
Proceedings on Privacy Enhancing Technologies ; 2016 (4):219–236

John M. Schanck*, William Whyte, and Zhenfei Zhang
Circuit-extension handshakes for Tor achieving forward
secrecy in a quantum world
Abstract: We propose a circuit extension handshake for
Tor that is forward secure against adversaries who gain
quantum computing capabilities after session negotia-
tion. In doing so, we refine the notion of an authen-
ticated and confidential channel establishment (ACCE)
protocol and define pre-quantum, transitional, and post-
quantum ACCE security. These new definitions reflect
the types of adversaries that a protocol might be de-
signed to resist. We prove that, with some small mod-
ifications, the currently deployed Tor circuit extension
handshake, ntor, provides pre-quantum ACCE security.
We then prove that our new protocol, when instantiated
with a post-quantum key encapsulation mechanism,
achieves the stronger notion of transitional ACCE se-
curity. Finally, we instantiate our protocol with NTRU-
Encrypt and provide a performance comparison between
ntor, our proposal, and the recent design of Ghosh and
Kate.

DOI 10.1515/popets-2016-0037
Received 2016-02-29; revised 2016-06-02; accepted 2016-06-02.

1 Introduction
A key exchange protocol allows two parties who share
no common secrets to agree on a common key over a
public channel. In addition to achieving this basic goal,
key exchange protocols may satisfy various secondary
properties that are deemed important to security in a
particular setting. Modern key exchange protocols typ-
ically provide one or more of the following features.
1. Authentication: If one or both parties can be

assured of their peer’s identity, the key exchange is
authenticated. The authentication is one-way in the
first case and mutual in the latter.

*Corresponding Author: John M. Schanck: Uni-
versity of Waterloo and Security Innovation, email:
jschanck@securityinnovation.com
William Whyte: Security Innovation, email:
wwhyte@securityinnovation.com
Zhenfei Zhang: Security Innovation, email:
zzhang@securityinnovation.com

2. Anonymity: Some one-way authenticated key ex-
change protocols, such as ntor [13], guarantee that
the unauthenticated peer does not reveal their iden-
tity just by participating in the protocol. Such pro-
tocols are deemed one-way anonymous.

3. Forward Secrecy: A protocol provides forward
secrecy if the compromise of a party’s long-term
key material does not affect the secrecy of session
keys negotiated prior to the compromise. Forward
secrecy is typically achieved by mixing long-term
key material with ephemeral keys that are discarded
as soon as the session has been established.

Forward secret protocols are a particularly effective tool
for resisting mass surveillance as they resist a broad
class of harvest-then-decrypt attacks. In a harvest-then-
decrypt attack a passive adversary records ciphertexts
in the present with the hope of acquiring new decryp-
tion capabilities in the future. Without forward secrecy
any number of non-cryptanalytic attacks may lead to a
loss of confidentiality. For example, a server’s long-term
key may be compromised by a hacker or subpoenaed
by a court. With forward secrecy, the only way that a
passive adversary can learn a session key that was ne-
gotiated pre-compromise is through cryptanalysis. For
some applications, this makes forward secrecy an essen-
tial requirement.

Unfortunately, all of the key exchange protocols
in widespread deployment are vulnerable to quantum
cryptanalysis. A reasonable case could therefore be
made that the use of post-quantum primitives is a pre-
requisite for forward secrecy.
4. Post-quantum security: A cryptographic prim-

itive or protocol is deemed post-quantum if it is se-
cure against adversaries that can perform polyno-
mial time quantum computations.

Primitives based on the hardness of discrete logarithms
(Diffie-Hellman, ECDH, DSA, ECDSA) and integer fac-
torization (RSA) can be broken in quantum polynomial
time using Fourier sampling techniques [6, 29]. There
are, however, a number of primitives that are believed to
resist quantum adversaries, and these could be used to
construct post-quantum, forward secure, authenticated
key exchange.

Recent announcements by NSA [10] and NIST [9]
have made it clear that government users are seriously
considering migrating to post-quantum cryptography in

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 220

the near future. The exact migration path remains un-
clear, but several factors may slow the transition to
post-quantum algorithms, e.g.
1. low confidence in the security of new primitives,
2. low confidence in the reliability of new implementa-

tions,
3. the need for compliance with existing standards,

and
4. difficulty integrating new primitives into existing

protocols and public key infrastructures.
The first three issues may be addressed by “hybridizing”
well-established and post-quantum systems. For exam-
ple, recent work on integrating Ring-LWE into TLS con-
sidered a ciphersuite that performs a Ring-LWE key ex-
change in parallel with an ECDH key exchange [7]. If an
attack is found on the Ring-LWE parameter set, or its
implementation, the proposed ciphersuite maintains all
of the security that would have been provided by ECDH
on its own.

The fourth issue may be addressed, partially, by
upgrading to post-quantum primitives only where it is
absolutely necessary. The TLS ciphersuites of [7], as
well as the Tor circuit extension handshakes of [12] and
the present work, forego post-quantum authentication
mechanisms because they deem such mechanisms to be
unnecessary in the short term. These protocols cannot
defend against adversaries with quantum capabilities at
the time of session negotiation. They are, however, se-
cure against adversaries who gain quantum computing
capabilities sometime after session negotiation. This is
a useful class of adversaries to defend against, and we
believe that this class accurately represents adversaries
in the real world today.

We will say that a protocol provides transitional
security if it provides pre-quantum authentication and
post-quantum confidentiality. Such protocols are safe to
use in the current transitional period between the pre-
and post-quantum settings.

Pre-quantum, transitional, and post-quantum secu-
rity must be defined with respect to a specific security
experiment in order to be meaningful. The exact sense
in which we will use these terms is provided by Defini-
tions 2.7, 2.8, and 2.9.

1.1 Our contribution

The ntor protocol [13] is a forward secret, one-way au-
thenticated key exchange protocol that has been de-
ployed in Tor since version 0.2.4.8-alpha [23]. It relies
on ephemeral ECDH keys for forward secrecy and, con-

sequently, is vulnerable to harvest-and-decrypt attacks
involving quantum adversaries.

We show how to incorporate a secondary key en-
capsulation mechanism (KEM) into the ntor protocol
to strengthen its resistance to harvest-and-decrypt at-
tacks. We describe a modular protocol, hybrid, in Sec-
tion 3 that allows for the incorporation of zero or more
KEMs.

Inspired by recent work on the provable security of
TLS and SSH ciphersuites as-standardized [2, 18, 21],
we give proofs in the authenticated and confiden-
tial channel establishment (ACCE) model. The ACCE
model was introduced in [18]; we review the ACCE
model in Section 2 before refining it with notions of pre-
quantum, transitional, and post-quantum ACCE secu-
rity (Definitions 2.7, 2.8, and 2.9). These ACCE vari-
ants reflect the types of adversaries that a protocol
is designed to resist. A pre-quantum ACCE protocol
provides pre-quantum authentication and pre-quantum
confidentiality. A transitional ACCE protocol provides
pre-quantum authentication and post-quantum confi-
dentiality. A post-quantum ACCE protocol provides
post-quantum authentication and post-quantum confi-
dentiality.

We prove that hybrid, with zero additional KEMs,
is a pre-quantum ACCE protocol. With zero KEMs hy-
brid is essentially the same as ntor. We describe the dif-
ferences in Section 3.2; the modifications allow us to
prove the security of hybrid under slightly weaker as-
sumptions than were employed in the proof of security
for ntor in [13].

We then prove that hybrid with one post-quantum
KEM is a transitional ACCE protocol. More specifically,
we show that an adversary’s advantage in violating the
channel security of hybrid is a function of its minimal
advantage against either the Diffie-Hellman primitive
or the secondary KEM.

Finally, we provide a concrete instantiation of our
protocol with a single additional NTRUEncrypt-based
KEM. Based on the conjectured post-quantum secu-
rity of NTRUEncrypt we claim that this instantiation
is transitionally secure. We provide an implementation
and performance figures for this instantiation, and com-
pare it with recent work [12] based on Ring-LWE.

We summarize the performance comparison be-
tween the legacy Tor handshake (tap), the current Tor
handshake (ntor), our protocol (hybrid), and the pro-
posal of Ghosh-Kate in Table 1.1. We discuss the per-
formance results in Section 5.

We make this proposal for two reasons. First, we
believe it to be an interesting case study into the prac-

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 221

ticality of post-quantum cryptography and into the diffi-
culties one might encounter when transitioning to post-
quantum primitives within real-world protocols and
code-bases. Second, we believe that Tor is a strong can-
didate for an early transition to post-quantum primi-
tives. Users of Tor may be justifiably concerned about
adversaries who record traffic in the present and store
it for decryption when technology or cryptanalytic tech-
niques improve.

1.2 Related work

The ntor protocol was analyzed in a variant of the ex-
tended Canetti-Krawczyk (eCK) model with support for
one-way authentication [13]. The proof of security relies
on the Gap Diffie-Hellman assumption and makes ex-
tensive use of random oracles.

