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Abstract: In many online communities, it is the norm
to redact names and other sensitive text from posted
screenshots. Sometimes solid bars are used; sometimes
a blur or other image transform is used. We consider
the effectiveness of two popular image transforms—
mosaicing (also known as pixelization) and blurring—
for redaction of text. Our main finding is that we can
use a simple but powerful class of statistical models—
so-called hidden Markov models (HMMs)—to recover
both short and indefinitely long instances of redacted
text. Our approach borrows on the success of HMMs for
automatic speech recognition, where they are used to re-
cover sequences of phonemes from utterances of speech.
Here we use HMMs in an analogous way to recover se-
quences of characters from images of redacted text. We
evaluate an implementation of our system against mul-
tiple typefaces, font sizes, grid sizes, pixel offsets, and
levels of noise. We also decode numerous real-world ex-
amples of redacted text. We conclude that mosaicing
and blurring, despite their widespread usage, are not
viable approaches for text redaction.
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1 Introduction
In many online communities, it is the norm to redact
names and other sensitive text from posted screen shots.
Reddit, for example, enforces a rule against the post-
ing of personally identifying information. Many differ-
ent techniques are used for redaction; the techniques
applied and the tools used vary by community.1

Redaction has importance beyond adhering to com-
munity norms. Images ineffectively redacted and posted
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1 See, e.g., “Facebook Redacting,” which documents over
a dozen redaction techniques in use. Online: http://www.
holyjuan.com/2010/12/facebook-redacting.html. Last visited
February 28, 2016.

Fig. 1. An example of mosaiced text (24p Arial font) with various
grid sizes. From top to bottom: 1p, 6p, 12p, 18p, 24p, and 30p.

by members of at-risk communities (e.g., Reddit’s
/r/CreepyPMs) could render those users vulnerable to
retribution. Accordingly, it is important to study and
understand the effectiveness of widely used techniques
for image redaction.

In this paper, we study the effectiveness of two pop-
ular techniques for the redaction of text: mosaicing,
also called pixelization, and blurring. A mosaiced im-
age is obtained by superposing a rectangular grid over
the original image and averaging the color values of the
pixels within each grid cell. Figure 1 shows the effect
of mosaicing on an example sentence with various grid
sizes. A blurred image is obtained by convolving the
image with a two-dimensional Gaussian. Mosaicing and
blurring are available in both Photoshop and GIMP, and
they are two of the three filters supported by the popu-
lar Facepixelizer tool.2 Figure 2 shows an iOS screenshot
redacted by mosaicing and blurring using Facepixelizer.

Mosaicing and blurring occupy a middle ground be-
tween invertible image transformations, such as Photo-
shop’s twirl filter [16], that can be reversed to recover
the original image, and those that entirely obscure the
redacted portion, for example covering it by a solid black
bar. Both mosaicing and blurring are lossy, so they can-
not, in general, be reversed to recover the original image.
But if the original image has predictable regularities—
as occur in text— then enough information may remain

2 Online: http://www.facepixelizer.com/. Last visited February
28, 2016.

http://www.holyjuan.com/2010/12/facebook-redacting.html
http://www.holyjuan.com/2010/12/facebook-redacting.html
http://www.facepixelizer.com/
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Fig. 2. A (cropped) screenshot redacted by mosaicing, blurring,
and a black bar, using Facepixelizer.

after filtering to recover the redacted text, or at least to
narrow down its space of possibilities.

In a 2007 blog post [19], Venkatraman described
a brute force algorithm for recovering mosaiced text.
His approach was to render every possible character se-
quence of mosaiced text and then identify the message
whose mosaiced image is nearest to the one under in-
vestigation. A naïve implementation of Venkatraman’s
algorithm would take exponential time in the length of
the redacted passage. In Section 3.2 we describe a ver-
sion that runs in linear time and obtains the same re-
sults in practice, through effective search space pruning.
Venkatraman’s approach can also be adapted to recov-
ering blurred text.

