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Polynomial Batch Codes for Efficient IT-PIR
Abstract: Private information retrieval (PIR) is a way for
clients to query a remote database without the database holder
learning the clients’ query terms or the responses they gener-
ate. Compelling applications for PIR are abound in the crypto-
graphic and privacy research literature, yet existing PIR tech-
niques are notoriously inefficient. Consequently, no such PIR-
based application to date has seen real-world at-scale deploy-
ment. This paper proposes new “batch coding” techniques to
help address PIR’s efficiency problem. The new techniques ex-
ploit the connection between ramp secret sharing schemes and
efficient information-theoretically secure PIR (IT-PIR) pro-
tocols. This connection was previously observed by Henry,
Huang, and Goldberg (NDSS 2013), who used ramp schemes
to construct efficient “batch queries” with which clients can
fetch several database records for the same cost as fetching a
single record using a standard, non-batch query. The new tech-
niques in this paper generalize and extend those of Henry et al.
to construct “batch codes” with which clients can fetch several
records for only a fraction the cost of fetching a single record
using a standard non-batch query over an unencoded database.
The batch codes are highly tuneable, providing a means to trade
off (i) lower server-side computation cost, (ii) lower server-side
storage cost, and/or (iii) lower uni- or bi-directional communi-
cation cost, in exchange for a comparatively modest decrease
in resilience to Byzantine database servers.
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1 Introduction

Private information retrieval (PIR) is a cryptographic primi-
tive that solves the seemingly impossible problem of letting
clients query a remote database without letting the database
holder learn the clients’ query terms or the responses they gen-
erate. PIR has received considerable attention from the crypto-
graphic and privacy research communities since its introduc-
tion by Chor, Goldreich, Kushilevitz, and Sudan in 1995 [16],
and compelling applications for PIR are abound in the cryp-
tographic and privacy research literature. Alas, despite a se-
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ries of significant advances over the past two decades, existing
PIR techniques are notoriously inefficient [50]. Consequently,
to date not one of the myriad PIR-based applications in the
research literature has been deployed at-scale to protect the
privacy of users “in the wild”.

This paper proposes new techniques that considerably
increase the practicality of certain multi-server information-
theoretic private information retrieval (IT-PIR) protocols. The
new techniques are based on ramp schemes [7] constructed
from polynomials over finite fields. Jumping ahead, we find
that using ramp schemes to encode not only requests for data
(as in prior work [34, 39]), but also the data themselves, can dra-
matically reduce the server-side computation cost, per-server
storage cost, and (upstream, downstream, and/or bidirectional)
communication costs of IT-PIR. Specifically, we propose a
way to encode a database into ramp shares so that each share
encodes (a portion of) multiple records, and so that clients
can fetch several records at once by combining multiple re-
quests into a single ramp-encoded query. Given a fixed pool
of database servers, we obtain much-improved performance
with zero impact to privacy, in exchange for a comparatively
modest decrease in robustness to Byzantine database servers.
Alternatively, allowing the number of servers and/or collusion
threshold to vary—thereby resulting in IT-PIR schemes with
incomparable security guarantees—yields novel IT-PIR con-
structions with attractive asymptotic characteristics. We view
these findings as a generalization and extension of Henry,
Huang, and Goldberg’s multi-block IT-PIR queries [34], which
are likewise constructed from ramp schemes.

2 Preliminaries

Our new approach builds on several earlier techniques from
the PIR literature. This section introduces those techniques,
beginning with a brief description of the basic mathematical
framework in which they all operate.

The PIR database is structured as an r × s matrix D over
a finite field F in which each of the r rows represents one
s -word block of data. We write D(i, j) to denote the word in
position (i, j) of D. A block (i.e., row) is the basic unit of
data that a client may fetch from D, and the goal of PIR is
to let clients fetch arbitrary blocks of their choosing without
letting the servers learn which particular blocks they fetch.
Formalizations of this intuitive privacy notion follow easily by
considering either (i) the advantages of malicious PIR servers
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in an indistinguishability game [14], or (ii) indistinguishability
among the ensembles of random variables that describe the
views of PIR servers in “real” versus “simulated” protocol
executions [10]. The most basic form of PIR only supports
fetching blocks by their index (i.e., by their row number within
D); however, prior work shows how one can implement queries
that are more expressive, such as retrieval-by-keyword [15] or
simple SQL queries [42, 45], atop this basic primitive.

A simple if inefficient way to realize the above-described
functionality with perfect privacy is to employ a “trivial down-
load” strategy in which each client downloads a complete copy
of D and then looks up any desired blocks locally. This ap-
proach is highly impractical when D is large; thus, another
goal of PIR is to transmit strictly less data than the trivial
download strategy (both asymptotically and concretely for “re-
alistic” database and block sizes), while still concealing from
the database servers which particular blocks the clients fetch.
Formally, this property (called non-triviality) requires that the
communication cost to fetch a block from D ∈ Fr ×s scales as
o
(r s ) field elements. A trivial lower bound on the downstream

communication cost of any PIR protocol is s + O
(
1
)

field el-
ements, the cost of a non-private fetch. A protocol that meets
this lower bound is said to have optimal downstream rate. Much
prior work [2, 9, 24, 27, 40, 52] has focused on optimizing the
downstream rate of PIR (often to the detriment of the upstream
communication and computation costs). The culmination of
these efforts includes two recent PIR protocols—one compu-
tationally private [37] and the other information-theoretically
private [47]—that achieve optimal downstream rate.

Non-private fetches from basic linear algebra
One non-private way to fetch a block from D with r + s total
communication cost is to have the client construct and send to
the database holder a suitable vector from the “standard” or-
thonormal basis for Fr . In particular, to fetch the i th block from
D, the client sends the length-r row vector e⃗i ∈ Fr containing
unity in its i th coordinate and zero elsewhere. (We herein refer
to such a vector e⃗i simply as the “i th standard basis vector”
in Fr .) The server responds with the length-s row vector D⃗i

given by the vector-matrix product e⃗i ·D. A simple calculation
confirms that D⃗i is indeed equal to the i th row of D:

e⃗i · D =
〈
0 0 · · · 1 · · · 0

〉
·




D(0,0) D(0,1) . . . D(0,s -1)

D(1,0) D(1,1) . . . D(1,s -1)
...

...
. . .

...
D(i,0) D(i,1) . . . D(i,s -1)
...

...
. . .

...
D(r -1,0) D(r -1,1) . . . D(r -1,s -1)




=
〈
D(i,0) D(i,1) · · · D(i,s -1)

〉
.

The PIR literature considers two basic approaches for turning
such vector-based fetches into private queries.

Private fetches from homomorphic encryption
The first approach for making the above vector-based fetches
private uses partially homomorphic encryption. In this ap-
proach, the client encrypts the vector e⃗i component-wise us-
ing a semantically secure, additively homomorphic encryption
scheme [11] (for instance, Paillier [44] or Damgård and Jurik’s
generalization thereof [19]),1 and then it sends the encrypted
vector to the database server. Since the vector-matrix product
e⃗i · D is nothing more than a sequence of linear combinations
with coefficients from D, the database server (holding a plain-
text copy of D) can use the additive homomorphism of the
encryption scheme to obliviously compute and return to the
client a component-wise encryption of D⃗i .

The privacy guarantees of such encryption-based PIR fol-
low directly from the IND-CPA security of the underlying
encryption scheme against computationally bounded attack-
ers; thus, such protocols are called computationally secure
PIR (CPIR) protocols. Unfortunately, this encryption-based
approach imposes very high computational overhead [50],
thus limiting its practicality for all but the smallest of
databases.

Private fetches from secret sharing
The second approach for making the above vector-based fetches
private uses secret sharing. In this approach, the client encodes
the vector e⃗i component-wise using a (linear) secret sharing
scheme [17, 29] (for instance, the basic (ℓ, ℓ)-additive scheme
or Shamir’s (t +1, ℓ)-threshold scheme [48]), and then it sends
share vectors to ℓ different database servers (who each hold
a local replica of D). Linearity of the secret sharing scheme
enables each server to compute and return to the client a vector
of secret shares that, together with the responses of the other
servers, reconstructs component-wise to D⃗i .

The privacy guarantees of such sharing-based PIR follow
directly from the security of the secret sharing scheme, which
holds unconditionally under an appropriate non-collusion
assumption; thus, such protocols are called information-
theoretically secure PIR (IT-PIR) protocols. The most com-
mon non-collusion assumptions require that at most t -out-of-ℓ
servers collude, in which case the protocol is called a t -private
ℓ-server IT-PIR protocol.

IT-PIR is comparatively fast—two or more orders to mag-
nitude faster than the most performant CPIR [43]—and it does
not rely on unproven computational assumptions; however, un-
like CPIR, it requires multiple non-colluding (but otherwise un-

1 The first such scheme [38] predates Paillier and instead uses Goldwasser
and Micali’s XOR-homomorphic encryption [31], which one can view as
being additively homomorphic over a field of characteristic 2. Some recent
proposals [1, 8] use lattice-based cryptosystems that are more efficient than
those based on the hardness of number-theoretic problems.
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Let F be a finite field and let x1, . . . , xℓ be a sequence of ℓ pairwise distinct, non-zero scalars from F. To share a secret S ∈ F among
a set of ℓ shareholders so that any coalition of t + 1 or more shareholders can efficiently reconstruct S, yet no coalition of just t or
fewer shareholders can derive any information about S: (i) choose a polynomial f ∈ F[x] uniformly at random subject to deg f ≤ t and
f (0) = S, and then (ii) for each i = 1, . . . , ℓ, send

(
xi, f (xi )

)
to the i th shareholder. The tuple

(
xi, f (xi )

)
is called the i th share of S.

