tation of the gate, the circuit generator produces a truth table
containing four entries of the form Enc;, e (K'Z(b“bj)). Here

bi, b; € {0,1} are input bits into the gaté and all entries in the
table are randomly permuted. Possession of two input labels
Efi and Z?j for any given values of b; and b; will allow for

Zz(b’ 1) Without

recovery of the corresponding output label
revealing anything else. Then upon garbling all gates of the
circuit, the circuit generator communicates all garbled gates,
to which we collectively refer as a garbled circuit G t» to the
circuit evaluator together with a single label éi”i for each input
wire ¢ according to the input bit b;. The labels corresponding to
the input wires of the circuit generator are simply transmitted
to the evaluator, while the labels corresponding to the inputs
of the circuit evaluator are communicated to the evaluator by

the means of OT (see section 3.2). The knowledge of the input

labels and garbled gates allows the circuit evaluator to evalu-
ate the entire circuit in its garbled representation and obtain a
label for each output wire representing the output. Then either
the circuit generator sends the label pairs (in order) for all out-
put wires to the circuit evaluator, which allows the evaluator
to interpret the meaning of the labels and learn the output, or
the evaluator sends computed labels to the circuit generator,
which in turn allows the circuit generator to learn the result.

Naor-Pinkas OT For completeness of this work, we provide
Naor-Pinkas OT protocol [61] in Figure 1.

B Additional Details

Below we summarize the overall solution with certified inputs
in the presence of malicious A and B and semi-honest S as
Protocol 3. For simplicity of presentation, we assume that all
input bits of A and B are certified and signed in one message.

C Security Proofs

Proof of Theorem 2 We start by showing fairness and then
proceed with security. The only way for A or B to learn any
output is when A is satisfied with the verification of the output
labels she received from B. Recall that each received label ¢;
is checked against H (¢%), H(¢1~°) for some bit b, where H is
a random oracle. The probability that this check succeeds for
some ¢; that is not equal to £? or ¢} is negligible. Thus, A is
guaranteed to possess the result of garbled circuit evaluation,
at which point both parties have access to the output.

We next construct simulators for all of the (independent)
adversaries A 4, Ap, and Ag. We start with a simulator S 4 for
malicious A 4. S4 runs A4 and simulates the remaining par-
ties. A 4 produces t; random labels E? and sends them to S4,
while S4 chooses A and sends it to A 4. If at least one label is
of an incorrect bitlength, S4 aborts. If S did not abort, A 4
sends ¢ labels to S 4. If the ith label sent by A 4 does not cor-
respond to one of the labels in the ith pair of labels (¢9, 9 A)
corresponding to A 4’s inputs, S4 aborts. If S4 did not abort,
it interprets the meaning of the input labels received from A4 4
and stores the input as z|. At some point S4 creates a ran-
dom label ¢; for each bit of the output and sends them to A 4.
Upon Ay4’s request, S also chooses another random label ¢
for each bit of the output. For each bit ¢ of the output, S 4 sends
to A4 the pair H(¢;), H(€}) in a randomly permuted order. If
A 4 notifies S4 of successful verification of the output labels,
Sa queries the TP for the output f(2, z2). For each ith bit
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Input: A has private input 21 and signature Sig(z1), B has private input

x2 and Sig(z2), and S has no private input.

Output: A and B learn f(x1,z2), S learns nothing.

Protocol 3:

1. (a) S chooses & =5 {0,131, ky 55 {0,1}", k2 5 {0,1}"
and sets A = 4[|1. S sends A and k1 to A. S also computes
labels ¢2 = PRF(ky,i) and £} = €2 @ A fori € [1,¢1].

(b) A computes labels Z? = PRF(k1,%) and é} = Z? d A
for ¢ € [1,¢1]. For each bit b; of her input, A commits ¢; =
Com(b;, ;) and ¢} = Com(é,l;i ,7%) using fresh randomness
r; and /. A sends to S Sig(z1) and ¢;, ¢} fori € [1,11].
(c) A proves in ZK the statement in equation 2 using private in-
putsxi,b1,...,bey, 71, ..., 7, . Foreachi € [1,¢1], A also
proves in ZK the statement in equation 4 using private inputs

b, ri,Z?i’,r;.

2. S computes wire labels £0 = PRF(kz,i — ¢1) and o= HaA
fori € [t1 + 1,m]. S then construct garbled gates G and sends
Gy and A’s commitments ¢/ fori € [1,%1] to B.

3. S and B engage in ¢o instances of 1-out-of-2 OT as in Protocol
2 together with verification of B’s input. Before B can learn la-

b ; /"o " ;
bels £;7 , ;. B forms t2 commitments ¢;’ = Com(b;, ;") using
fresh randomness r’ and proves in ZK the statements in equa-
tions 2 and 3 using private input z2,b1, ..., bey, Y, ..., 7}, and

by, 7, ks, respectively. Here k; denotes the value chosen during
step 2 of the ith instance of the OT protocol.