While we have yet to witness a large-scale at-
tack on redacted text, it is important to recognize the
widespread potential for abuse. Simple online searches
return scores of images for redacted names, phone num-
bers, email addresses, passwords, credit card numbers,
personal checks, private conversations, and other sensi-
tive information. Mosaicing and blurring have also been
used for the redaction of high-profile government docu-
ments and celebrity social media. It is self-evident that
an attacker could exploit such sensitive information for
malicious purposes (e.g., identity theft, blackmail).
Our results. We present an alternative approach to re-
covering mosaiced or blurred text that is more effective
than Venkatraman’s approach. We show that a simple
but powerful class of statistical models— so-called hid-
den Markov models (HMMs)—can be used to recover
instances of redacted text. Our approach borrows from
the success of HMMs for automatic speech recognition,

where they are used to recover sequences of phonemes
from speech waveforms. Here we use HMMs in an analo-
gous way to recover sequences of characters from images
of redacted text. We recall the necessary background on
HMMs in Section 2.

In practice, our approach works as follows. Given
a snippet of redacted text, we assume that its basic
parameters— for example, its typeface, font size, and
granularity of resolution—can be manually identified3

from the pixelated image as well as any surrounding text
that is not redacted. After these parameters have been
identified, the rest of our approach is fully automated,
consisting of three steps. First, we generate a large data
set of mosaiced or blurred text with these same param-
eters. Next, using this data set, we estimate an HMM
that models the joint distribution over known character
sequences and their mosaiced images. Finally, equipped
with this statistical model, we use the Viterbi algorithm
in HMMs—an instance of dynamic programming—to
infer the redacted text of the original snippet. Inter-
estingly, our approach to recovering blurred text first
applies a mosaic to the blurred region, highlighting the
fact that mosaicing can serve both as a lossy transfor-
mation and a form of image error correction.

We evaluate implementations of our approach
against multiple typefaces, font sizes, mosaic grid off-
sets, and levels of image degradation for mosaicing (Sec-
tion 3) and blurring (Section 4). In each case, we com-
pare against our implementation of Venkatraman’s ap-
proach. Broadly speaking, both approaches do equally
well in “easy” cases: where the grid size or blur radius is
small compared to the font size, and the redacted image
has not been degraded. However, our HMM approach
substantially outperforms Venkatraman’s approach in
“hard” cases. Our approach is more resilient to noise:
it recovers readable text even when the image has been
degraded by JPEG compression at 0% quality, where
Venkatraman’s approach does not. Where the underly-
ing text conforms to a language model, our approach
can exploit that model in addition to local information;
as a result, it can recover readable text from English
sentences rendered in an 18p font to which a 24p mo-
saic has been applied, whereas Venkatraman’s approach
cannot.

We conclude that hidden Markov models allow near-
perfect recovery of text redacted by mosaicing or blur-

3 This assumption can be relaxed, however, at the expense of
estimating an HMM for each possible setting of these parame-
ters.
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ring for many common fonts and parameter settings,
and that mosacing and blurring are not effective choices
for textual document redaction. We believe that a solid
bar provides the best choice for all consequential redac-
tions of text in an image. An even better approach, if the
source document is available, is to replace any sensitive
text with a placeholder, then render the modified docu-
ment to a new image; unlike a black bar, this approach
would obscure the length of any redacted passage.
Related work. Even drawing a solid black bar over
text to be redacted may not always suffice to obscure
it. At the Eurocrypt 2004 rump session, Naccache and
Whelan used font metrics to recover text redacted by
a solid black bar. Given a short list of a priori possible
phrases, they measured which phrase fit best into the
redacted space [14]. The implications of the Naccache-
Whelan attack were considered in two papers by Lo-
presti and Spitz [9, 10]. Ho and Chang observed fur-
ther that information about redacted text can remain
in JPEG compression artifacts [7].

The recovery of mosaiced text can be viewed as a
super-resolution technique for images containing textual
data; see Mancas-Thillou and Mirmehdi for a survey
[12]. Previous work in superresolution for text appears
to be incomparable with our approach; it applies to
more general deformations but requires a larger amount
of residual information in the processed image.