Any coalition of k > t shareholders can reconstruct S from their collective shares (say, (x1, y1), . . . , (xk, yk )) using polynomial
interpolation. The standard approach for secret reconstruction is to use Lagrange interpolation:

S =
∑

k

j=1
yj
(∏

k

i=1
i, j

xi (xi − xj)
−1) .

By contrast, given just k ≤ t of the shares, all possibilities for the secret S ∈ F are equally likely. Note that the Lagrange interpolation
formula is just a specific linear combination of the yi ; going forward, we refer to the coefficients

∏
k

i=1,i,j xi (xi − xj)
−1 in this linear

combination as Lagrange coefficients.
In the case of Goldberg’s IT-PIR protocol, the secrets to be shared are components of e⃗i , the shareholders are the IT-PIR servers,

and the security assumption is that no such coalition of k > t shareholders will engage in secret reconstruction.

Fig. 1. Shamir’s (t + 1, ℓ)-threshold scheme [48]

trusted) database servers. While non-collusion is a very strong
assumption, many successful privacy-preserving designs, in-
cluding secure multiparty computation [6], Tor [23], mix net-
works [12, 20], and cryptographic voting protocols [13, 46],
also base their security on non-collusion assumptions.

In the sequel, we focus exclusively on IT-PIR proto-
cols constructed in (a generalization of) the above secret-
sharing model and instantiated with (again, a generalization
of) Shamir’s (t + 1, ℓ)-threshold scheme [48]. The basic form
of this Shamir-based protocol was proposed by Goldberg [29]
and was subsequently extended and improved in several pa-
pers [22, 34, 35, 41]. A C++ implementation of Goldberg’s
basic protocol, enhanced with several of these improvements,
is available through the open-source Percy++ project [30]. For
completeness, we describe Shamir’s threshold scheme in Fig-
ure 1; interested readers should consult Shamir’s [48] and Gold-
berg’s [29] papers for additional details on the threshold scheme
and how it is used to realize IT-PIR.

We treat Goldberg’s protocol as the “baseline” against
which to compare our new techniques, measuring the per-
formance of our new IT-PIR protocols relative to that of
Goldberg’s basic protocol. Observation 1, which follows easily
by inspection, characterizes the efficiency of this baseline.

Observation 1. The costs to fetch a block from D ∈ Fr ×s

using Goldberg’s protocol are as follows:
- Query preparation: The client performs t r multiplications

and (t − 1)r + 1 additions in F, per server (preparing share
vectors, using Horner’s method to evaluate polynomials);

- Query transmission: The client sends r field elements (a
share vector in Fr ) to each of ℓ servers;

- Query processing: Each server performs r s multiplications
and (r − 1)s additions in F (a vector-matrix multiplication);

- Response transmission: Each server sends s field elements
(a share vector in Fs ) to the client; and

- Reconstruction: The client performs sℓ multiplications and
(s−1)ℓ additions in F to interpolate the responses (assuming
the Lagrange coefficients have been precomputed).

Robust ℓ-server IT-PIR from noisy interpolation
An important practical consideration for ℓ-server IT-PIR
schemes is how to ensure that fetches still succeed if one
or more database servers are Byzantine—that is, if one or
more servers respond either incorrectly or not at all. Beimel
and Stahl [4, 5] initiated the study of t -private ℓ-server IT-
PIR protocols that are resilient to such Byzantine behaviour.
Specifically, they studied protocols that can guarantee success-
ful fetches provided k-out-of-ℓ servers respond, even if up to
v -out-of-k of the responses contain arbitrary errors (whether
inadvertent or maliciously crafted). A protocol with this prop-
erty is called a t -private v -Byzantine-robust (k, ℓ)-server IT-
PIR protocol. As originally proposed, Goldberg’s IT-PIR [29]
is a t -private v -Byzantine-robust (k, ℓ)-server IT-PIR protocol
for any k > t and v < k −

⌊√
kt ⌋ . The latter inequality follows

from the list decoding radius for Reed-Solomon codes.
Followup work by Devet, Goldberg, and Heninger [22]

modifies the client in Goldberg’s protocol to increase the ro-
bustness bound from v < k −

⌊√
kt ⌋ to v < k − t − 1

Byzantine servers, which is the theoretically maximum pos-
sible value. Their improvement follows by using a variant
of Cohn-Heninger multi-polynomial decoding [18] to decode
multiple queries simultaneously. In the worst case, such de-
coding becomes possible only after the client issues up to v
queries (where v is the number of servers giving Byzantine
responses). They point out, however, that in many practical de-
ployment scenarios the client will naturally issue v or more
queries irrespective of Byzantine behaviour by the servers. In
such cases, the algorithmic advances in the decoding algorithm
yield improved Byzantine robustness “for free”.

Of course, one hopes that k = ℓ servers will respond to
every query, and that v = 0 will do so Byzantinely; nonetheless,
it is common practice in the IT-PIR literature to provision some
“extra” servers in order to provide resilience in the face of some
malicious or malfunctioning servers. The next construction we
discuss takes advantage of such over-provisioning of servers to
increase the throughput of Goldberg’s protocol.
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Let F be a finite field and let x1, . . . , xℓ be a sequence of ℓ pairwise distinct scalars from F \ {0, . . . , q − 1}. To share a size-q set of
secrets S0, . . . ,Sq−1 ∈ F among a set of ℓ shareholders so that any coalition of t + q or more shareholders can reconstruct the q secrets
but no coalition of just t or fewer shareholders can derive any information about them: (i) choose t scalars yq, . . . , yq+t−1 ∈ F uniformly
at random, (ii) use polynomial interpolation to solve for the unique polynomial f ∈ F[x] of degree (at most) t + q−1 that passes through
the t + q points

(0,S0), (1,S1), . . . , (q − 1,Sq−1), (q, yq ), (q + 1, yq+1), . . . , (q + t − 1, yq+t−1),
corresponding to the q secrets and t random scalars, and then (iii) for each i = 1, . . . , ℓ, send

(
xi, f (xi )

)
to the i th shareholder. The

tuple
(
xi, f (xi )

)
is called the i th ramp share of S0, . . . ,Sq−1.

Any coalition of k ≥ t + q shareholders can reconstruct S0, . . . ,Sq−1 from their collective ramp shares (say, (x1, y1), . . . , (xk, yk ))
using polynomial interpolation. Similar to in Shamir’s (t +1, ℓ)-threshold scheme, the standard approach is to use Lagrange interpolation
to reconstruct Sh for each h = 0, . . . , q − 1:

Sh =
∑

k

j=1
yj
∏

k

i=1
i, j

(h − xi )(xj − xi )
−1.

As in the (t + 1, ℓ)-threshold scheme, given just k ≤ t shares, all possibilities for the S0 . . . ,Sq−1 ∈ F are equally likely; given
t < k < t + q shares, each Sh is equally likely, but the joint distribution of (S0, . . . ,Sq−1) has only t + q − k − 1 degrees of freedom.

Fig. 2. (t + 1, q, ℓ)-ramp scheme variant of Shamir’s threshold scheme [34]

q-batch queries from ramp schemes
Henry, Huang, and Goldberg [34] proposed a generalization of
Goldberg’s IT-PIR that allows clients to fetch q blocks at a time.
The naïve way for a client to fetch q blocks from D would be for
it to sequentially issue q standard, single-block queries. This
approach requires the client to send qr field elements to and
receive qs field elements from each server, and requires each
server to perform about 2qr s field operations to process the q
queries. A modest optimization is to have the client send all q
share vectors in parallel and have the servers treat the q share
vectors as rows of a q× r matrix. The servers then process all q
queries simultaneously using fast matrix multiplication [3, 41].
This reduces the server-side computation cost—particularly so
when q is large—and has no effect on the Byzantine robustness,
communication cost, client-side computation cost, or server-
side storage cost of the protocol.

Henry et al.’s idea is to instead replace Shamir’s (t + 1, ℓ)-
threshold scheme with a variant that encodes the q secrets con-
currently, called a (t + 1, q, ℓ)-ramp scheme. Briefly, whereas
Shamir’s (t + 1, ℓ)-threshold scheme encodes one secret in a
degree-t polynomial, the (t + 1, q, ℓ)-ramp scheme encodes q
secrets in a degree-(t + q − 1) polynomial, as described in
Figure 2. Batch queries leverage this idea as follows:
Rather than encoding q = 1 basis vector (and thereby fetch-
ing q = 1 block) per query, the client encodes q > 1 basis
vectors (and thereby fetches q > 1 blocks) per query.