Ghosh and Kate [12] propose a transitionally se-
cure circuit extension handshake for Tor that relies on
Ring-LWE for its forward secrecy against post-quantum
adversaries. Their proof is in the same one-way authen-
ticated key exchange model used in [13], and makes simi-
lar assumptions. There are a number of significant differ-
ences between their work and ours beyond the security
model. In particular their protocol does not “fall back”
to ntor in the event that Ring-LWE is found to be com-
pletely insecure. Specifically, if Ring-LWE is found to
be insecure against pre-quantum adversaries, then the
protocol of [12] fails to provide forward secrecy against
pre-quantum adversaries. The protocols also differ sig-
nificantly in their key derivation methods. On the posi-
tive side, their protocol is quite likely to be faster than
ours as it performs fewer Diffie-Hellman operations.

Bos, Costello, Naehrig, and Stebila have proposed
transitionally secure ciphersuites for TLS based on
signed Ring-LWE [7]. The same work proposes hybrid
ciphersuites that incorporate both elliptic curve Diffie-
Hellman and Ring-LWE shares. The security of the
signed Ring-LWE ciphersuites is proven in the ACCE
framework, however no proof is given for the hybrid ci-
phersuites.

1.3 Notation

We distinguish objects by typeface: algorithms A and
oracles O, Primitives and protocols, sets E, ordered sets
~E, groups G, and strings. Sampling uniformly from a
set is denoted x $←− S. Assignment from a function f(·),
even if f is randomized, is denoted x = f(y). Persis-

tent program state will be denoted by Greek letters, in
particular π. Assignment to a persistent variable within
a given persistent state π is written π.x = y. We will
access persistent state by writing x rather than π.x pro-
vided that doing so is completely unambiguous.

2 Security model
The authenticated and confidential channel establish-
ment (ACCE) model was proposed by Jager, Kohlar,
Schäge, and Schwenk to prove the security of TLS with
signed ephemeral Diffie-Hellman ciphersuites and mu-
tual authentication [18]. The model has been success-
fully extended to yield proofs of security for a vari-
ety of real-world protocols. Extensions to more com-
mon setting of one-way, server-only, authentication were
provided by Kohlar, Schäge, and Schwenk [19], and
by Krawczyk, Paterson, and Wee [21]. The server-only
ACCE model was later used by Bos, Costello, Naehrig,
and Stebila to prove the security of Ring-LWE based
TLS ciphersuites [7].

2.1 Security definitions

An ACCE protocol is a two-party secure communition
protocol consisting of two phases. In the first phase,
the pre-accept phase, the parties exchange a key. In the
post-accept phase the parties use the key to exchange
messages encrypted with an authenticated encryption
scheme.

The ACCE execution environment allows us to
model the concurrent execution of one or more protocols
by multiple parties. The environment involves nP par-
ties, P = {Pi : i ∈ {1, . . . , nP }}, each of whom may be
involved in at most nS sessions. The s-th session involv-
ing party i is modeled by a stateful session oracle πsi .
We refer to both the oracle and its collection of internal
state as πsi . The internal state kept by these oracles is
as follows:

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 222

tap ntor hybrid Ghosh-Kate

da
ta client → server bytes 186 84 693 1312

server → client bytes 148 64 673 1376

co
m
pu

ta
tio

n client init 258µs 84µs 661µs 150µs∗

server response 682µs† 263µs 306µs 150µs∗

client finish 233µs 180µs 218µs 150µs∗

total 1173µs 527µs 1185µs 450µs∗

% client 42% 50% 74% 67%

Table 1.1. Performance comparison of tap, ntor, hybrid, and Ghosh-Kate. The hybrid protocol was instantiated as in Section 5 with
ntruees443ep1.
† The tap benchmark reports two cases, this is the “guessed right” case. The other value was 890µs.
∗ Estimates from [12]. Assumes 100µs per Diffie-Hellman group operation and 50µs for one multiplication and one addition in the
R-LWE ring. All other costs, such as sampling the R-LWE secrets, are ignored.

Definition 2.1 (Per-session variables [2]). Let πsi denote
the following collection of per-session variables:
• ρ ∈ {init, resp}: The party’s role in this session.
• pid ∈ {1, . . . , nP ,⊥}: The identifier of the alleged
peer for this session, or ⊥ for an unauthenticated
peer.

• α ∈ {in-progress, reject, accept}: The status.
• K: A session key, or ⊥ if a key has not been nego-
tiated. Note that K may consist of several concate-
nated sub-keys.

• sid: A session identifier defined by the protocol.
• ste, std: State for the stateful authenticated encryp-
tion and decryption algorithms.

• Any additional state specific to the protocol.
• Any additional state specific to the security experi-
ment.

The state of all nPnS session oracles is initially uninitial-
ized with the exception of a random bit, πsi .b

$←− {0, 1},
that is required by the security experiment.

All interaction between the session oracles is medi-
ated by an oracle, C, called the challenger. The chal-
lenger has a global view of the execution environment
and may manipulate the state of session oracles. The
following queries to C are allowed.
• Send(πsi ,m) → m′. Causes the oracle πsi to execute
the next routine of its handshake protocol with in-
put m. The input m may be a special initializa-
tion string that specifies the protocol, the role, and
(optionally) a peer identifier. In this case πsi sets
πsi .ρ and πsi .pid accordingly. Otherwise πsi processes
the message in accordance with the protocol speci-
fication, updates its internal state, and (optionally)
outputs an outgoing message m′. Note that if πsi
has reached the accept or reject state then it will
return ⊥ to any Send query issued.

• Reveal(πsi) → πsi .K. Returns the session key πsi .K

if it is initialized, otherwise ⊥. Note that πsi .K is
initialized iff πsi .α = accept.

• Corrupt(Pi) → sk. Returns the long-term secret of
party Pi. This may allow the adversary to simulate
Pi by forging Send queries.

• Encrypt(πsi ,m0,m1, len, H)→ C or ⊥. If the session
key πsi .K is initialized then this query causes the or-
acle πsi to encrypt a message under its session key.
Otherwise the oracle returns ⊥. The exact behavior
may be found in Algorithm 2.1, but this depends
on the specifics of the security experiment (Section
2.2) and the definition of stateful length-hiding au-
thenticated encryption (Section 2.7).

• Decrypt(πsi , C,H) → m or ⊥. If the πsi .K is initial-
ized then this query causes the oracle πsi to execute
Algorithm 2.2 and return its output. Otherwise the
oracle returns ⊥.

Remark 2.2. Queries to distinct oracles may be issued
in parallel, but a partial order is kept to properly handle
Corrupt queries. More formally, we say Pj is τj-corrupted
if the τj-th query was Corrupt(Pj).

2.2 Server-only ACCE security

We follow [21] in our definition of server-only ACCE
(SACCE) protocols.

The server-only ACCE (SACCE) security of a pro-
tocol is defined by an experiment involving the chal-
lenger C and an adversary A. The challenger simu-
lates nP parties with whom the adversary interacts via
Send,Reveal,Corrupt,Encrypt, and Decrypt queries. We
make no restrictions on the computational power of
the adversary. The adversary may, for example, per-

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 223

form quantum computation. That said, we require all
communication with the session oracles to be classical.

The parties are partitioned into servers S and clients
C; P = S∪C. Servers are permitted to take the initiator
role (i.e. to act as clients), but clients cannot take the
responder role.

At the beginning of the game the challenger
generates long-term public/private key pairs for all
servers and reveals the public keys to the ad-
versary. The adversary submits any number of
Send, Reveal, Corrupt, Encrypt, and Decrypt queries, then
ends the experiment by outputting a triple

(i, s, b′) ∈ {1, . . . , nP } × {1, . . . , nS} × {0, 1}.

The adversary is successful if it violates either the
authenticity of the key exchange, or the security of the
established channel. The following definitions formalize
the adversary’s success criteria.

Definition 2.3 (Matching Sessions). We say that πsi
matches πtj if
• πsi .ρ 6= πtj .ρ (the roles are distinct)
• πsi .sid = πtj .sid (the sessions have identical tran-
scripts).

Intuitively, matching sessions that have reached the ac-
cept state have successfully negotiated an authentic key.
An adversary violates the authenticity of the key ex-
change if it causes a party to accept without a match-
ing session. The following definition captures the exact
conditions in which an adversary succeeds in violating
the authenticity of a protocol. Note that this definition
is specific to one-way authenticated protocols in which
the authenticated party is the responder.

Definition 2.4 (πsi accepts maliciously). Let πsi be a ses-
sion. We say that πsi accepts maliciously if
• πsi .ρ = init;
• πsi .α = accept;
• πsi .pid = j 6= ⊥ and no Corrupt(j) query was issued
before πsi accepted; and

• there is no unique session πtj that matches πsi .
For a one-way authenticated protocol Π and an adver-
sary A, Advsacce-sa

Π (A) is the probability that there ex-
ists a session that has accepted maliciously when A ter-
minates.