Mosaicing may also be ineffective for redacting faces
from images and video. Newton, Sweeney, and Malin
showed that face recognition software can be used to
recognize mosaiced faces [15] from still images. Like-
wise, Cavedon, Foschini, and Vigna[1] used superreso-
lution techniques to recover mosaiced faces from video,
assuming that the subjects on video did not move much
between consecutive frames. (This possibility was ear-
lier noted by Dufaux [4].) See Padilla-López, Chaarouni,
and Flórez-Revuelta for a recent survey on effective im-
age redaction [17]. Ford and Mayron considered the ef-
fectiveness of redaction in satellite images [6]; among
their contributions is an algorithm for automatically
detecting mosaiced or blurred map tiles that could be
adapted to detecting redacted images in other contexts.

A great deal of work has also been done on the gen-
eral problem of image deblurring. In 2010, Chen was
able to produce high-quality deblurred results with low
computation costs [3]. There is also commercial soft-
ware4 that attempts to deblur images whose blur pa-

4 Online: http://smartdeblur.net/. Last visited February 28,
2016.

rameters are provided as user input. Our approach dif-
fers in that we are specifically aiming to recover text
that has been redacted by mosaicing.

Hidden Markov models of English text have been
used in other security research— for example, to recover
keystrokes from their acoustic emanations [21], and to
recover spoken text from the size of encrypted VoIP
packets [20]. More recently, work has also been done in
exploiting biases in RC4 [22, 23].

2 Hidden Markov models
In this section we review the basic ideas of hidden
Markov modeling [5, 18], then describe in detail how
we use HMMs to decode mosaiced text.

2.1 Background

A hidden Markov model is a probabilistic graphical
model (see Figure 3) of hidden and observed random
variables that evolve over time. We denote the hidden
variable (or state) at time t by St and the observed
variable (or observation) at time t by Ot. Likewise we
use S1:t = {S1, S2, ..., St} and O1:t = {O1, O2, ..., Ot} to
denote sequences of these states and observations.

The hidden states in HMMs form a simple Markov
process: the state St is conditionally independent of
past states S1:t−2 given the immediately preceding state
St−1. Likewise, the observation Ot is conditionally in-
dependent of previous states S1:t−1 and observations
O1:t−1 given the hidden state St. Given these assump-
tions of conditional independence, it is simple matter to
compose the HMM’s joint distribution over state and

S1 S2 ST-1 ST

O2 OT-1 OT

...

O1

...St-1 St

Ot-1 Ot

St+1

Ot+1

Fig. 3. Hidden Markov model for recovery of redacted text. The
hidden state St labels the characters that are present in the tth
sliding window of redacted text; the observation Ot is a quan-
tized descriptor of the pattern of pixel intensities in the tth sliding
window. The Viterbi algorithm in HMMs infers the most proba-
ble sequence of hidden states (unshaded) from the observations
(shaded).

http://smartdeblur.net/
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observation sequences:

P (S1:T , O1:T ) = P (S1)
T∏

t=2
P (St | St−1)

T∏
t=1

P (Ot | St)

(1)
where T is the overall sequence length. In discrete
HMMs, as we consider here, both the hidden states
St ∈ {1, 2, ..., n} and the observations O ∈ {1, 2, ..., k}
are drawn from finite alphabets. The joint distribution
in eq. (1) is then parameterized by the following elemen-
tary probabilities:

πi = P (S1 = i), (2)
aij = P (St+1 =j|St = i), (3)
bi` = P (Ot =`|St = i), (4)

where i, j ∈ {1, 2, . . . , n} and ` = {1, 2, . . . , k}. The pa-
rameters π,a,b are known respectively as the HMM’s
start distribution, transition matrix, and emission ma-
trix.