The resulting queries—called q-batch queries—fetch q blocks
at once with the same communication and server-side compu-
tation cost as fetching a single block using a standard query,
thus offering a q-fold improvement in throughput.2 Switching

2 The client-side computation cost for a q-batch query is nominally higher
than that for one single-block query, due to the increased degrees of the
polynomials involved; it is, however, much lower than the client-side cost
for q single-block queries. In any case, the computation cost incurred by
the client in preparing share vectors and decoding the responses is typically
very small relative to the cost incurred by each server when computing the
product of the share vector it receives with D.

from a (t+1, ℓ)-threshold scheme to a (t+1, q, ℓ)-ramp scheme
does not affect privacy; indeed, the entire protocol view from
the perspective of any coalition of up to t servers is identical
to that coalition’s view in one single-block query using Gold-
berg’s basic protocol. Rather, the tradeoff for achieving such a
q-fold improvement in throughput is a comparatively modest
reduction in the Byzantine robustness bound, from v ≤ k−t−1
to v ≤ k − t − q Byzantine servers [34].

As in Goldberg’s scheme, no coalition oft or fewer servers
can derive any information about which blocks a client is
requesting; however, now the client requires t + q or more
valid responses before polynomial interpolation becomes pos-
sible. (Note that coalitions of more than t but fewer than
t + q servers may learn some “partial” information about
which blocks the client is requesting.) The decreased robust-
ness bound for q-batch queries follows by applying Devet et
al.’s variant of Cohn-Heninger multi-polynomial decoding [22,
Algorithm 1] to polynomials whose degree is now increased
from t to t + q − 1. The resulting protocol implements t -
private v -Byzantine-robust q-batch (k, ℓ)-server IT-PIR for any
q ≤ |F| −ℓ, k ≥ t +q, and v < k−t −q. Its communication and
server-side computation costs are exactly as in Observation 1,
but now these costs are amortized over q (concurrent) fetches.
Note that fixing q = 1 yields Goldberg’s basic protocol.

Security model
We prove the security of our new constructions in the same
model considered by Henry et al., which is a natural “batching-
aware” extension of the standard security model for IT-PIR
that was introduced in the seminal paper of Chor et al. [17,
§2]. Although this model has been used implicitly in several
recent papers [21, 34, 39, 51], a rigorous security definition
is lacking from the literature; for completeness, we therefore
provide such a definition. Specifically, we formally define a
t -private q-batch (k, ℓ)-server IT-PIR protocol.
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An IT-PIR protocol is a special kind of multi-server infor-
mation retrieval (IR) protocol; thus, we first define a q-batch
ℓ-server IR protocol as a multi-party protocol, executed be-
tween a client and ℓ servers S1, . . . , Sℓ , that consists of four
PPT algorithms: (i) a setup algorithm (S), (ii) a query algo-
rithm (Q), (iii) an answer algorithm (A), and (iv) a recon-
struction algorithm (R). The setup algorithm is executed once
to set up the system. It takes as input the database D ∈ Fr ×s

and the identities of the ℓ servers, and it outputs an (ℓ + 1)-
tuple

(
Γ,D(1), . . . ,D(ℓ)

)
← S

(
D, S1, . . . , Sℓ

)
in which Γ is a

string containing system parameters and each D( j) is an in-
ternal state to be held by Sj .3 The system parameters—which
comprise all metadata needed to carry out the protocol, such
as the dimensions r × s of D and the identities/addresses of the
servers—are an implicit input to each of the other algorithms.
(We assume that |Γ | ≥ (r +s )ℓ so thatQ andR may run in time
polynomial in r ℓ and sℓ, respectively.) The query algorithm is
executed by the client to fetch (up to) q blocks, say D⃗i1, . . . , D⃗iq ,
from the servers. It takes as input a q-tuple of block indices
(i1, . . . , iq) ∈ [r − 1]q , and it outputs an ℓ-tuple of requests
(Q1, . . . ,Qℓ ) ← Q

(
i1, . . . , iq

)
, one for each server. The answer

algorithm is executed by Sj upon receiving a request Qj from
the client. It takes as input the incoming request Qj and Sj’s in-
ternal state D( j), and it outputs a response Aj ← A

(
D( j),Qj

)
.

Finally, the reconstruction algorithm is executed by the client
to recover the blocks D⃗i1, . . . , D⃗iq from the servers’ responses.
It takes as input k (or more) responses Aj1

, . . . , Ajk
from the

servers, and it outputs either the requested database blocks
(D⃗i1, . . . , D⃗iq ) ← R

(
Aj1
, . . . , Ajk

)
or ⊥ to indicate failure. To

qualify as t -private q-batch (k, ℓ)-server IT-PIR, these four
algorithms must satisfy three special criteria.

Definition (tt -private q-batch (k, ℓ)-server IT-PIR). A q-
batch ℓ-server IR protocol (S,Q,A,R) with servers S1, . . . , Sℓ
implements t -private q-batch (k, ℓ)-server IT-PIR if it is:
i) k-correct: For every batch of q block indices (i1, . . . , iq) ∈

[r − 1]q and for every size-k subset {Sj1, . . . , Sjk } of
the servers, if (Q1, . . . ,Qℓ ) ← Q

(
i1, . . . , iq

)
and Aj ←

A
(
D( j),Qj

)
for each j = 1, . . . , ℓ, then

Pr
[
(D⃗i1, . . . , D⃗iq ) ← R

(
Aj1
, . . . , Ajk

)]
= 1;

ii) tt -private: Let X be a random variable denoting the block
indices the client requests. For every q-tuple of block in-
dices (i1, . . . , iq) ∈ [r − 1]q and for every size-t coalition
T = {Sj1, . . . , Sjt } of the servers,

Pr
[
X = (i1, . . . , iq) | QT = (Qj1

, . . . ,Qjt
)
]

= Pr
[
X = (i1, . . . , iq)

]
,

where QT is a random variable denoting the joint distri-
bution of requests sent to the servers in T ; and

3 Typically, the setup algorithm just returns D(1) = D(2) = · · · = D(ℓ) =
D so that each server holds an exact replica of D; however, in our construc-
tions, the setup procedure will be somewhat more elaborate.

iii) non-trivial: For every c > 0, there exists some positive
integer N such that, for all r , s > N , the following holds:

For every database D ∈ Fr ×s and for every batch of q
indices (i1, . . . , iq) ∈ [r − 1]q , if

–
(
Γ,D(1), . . . ,D(ℓ)

)
← S

(
D, S1, . . . , Sℓ

)
,

– (Q1, . . . ,Qℓ ) ← Q
(
i1, . . . , iq

)
, and

– Aj ← A
(
D( j),Qj

)
for each j = 1, . . . , ℓ,

then |Γ |+ |Q1 |+ · · ·+ |Qℓ |+ |A1 |+ · · ·+ |Aℓ | < c |D|.

Note that a protocol can be both t -private and k-correct only
if t < k; indeed, as mentioned previously, it is customary in
the IT-PIR literature to set t < k − 1 so that the protocol can
provide some robustness to Byzantine servers. In the remain-
der of this paper, we follow Henry et al. in studying ways to
trade off some of this robustness for better performance. Af-
ter having introduced our new techniques in Sections 3–5, we
briefly revisit this assumption in Section 7, where we discuss
the alternative approach of allowing the parameters ℓ, k, and t
to vary.

3 Ramp-coded databases

The q-batch queries of Henry et al. encode several requests
together in a single query using (t+1, q, ℓ)-ramp shares, thereby
enabling clients to fetch q blocks with the same communication
and server-side computation cost as fetching just one block
using a standard, non-batch query. In this section, we flip that
idea on its head by using ramp shares to encode not requests
for data, but the data themselves.

Encoding the data in ramp shares yields efficiency-
robustness tradeoffs complementing those offered by q-batch
queries. Specifically, encoding several blocks in a single vector
of ramp shares allows each server to store a matrix comprising
strictly fewer rows than the unencoded database. Consequently,
the upstream communication and server-side computation costs
for a single-block query over the encoded database are both
strictly lower than in the baseline protocol.

Encoding the database
We now describe how to encode D ∈ Fr ×s using (1,u, ℓ)-ramp
shares. At a high level, our approach is to represent indices i of
the blocks in D in the form i = u iQ + iR with 0 ≤ iR < u , and
then to encode each of the u blocks associated with a given
quotient iQ together in a vector of (1,u, ℓ)-ramp shares over F.
We refer to this encoding as a u -ary encoding of D and to u
as the arity of the encoding. For ease of exposition, we assume
throughout that u | r ; however, we remark that the case where
u ∤ r presents no technical difficulties.
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D =




D(0,0) D(0,1)

D(1,0) D(1,1)

D(2,0) D(2,1)

D(3,0) D(3,1)




2-ary
=⇒ D(2)

=




d⃗0(x)

d⃗1(x)




=




(D(1,0) − D(0,0))x + D(0,0) (D(1,1) − D(0,1))x + D(0,1)

(D(3,0) − D(2,0))x + D(2,0) (D(3,1) − D(2,1))x + D(2,1)




2nd bucket:



2 · D(1,0) − 1 · D(0,0) 2 · D(1,1) − 1 · D(0,1)

2 · D(3,0) − 1 · D(2,0) 2 · D(3,1) − 1 · D(2,1)




3rd bucket:



3 · D(1,0) − 2 · D(0,0) 3 · D(1,1) − 2 · D(0,1)

3 · D(3,0) − 2 · D(2,0) 3 · D(3,1) − 2 · D(2,1)




4th bucket:



4 · D(1,0) − 3 · D(0,0) 4 · D(1,1) − 3 · D(0,1)

4 · D(3,0) − 3 · D(2,0) 4 · D(3,1) − 3 · D(2,1)




5th bucket:



5 · D(1,0) − 4 · D(0,0) 5 · D(1,1) − 4 · D(0,1)

5 · D(3,0) − 4 · D(2,0) 5 · D(3,1) − 4 · D(2,1)




Fig. 3. The 2-ary encoding procedure for a 4 × 2 database into 4 buckets

The new ramp-based encoding is closely related to the
optional τ-independence [28] feature of Goldberg’s basic pro-
tocol [29], which encodes the database component-wise using
Shamir’s (τ + 1, ℓ)-threshold scheme. This prevents coalitions
of up to τ database servers from learning the contents of the
database they hold. Indeed, simply swapping in a (τ + 1,u, ℓ)-
ramp scheme in our construction yields a τ-independent u -ary
encoding that gives rise to IT-PIR protocols with closely related
parameters. In the following, we assume that τ = 0.