Definition 2.5 (Channel Security). We say that A an-
swers the encryption challenge correctly if, when A ter-
minates with output (i, s, b′),
• πsi .α = accept;
• πsi .pid = j 6= ⊥;
• πsi did not accept maliciously;

• πsi accepted in response to query τ0 and party Pj is
τj-corrupted with τ0 < τj ;

• A did not issue Reveal(πsi) nor Reveal(πtj) for any
(j, t) such that πtj matches πsi ;

• πsi .b = b′.
For a protocol Π, Advsacce-ae

Π (A) = |p− 1/2| where p is
the probability that A answers the encryption challenge
correctly.

These definitions naturally correspond to security ex-
periments that we denote sacce-sa (SACCE Server Au-
thentication) and sacce-ae (SACCE Authenticated En-
cryption) respectively.

Remark 2.6. Our definition of channel security differs
from that given in previous work such as [2, 18, 21].
Specifically we have added the requirement that πsi has
not accepted maliciously. This change allows us to dis-
tinguish between adversaries that can only violate chan-
nel security by violating authenticity, and those that can
violate channel security without active intervention in
the pre-accept stages. In turn this allows us to model
security against harvest-then-decrypt attacks where the
adversary gains quantum capabilities after the session
has been negotiated.

Definition 2.7 (Pre-quantum SACCE Security).
A protocol Π provides pre-quantum SACCE security if
the quantity

Advsacce-sa
Π (A) + Advsacce-ae

Π (A)

is a negligible function of the security parameter λ for
all PPT pre-quantum adversaries A.

Definition 2.8 (Transitional SACCE Security).
A protocol Π provides transitional SACCE security if
the quantity

Advsacce-sa
Π (A) + Advsacce-ae

Π (Q)

is a negligible function of the security parameter λ for
all PPT pre-quantum adversaries A and PPT post-
quantum adversaries Q.

Definition 2.9 (Post-quantum SACCE Security).
A protocol Π provides post-quantum SACCE security if
the quantity

Advsacce-sa
Π (Q) + Advsacce-ae

Π (Q)

is a negligible function of the security parameter λ for
all PPT post-quantum adversaries Q.

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 224

Remark 2.10. The restriction on malicious acceptance
in Definition 2.5 is necessary to distinguish between
transitional and post-quantum ACCE protocols. With-
out it there are no transitional protocols that are not
fully post-quantum. The restriction has no effect on the
classes of pre- and post-quantum ACCE protocols; a
pre- or post-quantum ACCE protocol that is secure us-
ing our definition would also be secure if malicious ac-
ceptance were allowed in Definition 2.5. The converse is
true as well.

2.3 Selective SACCE security

In order to simplify our proofs, we will make use of the
selective variants of the authentication and channel se-
curity experiments introduced in [21]. We denote these
by s-sacce-sa and s-sacce-ae respectively. In the se-
lective authentication experiment the adversary must
commit to the index (i∗, s∗) of a session that will ac-
cept maliciously. In the selective channel security ex-
periment the adversary must commit to indices for a
pair of matching sessions, i.e. (i∗, s∗) and (j∗, t∗).

Lemma 2.11 (Adapted from [21]). For any adversary A
(pre-quantum or post-quantum), there exists an adver-
sary B such that

Advsacce-sa
Π (A) ≤ nSnP Advs-sacce-sa

Π (B)
Advsacce-ae

Π (A) ≤ n2
SnP Advs-sacce-ae

Π (B)

Note that the corresponding lemma given in [21] has
an additional factor of nS Advs-sacce-sa

Π (B) in the reduc-
tion from sacce-ae to s-sacce-ae. This is because that
work allows sessions to have accepted maliciously in the
channel security game.

2.4 Summary of changes to ACCE model

• We explicitly allow adversaries to perform quantum
computations, but we require that communication
between the adversary and challenger is classical.
We justify our decision not to use a fully quantum
model in Section 6.

• Our definition of channel security differs from pre-
vious work, such as [18, 21], in that we require that
the session indicated by the adversary has not ac-
cepted maliciously.

2.5 Assumptions on primitives

We will need two length parameters: µ and λ. We will as-
sume that µ = 2λ and that λ is the intended bit-security
of the handshake. All cryptographic primitives are ex-
pected to provide at least λ-bit pre-quantum security;
symmetric primitives and KEMs should provide λ-bit
post-quantum security. This implies that the length of
a Diffie-Hellman share should be µ bits and that the
post-quantum KEMs should encapsulate uniform ran-
dom bitstrings of length µ. Likewise, the pseudorandom
functions should have output length µ.

Our security proofs rely on a number of standard as-
sumptions such as the Decisional Diffie-Hellman (DDH)
assumption, the existence of Pseudorandom Functions
(PRF), and ciphertext indistinguishability under cho-
sen plaintext attacks (IND-CPA) for key encapsulation
mechanisms.

An adversary A has advantage
1. Advddh

G (A) of distinguishing (gx, gy, gxy) from
(gx, gy, gw) for a random w;

2. Advprf
Prf (A) of distinguishing Prf from a random func-

tion; and
3. Advind-cpa

Π (A) of violating IND-CPA security of Π.
We also rely on the less standard Oracle Diffie-

Hellman (ODH) assumption for a group G and a hash
function H. We will refer to a tuple (gu, gv, h,Hv) as
an ODH instance. The ODH assumption is that dis-
tinguishing H(guv) from a random string is hard given
gu, gv, and an oracle, Hv that evaluates H(W v) for ar-
bitrary W 6= gu. The ODH instance includes a value h
that is generated as H(guv) or as h $←− {0, 1}µ with equal
probability. The oracle Diffie-Hellman assumption was
introduced in [1], and variants have been used to prove
the security of TLS ciphersuites in the ACCE model
[18, 21]. An adversary’s advantage in the ODH game is
Advodh

G,H(A). This advantage measure is well defined with
respect to post-quantum adversaries, however whenever
we evaluate it for a post-quantum adversary we will as-
sume it is equal to 1.

We also require an extract-and-expand key deriva-
tion function and a stateful length-hiding authenticated
encryption scheme.

2.6 Extract-and-expand key derivation
functions

The extract-and-expand construction for key derivation
functions was introduced by Krawczyk in [20]. Follow-
ing the generic construction given in the same work,

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 225

we consider three functions: Kdf, a key derivation func-
tion; Prf, a pseudorandom function; and Xtr, a random-
ness extractor. For our application we will require that
Xtr is a generic statistical randomness extractor. A for-
mal definition can be found in [20], but this essentially
means that it produces uniform random output from
every source of sufficiently high min-entropy. Generic
extractors require a salt input, so our Xtr will take the
form:

Xtr : {0, 1}∗ × {0, 1}∗ → {0, 1}µ.

The first input is a random non-secret salt, and the sec-
ond input is secret key material. We keep this form in
order to stay close to what would actually be deployed
in practice, but we will ultimately model Xtr as a ran-
dom oracle.

The function Kdf takes an extractor salt xts, con-
text information ctx, secret key material skm, and
the length of the desired key `. The output K of
Kdf(xts, ctx, skm, `) is computed as
1. prk = Xtr(xts, skm)
2. K = Prf∗(prk, ctx, `).
Here Prf∗ is an output feedback mode for Prf that
enables variable-length expansion. For simplicity, the
length parameters for Kdf and Prf∗ will be omitted.

2.7 Stateful length-hiding authenticated
encryption

A stateful encryption scheme StE is a tuple of algo-
rithms (StE .Init, StE .Gen,StE .Enc,StE .Dec). The algo-
rithm StE .Init takes no input and outputs the state
(ste, std) used by the encryption scheme. The algorithm
StE .Gen samples a key K from the keyspace. The algo-
rithm StE .Enc takes a secret key K, a ciphertext length
`, header data h ∈ {0, 1}∗, a plaintext m ∈ {0, 1}∗, and
the current state ste. It outputs a ciphertext C ∈ {0, 1}`

and the updated state st′e. The encryption algorithm
returns ⊥ iff the message is of an invalid length. The
algorithm StE .Dec takes a key K, header data h, a ci-
phertext C, and the current state std. It outputs the
corresponding decryptionm′ of C and the updated state
std.

A stateful encryption scheme is correct if any se-
quence of encryptions and decryptions{

(Ci, stie) = StE .Enc(K, `i, hi,mi, st
i−1
e)

}
1≤i≤n ,{

(m′i, stid) = StE .Dec(K, `i, hi, Ci, sti−1
d)

}
1≤i≤n ,

Alg. 2.1 Encrypt(πsi ,m0,m1, len, H)

(C(0), st
(0)
e) = StE.Enc(πsi .Ke, len, H,m0, π

s
i .ste)

(C(1), st
(1)
e) = StE.Enc(πsi .Ke, len, H,m1, π

s
i .ste)

if C(0) = ⊥ or C(1) = ⊥ then
return ⊥

end if
πsi .u = πsi .u+ 1
πsi .ste = st

(πs
i .b)

e

πsi .C[πsi .u] = C(πs
i .b)

πsi .H[πsi .u] = H

return πsi .C[πsi .u]

for which no Ci = ⊥, satisfies mi = m′i. Note that the
sequences must start from (st0e, st0d) = StE .Init() and a
valid key K = StE .Gen().