There are efficient algorithms for probabilistic in-
ference and learning in HMMs. Most important for our
application is the Viterbi algorithm, which computes the
most likely sequence of hidden states given a particular
sequence of observations. More precisely, for an HMM
with parameters π,a,b, the Viterbi algorithm computes
the hidden state sequence of maximum posterior prob-
ability:

S∗1:T = arg max
S1:T

P (S1:T | O1:T ) (5)

The required computation in eq. (5) is a simple instance
of dynamic programming; it decodes the optimal state
sequence in time O(n2T ). Note that this procedure has
no dependence on the size of the observation alpha-
bet, k.

HMMs have been widely used for problems in au-
tomatic speech recognition [18] and bioinformatics [5].
Our own use of them most closely recalls their previous
application to automatic handwriting recognition [8]. In
our problem, the observations are not segments of cur-
sive handwriting, but segments of mosaiced text; see
Figure 4. In both these problems, though, the goal is
the same: to decode the sequence of characters (repre-
sented by the model’s hidden states) that correspond to
the observed message.

While the main challenge in handwriting recogni-
tion is to model the variability of cursive penmanship,
the main challenge in our problem is to overcome the
lower resolution of mosaiced text. Our problem is sim-
plified in one respect, though: in practical applications,

Fig. 4. Top: an image of mosaiced text is produced by averaging
grids of pixels. Bottom: the redacted text is segmented by sliding
windows that align with grid boundaries (though not necessarily
character boundaries). Each window is characterized by its vector
of grid values; by quantizing these vectors, we obtain sequences
of observations that can be modeled by discrete HMMs.

we can often identify the font of redacted text by the
surrounding text that is not redacted. Moreover, even
when this is not the case, we can generally assume that
the font characteristics do not change midway through
the text that we wish to recover. A practical strategy
is therefore to build a separate HMM-based recognizer
for each individual font of interest. The following sub-
sections describe in a general way how this is done,
while Section 3 gives further details for several particu-
lar types of recognizers (e.g., for digit strings, for email
addresses, for natural language).

2.2 States

The states in our HMMs label the characters that ap-
pear in narrow, sliding windows of redacted text. Note
that the boundaries of these windows do not generally
align with character boundaries; see the top panel of
Figure 4. Thus it is not possible to label each window
by a single character. For example, in the bottom panel
of Figure 4, the leftmost window would be correctly la-
beled by the pair of digits (1, 3), the middle window by
the triple of digits (3, 2, 4) (because this window just
barely overlaps the leftmost part of the numeral four),
and the right window by the pair of digits (2, 4). Since
the sliding windows are of fixed width, some states may
represent an interior slice of a single wide character (e.g.,
the letter M), while others may represent a concatena-
tion of several narrow characters (e.g., the letters i and l
followed by a comma).

The number of states n in our HMMs depends on
two factors. First and foremost, it depends on the appli-
cation at hand: for example, the number of states may
be very large if we are attempting to recover generic
text (consisting of lower and upper-case letters, punctu-
ation, digits, etc), or it may be relatively small if we are
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merely attempting to recover phone numbers or bank
accounts (consisting only of digits). Second, the num-
ber of states depends on the width of the sliding win-
dow used to extract slices of mosaiced text. In general,
the wider the window, the more directly the HMM can
model the dependencies between adjacent characters in
text. But wider windows necessarily increase the size of
the HMM’s state space—because a state must be allo-
cated for each possible subsequence of characters that
can appear within one window. There is a trade-off here:
though HMMs with larger state spaces may yield bet-
ter models, the parameters of these HMMs will require
larger amounts of data to be reliably estimated. (Recall
that the transition matrix is of size n×n.) The window
size of each system must be chosen with this tradeoff
in mind. For real-world applications, we found that this
tradeoff was easily managed. The HMMs in Section 3
had state spaces as small as n = 110 (for recognizing
digit strings) and as large as n = 14593 (for recognizing
email addresses).