The encoding procedure is simple. Given a
database D ∈ Fr ×s , the first step is to rewrite D as

D =




D̃0

D̃1

...

D̃⌈r/u⌉-1




∈
(
Fu ×s ) ⌈r/u⌉ ×1,

with each submatrix D̃i residing in Fu ×s . The next step is to en-
code each submatrix D̃i column-wise using the (1,u, ℓ)-ramp
scheme variant of Shamir’s threshold scheme (see Figure 2).
That is, for each i = 0, . . . , ⌈r /u⌉ − 1, use polynomial interpo-
lation to find the (unique) length-s vector of degree-(u − 1)
polynomials d⃗i = ⟨di0(x), di1(x), · · · , di(s -1) (x)⟩ ∈

(
F[x]
)s

such that dik (h) is equal to the component in position (h, k) of
D̃i for every k = 0, . . . , s−1 and every h = 0, . . . ,u −1.

Let x1, . . . , xℓ be an arbitrary sequence of ℓ pairwise dis-
tinct scalars from F \ {0, . . . ,u − 1}. The setup algorithm pro-
vides each of the ℓ servers with a matrix obtained by evaluating
the above ramp-share matrix component-wise at one of the xi .
In particular, for each j = 1, . . . , ℓ, server Sj holds the ⌈r /u⌉ × s
matrix of ramp shares

D(u )(x j ) B




d⃗0(xj)

d⃗1(xj)
...

d⃗
⌈r/u⌉-1(xj)




=




d00(xj) · · · d0(s -1) (xj)

d10(xj) · · · d1(s -1) (xj)
...

. . .
...

d(⌈r/u⌉-1)0(xj) · · · d(⌈r/u⌉-1)(s -1)(xj)




,

called the xj th u -ary bucket of D.

Observe that the 1-ary encoding of D encodes each element
in a constant polynomial so that all 1-ary buckets are equal to
D. For u > 1, each u -ary bucket is an element of F ⌈r/u⌉ ×s and
is therefore a factor u smaller than the 1-ary (i.e., unencoded)
database, which itself resides in Fr ×s .

Recalling that we have fixed the independence threshold
as τ = 0, note that (i) the xj th u -ary bucket of D is uniquely
determined by the triple (u, xj,D), and (ii) one can trivially
recover D from any size-u set of distinct u -ary buckets using
polynomial interpolation. Also note that, although reconstruct-
ing D from fewer than u buckets is not generally possible, the
u -ary encoding provides no formal guarantees regarding the
privacy of data stored in the database. Figure 3 illustrates the 2-
ary encoding procedure for a 4× 2 database into ℓ = 4 buckets
(indexed respectively by x1 = 2, x2 = 3, x3 = 4, and x4 = 5).
When u = 2, as in the figure, the (1,u, ℓ)-ramp shares are just
points on lines in F[x] and so it is particularly easy to see how
one can reconstruct D from any pair of u -ary buckets; when
u > 2, the visualization is harder, but the underlying idea is
exactly the same.

Querying the encoded database
We now describe how the client constructs a t -private query
to fetch the block D⃗i from a u -ary encoding of D. The query
construction is a direct modification of that fort -private queries
in Goldberg’s basic protocol, with the key differences being the
vector length and the x-coordinate at which the client encodes
a basis vector in the Shamir threshold shares. Answering a
query involves multiplying y-coordinates of points on degree-
t polynomials by those on degree-(u−1) polynomials; thus, the
servers respond to such queries with vectors whose components
are y-coordinates on polynomials of degree t + u − 1. The
resulting protocol will therefore be a t -private (k, ℓ)-server
protocol for any k ≥ t + u ; that is, the client will require at
least k ≥ t +u valid responses for polynomial interpolation to
succeed.
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Write i = u iQ + iR with 0 ≤ iR < u using the Divi-
sion Algorithm (that is, let iQ = ⌊i/u ⌋ be the quotient and
iR = i mod u the remainder upon dividing the desired block
index i by the arity of the encoding u .) The following observa-
tion follows immediately by inspection of the u -ary encoding
procedure.

Observation 2. The block D⃗i can be recovered via component-
wise interpolation of the iQ th rows from any size-u subset
of u -ary buckets of D at the input x = iR. Specifically, if
D⃗(u )

iQ (x1), . . . , D⃗(u )
iQ (xk ) denote the iQ th rows of k > u distinct

u -ary buckets of D, then

D⃗i =

k∑
j=1

D⃗(u )
iQ (xj)

k∏
i=1
i, j

(iR − xi )(xj − xi )
−1.

Given the above observation, the query algorithm is straightfor-
ward. Let e⃗iQ denote the iQ th standard basis vector from F ⌈r/u⌉ .
To query for block D⃗i , the client chooses a length-⌈r /u⌉ vector
of degree-t polynomials f⃗ ∈

(
F[x]
) ⌈r/u⌉ uniformly at random

subject to f⃗ (iR) = e⃗iQ , where f⃗ (iR) denotes the component-
wise evaluation of the polynomials comprising f⃗ at the input
x = iR. For each server S1, . . . , Sℓ , respectively holding u -ary
buckets D(u ) (x1), . . . ,D(u ) (xℓ ) of D, the client sends the length-
⌈r /u⌉ vector of shares f⃗ (xj) ∈ F

⌈r/u⌉ to Sj.
The answer algorithm is exactly as in Goldberg’s basic

scheme; that is, each server Sj simply responds with the vector-
matrix product R⃗(xj) B f⃗ (xj) · D

(u ) (xj). The reconstruction
algorithm recovers block D⃗i from any k ≥ t +u responses via
polynomial interpolation at x = iR:

k∑
j=1

R⃗(xj)
k∏

h=1
h, j

(iR − xh)(xj − xh)−1

=

k∑
j=1

f⃗ (xj) · D
(u ) (xj)

k∏
h=1
h, j

(iR − xh)(xj − xh)−1

=

k∑
j=1

( ⌈r/u⌉∑
n=1

fn(xj) · D⃗
(u )
n (xj)

k∏
h=1
h, j

(iR − xh)(xj − xh)−1)
=

⌈r/u⌉∑
n=1

( k∑
j=1

fn(xj) · D⃗
(u )
n (xj)

k∏
h=1
h, j

(iR − xh)(xj − xh)−1)
=

⌈r/u⌉∑
n=1

fn(iR) · D⃗(u )
n (iR)

= e⃗iQ · D
(u ) (iR)

= D⃗(u )
iQ (iR)

= D⃗i .

Note that the polynomials in f⃗ are of degree t and the poly-
nomials in each D⃗(u )

i are of degree u − 1 so that k ≥ t + u
responses indeed suffice to perform the above interpolation.
Also note that when u = 1, the above queries are identical to
t -private queries in Goldberg’s basic protocol.

Analysis
Theorem 1 characterizes the security of IT-PIR queries over a
u -ary database, as described in the preceding two subsections.
It follows almost immediately from the properties of Shamir’s
threshold scheme, although one technical detail warrants spe-
cial consideration: the x-coordinates at which clients encode
the basis vectors in their queries.

It is clear that modifying Shamir’s threshold scheme to
encode secrets at an x-coordinate other than x = 0 has no
impact on its security in “traditional” secret sharing contexts
(provided, of course, that the shareholders’ indices are selected
so as not to coincide with any x-coordinate that may encode
the secret); however, there is an important, subtle difference be-
tween sharing a secret and querying a u -ary database. Specifi-
cally, in the latter case, learning the x-coordinate at which the
share vector encodes the secret basis vector reveals nontrivial
information about the index i of the requested block. Indeed, if
the client seeks block D⃗uiQ+iR , then f⃗ encodes the basis vector
e⃗iQ at the input x = iR. Therefore, learning the x-coordinate at
which the secret is stored is equivalent to learning the modulo-
u congruence class of the requested block index. Fortunately,
it is easy to argue that the set of share vectors held by any
coalition of up to t servers contains no information about this
x-coordinate (nor any other information about the block index
i). Indeed, the restriction that x1, . . . , xℓ < {0, . . . ,u − 1} is
sufficient to ensure that no information is leaked by encoding
the basis vector e⃗iQ at x = iR.

Theorem 1. In the construction for IT-PIR queries over a u -
ary encoded database D described in the preceding two subsec-
tions, no coalition of up to t database servers, holding buckets
D(u ) (xj1 ), . . . ,D(u ) (xjt ) with xj1, . . . , x jt

< {0, . . . ,u − 1}, can
deduce any information about the requested block index i; that
is, the queries are t -private.