We will require the stateful encryption schemes used
in hybrid to be secure with respect to the following state-
ful Length-Hiding Authenticated Encryption (sLHAE)
experiment. The experiment is typically defined with
respect to a stateful challenger, but we will give a de-
scription, specific to our environment, where the state
is held by a pair of ACCE session oracles. More formal
definitions may be found in [21].

When a session oracle πsi enters the accept state
with a unique matching session πtj it sets:
• (πsi .st0e, πsi .st0d) = StE .Init(),
• πsi .u = 0,
• πsi .v = 0,
• and initializes πsi .C as an empty list.
Examining Algorithms 2.1 and 2.2 one can see that

there are two distinct settings based on whether πsi .b = 0
or 1. These definitions of the Encrypt and Decrypt oracles
make it such that:
• When πsi .b = 0 the adversary is given an encryption
oracle for m0 and a decryption oracle that always
returns ⊥.

• When πsi .b = 1 the adversary is given an encryption
oracle for m1 and a decryption oracle that returns
the correct decryption only after phase is set to 1.
The sLHAE experiment allows an adversary A to

make an arbitrary number of Encrypt queries (Algorithm
2.1) to πsi and an arbitrary number of Decrypt queries
(Algorithm 2.2) to πtj before outputting a guess b′ of
πsi .b. The adversary’s advantage is

AdvsLHAE
StE (A) =

∣∣Pr
(
b′ = πsi .b

)
− 1/2

∣∣ .

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 226

Alg. 2.2 Decrypt(πsi , C,H)

Require: πtj is a unique matching session to πsi .
if πsi .b = 0 then

return ⊥
end if
πsi .v = πsi .v + 1
(m,πsi .std) = StE.Dec(πsi .Kd, H,C, πsi .std)
if πsi .v > πtj .u or C 6= πtj .C[πsi .v] or H 6= πtj .H[πsi .v]
then

phase = 1
end if
if phase = 1 then return m end if
return ⊥

3 Protocols

3.1 Generic hybrid protocol

An instantiation of the hybrid protocol must specify:
• unique strings proto_id, t_auth = proto_id:auth
and t_key = proto_id:key;

• an ordered set of 0 or more key encapsulation mech-
anisms

~E = {KEM1, . . . ,KEMnE}
KEMk = (KeyGenk,Encapsk,Decapsk)

with message spaces {Mk}1≤k≤nE
;

• a hash function H;
• a generic randomness extractor Xtr; and
• a pseudorandom function with variable length out-
put Prf∗.
We will refer to a specific instantiation as hybrid(~E)

when necessary. We assume that each client receives a
certified copy of each server’s long-term public key along
with associated identity information. Let Pi be a client
and Pj be a server with long-term DH key (a,A). We
refer to Pj ’s identity information as its identity digest
and denote it P̂j . The following routines describe the
actions taken by Pi and Pj in negotiating a key using
hybrid(~E). Figure 3.1 provides a higher level description
for the nE = 1 case.

Client initialization
When πsi is directed to execute the hybrid protocol with
Pj it:
1. Sets πsi .ρ = init, and πsi .pid = j

2. Checks the certificate for Pj ’s long-term key and
aborts if it is invalid.

3. Generates an ephemeral DH keypair

(πsi .x, πsi .X) = DHGen(1λ).

4. Generates an ephemeral keypair for each KEM:

(πsi .eskk, πsi .epkk) = KeyGenk(1λ)

for k ∈ {1, . . . , nE}.
5. Outputs (X, epk1, . . . , epknE).

Server response
On receipt of (X, epk1, . . . , epknE), session πtj :
1. Sets πtj .ρ = resp, and πtj .pid = ⊥.
2. Generates an ephemeral DH keypair

(πtj .y, πtj .Y) = DHGen(1λ).

3. Computes the Diffie-Hellman portions of the pre-
master secret:

πtj .s0 = H(Xa); πtj .s1 = Xy.

4. Encapsulates a random value from the message
space of each KEM:

πtj .sk+1
$←−Mk for k ∈ {1, . . . , nE}

πtj .ctk = Encapsk(sk+1, epkk).

5. Forms the pre-master secret

πtj .pms = s0||s1|| . . . ||snE+1.

6. Forms the extraction salt

πtj .T =

P̂j ||A||X||Y ||epk1|| . . . ||epknE ||ct1|| . . . ||ctnE .

7. Extracts a pseudorandom key from pms:

πtj .prk = Xtr(T, pms).

8. Computes the authentication tag:

πtj .auth = Prf∗(prk, t_auth).

9. Sets the session key

πtj .K = Prf∗(prk, t_key).

10. Sets

πtj .sid = (X, epk1, . . . , epknE , Y, ct1, . . . , ctnE , auth)

11. Sets πtj .α = accept.
12. Outputs (Y, ct1, . . . , ctnE , auth).

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 227

Anonymous client Server with long-term DH key (a,A)
and identity digest P̂j

(x,X) = DHGen(1λ)
(esk1, epk1) = KeyGen1(1λ)

X, epk1−−−−−−−−−→
(y, Y) = DHGen(1λ)
s0 = H(Xa)
s1 = Xy

s2
$←−M1

ct1 = Encaps1(s2, epk1)
pms = s0||s1||s2

T = P̂j ||A||X||Y ||epk1||ct1
prk = Xtr(T, pms)
auth = Prf∗(prk, t_auth)

Y, ct1, auth←−−−−−−−−−−−−
s0 = H(Ax)
s1 = Y x

s2 = Decaps1(ct1, esk1)
pms = s0||s1||s2

T = P̂j ||A||X||Y ||epk1||ct1
prk = Xtr(T, pms)
ensure auth = Prf∗(prk, t_auth)
K = Prf∗(prk, t_key) K = Prf∗(prk, t_key)

Fig. 3.1. The proposed protocol with a single KEM.

13. Erases all temporary values and session state not
required by the security experiment.

Remark 3.1. Steps 7 and 8 are equivalent to

πtj .auth = Kdf(T, t_auth, pms),

and Steps 7 and 9 are equivalent to

πtj .K = Kdf(T, t_key, pms).

Client finish
On receipt of (Y, ct1, . . . , ctnE , auth), session πsi :
1. Computes the Diffie-Hellman portions of the pre-

master secret:

πsi .s0 = H(Ax); πsi .s1 = Y x.

2. Decapsulates ct1 through ctnE :

πsi .sk+1 = Decapsk(ctk, eskk) for k ∈ {1, . . . , nE}

3. Forms πsi .pms and πsi .T as above.
4. Checks that Kdf(T, t_auth, pms) matches the re-

ceived authentication tag and aborts with πsi .α =
reject if it does not.

5. Sets πsi .K = Kdf(T, t_key, pms).
6. Sets

πsi .sid = (X, epk1, . . . , epknE , Y, ct1, . . . , ctnE , auth).

7. Sets πsi .α = accept.
8. Erases all temporary values and session state not

required by the security experiment.

3.2 The case of zero KEMs

The hybrid protocol with zero additional KEMs, nE = 0,
is almost identical to ntor: the client sends (X), and the
server responds with (Y, auth). Figure 3.2 provides a
high level description of ntor for comparison with Figure
3.1. The most obvious difference is that the premaster
secret in ntor contains gxa, whereas the premaster se-
cret in hybrid contains H(gxa). This is an artifact of our
reduction from the Oracle Diffie-Hellman problem (see
Section 4.1).

There are a few important differences regarding the
use of the functions Xtr and Prf. These have direct ana-
logues in the deployed instantiation of ntor, but are

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 228

Anonymous client Server with long-term DH key (a,A)
and identity digest P̂j

(x,X) = DHGen(1λ)
X−−−−−→

(y, Y) = DHGen(1λ)
pms = Xy||Xa

T1 = P̂j ||A||X||Y ||proto_id
T2 = P̂j ||A||Y ||X||proto_id||Server
vk = HMAC(t_verify, pms||T1)
auth = HMAC(t_mac, vk||T2)

Y, auth←−−−−−−−−−
pms = Y x||Ax

T1 = P̂j ||A||X||Y ||proto_id
T2 = P̂j ||A||Y ||X||proto_id||Server
vk = HMAC(t_verify, pms||T1)
ensure auth = HMAC(t_mac, vk||T2)
prk = HMAC(t_key, pms||T1) prk = HMAC(t_key, pms||T1)
K = HMAC∗(prk, m_expand) K = HMAC∗(prk, m_expand)

Fig. 3.2. The ntor protocol (as described in Tor proposal #216 [23]).

treated as random oracles in [13]. The formal description
of ntor specifies the use of three distinct hash functions,
but the proof does not specify any concrete requirements
for the hash functions to satisfy. In the engineering spec-
ification [23] the hash functions are replaced by a single
pseudorandom function with three distinct non-secret
keys. In the deployed implementation, the pseudoran-
dom function is instantiated with HMAC-SHA256 and
the keys are taken to be ASCII strings that include a
protocol identifier and the intended use for the hash
value, e.g.

ntor-curve25519-sha256-1:key_extract.