The start distribution πi = P (S1 = i) and transi-
tion matrix aij = P (St+1 = j|St = i) of these HMMs
are easily estimated from data. In particular, because we
generate the data ourselves by rendering known snippets
of text, it is a simple matter to align the sliding windows
of these mosaiced images with their correct underlying
state sequences. The parameters πi and aij are then
estimated, respectively, from the empirical frequencies
of start-states and state-state transitions. The snippet
of text in Figure 4, for example, would generate one
count each for the initial state (1, 3) and for the transi-
tions (1, 3) → (3, 2, 4) and (3, 2, 4) → (2, 4). We obtain
maximum likelihood estimates for the HMM’s start dis-
tribution and transition matrix by accumulating such
counts over the entire data set and taking appropriate
ratios to ensure that the parameters represent properly
normalized probabilities.

2.3 Observations

The observations in our HMMs are quantized descrip-
tors of the sliding, pixelated windows that contain
redacted text; see Figure 4. Each window is character-
ized by its vector of grid values. It would be possible to
model the distribution over such vectors directly, using
continuous-density HMMs. By quantizing these vectors,
however, we obtain sequences of observations that can
be modeled by discrete HMMs, which are simpler to
estimate. Moreover, as we show in the next sections,

discrete HMMs already suffice to demonstrate the inef-
fectiveness of text redaction by mosaicing and blurring.

We use the k-means clustering algorithm [11] for
vector quantization. The k-means algorithms takes as
input a collection of real-valued vectors and returns as
output a set of k representative prototypes in the same
vector space. Quantized descriptors are then obtained
by mapping every vector to its nearest prototype (as
measured by Euclidean distance). In our case, the in-
puts to the k-means algorithm are the vectors of gridded
pixel values obtained from sliding windows of redacted
text. Sequences of these vectors are then mapped to se-
quence of discrete observations {O1, O2, . . . , OT }, where
Ot ∈ {1, 2, . . . , k}.

A question naturally arises how to choose k. Larger
values of k yield finer quantizations of the observation
space, but they also lead to larger emission matrices
bi` = P (Ot = `|St = i); recall that the emission matrix is
of size n×k. Once again this creates a trade-off: though
HMMs with finer descriptors (i.e., larger k) may yield
better models, the emission matrices of these HMMs
will require larger amounts of data to be reliably esti-
mated. The value of k must be chosen with this tradeoff
in mind. We determined k automatically by evaluating
the performance of HMMs on held-out validation sets of
data; this worked well for our applications. The HMMs
in Section 3 had alphabets as small as k = 900 (for
recognizing digit strings) and as large as k = 7300 (for
recognizing email addresses).

Once prototypes have been computed by the k-
means algorithm, it remains to estimate the emission
matrix bi` = P (Ot = `|St = i). We do this by assigning
each window of gridded pixel values to its nearest pro-
totype and aligning the resulting observation sequences
{O1:T } with their corresponding state sequences {S1:T }.
(Once again, the latter are known to us because we gen-
erate the data ourselves from known snippets of text.)
We accumulate the counts of co-occurrences between
states and observations in an n × k matrix; the i`th el-
ement in this matrix records how many times, over the
entire data set, a window mapped to the `th quantized
descriptor was aligned with the character(s) represented
by the ith state of the HMM. Finally, we obtain maxi-
mum likelihood estimates of the emission probabilities
from the normalized values of these counts.

It should be noted that other methods exist for
clustering, such as density or linkage-based models, but
they are generally slower or more complicated than the
k-means algorithm. As mentioned previously, it is also
possible, using continuous-density HMMs, to model di-
rectly the observations of windowed images of text. We
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experimented briefly with such HMMs, using mixtures
of multivariate Gaussian distributions for the emission
densities. In general, we found that these more sophisti-
cated approaches were not necessary to decode redacted
images of text; the simpler models (e.g., k-means clus-
tering, discrete HMMs) described in this section were
quite sufficient.

3 Experiments for Mosaicing
We studied the effectiveness of HMMs for recovery of
redacted text in a number of different settings. In par-
ticular, we experimented with different fonts, mosaic pa-
rameters, levels of noise, and message types. We also
compared our HMMs to a brute-force heuristic [19] pro-
posed for recovery of redacted text. (This latter ap-
proach does not require any statistical modeling.) In this
section, we discuss the general methodology of our ex-
periments and describe the brute-force heuristic in more
detail. Then we present empirical findings for three dif-
ferent types of redacted text—U.S. bank account num-
bers, email addresses, and whole sentences. We also dis-
cuss the challenges of decoding real-world examples of
redacted text from the Internet.