Proof (sketch). Given any coalition T of t database servers
holding share vectors f⃗ (xj1 ), . . . , f⃗ (xjt ) and any guess for the
block index, say i∗ = u i∗Q +i∗R with 0 ≤ i∗R < u , there is a unique
vector of degree-t polynomials consistent with these t share
vectors and passing component-wise through e⃗i∗Q at x = i∗R.

Now, since f⃗ =
〈

f1, . . . , f ⌈r/u⌉
〉
is uniform random, subject

only to f⃗ (iR) = e⃗iq and each of the f i having degree at most t ,
the one-one correspondence noted above implies that

Pr
[
QT =

(
f⃗ (xj1 ), . . . , f⃗ (xjt )

) �� f⃗ (i∗R) = e⃗i∗Q
]
= |F|−t ,

where QT is the random variable denoting the joint distribution
of the share vectors sent to the servers in T . From here, Bayes’
Theorem and some easy algebraic manipulations yields

Pr
[
f⃗ (i∗R) = e⃗i∗Q

]
= Pr
[
f⃗ (i∗R) = e⃗i∗Q

�� QT =
(
f⃗ (xj1 ), . . . f⃗ (xjt )

)]
so that the query is t -private, as desired. □
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Theorem 2 characterizes the Byzantine robustness of t -private
IT-PIR queries over a u -ary database. It follows from the de-
coding bound for Devet et al.’s variant of Cohn-Heninger multi-
polynomial decoding [22, Algorithm 1] and our earlier obser-
vation that the client must interpolate polynomials of degree
t + u − 1 in order to reconstruct a block D⃗i from the servers’
responses to a t -private query.

Note that Cohn-Heninger decoding requires the syndrome
in each noisy codeword to be random and independent [18].
As we make no a priori assumptions on the types of errors that
Byzantine servers may introduce, the client must enforce this
randomness and independence in the way it constructs its query.
To this end, Devet et al. suggest the following simple modifi-
cation to the query generation procedure [22, Section 4.1]: the
client constructs share vectors as usual, but before sending them
to the database servers, the client “blinds” each share vector by
multiplying it with a uniform random, non-zero scalar. (Note
that the client selects a fresh, uniform random scalar for each
server it queries.) Prior to interpolating, the client “unblinds”
each response by multiplying it with the appropriate inverse
scalar. With this modification in place, the following theorem
is immediate.4

Theorem 2. In the construction for IT-PIR queries over a u -
ary database described in the preceding two subsections (with
the above randomization procedure in place), suppose that k-
out-of-ℓ servers respond to a client’s query for block D⃗i , and
that v < k − t − u of these servers are Byzantine. Then the
client can, with high probability, correctly reconstruct D⃗i after
issuing at most m =

⌈ v
k−v−t−u

⌉
≤ v requests.

Note that m ≤ v requests is sufficient (but perhaps not nec-
essary) to ensure that the Cohn-Heninger decoder receives the
requisite number of noisy codewords having uncorrelated er-
ror syndromes. (Although the client receives s codewords in
its response from each server, the syndromes within a given re-
sponse may be correlated, even when the client employs Devet
et al.’s randomization procedure.) Fortunately, the m requests
can be arbitrary and so a client that already seeks m or more
blocks obtains the robustness bound quoted in Definition 2
without any overhead from the decoder. A client seeking fewer
than m blocks could minimize the overhead, for instance, by
crafting m − 1 “robustness” queries in which all but the first
component of the share vector is set to zero.

Theorems 1 and 2 together imply that the u -ary IT-PIR
construction described in the preceding two subsections is a t -

4 If the client does not randomize queries as described above, then a
coalition of Byzantine servers can introduce correlated error terms to foil
the Cohn-Heninger decoder. In this case, clients may still use a list decoding
algorithm, such as Guruswami-Sudan [33], to correctly decode when up
to v < k −

√
k (t + u − 1) servers are Byzantine.

private v -Byzantine-robustu -ary (k, ℓ)-server IT-PIR protocol
for any u ≤ |F| − ℓ, k ≥ t +u and v < k −t −u . Observation 3
characterizes the communication and computation costs of the
u -ary IT-PIR construction.

Observation 3. The costs to fetch a block using a t -private
query over the u -ary encoding of D ∈ Fr ×s are as follows:
- Query preparation: The client performs (t + 1)⌈r /u⌉ mul-

tiplications and (t − 1)⌈r /u⌉ + 1 additions in F per server
(preparing randomized share vectors, using Horner’s method
to evaluate the secret sharing polynomials);

- Query transmission: The client sends ⌈r /u⌉ field elements
(a share vector in F ⌈r/u⌉) to each of ℓ servers;

- Query processing: Each responding server performs ⌈r /u⌉s
multiplications and (⌈r /u⌉ − 1)s additions in F (a vector-
matrix multiplication);

- Response transmission: Each responding server sends s field
elements (a share vector in Fs ) to the client; and

- Reconstruction: The client performs 2s k multiplications
and (s − 1)k additions in F to derandomize and interpolate
through the responses (assuming the appropriate Lagrange
coefficients have been precomputed).

Notably, the upstream communication cost and server-side
computation cost to query a u -ary encoding of D are both
about a factor u lower than in the baseline protocol.

Finally, we note that fixing u = 1 yields Goldberg’s basic
protocol and that, for any u > 1, the server-side storage cost
for a u -ary bucket of D is a factor u lower than that of storing D
itself, as each server must do in the baseline protocol.

4 Ramp scheme constructions as
batch codes

The q-batch queries and u -ary encodings respectively dis-
cussed in Sections 2 and 3 are both closely related to batch
codes, which were introduced by Ishai, Kushilevitz, Ostrovsky,
and Sahai [36] as a way to reduce the server-side computation
cost of PIR in cases where clients wish to fetch several blocks
at once. This section explores that connection in detail.

Batch codes
We first recall the definition of a batch code. The definition we
state below differs from the original one given by Ishai et al.
in three respects: (i) we have adapted the notation to match the
notation we use in our IT-PIR constructions, (ii) our definition
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refers to database blocks rather than the individual words (or
symbols) that comprise the database, and (iii) we speak of
querying buckets (using IT-PIR queries) rather than probing
(or “reading from”) buckets. The latter distinction is important,
as it allows us to consider batch codes that incorporate some
level of robustness to handle cases in which some of the servers
are Byzantine, returning faulty responses to queries over the
buckets they hold.

Definition (Batch codes; Ishai et al [36, Definition 2.1]).
An (r ,R, q, n,m )-batch code over F encodes a database
D ∈ Fr ×s into an n -tuple of buckets in F ⌈R/n⌉ ×s in such a
way that a client can obtain any subset of q blocks from D by
querying each bucket (at most) m times.5

As each bucket in an (r ,R, q, n,m )-batch code comprises
⌈R/n⌉ × s field elements, the aggregate storage cost for the
n buckets is n ⌈R/n⌉s ≈ Rs field elements, in contrast to the
r s field elements required to store the “default” plaintext en-
coding of D. The ratio r /R is called the information rate of
the batch code. A simple information-theoretic argument es-
tablishes that the information rate of any batch code can be at
most 1. Viewing r , q, and n as given (fixed) parameters, batch
codes seek to minimize R and m —thereby maximizing the
information rate and minimizing the upstream communication
cost and computation cost that must be incurred for a client
to fetch a batch of q blocks by issuing PIR queries over the
buckets.

Existing batch codes bucketize the database “vertically”;
that is, when using the batch code to encode a database over
which to perform IT-PIR, each server needs to hold a replica
of all n buckets, and clients must query each server at all n
buckets in order to fetch a batch of q blocks. Employing such
vertical batch codes in Goldberg’s protocol therefore reduces
upstream communication cost and server-side computation cost
(relative to having the client sequentially issue q single-block
queries) if and only if mR < qr , and it reduces the downstream
communication cost if and only if nm < q. A review of batch
codes in the literature reveals that all existing codes have q < n
and m = 1; thus, while running Goldberg’s IT-PIR atop existing
batch codes may lead to reduced upstream communication cost
and server-side computation costs, it does so at the expense
of increasing the downstream communication and server-side
storage costs.

5 More generally, each bucket can have a different number of rows (in
which case we require that the number of rows across all buckets merely
sums to R); however, all constructions of which we are aware (including
the ones presented herein) have uniform-sized buckets that each comprise
⌈R/n⌉ rows, as in the above definition.

Ramp constructions as ‘degenerate’ batch codes
One can view q-batch queries and the u -ary encoding re-
spectively as (r , r ℓ, q, ℓ, 1)- and (r , ⌈r ℓ/u ⌉, 1, ℓ, 1)-batch codes.
Both of these codes are in some sense “degenerate”. Specifi-
cally, q-batch queries are degenerate as a batch code because
no actual “coding” happens to the database—each bucket
is simply a replica of D and, therefore, the information rate
r s/(r s ℓ) = 1/ℓ is inversely proportional to the number of
buckets. Although this information rate is essentially pessimal,
q-batch queries bucketize the database “horizontally” so that
each server holds just one of the ℓ buckets; hence, the aggre-
gate storage cost among all servers matches the theoretical
lower bound for the storage cost of any vertical batch code.
Likewise, the u -ary encoding is degenerate as a batch code
because (essentially) no coding happens to the queries—each
query is just a slightly modified standard, non-batch query with
which clients can only fetch batches of size q = 1. Nonethe-
less, as with q-batch queries, the u -ary encoding bucketizes
the database horizontally, which yields an information rate of
r s/⌈r ℓ/u ⌉s ≈ u/ℓ; hence, the aggregate storage cost across
all servers is a factor u smaller than the theoretical lower bound
for the storage cost of any vertical batch code.