The engineering specification also switches from a hash
function to HKDF-SHA256 for the key derivation func-
tion. The end result of these modifications is that the
authentication tag and key are computed as:

pms = gxy||gxa

T1 = P̂j ||A||X||Y ||proto_id

T2 = P̂j ||A||Y ||X||proto_id||Server

vk = HMAC-SHA256(proto_id:verify, pms||T1)
auth = HMAC-SHA256(proto_id:mac, vk||T2)
prk = HMAC-SHA256(proto_id:key_extract, pms||T1)
K = HMAC-SHA256∗(prk, proto_id:key_expand)

The use of fixed HMAC keys across all sessions and
the ad-hoc concatenation of public and private material
(e.g. pms||T1) forgoes the security guarantees that come
from using a PRF instead of a hash function. In essence,
this usage treats HMAC as if it were a random oracle and
ignores the security proofs and usage guidelines of this
function.

Contrast this with the variant of ntor that we ob-
tain through our hybrid protocol. If HKDF-SHA256 is
used for Kdf, then we have Xtr = HMAC-SHA256 and
Prf = HMAC-SHA256. The authentication tag and key
are computed as:

pms = H(gxa)||gxy

T = P̂j ||A||X||Y
prk = HMAC-SHA256(T, pms)
auth = HMAC-SHA256∗(prk, proto_id:auth)
K = HMAC-SHA256∗(prk, proto_id:key).

The main benefit of this approach is that it follows
the recommended usage of HKDF [20]. The approach
used in ntor is somewhat ad-hoc, but the use of T2 pre-
vents an interesting class of multi-user attacks on vk.
In Section 6 we discuss Zaverucha’s multi-user attack
on extract-and-expand KDFs [30] and why the T2 coun-
termeasure can be omitted without seriously affecting
security.

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 229

4 Security
We will now prove the security of the hybrid protocol
in the SACCE model. Theorem 4.1 considers the case
of zero KEMs, and Theorem 4.2 considers the case of
a single KEM. Generalizations to arbitrary numbers of
KEMs are immediate.

As discussed in Section 3.2, the hybrid protocol with
zero KEMs is not equivalent to ntor. However, the two
protocols are very similar, and our proof should provide
some renewed confidence in ntor.

The theorems follow easily from Lemmas 4.3 and
4.4 of Section 4.1. These lemmas bound an arbitrary
adversary’s advantage in the s-acce-sa and s-acce-ae
experiments respectively.

Theorem 4.1. Let G be a finite abelian group, H be a
cryptographic hash function, Xtr be a random oracle,
Prf be a pseudorandom function, and StE be a state-
ful length-hiding authenticated encryption scheme. The
hybrid protocol with zero KEMs is pre-quantum SACCE
secure under the ODH assumption for (G,H), and the
DDH assumption for G.

Theorem 4.2. Let G be a finite abelian group, H be a
cryptographic hash function, Xtr be a random oracle,
Prf be a pseudorandom function, and StE be a state-
ful length-hiding authenticated encryption scheme. The
hybrid protocol with one post-quantum KEM provides
transitional SACCE security under the ODH assump-
tion for (G,H), and the assumption of IND-CPA secu-
rity for KEM1. Furthermore, the hybrid protocol with one
pre-quantum KEM is pre-quantum SACCE secure under
the ODH assumption for (G,H) and either the DDH as-
sumption in G or the IND-CPA security of KEM1.

4.1 Authentication

We now bound an arbitrary adversary’s advantage in
the s-sacce-ae experiment. Let nP be an upper bound
on the number of parties that the adversary initiates,
and nS be an upper bound on the number of ses-
sions. Lemma 4.3 holds independently of the number
and types of additional KEMs used, so we will simply
refer to the scheme as hybrid.

Lemma 4.3. Let H, Xtr and Prf be the functions speci-
fied by hybrid. If Xtr is a generic statistical randomness
extractor, then for any adversary A there exist algo-
rithms B0 and B1, each with running time that is an
additive constant greater than that of A, such that:

Advs-sacce-sa
hybrid (A) ≤ nP Advodh

G,H(B0) + Advprf
Prf (B1) + 2−µ.

Proof. Let break(0)
δ be the event that a client session ac-

cepts maliciously in Game δ with A as the adversary.
Recall that in the s-sacce-sa experiment the adversary
commits to an index, (i∗, s∗), of a session that it will
cause to accept maliciously. Let Pj be the party desig-
nated by πs∗

i∗ .pid. Note that the adversary may deliver
the outgoing message of πs∗

i∗ to more than one session
controlled by Pj . Let S ⊆ {1, . . . , nS} be the index set
of Pj ’s sessions to which the adversary delivers the out-
going message of πs∗

i∗ .

Game 1.
This game is identical to the selective SACCE authen-
tication experiment, hence

Advs-sacce-sa
hybrid (A) = Pr

(
break(0)

1

)
. (1)

Game 2.
The challenger proceeds as in Game 1, but replaces the
value s0 = H(Ax) in session πs∗

i∗ with s̃0
$←− {0, 1}µ. The

challenger also replaces H(Xa) with s̃0 in session πtj for
t ∈ S.

Algorithm B0 takes an ODH instance (U = gu, V =
gv, h,Hv) as input and simulates a challenger in Game
1 against adversary A. It behaves as follows:
• At the beginning of the game, it sets the long-term
public key of a randomly chosen party to V . Call
this party Pj∗ .

• It aborts if πs∗

i∗ .pid 6= j∗.
• It aborts if the adversary corrupts Pj∗ .
• It sets πs∗

i∗ .X = U and πs∗

i∗ .s0 = h.
• It uses Hv and h to simulate knowledge of Pj∗ ’s
long-term secret in any session, πtj , for which πtj .ρ =
resp. If πtj .X = U the challenger sets πtj .s0 = h; if
πtj .X 6= U the challenger sets πtj .s0 = Hv(X).

Suppose that B0 does not abort. If h = H(guv), the algo-
rithm provides a faithful simulation of Game 1. Other-
wise, h is uniformly random and the adversary’s view is
of Game 2. Hence, an adversary’s advantage in distin-
guishing between these two games (when B0 does not
abort) can be no greater than B0’s advantage in the
ODH game.

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 230

The possibility that B0 aborts due to a Corrupt(Pj)
query does not change the probability that πs∗

i∗ accepts
maliciously in Game 2. Such a corruption either occurs
after πs∗

i∗ accepts, or precludes the possibility of πs∗

i∗ ac-
cepting maliciously. The possibility that B0 aborts due
to πs

∗

i∗ .pid 6= j, however, reduces its advantage in the
ODH experiment by a factor of nP . Hence,

Pr
(

break(0)
1

)
≤ Pr

(
break(0)

2

)
+ nP Advodh

G,H(B0). (2)

Game 3.
The challenger proceeds as in Game 2 for all sessions
controlled by parties other than Pj , as well as for Pj ’s
sessions not indexed by an element of S. For each t ∈
S the challenger replaces πtj .prk with p̃rkt

$←− {0, 1}µ.
Likewise if the adversary delivers the outgoing message
of πtj to πs∗

i∗ the challenger replaces πs∗

i∗ .prk with p̃rkt.
In Game 2 we ensure that the min-entropy of the

input to Xtr is at least µ bits by choosing s̃0 randomly.
Assuming that Xtr is a generic statistical randomness
extractor each πtj .prk is indistinguishable from a uni-
form random string in Game 2. In turn Game 3 is in-
distinguishable from Game 2, i.e.

Pr
(

break(0)
2

)
= Pr

(
break(0)

3

)
. (3)

Game 4.
The challenger proceeds as in Game 3 but aborts if the
adversary delivers any of the outbound messages from
{πtj : t ∈ S} to πs

∗

i∗ . As each of these messages would
cause πs∗

i∗ to accept non-maliciously, this change does
not affect the probability that πs∗

i∗ accepts maliciously.

Pr
(

break(0)
3

)
= Pr

(
break(0)

4

)
. (4)

Game 5.
The challenger proceeds as in Game 4 but replaces Prf
in session πs∗

i∗ with a random function F . In Game 4 the
value πs∗

i∗ .prk is uniformly random. Consequently, if A
can distinguish Game 5 from Game 4, then there exists
an algorithm B1 that runs in essentially the same time
that can answer a PRF challenge.

Specifically, we construct an algorithm B1 that
solves a PRF challenge for the string t_auth. It takes
as input z ∈ {0, 1}µ that is promised to have been gen-
erated either as z $←− {0, 1}µ or as z = Prf(k, t_auth)

for some k $←− {0, 1}µ. It then simulates a challenger in
Game 4 against adversary A, and sets πs∗

i∗ .auth = z.
If z was generated as Prf(k, t_auth) then the ad-

versary’s view is identical to Game 4. Otherwise z was
generated randomly and the adversary’s view is of Game
5. Thus B1 wins the PRF game with advantage equal
to the game distinguisher’s advantage:

Pr
(

break(0)
4

)
≤ Pr

(
break(0)

5

)
+ Advprf

Prf (B1). (5)

Final analysis.
The only way the adversary can cause πs

∗

i∗ to accept
without a matching session in Game 5 is to guess the
value of F (p̃rk, t_auth). Since F is a random function
they are successful with probability 2−µ, hence

Pr
(

break(0)
5

)
= 2−µ. (6)

This establishes the claim.