3.1 Methodology

Each HMM that we train is designed to recognize
redacted text of a particular typeface, font size, mosaic
grid size, and offset in pixels from the mosaic’s origin. In
addition, for each HMM it is necessary to select a win-
dow size and shift parameter for analyzing the redacted
text. Once these particulars are specified, it is possible
to generate a large data set of training examples to es-
timate the parameters of the HMM. (We discuss the
specifics of these data sets in subsequent sections.) Our
general procedure for estimating each HMM involves the
following steps:

1. Render multiple instances of text as images. This
was done using the Java Advanced Window Toolkit
(AWT).

2. Create mosaiced text by pixelating the images. This
was done using the built-in mosaicing feature of
GIMP.

3. Divide the instances of mosaiced text into a train-
ing set (for estimating the HMM’s start distribu-
tion, transition and emission matrices), a held-out
validation set (for tuning all the other parameters

of the recognizer), and a test set (for evaluating the
HMM’s performance on unseen examples).

4. Segment the images of redacted text into sliding,
overlapping windows. The number of windowed seg-
ments is determined by the window size and shift
parameters, which also must be specified by the
user.

5. Quantize the vectors of gridded pixel values in each
window using the k-means algorithm. (Appropriate
values of k can be determined by the HMM’s per-
formance on the held-out instances in the validation
set.)

6. Estimate the model parameters on the instances of
redacted text in the training set, as described in the
previous section.

7. Evaluate the accuracy of the HMM on the instances
of redacted text in the test set (and/or apply the
HMM to a real-world example with matched type-
face, grid size, and other characteristics).

In addition, we can introduce other optional steps
into this procedure—such as the addition of noise or
distorting artifacts (e.g., JPEG compression)— to eval-
uate the robustness of the HMMs when the test in-
stances of redacted text do not perfectly conform to the
training instances.

We use a simple variant on edit distance5 to evalu-
ate the accuracy of recovered text. In particular, let x
and x′ denote the original and recovered strings of text,
respectively. Then we define

score(x′) = (100%)×
(

1− EditDistance(x, x′)
Length(x)

)
as the score of the recovered text. This score provides a
useful measure of accuracy: a score of 100% indicates a
perfect match to the original text, while a score of 0%
indicates that the recovered text differs by a number
of insertions, deletions, and substitutions equal to the
length of the original text itself. As a visual aid, Ta-
ble 5 shows the scores for some examples of recovered
text. We see that a score of 70 or above is easily under-
stood as natural language, while below that it becomes
very difficult. In general, the higher the score, the less
effective the redaction.

5 The edit distance between two strings computes the number
of insertions, deletions, and substitutions required to transform
one string into the other.
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Score (%) Recovered Text

100 Nobody is practicing water safety and wearing preservers.
90 Nobody is practicing water safety and wesaring prerservers.
80 Nobody is peracticing waler safey ard wearing preservemas.
70 Nokedy is praching water safey anct waring pracarvers.
60 Nokedy is pracking watbr watwong anoftean ing pracarvers.
50 Nobody is jersetiking w sler baPesng anowir wsaling junsthrsuns.
40 Nobody is g machoing bre barbon aro f stalig g mackeroris

Table 1. Examples of scores of recovered text. The higher the
score, the less effective the redaction.

3.2 An Enumerative Approach

We compare our approach to a brute-force method sug-
gested by Venkatraman [19]. The brute-force method
does not involve any statistical modeling; instead, given
an image of redacted text, it enumerates all possible
strings that fit the observed horizontal and vertical di-
mensions of text, generates an image of mosaiced text
for each of these strings, and outputs the string whose
mosaiced image most closely matches the original one.
This method is straightforward to implement for strings
of very short length, and for strings of indefinite length,
we consider a greedy variant of the method that searches
for the best match in sub-exponential time. Pseudocode
for this approach is shown below.