Ramp constructions as ‘robust’ batch codes
In the preceding subsection, we observed that one can
view q-batch queries and the u -ary encoding respectively
as (r , r ℓ, q, ℓ, 1)- and (r , ⌈r ℓ/u ⌉, 1, ℓ, 1)-batch codes. An in-
teresting property of these batch codes is that they provide
for some degree of Byzantine robustness (the level of which
is determined by the list decoding bound for Reed-Solomon
codes). If the client in these two codes instead queries each
bucket mq = ℓ − t − q and mu = ℓ − t − u times, respec-
tively, and then uses Cohn-Heninger multi-polynomial decod-
ing to interpret the responses, we obtain (r , r ℓ, qmq, ℓ,mq)- and
(r , ⌈r ℓ/u ⌉,mu , ℓ,mu )-batch codes providing the theoretically
optimal level of robustness.

5 Non-degenerate batch codes from
ramp schemes

In this section, we turn our attention to the final construction of
the paper: a new, horizontally bucketized (r , ⌈r ℓ/u ⌉, q, ℓ, 1)-
batch code constructed from the Shamir ramp scheme. The
new construction amalgamates (slightly modified versions of)
q-batch queries and the u -ary encoding to obtain a novel
(r , ⌈r ℓ/u ⌉, q, ℓ, 1)-batch code with which clients can fetch
q ≥ 1 blocks at a factor 1/u of the cost of fetching a single block
using a non-batch query over an unencoded database.
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Note that a “direct” composition of q-batch queries with
the u -ary encoding fails to produce the desired batch code,
as such a composition only permits clients to fetch a subset
of the possible size-q batches. The reason for this is that the
u -ary encoding requires clients to encode basis vectors at very
specific x-coordinates within the ramp scheme polynomials. In
particular, if two blocks are encoded at the same x-coordinate in
the u -ary buckets—that is, if their block indices are congruent
modulo u —then constructing a q-batch query to fetch any
batch that contains these two blocks is not possible.

Example. Suppose q = 2 and consider how the client might
encode a q-batch query to fetch a pair of blocks, say D⃗i1 and D⃗i2

with i1 = u iQ1
+ iR1

and i2 = u iQ2
+ iR2

, from a u -ary encoding of
D. On one hand, if i1 . i2 mod u so that iR1

, iR2
, then encoding

a 2-batch query for the desired blocks is straightforward and
the client’s query will succeed. (Indeed, to construct its query
vector, the client merely interpolates through e⃗iQ1

at x = iR1
,

through e⃗iQ2
at x = iR2

, and through t uniform random vectors at
t additional x-coordinates.) On the other hand, if i1 ≡ i2 mod u
so that iR1

= iR2
, then the client finds itself in the impossible

situation of having to interpolate through two distinct basis
vectors, e⃗iQ1

and e⃗iQ2
, at the same input x = iR1

= iR2
within

the ramp-scheme polynomials that comprise its query vector.
Thus, it is impossible to retrieve a fraction 1/u of all size-2
batches using a single 2-batch query.

For the general case of q > 1 and u > 1 (or even u + τ > 1),
an analogous argument shows that it is not possible to encode
a q-batch query for any D⃗i1, . . . D⃗iq in which ij ≡ ik mod u for
some pair j , k.6 Fortunately, a simple modification to q-batch
queries and the u -ary encoding allows them to be composed in
a way that does allow clients to issue arbitrary q-batch queries
over a u -ary database, for any q ≥ 1 and u ≥ 1.7 Briefly,
the fix is to modify the u -ary encoding to encode all blocks
D⃗i at pairwise distinct x-coordinates within the ramp scheme
polynomials (i.e., to encode each block at an x-coordinate that
is not used to encode any of the r − 1 other blocks in any of
the ⌈r /u⌉ polynomials). Encoding each block at a distinct x-
coordinate overcomes the problem described above by ensuring
that, no matter which batch the client seeks, no two blocks in
that batch will require the client to interpolate its query vector
through two different basis vectors at a single x-coordinate; as
a tradeoff, this fix necessitates a somewhat larger field size, a
subtle point to which we return at the end of this section.

6 One consequence of this fact, which was apparently overlooked by
Henry et al., is that it is not possible to issue any q-batch query over a
τ-independent database in Goldberg’s basic protocol, since in this case
u = 1 and all blocks are encoded in (τ + 1, ℓ)-threshold shares at x = 0.
7 Indeed, the proposed modification enables clients to issue arbitrary q-
batch queries over τ-independent u -ary databases, for any τ ≥ 0 and
u ≥ 1.

Encoding the database
We now describe how to encode D ∈ Fr ×s using (1,u, ℓ)-
ramp shares in such a way that clients can issue arbitrary q-
batch queries over the encoded database. We refer to such an
encoding of D as a u -ary batch encoding of D and to u as the
arity of the batch encoding. As before, we assume (purely for
ease of exposition) that u | r .

The u -ary batch encoding is nearly identical to the u -ary
encoding from Section 3, with the only difference being the
x-coordinate at which each block gets encoded in the ramp
shares. In particular, as the goal of the encoding is to retain the
benefits of the u -ary encoding while ensuring that no size-q
batch of blocks “collides” at an x-coordinate, the encoding is
modified to ensure that every block in D is encoded at a distinct
x-coordinate in the (1,u, ℓ)-ramp shares that represent D. The
most natural way to do this is to encode the components of
each block D⃗i in the appropriate ramp-scheme polynomial at
the input x = i. Thus the u -ary batch encoding procedure for a
database D ∈ Fr ×s is as follows. First, rewrite D as

D =




D̃0

D̃1

...

D̃⌈r/u⌉-1




∈
(
Fu ×s ) ⌈r/u⌉ ×1,

with each submatrix D̃i residing in Fu ×s . Next, for each
i = 0, . . . , ⌈r /u⌉ − 1, use polynomial interpolation to find
the (unique) length-s vector of degree-(u − 1) polynomi-
als d⃗i = ⟨di0(x), di1(x), · · · , di(s -1) (x)⟩ ∈

(
F[x]
)s such that

dik (u i + h) is equal to the component in position (h, k) of D̃i

for every k = 0, . . . , s − 1 and every h = 0, . . . ,u − 1.
Let x1, . . . , xℓ be an arbitrary sequence of ℓ pairwise dis-

tinct scalars fromF\{0, . . . , r−1}. The setup algorithm provides
each of the ℓ database servers with a bucket obtained by evalu-
ating the above ramp-share vectors component-wise at one of
the xi . In particular, server Sj holds the ⌈r /u⌉ × s matrix of
ramp shares

D(u )(x j ) B




d⃗0(xj)

d⃗1(xj)

...

d⃗
⌈r/u⌉-1(xj)




=




d00(xj) · · · d(0s -1) (xj)

d10(xj) · · · d1(s -1) (xj)

...
. . .

...

d(⌈r/u⌉-1)0(xj) · · · d(⌈r/u⌉-1)(s -1)(xj)




,

called the xj th u -ary batch bucket of D.
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Encoding a q-batch query
We now describe how the client constructs a t -private q-batch
query to fetch blocks D⃗i1, . . . , D⃗iq from a u -ary batch encoding
of D. The query construction is a direct modification of Henry
et al.’s q-batch queries, with the key differences being the vector
length and the x-coordinates at which the client encodes the
basis vectors in the ramp shares.

The query algorithm for a size-q batch of (pairwise dis-
tinct) blocks D⃗i1, . . . , D⃗iq works as follows. For each k =
1, . . . , q, let iQk

= ⌊ik/u ⌋ denote the quotient obtained upon di-
viding ik by u and let e⃗iQk

denote the iQk
th standard basis vector

fromF ⌈r/u⌉ . The client chooses a length-⌈r /u⌉ vector of degree-
(t + q − 1) polynomials f⃗ ∈

(
F[x]
) ⌈r/u⌉ uniformly at random

subject to f⃗ (ik ) = e⃗iQk
for each k = 1, . . . , q, where f⃗ (ik ) de-

notes the component-wise evaluation of the polynomials com-
prising f⃗ at the input x = ik . For each server S1, . . . , Sℓ , respec-
tively holding u -ary batch buckets D(u ) (x1), . . . ,D(u ) (xℓ ) of D,
the client sends the length-⌈r /u⌉ vector of shares f⃗ (xj) ∈ F

⌈r/u⌉

to server Sj.
The answer algorithm does not change: each server Sj

simply responds with the vector-matrix product R⃗(xj) B
f⃗ (xj) · D(u ) (xj). The reconstruction algorithm recovers the
blocks D⃗i1, . . . , D⃗iq from any k ≥ t+q+u−1 responses via poly-
nomial interpolation at the sequence of inputs x = i1, . . . , iq .
Specifically, to obtain block D⃗im it computes:

k∑
j=1

R⃗(xj)
k∏

h=1
h, j

(
im − xh

) (
xj − xh

)−1

=

k∑
j=1

f⃗ (xj) · D
(u ) (xj)

k∏
h=1
h, j

(
im − xh

) (
xj − xh

)−1

=

k∑
j=1

( ⌈r/u⌉∑
n=1

fn(xj) · D⃗
(u )
n (xj)

k∏
h=1
h, j

(
im − xh

) (
xj − xh

)−1)
=

⌈r/u⌉∑
n=1

( k∑
j=1

fn(xj) · D⃗
(u )
n (xj)

k∏
h=1
h, j

(
im − xh

) (
xj − xh

)−1)
=

⌈r/u⌉∑
n=1

fn(im) · D⃗(u )
n (im)

= e⃗iQm
· D⃗(u ) (im)

= D⃗(u )
iQm

(im)

= D⃗im .