4.2 Channel security

We now bound an arbitrary adversary’s advantage in
the s-sacce-ae experiment. Again let nP be an upper
bound on the number of parties that the adversary ini-
tiates, and nS be an upper bound on the number of
sessions. Let nE be the number of KEMs used in the
hybrid protocol and let ~E = (KEM1, . . . ,KEMnE).

Lemma 4.4. Let Xtr, Prf, and StE be the functions spec-
ified by hybrid(~E). If Xtr is a generic statistical random-
ness extractor, then for any adversary, A, there exist al-
gorithms B2.0,B2.1 . . . ,B2.nE ,B4, and B5, each with run-
ning time that is an additive constant greater than that
of A, such that

Advs-sacce-ae
hybrid(−→E)

(A) ≤ Advprf
Prf (B4) + AdvsLHAE

StE (B5) +

min
{

Advddh
G (B2.0), min

1≤k≤nE

{
Advind-cpa

KEMk
(B2.k)

}}
Proof. Recall that in the s-acce-ae experiment the ad-
versary commits to a matching pair of sessions, πs∗

i∗

and πt∗j∗ , in which the initiator does not accepted mali-
ciously. We assume, without loss of generality, that πs∗

i∗

has the role of initiator. The adversary’s output is either
(j∗, t∗, b∗) or (i∗, s∗, b∗).

Let break(1)
δ be the event that A answers the en-

cryption challenge successfully in Game δ, e.g. that A
output (i∗, s∗, b∗) and b∗ = πs

∗

i∗ .b.

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 231

Game 1.
This game is identical to the selective SACCE channel
security experiment. By definition,

Advs-sacce-ae
hybrid(−→E)

(A) =
∣∣∣Pr
(

break(1)
1

)
− 1/2

∣∣∣ . (7)

We now consider nE+1 games that each replace one
share of the premaster secret (one of s1, s2, . . . , snE+1)
with a uniform random value from the appropriate sam-
ple space. We show that an advantage in distinguishing
any of these games from Game 1 implies a corresponding
advantage in either an IND-CPA or a DDH challenge.
To simplify our proof, we assume that s1 is the only se-
cret protected by the DDH assumption and we treat it
separately in Game 2.0.

Game 2.0
The challenger proceeds as in Game 1, however when it
simulates sessions πs∗

i∗ and πt∗j∗ it replaces s1 with s̃1
$←−

G.
The algorithm B2.0 interpolates between Games 1

and 2.0 by embedding the values from a DDH challenge
(X̃, Ỹ , Ũ) as πsi .X, πtj .Y and s1 respectively. This gives
us

Pr
(

break(1)
1

)
≤ Pr

(
break(1)

2.0

)
+ Advddh

G (B2.0). (8)

Game 2.k for k ∈ {1, . . . , nE}
When the challenger simulates session πt∗j∗ it replaces ci-
phertext ctk with one that is unrelated to sk+1. Specif-
ically it generates sk+1 as usual but samples a sec-
ond random value s̃k+1

$←− Mk. It then sets πt∗j∗ .ctk =
c̃t where c̃t = Encapsk(s̃k+1, epkk). In session πs

∗

i∗ it
sets πs∗

i∗ .sk+1 = sk+1 and discards the value obtained
through decapsulation.

The algorithm B2.k interacts with an IND-CPA
challenger for KEMk. It receives a public key ẽpk from
the challenger, samples m0 and m1 uniformly from Mk,
and then requests an IND-CPA challenge for m0 and
m1. It receives c̃t that is promised to be an encapsula-
tion of either m0 or m1. It then simulates the challenger
in Game 1 with adversary A as follows:
• It samples a uniform bit u.
• In session πs

∗

i∗ it replaces πs∗

i∗ .epkk with ẽpk, and
replaces πs∗

i∗ .eski with ⊥.
• In session πt∗j∗ it replaces ctk with c̃t.
• In both πs∗

i∗ and πt∗j∗ it sets sk+1 = mu.

If c̃t is an encapsulation of mu then B2.k provides a
faithful simulation of Game 1. Otherwise c̃t is an encap-
sulation of m1−u and the adversary’s view is of Game
2.k.

Since Xtr is a generic statistical extractor, prk is
identically distributed in Games 1 and 2.k. This pre-
vents the adversary from distinguishing the two games
via auth or K. An adversary with non-negligible ad-
vantage in distinguishing Games 1 and 2.k must detect
the difference in ctk. Hence the adversary’s advantage
translates to an equivalent advantage for B2.k in the
IND-CPA challenge. This implies

Pr
(

break(1)
1

)
≤ Pr

(
break(1)

2.k

)
+ Advind-cpa

KEMk
(B2.k) ∀k.

(9)

Game 3.
The challenger executes some variant of Game 2 but
replaces the pseudorandom key, prk = Xtr(T, pms), in
sessions πs∗

i∗ and πt∗j∗ with a uniform random value p̃rk ∈
{0, 1}µ.

In each variant of Game 2 we ensure that the in-
put to Xtr has min-entropy of at least µ bits. Assuming
that Xtr is a generic statistical randomness extractor,
the value of prk is uniformly random in each variant of
Game 2. Hence this game is indistinguishable from the
chosen variant of Game 2, and we obtain

Pr
(

break(1)
2.k

)
= Pr

(
break(1)

3

)
∀k. (10)

Consequently the nE inequalities of Equation 9 dif-
fer only in the magnitude of the adversary’s advantage
in the respective KEM game. This gives us

Pr
(

break(1)
1

)
≤ Pr

(
break(1)

3

)
+

min
{

Advddh
G (B2.0),min

k

{
Advind-cpa

KEMk
(B2.k)

}}
. (11)

Game 4.
The challenger proceeds as in Game 3. In sessions πs∗

i∗

and πt∗j∗ the challenger replaces Prf with a random func-
tion F . If A can distinguish Game 4 from Game 3, then
there exists an algorithm B4, that runs in essentially
the same time, that breaks the pseudorandomness of
Prf. Hence,

Pr
(

break(1)
3

)
≤ Pr

(
break(1)

4

)
+ Advprf

Prf (B4). (12)

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 232

Game 5.
In this final game the challenger plays parallel roles as
the s-acce-ae challenger from Game 4 and as two sL-
HAE challengers. It embeds the sLHAE games in the
s-acce-ae simply by setting the keys used by πs

∗

i∗ and
πt

∗

j∗ appropriately.
The adversary’s access to πs

∗

i∗ .b and πt
∗

j∗ .b is only
through the Encrypt and Decrypt queries that define the
sLHAE game. Hence the adversary outputs a b∗ = πs

∗

i∗ .b

with advantage that is, by definition, no better than its
advantage in the sLHAE game.

In Game 4 the session key K is uniformly random
and independent of the messages exchanged between πs∗

i∗

and πt∗j∗ . As such, the adversary cannot detect the game
transition. Letting B5 denote the challenger in Game 5,
we have

1/2 ≤ Pr
(

break(1)
4

)
≤ 1/2 + AdvsLHAE

StE (B5). (13)

Combining the above inequalities establishes the
claim

4.3 Proofs of main theorems

Of Theorem 4.1. Modeling Xtr as a random oracle en-
sures that it is a generic statistical extractor [11, 20],
so we may apply the bounds on Advs-sacce-sa

hybrid (·) and
Advs-sacce-ae

hybrid(∅) (·) from Lemmas 4.3 and 4.4.
Pre-quantum SACCE security only considers PPT

pre-quantum adversariesA. Hence the ODH assumption
implies that Advs-sacce-sa

hybrid (A) is negligible and the DDH
assumption implies that Advs-sacce-ae

hybrid(∅) (A) is negligible.
An application of Lemma 2.11 establishes the claim.

Of Theorem 4.2. Modeling Xtr as a random oracle en-
sures that it is a generic statistical extractor, so we may
apply the bounds on Advs-sacce-sa

hybrid(−→E)
(·) and Advs-sacce-ae

hybrid(−→E)
(·)

from Lemmas 4.3 and 4.4.
Since transitional SACCE security forbids post-

quantum adversaries in the pre-accept phase, the ODH
assumption for (G,H) and Lemma 4.3 imply that
Advs-sacce-sa

hybrid (A) is bounded from above by a negligible
quantity.

On the other hand, we must allow post-quantum
adversaries, Q, when applying Lemma 4.4. The DDH
assumption does not hold against post-quantum adver-
saries, hence:

min
{

Advddh
G (BQ2.0),Advind-cpa

KEM1
(BQ2.1)

}
=

Advind-cpa
KEM1

(BQ2.1),

and the claim about transitional security follows.

The claim about pre-quantum security follows by
re-evaluating the above minimization over PPT pre-
quantum adversaries.

5 Implementation and
performance characteristics

We have implemented our protocol with HKDF-SHA256,
curve25519 and ntruees443ep1. We have integrated this
implementation into Tor 0.2.6.2-alpha and made it pub-
licly available [28].

It was argued in [14] that ntruees443ep1 is IND-
CCA2 secure against post-quantum adversaries at the
λ = 128 level. This instantiation of hybrid is therefore
estimated to provide transitional security at the λ = 128
bit security level.