1: function BruteForceDecode(Mosaic m)
2: gridsOfM := the grids of m
3: sol := ε . Empty string
4: for t = 1 . . . len(gridsOfM) do
5: grids := the tiles from 0→ t.
6: cs := the sequence of characters such that

the length of sol+cs is greater than or equal
to the length of grids, and that the Eu-
clidean distance between mosaic(sol + cs)
and grids is minimized.

7: sol := sol + cs′ such that cs′ is the longest
substring of cs that the length of sol + cs′

is less than or equal to the length of grids.
8: end for
9: return sol

10: end function

Function BruteForceDecode is based on the same
enumerative approach, but it takes into account that
the effects of mosaicing are localized: i.e., the pixelation
of one character in a string does not affect the pixelation
of other distant characters. In this approach, a window
size of text is chosen for which it is feasible to enumerate
all possible strings. The function then recovers charac-

Fig. 5. Top row: a seven-digit string rendered in 24p MICR En-
coding font. Middle and bottom rows: mosaiced images with grid
sizes of 8p and 18p, respectively.

Fig. 6. Toy check with routing and account number redacted.
Recreated from http://levittownnow.com/2016/01/04/cops-
concert-organizer-wrote-bad-check/.

ters of the redacted text, one grid cell at a time, as it
scans the mosaiced image from left to right. Specifically,
the function starts by finding the best matching charac-
ters in the leading window of the mosaiced text; this is
done by a brute-force search. After this search, it fixes
the characters of the match that lie in the leftmost grid
cell. Then it shifts the analysis window by one grid cell
to the right, and the process repeats, but with all sub-
sequent matches conditioned on the results of previous
ones. This approach greedily prunes the search space
of possible strings as the analysis window slides across
the image of redacted text. It is not strictly guaranteed
to reproduce the same result as an exhaustive search.
However, it will succeed to do so if the window size is
sufficiently large and the evidence within each window
is unambiguous.

3.3 U.S. Bank Account Numbers

Our first application, also drawn from Venkatra-
man [19], is to analyze mosaiced images of digit strings
that appear on U.S. checks. This is the simplest appli-
cation that we consider in this paper; here, the redacted
text consists exactly of seven evenly spaced digits. Fig-
ure 5 shows an example of such text both before and
after it has been redacted by mosaicing.

http://levittownnow.com/2016/01/04/cops-concert-organizer-wrote-bad-check/
http://levittownnow.com/2016/01/04/cops-concert-organizer-wrote-bad-check/
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Fig. 7. Accuracy of text recovered by HMM-based and brute-force recognizers for mosaiced images of seven-digit strings in 24p MICR
Encoding font. Panel (a) shows the accuracy versus mosaic grid sizes in the absence of JPEG compression. Panels (b) and (c) show
the accuracy versus JPEG quality with a fixed mosaic grid size of 14p. See text for details.

To train HMMs for this application, we randomly
generated 20,000 seven-digit numbers and rendered
their strings in 24 point MICR Encoding font. Note
that the number of examples in our data set (20,000)
is smaller than the total number (107) of possible digit
strings by several orders of magnitude. We split the
20,000 examples into three sets: 10,000 for training,
5,000 for validation, and 5,000 for testing. The 15,000
examples in the training and validation sets are then
mosaiced at various grid sizes and used to estimate
HMMs that recognize mosaiced text.

Figure 7(a) compares the performance of the HMM-
recognizer and brute-force method when they are eval-
uated on the mosaiced images of digit strings in the test
set. Note that this evaluation corresponds to the ideal-
ized setting in which the mosaiced test images are not
subject to any additional forms of noise or distortion.
In this setting, the two methods yield comparable re-
sults, both of them recovering the redacted text over a
wide range of grid sizes. Not surprisingly, the accuracies
of both methods fall off when the mosaic grid size (as
measured in pixels) approaches the font size. It seems
that irresolvable ambiguities arise when the mosaic grid
size is large enough to span multiple digits; moreover,
as the grid size approaches the dimensions of the full
text, the mosaicing filter (just like redaction by a black
bar) results in a complete loss of information. (Later
we will see that the HMM-recognizers are more resilient
to larger grid sizes when recovering text from natural
language.)