Note that the servers process a query by multiplying y-
coordinates of points on degree-(t + q − 1) polynomials by
those on degree-(u − 1) polynomials; thus, the responses are
vectors whose components are y-coordinates on polynomials
of degree t + q + u − 2 so that k ≥ t + q + u − 1 responses
indeed suffice to perform the above interpolation. The resulting
protocol is therefore a (k, ℓ)-server IT-PIR protocol for any
k ≥ t + q + u − 1.

Analysis
Theorem 3 characterizes the security of the construction for q-
batch IT-PIR queries over a u -ary batch database, as described
in the preceding two subsections. It parallels Theorem 1 for the
u -ary encoding, following from the restriction that x1, . . . , xℓ <
{0, . . . , r − 1}. Its proof is almost identical to the proof of The-
orem 1 and is therefore omitted.

Theorem 3. In the construction for q-batch IT-PIR queries
over a u -ary batch database D described in the preceding two
subsections, no coalition of up to t database servers, holding
buckets D(u ) (xj1 ), . . . ,D(u ) (xjt ) with xj1, . . . , x jt

< {0, . . . , r−1},
can deduce any information about the requested block indices
i1, . . . , iq; that is, the q-batch queries are t -private.

Theorem 4 characterizes the Byzantine robustness of t -private
q-batch queries over a u -ary batch database. Like Theorem 2,
it follows immediately from the decoding bound for Devet et
al.’s variant of Cohn-Heninger multi-polynomial decoding [22,
Algorithm 1] and the observation that the clients must interpo-
late polynomials of degree t + q+u − 2 in order to reconstruct
a batch of blocks D⃗i1, . . . , D⃗iq . As with Theorem 2, it assumes
that the client employs Devet et al.’s query randomization strat-
egy to force randomness and independence in the error terms
returned by Byzantine servers.

Theorem 4. In the construction for q-batch IT-PIR queries
over a u -ary batch database described in the preceding two
subsections (with the randomization procedure described in
Section 3 in place), suppose that the servers holding k-out-of-
ℓ buckets respond to a client’s query for blocks D⃗i1, . . . , D⃗iq ,
and that v < k − t − q − u + 1 of these servers are Byzantine.
Then the client can, with high probability, correctly reconstruct
D⃗i1, . . . , D⃗iq after issuing at most m =

⌈ v
k−v−t−q−u+1

⌉
≤ v

queries to each bucket.

Theorems 3 and 4 together imply that the new construction for
q-batch IT-PIR queries over a u -ary batch database yields a
t -private v -Byzantine-robust u -ary q-batch (k, ℓ)-server IT-
PIR protocol for any u ≥ 1, q ≥ 1, k ≥ t + u + q − 1
and v < k − t − q − u + 1. Observation 4 characterizes the
communication and computation costs of this q-batch u -ary
IT-PIR construction.

Observation 4. The costs to fetch a block using a t -private
q-batch query over the u -ary batch encoding of D ∈ Fr ×s are
as follows:
- Query preparation: The client performs (t + q)⌈r /u⌉ multi-

plications and (t + q − 2)⌈r /u⌉ + 1 additions in F per server
(preparing randomized share vectors, using Horner’s method
to evaluate the ramp scheme polynomials);
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- Query transmission: The client sends ⌈r /u⌉ field elements
(a share vector in F ⌈r/u⌉) to each of ℓ servers;

- Query processing: Each responding server performs ⌈r /u⌉s
multiplications and (⌈r /u⌉ − 1)s additions in F (a vector-
matrix multiplication);

- Response transmission: Each responding server sends s field
elements (a share vector in Fs ) to the client; and

- Reconstruction: The client performs (q + 1)s k multipli-
cations and q(s − 1)k additions in F to derandomize and
interpolate through the responses (assuming the appropriate
Lagrange coefficients have been precomputed).

Notably, the upstream communication and server-side compu-
tation costs to fetch q blocks from a u -ary batch encoding of D
are both a factor qu lower, and the downstream communication
cost is a factor q lower, than in the baseline protocol.

Finally, we note that fixing u = q = 1 yields Goldberg’s
basic protocol and that, as with the u -ary encoding, the server-
side storage cost for a u -ary batch bucket of D is a factor u
lower than that of storing D itself, as each server must do in
the baseline protocol.

A note on the field size
One consequence of the new q-batch u -ary IT-PIR approach
warrants some additional discussion; namely, that the liberal
use of x-coordinates at which clients must encode basis vectors
necessitates working in a field F of size at least r + ℓ. Such a
dependence of the field size on the number of database blocks
is not a common feature of IT-PIR protocols (the dependence
on ℓ is, of course, common to all schemes based on polynomial
interpolation). In our case, the need to have |F| ≥ r + ℓ follows
because a request for block D⃗i must be encoded in a polynomial
at the input x = i (thus “exhausting” the x-coordinates x =
0, . . . , r −1) and because each of the servers must hold a distinct
u -ary batch bucket indexed by some x < {0, . . . , r −1}.

Although the requirement to work in a field of (relatively)
large order is not a major restriction, it does have some ramifica-
tions for the computational efficiency of the protocol. Specif-
ically, we note that finite field arithmetic is fastest in fields
with small order. Moreover, Percy++ [30]—the open-source
implementation of Goldberg’s IT-PIR protocol into which we
have incorporated our constructions—includes very fast, hand-
tuned implementations for arithmetic in two binary fields,
GF(28) and GF(216). Arithmetic in these small binary fields
is incredibly fast, owing to the fact that additions and multi-
plications have been implemented as simple XOR operations
and fast lookups in hard-coded multiplication tables.8 Unfortu-

8 In fact, recent x86 CPUs have instructions for GF(2x ) arithmetic through
the Carryless Multiplication (CLMUL) instruction set, though Percy++
does not currently make use of these.

nately, GF(28) and GF(216) have just 256 and 65 536 elements,
respectively, and can therefore support q-batch queries only
over u -ary databases with a very small number of blocks.9 Our
experiments indicate that Percy++ can process PIR queries over
GF(28) and GF(216) at over 450× and 120× the rates at which it
can process queries in the almost-identically-sized fields of in-
tegers modulo 257 and 65537. Arithmetic in GF(28) in partic-
ular is, far and away, the fastest mode of operation for Percy++,
requiring just over 900 ms (of single-threaded CPU time) per
GB of database on our test server (see Section 6).

The slowdown from moving to a field of large prime order
is nowhere near as dramatic as the 450× slowdown observed
when moving from GF(28) to the field of integers modulo 257.
Indeed, increasing the field size simultaneously decreases the
number of words needed to represent each database block; thus,
while the computation cost per arithmetic operation increases,
the total number of arithmetic operations each server must
perform decreases. In our experiments, we observed that the
computation cost to process a query continues to decline as the
field size increases up to around 1024 bits, after which perfor-
mance begins to slowly degrade (presumably due to limitations
in the architecture). Still, the slowdown we observe switching
from GF(28) to a 1024-bit prime was about 120×.

Of course, the performance comparisons we have dis-
cussed so far are not apples-to-apples: we are comparing heav-
ily optimized GF(28) arithmetic with arithmetic performed by
a general-purpose implementation (specifically, Victor Shoup’s
NTL library [49] backed by the GNU Multi-Precision li-
brary [26]). As part of prior work [35], we wrote a hand-tuned
implementation for arithmetic in a particular finite field with
160-bit prime order, and we incorporated this implementation
into version 0.8 of Percy++.10 We feel confident in asserting
that a 160-bit upper bound on r + ℓ is not at all restrictive, even
for the largest conceivable databases. Our experiments indicate
that the rate at which Percy++ can process PIR queries over
this 160-bit field is only about a factor 1.36× slower than over
GF(28) and is, in fact, a factor 1.5× faster than over GF(216);
hence, even for u = 2, we can expect notable speedups relative
to (1-ary) queries over GF(28), and our experiments in the next
section bare out this prediction.

9 Indeed, the restriction r + ℓ ≤ 256 seems to preclude the use of GF(28)
for most interesting applications. The restriction r + ℓ ≤ 65 536 is much
less severe and may be acceptable for some compelling applications, such
as speeding up a recently proposed Netflix-inspired private video streaming
service [32] that needs only support up to a few tens of thousands of titles.
10 This functionality was deprecated in version 1.0, the most recent stable
release of Percy++. The choice of 160-bit prime order was intended to
strike a balance between performance and the hardness of certain number-
theoretic problems; however, 160 bits no longer provides adequate security
for such computational problems and the fast arithmetic code therefore fell
into a state of disrepair. As we do not require any computational hardness
assumptions, we have revived this old code for our experiments in order to
take advantage of its ample size and superior performance relative to other
prime moduli.
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6 Implementation and performance
evaluation

The u -ary encoding and u -ary batch encodings introduced in
this paper have been implemented in the development branch
of Percy++ [30], an open-source implementation of Goldberg’s
PIR protocol in C++, and will be available in the next major
Percy++ release (tentatively slated for late 2016).