Preliminary benchmarks comparing our instantia-
tion’s performance with that of ntor and that of the
legacy Tor handshake (tap) are presented in Table 1.1.
The benchmark was conducted on an Intel Core i7-
2640M CPU clocked at 2.80GHz with TurboBoost dis-
abled. RSA and Z∗p Diffie-Hellman operations for tap
were provided by OpenSSL 1.0.1i. The ECDH op-
erations for ntor and hybrid were performed by the
donna_c64 implementation of curve25519 from NaCL-
20110221 [4].

The ntruees443ep1 operations were provided by libn-
truencrypt version 1.0.1 [17]. We note that libntruencrypt
is a reference implementation. It does not attempt to
be constant time and does not perform parameter set
specific optimizations. Our libntruencrypt was compiled
without vectorized convolutions. A previous version of
this paper reported numbers with vectorized convolu-
tions, and other optimizations. We have reported the
unoptimized figures here as many Tor routers do not
support SSSE3 operations.

Note also that ntruees443ep1 is designed to meet
the requirements of a IND-CCA2 public key encryp-
tion scheme, but our setting only requires an IND-CPA
KEM. An IND-CPA variant of NTRUEncrypt may be
more efficient than ntruees443ep1.

The data in Tables 1.1 and 5.1 was gathered using
Tor’s internal benchmarking utility. Table 1.1 reports
times averaged over 4096 trials for tap, ntor, hybrid, and
the protocol of Ghosh-Kate. Communication costs are
also reported in table 1.1. Table 5.1 reports first, second,
and third quartiles for the hybrid protocol in a separate
run of 4096 trials.

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 233

hybrid
quartile median quartile

Client init 657 µs 661 µs 666 µs
Server response 304 µs 304 µs 305 µs

Client finish 217 µs 217 µs 217 µs

Table 5.1. Timing data for the hybrid protocol phases over 4096
samples.

6 Other security considerations
Multi-session attacks
The quadratic dependence on the number of sessions in
the reduction from sacce-ae to s-sacce-ae in Lemma
2.11 suggests there might be a powerful multi-session at-
tack that our security proof misses. Indeed, Zaverucha’s
attack [30] on extract-and-expand key derivation func-
tions applies to our use of Kdf.

Consider an adversary that attempts to find a col-
lision in an enormous collection of auth tags. In hybrid,
a collision in auth tags suggests a collision in prk and
hence in K. The adversary can Reveal one session of
a colliding pair and hope to learn the session key of
the second (this fails if distinct prk led to a collision
in auth). This attack does not show up in our security
proof as the selective security experiment is effectively
single-session.

In ntor the auth tag is derived in a session-dependent
manner that prevents this collision attack. We choose
a different countermeasure and simply require auth to
be of length µ = 2λ. This is sufficient since the above
collision attack on a random function of output length
2λ has cost 2λ. Taking auth to be length 2λ is al-
ready required in the (single-session) transitional and
post-quantum settings since quantum search provides
a single-session preimage attack that would reveal prk
for cost Θ(2µ/2).

Forward secrecy
Any protocol meeting our definition of channel secu-
rity provides forward secrecy. Our transitional SACCE
protocols provide forward secrecy and resist adversaries
that obtain quantum capabilities after session negotia-
tion.

One-way anonymity
The ntor paper formalizes a notion of one-way
anonymity that ntor satisfies. Their definition makes use
of features of the AKE execution environment that are

not paralleled by our ACCE execution environment, so
we cannot apply their proof directly.

It is difficult to imagine a notion of one-way
anonymity that would distinguish between our hy-
brid protocol and ntor operated in isolation. However,
it is apparent that allowing multiple handshake types
could have an impact on anonymity. In particular, if
clients run different versions of the Tor software, then
the set of ciphersuites they support may provide a mech-
anism for deanonymizing them.

The one-way anonymity notion proposed in [13]
ignores the negotiation protocol and, therefore, cannot
capture this subtlety. We leave it to future work to
propose a stronger definition of one-way anonymity.

Multi-ciphersuite security
Bergsma, Dowling, Kohlar, Schwenk, and Stebila have
shown that SSH is a secure ACCE protocol in a multi-
ciphersuite setting that allows for long-term key reuse
between ciphersuites [2]. A similar analysis will be
necessary for Tor if servers are allowed to reuse their
long-term keys between hybrid variants and ntor.

Post-quantum security
One could achieve post-quantum ACCE security by
carefully incorporating a post-quantum signature (e.g.
XMSS [8] or SPHINCS [3]), or a server-side static
encryption key, into the handshake. Post-quantum au-
thentication would also be necessary for key distri-
bution. While ultimately necessary, integrating a new
authentication mechanism would require significant
modifications to the Tor protocol. We feel that doing
so would decrease the likelihood of our protocol being
deployed in a timely fashion.

Fully quantum ACCE environment
Our ACCE execution environment explicitly forbids
quantum communication between the adversary and
session oracles. We believe this is a natural restriction;
we are only interested in proving that the hybrid proto-
col meets a reasonable definition of security when it is
executed on a classical computer.

The assumption that the adversary does not per-
form interactive quantum computations with the session
oracles is implicit in all related work.

Initial hash of static-ephemeral DH share
Our proof requires that the parties compute s0 =
H(gxa), rather than just gxa, so that we can make use
of the Oracle Diffie-Hellman assumption. The concate-
nation of the pre-master secret shares prevents us from

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 234

applying an ODH-like assumption directly to the ex-
tractor.

The ODH assumption is needed to ensure that the
party in the responder role can respond consistently to
multiple queries with the same X in Game 2 of Lemma
4.3. It is quite possible that computing s0 as gxa would
have no practical security impact, yet we cannot prove
this without additional assumptions.

Use of a statistical extractor
We have simplified our security proof by requiring sta-
tistical extractors in Lemmas 4.3 and 4.4. A concrete
instantiation of Xtr is unlikely to meet this stringent re-
quirement. However, the requirement is easily met when
Xtr is modeled as a random oracle. A random oracle is
a statistical extractor provided that the inputs to it are
conditionally independent of its outputs. This is triv-
ially true even in the quantum-accessible random oracle
model of [5], hence no additional work is needed to treat
quantum-accessible random oracles.

A more satisfying proof would replace Lemmas 4.3
and 4.4 with variants that rely only on computational
extractors such as those found in [20]. Many construc-
tions of computational extractors still require a hash
function modeled as a random oracle. The construction
of a computational extractor in the quantum-accessible
random oracle model has, to the best of our knowledge,
not been given in the literature.

Stateful length-hiding authenticated encryption
Keys negotiated by the circuit extension handshake pro-
tocol are used in Tor’s relay protocol. The relay protocol
exchanges data in 509 byte segments called relay cells.
Each relay cell contains metadata (5 bytes), a truncated
MAC (4 bytes), the length of the payload (2 bytes), the
payload (` bytes), and null padding (509−11− ` bytes).

Tor currently uses AES-128 in counter mode to en-
crypt relay cells. The MAC is computed over end-to-
end communications as a running SHA1 digest. Only
the clent and the used exit-node check the MAC; relay
cells that are forwarded are not authenticated.

With only a 32 bit MAC, this scheme cannot pro-
vide cryptographic authenticity guarantees. There are
unique challenges in migrating to proper authenticated
encryption. For example, encrypt-then-mac schemes
cannot be used as the message expansion from concate-
nated MACs would leak the circuit length.

There are several proposals currently under con-
sideration within the Tor community that would im-
prove the situation [22, 25]. Future work should con-
sider whether any of these proposals meet our require-

ment of stateful length-hiding authenticated encryption,
or whether there is another notion that is more appro-
priate for Tor.

It will also be necessary to migrate to a cipher with
256 bit keys for 128 bit transitional or post-quantum
security.

7 Conclusion
We have presented a transitionally secure SACCE pro-
tocol and provided an implementation in a form that
could be integrated into Tor easily. To assist with this
integration, and to guide experimentation with other
instantiations, we have published an engineering speci-
fication of hybrid as Tor proposal #263 [27].

There are several barriers to deployment that re-
main.

First, Tor circuit extension handshakes are limited
to 505 bytes due to the current specification of the CRE-
ATE cell. Our instantiation using ntruees443ep1 requires
693 bytes for the client to server message and 673 bytes
for the server to client message. A discussion with Nick
Mathewson about the size limit on CREATE cells has
resulted in Tor proposal #249 [24], which would remedy
this problem.

Second, the ntruees443ep1 parameter set is covered
by U.S. Patent Nos. 6081597 and 7031468 [15, 16]. While
the patents are free to use within open source soft-
ware, and libntruencrypt is distributed under the GPL,
some users and software distributors may wish to avoid
patented cryptography entirely1.

Third, it remains to be seen whether our instanti-
ation provides acceptable performance. The figures of
Table 1.1 indicate that our instantiation is as computa-
tionally expensive as the original tap handshake and is
much less compact. It is, however, more compact than
the proposal from Ghosh and Kate.