4. A opens commitments ¢ by sending to B pairs (éfl ,r) fori €
[1,%1]. B checks whether Com(¢;, %) = ¢} for each i and aborts
if at least one check fails.

5. The remaining steps are the same as in Protocol 2.

b; of the output, if b; = 0, S4 sends to A4 the pair (¢;, 7)),
otherwise, S4 sends the pair (¢}, £;).

Now we examine the view of A4 in the real and ideal
model executions and correctness of the output. After receiv-
ing the label pairs from A 4, S4 performs the same checks on
them as S would and thus both would abort in the same cir-
cumstances. Similarly, if A4 provides malformed labels for
circuit evaluation, S 4 will immediately detect this in the ideal
model and abort, while B in the real world will be unable to
evaluate the circuit and also abort. Otherwise, in both cases the
function will be correctly evaluated on the input provided by
A4 and B’s input. In the remaining interaction, A 4 sees only
random values, which in the ideal world are constructed con-
sistently with A 4’s view in the real model execution. Thus,
Aa’s view is indistinguishable in the two executions.

Let us now consider malicious Ap, for which we con-
struct simulator Sg in the ideal model execution who simu-
lates correct behavior of A and S. First, Sp simulates the OT.
It records the input bits used by Ap during the simulation,
which it stores as JE'2 and returns to random labels to Ag. Sp
also sends another set of ¢; random labels to Sp. Sp queries
the TP for Ap’s output f(z1,%) and chooses a pair of ran-
dom labels (£9, £}) for each bit i of the output. Sp gives to Ap
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a simulated garbled circuit (as described in [55]) so that the ith

Table 10. Performance of protocol 1 (with half-gates); work is in
ms.

. Input|Par| Computation Communication
Function | |
size | ty | offl. | onl. |total| sent | recvd | total
A (0.02| — [0.02| 2KB |0.01KB|2.01KB
AES 128 | B |0.42| — |0.42| 182KB |0.11KB| 182KB
S — 10.31]/0.31{0.11KB| 184KB | 184KB
A (0.06| — [0.06| 64KB 0 64KB
212 | B [0.30| — [0.30| 192KB | 0.2KB | 192KB
S — 10.23|0.23|/0.19KB | 256KB | 256KB
Hamming A |0.11| — |0.11| 128KB 0 128KB
distance | 213 | B |0.65| — [0.65| 381KB | 0.2KB | 381KB
(bits) S — 10.52(0.52| 0.2KB | 509KB | 509KB
A (0.22| — |0.22| 256KB 0 256KB
214 | B [1.65| — [1.65| 768KB | 0.4KB | 768KB
S — 11.39|1.39| 0.4KB 1MB 1MB
A (0.01| — [0.01| 8KB |0.06KB| 8.1KB
4 B |13.4| — |13.4|6.01MB| 8KB |6.02MB
S| — |9.78/9.78| 8KB [6.02MB|6.02MB
Matrix A |0.03| — |0.03| 32KB |0.25KB|32.2KB
multipli- 8 B [107| — |107|48.0MB| 32KB |48.1MB
cation S — |78.2|78.2| 32KB (48.1MB|48.1MB
(nxn A (0.11| — |0.11| 128KB 1KB 129KB
ints) 16 | B |858| — |858|384MB | 128KB | 384MB
S| — |621|621|128KB |384MB | 384MB
A |0.00| — |0.00| 4KB 0 4KB
32 | B [6.97| — [6.97(4.61MB|0.08KB |4.61MB
S — 15.17/5.17/0.08KB| 4.6MB |4.62MB
Edit A (0.01| — |0.01| S8KB 0 8KB
distance | 64 | B [27.9] — [27.9/18.4MB| 0.9KB |18.4MB
(chars) S — 120.6|20.6| 0.9KB [18.4KB|19.3KB
A |0.01| — |0.01| 16KB 0 16KB
128 | B [113| — [113|73.8MB| 0.1KB |73.8MB
S — [83.6/83.6/0.11KB|73.8MB|73.8MB

computed output label corresponds to the ith bit of f(z1,%).
If after circuit evaluation, Ap does not send the correct output
labels to Sp, Sp aborts the execution. Otherwise, Sg sends
the pairs (¢2, £1) to Ap.

The only difference between the view of Ap in the real
model and the view simulated by Sp in the ideal model is that
A p evaluates a simulated circuit in the ideal model. Computa-
tional indistinguishability of the simulated circuit follows from
the security proofs of Yao’s garbled circuit construction [55].
Thus, Ap is unable to tell the two worlds apart.

It is also straightforward to simulate the view of semi-
honest .Ag because it has no input and receives no output. [

D Additional Results

Table 10 provides the results of running protocol 1 using rep-
resentative functions with the half-gates optimization.