We ran a series of experiments to see how well the em-
pirical performance improvements due to the new encodings
agree with our theoretical predictions.

Experimental setup
The client-side measurements were performed on the author’s
desktop in a VirtualBox VM running Ubuntu 16.04 (on a Win-
dows 8.1 host). That machine is equipped with a quad-core
i7-4770 CPU @ 3.4 GHz and 16 GB of RAM. The server-side
measurements were performed on a remote server running Red
Hat Enterprise 6.7. That machine is equipped with an older
quad-core Xeon X5570 CPU @ 2.96 GHz and 48 GB of RAM.
For all experiments, we disabled multithreading in Percy++
(both on the client and on the server); thus, the timings reported
herein are wall-clock times for a single thread of execution. We
emphasize that all of the workloads we measure are embar-
rassingly parallelizable so that the numbers we report should
be viewed as a (very pessimistic) upper bound on the actual
running times.11

We performed 100 trials of each experiment and report
here the average over those 100 trials. We consistently ob-
served standard deviations around 1%–2% of the mean, except
in the server-side experiments using a database whose size
exceeded available RAM, in which case the standard devia-
tion was around 5%–6% of the mean. Due to this high degree
of consistency, we felt that including error bars in the graphs
added little information at the expense of much clutter; thus,
we chose to omit them.

For server-side measurements, we ran each experiment
using the fewest number of servers the parameters allowed; that
is, for a given value of u , we set t = 1 and ran the experiment
with ℓ = u+1 servers.12 Prior to running the main experiments,
we ran preliminary experiments to confirm that t , q, and ℓ have
no impact on the per-server cost; indeed, per-server running
times in our experiments usingu+1 versus 2(u+1) servers were
almost identical (with correlation R2

= 0.9999997).

11 Note that running the experiments with multithreading enabled would
reduce the actual times we report, but not the trends.
12 Of course, we could not set t = 0 as then the query vectors would
be non-uniform, which we observed to have a significant impact on the
running times.

Experiment 1: Server-side baseline
Our first experiment measures the server-side computation cost
of the baseline protocol for various database sizes up to 256 GB.
Note that the running time at the server depends mostly on the
total size of the database, not its dimensions; thus, we set r ≈ s
so that the database is approximately square. In the plot, w160
denotes the aforementioned 160-bit prime-order field.
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The plot uses a log-log scale so that the results can be
easily compared with Experiment 2, where some data points
differ by over an order of magnitude. The abrupt steepening of
the slope between 32 GB and 64 GB occurs because a 32 GB
database fits in RAM, while a 64 GB database does not.

Experiment 2: Server-side encoded
Our second experiment is similar to the first, except each server
holds a u -ary bucket of the original database. We ran the ex-
periment in w160 for each u ∈ {1, 2, 4, 6, 8}.
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For small databases that fit in RAM, the theoretically pre-
dicted factor-u speedup holds almost perfectly. When the un-
encoded database exceeds available RAM but a u -ary bucket
does not, the speedup is more pronounced; for example, the
8-ary encoding for a 256 GB database gave a 13.5× speedup
instead of the theoretically predicted 8× speedup.



Polynomial Batch Codes for Efficient IT-PIR 215

Experiment 3: Query preparation
Our third experiment measures the cost for the client to con-
struct its query. The cost to generate and evaluate each ramp-
scheme polynomial depends on t and q; the number of such
polynomials is ⌈r /u⌉; and each of the polynomials must be eval-
uated at ℓ points. The plot displays measurements for construct-
ing a query in w160 withu = 1, r = 16 000 and ℓ = 32.
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We note that (i) setting u > 1 would decrease the
above costs (by a factor u ), (ii) Percy++’s query construc-
tion code does not currently leverage preprocessing or fast
w160 arithmetic, (iii) this workload is highly parallelizable,
and (iv) ℓ = 32 seems like a large number of servers in prac-
tice; thus, the data in the plot are best viewed as extremely
pessimistic upper bounds.

Experiment 4: Query reconstruction
Our fourth experiment measures the cost for the client to re-
construct its requested blocks. The cost to interpolate each
ramp-scheme polynomial depends on the degree t + q +u − 2;
and the number of interpolations to reconstruct q blocks is s ·q.
The plot displays measurements for reconstructing a q-batch
query in w160 with ℓ = 32 and s = 200 000.
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Similar to the case of query preparation, we note that this
workload is highly parallelizable and that the reconstruction
code in Percy++ does not currently leverage fast w160 arith-
metic (it does, however, precompute the Lagrange coefficients);
thus, as with Experiment 3, the data in the plot is really a pes-
simistic upper bound.

Meta-analysis
The dimensions r = 16 000 and s = 200 000 from Experi-
ments 2 and 3 correspond to a 64 GB database of 4 MB blocks
over w160. Our “pessimistic” experiments indicate that the
combined client-side compute time over a large selection of
reasonable parameter settings for such a database never ex-
ceeds about 2.75 s, which we believe is well within the realm
of feasibility for real-world deployment.

Indeed, setting u = q = 8 and t = 16 yields a 32-server 1-
Byzantine-robust IT-PIR protocol (secure assuming an honest
majority of servers) with which the client can fetch 8 × 4 =
32 MB of data from a 64 GB database in about 0.8 + 1.3/8 +
12.5 = 13.5 total core seconds.

7 Discussion

Updating an encoded database
Most prior work in the IT-PIR literature does not explicitly ad-
dress the cost of updates to the database. Indeed, in protocols
that have each server hold a complete replica of D, the up-
date process is rather simple and uninteresting. (Nonetheless,
a fascinating line of recent work studies how clients can deal
with cases where some replicas are out of sync due to failed
or incomplete updates [25]. We could presumably adapt these
techniques to work with u -ary encoded databases, although
we do not explore that possibility here.) With u -ary encoded
databases, updates may imply (at least partial) re-encoding and
can therefore incur a much higher cost. The simplest and low-
est cost updates for an encoded database include modifying
blocks in situ and appending (or truncating) blocks at the end
of the database. These operations are trivial to implement and
need only incur overhead proportional to the size of the up-
date. Inserting or deleting a block at an arbitrary location in the
database can be much costlier, as doing so shifts the indices—
and, therefore, x-coordinates—of all subsequent blocks. In the
worst case, this could imply re-encoding every block. For ap-
plications where such insert/delete updates occur frequently,
a better strategy might involve modifying the u -ary encoding
in a way that decouples x-coordinates from block indices, and
then to provide clients with an alternative means to discover the
x-coordinate at which their desired blocks are encoded.
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Varying the numbers of servers
Our analyses in this paper follows Henry et al. in assuming
a fixed number of servers ℓ and collusion threshold t so that
increasing q or u trades off Byzantine robustness in exchange
for improved performance without any impact to privacy. An
alternative to trading off robustness would be to allow ℓ and/or
t to vary. By allowing the number of servers to grow, it is
possible to increase q and u arbitrarily; however, we are re-
luctant to recommend this approach, as its implications for
the privacy guarantees of the protocol are difficult to quantify.
Indeed, even for natural assumptions like “honest majority”,
it appears hopeless to directly compare the relative privacy
of IT-PIR protocol involving different numbers of servers—if
protocol A is a 4-private 10-server protocol and protocol B is a
49-private 100-server protocol, which provides “stronger” pri-
vacy protection? Nevertheless, it is interesting to note that the
flexibility to add additional servers enables parameter choices
that, for example, can asymptotically decrease any given cost
of interest to mere poly-logarithmic levels. This is because the
u -ary encodings provide a way to directly map an additive in-
crease in the difference ℓ−t to a multiplicative decrease in one
or more protocol costs.

More efficient fields
The performance gap between queries over the 160-bit prime-
order field and GF(28) is surprisingly narrow. Nonetheless, the
choice of a 160-bit modulus was made for an old version of
Percy++ to facilitate public key operations in an elliptic curve
group, rather than to yield the fastest IT-PIR. We re-purposed
the old modular arithmetic implementation in our experiments
because it is, in fact, quite fast and because the existence of this
code made the choice of a 160-bit prime-order field very conve-
nient; however, switching to a similarly hand-tuned implemen-
tation of arithmetic in a field whose order is a prime slightly
smaller than (perhaps a small multiple of) 64 bits (i.e., the
CPU word size) would presumably result in somewhat faster
IT-PIR on 64-bit x86 machines, while still providing ample
indices to support q-batch queries over u -ary databases com-
prising—for all practical purposes—an unbounded number of
blocks.

7.1 Summary

We have proposed new batch coding techniques that exploit
the connection between ramp schemes and IT-PIR to allow
new tradeoffs between the efficiency and robustness of Shamir-
based IT-PIR. The new techniques allow clients to fetch sev-
eral records for only a fraction the cost of fetching just one
record using a standard query over an unencoded database. The

batch codes are highly tuneable, providing a means to trade off
(i) lower server-side computation cost, (ii) lower server-side
storage cost, and/or (iii) lower uni- or bi-directional communi-
cation cost, in exchange for a comparatively modest decrease in
resilience to Byzantine database servers. We implemented the
new encodings in the open-source Percy++ library, and found
that the performance improvements they yield agree well with
our theoretical predictions.
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