Directions for future work include: performance
analyses for hybrid when instantiated with different
post-quantum KEMs (or with a faster and/or constant-
time implementation of NTRUEncrypt); a study of one-
way anonymity that addresses the points raised in Sec-
tion 6; a proof of security for hybrid that does not de-
pend on statistical extractors; and the development of
post-quantum ACCE protocols.

1 U.S. Patent No. 6081597 covers the core NTRU functionality
and expires on August 19, 2017. U.S. Patent No. 7031468 covers
the product-form efficiency enhancement and expires on August
24, 2021.

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 235

Acknowledgements
We are very grateful to Nick Mathewson and other
members of the Tor community for their input on Tor
proposal #263. We also wish to thank: Aniket Kate for
discussing potential improvements to our scheme, Dou-
glas Stebila for several enlightening conversations, and
the anonymous reviewers for their close readings and
detailed recommendations.

References
[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The

oracle Diffie-Hellman assumptions and an analysis of DHIES.
In David Naccache, editor, Topics in Cryptology — CT-RSA
2001: The Cryptographers’ Track at RSA Conference 2001
San Francisco, CA, USA, April 8–12, 2001 Proceedings,
volume 2020 of Lecture Notes in Computer Science, pages
143–158. Springer, 2001.

[2] Florian Bergsma, Benjamin Dowling, Florian Kohlar, Jörg
Schwenk, and Douglas Stebila. Multi-ciphersuite security
of the secure shell (SSH) protocol. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’14, pages 369–381, New York, NY,
USA, 2014. ACM.

[3] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja
Lange, Ruben Niederhagen, Louiza Papachristodoulou,
Michael Schneider, Peter Schwabe, and Zooko Wilcox-
O’Hearn. SPHINCS: Practical stateless hash-based sig-
natures. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015: 34th Annual
International Conference on the Theory and Applications
of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, volume 9056 of Lecture Notes in
Computer Science, pages 368–397. Springer, 2015.

[4] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe.
NaCL: Networking and cryptography library. http://nacl.
cr.yp.to/, 2011.

[5] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann,
Christian Schaffner, and Mark Zhandry. Random oracles in
a quantum world. In Dong Hoon Lee and Xiaoyun Wang,
editors, Advances in Cryptology – ASIACRYPT 2011: 17th
International Conference on the Theory and Application of
Cryptology and Information Security, Seoul, South Korea,
December 4-8, 2011. Proceedings, volume 7073 of Lecture
Notes in Computer Science, pages 41–69. Springer, 2011.

[6] Dan Boneh and Richard J. Lipton. Quantum cryptanalysis
of hidden linear functions. In Don Coppersmith, editor,
Advances in Cryptology 1981 – 1997: Electronic Proceedings
and Index of the CRYPTO and EUROCRYPT Conferences
1981 – 1997, volume 1440 of Lecture Notes in Computer
Science, chapter CRYPTO ’95, pages 424–437. Springer,
2001.

[7] Joppe W. Bos, Craig Costello, Michael Naehrig, and Dou-
glas Stebila. Post-quantum key exchange for the TLS proto-
col from the ring learning with errors problem. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose,

CA, USA, May 17-21, 2015, pages 553–570, 2015.
[8] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing.

XMSS – A practical forward secure signature scheme based
on minimal security assumptions. In Bo-Yin Yang, editor,
Post-Quantum Cryptography: 4th International Workshop,
PQCrypto 2011, Taipei, Taiwan, November 29 – Decem-
ber 2, 2011. Proceedings, volume 7071 of Lecture Notes in
Computer Science, pages 117–129. Springer, 2011.

[9] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene
Peralta, Ray Perlner, and Daniel Smith-Tone. Report on
post-quantum cryptography. NIST Internal Report 8105.
http://dx.doi.org/10.6028/NIST.IR.8105, February 2016.

[10] NSA Information Assurance Directorate. Commercial na-
tional security algorithm suite. https://www.iad.gov/iad/
programs/iad-initiatives/cnsa-suite.cfm, August 2015.

[11] Yevgeniy Dodis, Rosario Gennaro, Johan Håstad, Hugo
Krawczyk, and Tal Rabin. Randomness extraction and key
derivation using the CBC, cascade and HMAC modes. In
Matt Franklin, editor, Advances in Cryptology - CRYPTO
2004, volume 3152 of Lecture Notes in Computer Science,
pages 494–510. Springer, 2004.

[12] Satrajit Ghosh and Aniket Kate. Post-quantum forward-
secure onion routing. In Tal Malkin, Vladimir Kolesnikov,
Bishop Allison Lewko, and Michalis Polychronakis, editors,
Applied Cryptography and Network Security: 13th Interna-
tional Conference, ACNS 2015, New York, NY, USA, June
2-5, 2015, Revised Selected Papers, volume 9092 of Lecture
Notes in Computer Science, pages 263–286. Springer, 2015.

[13] Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu.
Anonymity and one-way authentication in key exchange pro-
tocols. Designs, Codes and Cryptography, 67(2):245–269,
2013.

[14] Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Sil-
verman, William Whyte, and Zhenfei Zhang. Choosing
parameters for NTRUEncrypt. Cryptology ePrint Archive,
Report 2015/708, 2015. http://eprint.iacr.org/2015/708.

[15] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman.
United States Patent: 6081597 - Public key cryptosystem
method and apparatus. https://www.google.com/patents/
US6081597, June 2000.

[16] Jeffrey Hoffstein and Joseph H. Silverman. United States
Patent: 7031468 - Speed enhanced cryptographic method
and apparatus. https://www.google.com/patents/
US7031468, April 2006.

[17] Security Innovation. libntruencrypt: NTRUEncrypt
reference implementation. https://github.com/
NTRUOpenSourceProject/ntru-crypto, 2015. Version 1.0.1.

[18] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg
Schwenk. On the security of TLS-DHE in the standard
model. In Reihaneh Safavi-Naini and Ran Canetti, ed-
itors, Advances in Cryptology - CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 273–293.
Springer, 2012.

[19] Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the
security of TLS-DH and TLS-RSA in the standard model.
Cryptology ePrint Archive, Report 2013/367, 2013. http:
//eprint.iacr.org/2013/367.

[20] Hugo Krawczyk. Cryptographic extraction and key deriva-
tion: The HKDF scheme. In Tal Rabin, editor, Advances
in Cryptology – CRYPTO 2010: 30th Annual Cryptology

http://nacl.cr.yp.to/
http://nacl.cr.yp.to/
http://dx.doi.org/10.6028/NIST.IR.8105
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
http://eprint.iacr.org/2015/708
https://www.google.com/patents/US6081597
https://www.google.com/patents/US6081597
https://www.google.com/patents/US7031468
https://www.google.com/patents/US7031468
https://github.com/NTRUOpenSourceProject/ntru-crypto
https://github.com/NTRUOpenSourceProject/ntru-crypto
http://eprint.iacr.org/2013/367
http://eprint.iacr.org/2013/367

Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world 236

Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings, volume 6223 of Lecture Notes in Computer
Science, pages 631–648. Springer, 2010.

[21] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee.
On the security of the TLS protocol: A systematic analy-
sis. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology – CRYPTO 2013: 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, volume 8042 of Lecture Notes in Com-
puter Science, pages 429–448. Springer, 2013.

[22] Nick Mathewson. Tor proposal # 202: Two improved
relay encryption protocols for Tor cells. In [26], path:
root/proposals/202-improved-relay-crypto.txt, blob:
695df306.

[23] Nick Mathewson. Tor proposal #216: Improved circuit-
creation key exchange. In [26], path: root/proposals/216-
ntor-handshake.txt, blob: f76e81cd.

[24] Nick Mathewson. Tor proposal #249: Allow create
cells with >505 bytes of handshake data. In [26], path:
root/proposals/249-large-create-cells.txt, blob: e04b4c0c.

[25] Nick Mathewson. Tor proposal #261: AEZ for relay cryp-
tography. In [26], path: root/proposals/261-aez-crypto.txt,
blob: 14435e7c.

[26] The Tor Project. Torspec Git repository. https://gitweb.
torproject.org/torspec.git.

[27] John M. Schanck, William Whyte, and Zhenfei Zhang. Tor
proposal #263: Request to change key exchange protocol
for handshake. In [26], path: root/proposals/263-ntru-for-
pq-handshake.txt, blob: a6732b60.

[28] John M. Schanck, William Whyte, and Zhenfei Zhang. Im-
plementation of the current proposal using NTRUEncrypt.
https://github.com/NTRUOpenSourceProject/ntru-tor, July
2015.

[29] Peter W. Shor. Algorithms for quantum computation: Dis-
crete logarithms and factoring. In Foundations of Computer
Science, 1994 Proceedings., 35th Annual Symposium on,
pages 124–134. IEEE Computer Society Press, 1994.

[30] G.M. Zaverucha. Hybrid encryption in the multi-user setting.
Cryptology ePrint Archive, Report 2012/159, 2012. http:
//eprint.iacr.org/2012/159.

https://gitweb.torproject.org/torspec.git
https://gitweb.torproject.org/torspec.git
https://github.com/NTRUOpenSourceProject/ntru-tor
http://eprint.iacr.org/2012/159
http://eprint.iacr.org/2012/159