Next we consider a more realistic evaluation. It is
extremely rare for images to be released on the Internet
in a lossless format. More typically, images are found in
JPEG format, with some degree of quality sacrificed for

Fig. 8. Loss of quality through JPEG compression. Shown are
JPEQ qualities of 100%, 66%, 33%, and 0% respectively.

smaller file sizes. Figure 8 shows how the image quality
of text is affected by JPEG compression at different
levels. Of course, other forms of distortion— if the image
was obtained by scanning a hard-copy document—are
also possible.

We studied this more realistic setting by subject-
ing the test images in our data set to different levels of
JPEG compression. Note that this is a mismatched test-
ing scenario for both the HMM-based recognizers (which
are trained on uncompressed images) and the brute-
force method (which is comparing to uncompressed im-
ages). For completeness, we also experimented with
JPEG compression that was applied either before or
after the redaction by mosaicing. In the case of post-
mosaicing compression, we obtained pixelated images
for testing by computing the median pixel value in each
grid cell.

Figures 7(b-c) show the results of these experiments.
In the presence of JPEG artifacts, the HMM-based and
brute-force recognizers are no longer comparable. In
particular, the HMM-based recognizers are fairly robust
to JPEG artifacts, whereas the brute-force recognizers,
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Fig. 9. Accuracy of text recovered by HMM-based and brute-force recognizers for mosaiced images of email addresses in 24p Arial
font. Panel (a) shows the accuracy versus mosaic grid size in the absence of JPEG compression. Panels (b) and (c) show the accuracy
versus JPEG quality with a fixed mosaic grid size of 14p.

which search for exact matches of grid cell values, are
easily misdirected. It seems that the probabilistic un-
derpinnings of HMMs allow them to cope with greater
uncertainty.

It is natural to ask why the HMM-based recognizers
outperform the brute-force approach in this situation.
Recall that the HMM’s inference procedures, based on
dynamic programming, are able to search efficiently over
the whole space of possible digit strings. For the brute-
force recognizers, however, we approximated the search
by considering a greedy algorithm that runs in linear
time. One possible explanation, therefore, is that the
greedy approximation is introducing errors that would
be overcome by a truly exhaustive search. However, we
do not believe this to be the case. In particular, we
verified that the brute-force recognizers obtained the
same average accuracies even when the sliding window
was doubled and quadrupled in size. We also verified
that in the presence of JPEG artifacts, the greedy ap-
proach produced lower-error matches than the original
digit strings.

The above suggests to look elsewhere for the weak-
nesses of the brute-force approach. It seems instead that
the brute-force recognizers are mainly compromised by
the distance function they use to compute matches.
When exact matches are possible—when the redacted
text has been mosaiced but not subject to other forms of
noise or distortion—simple Euclidean distance between
grid cells is an effective criterion for matching. This does
not appear to be the case, however, in less idealized set-
tings. Venkatraman notes that other distance metrics
are likely to be more effective [19], though the design of
such metrics is not straightforward. It is worth pointing
out, then, that the HMM-based recognizers do not rely

on simple template-matching via Euclidean distance. In
fact, the quantized descriptors from the k-means algo-
rithm and the emission matrices in HMMs are highly
adaptive to the underlying density of mosaiced images.
This appears to be a significant advantage of the HMM-
based recognizers.

3.4 Email addresses

Another prominent application of mosaicing is the
redaction of email addresses. Many users on social media
(e.g, Twitter, Facebook, message boards) post images
of email that they wish to share, but pixelate the email
addresses to protect the privacy of the sender and/or
recipient.

To begin, we show by a detailed example how to re-
cover such email addresses with our approach. To mimic
a real-world application, we took a screenshot of an
email that we received from Google Wallet and asked
a third party to mosaic out the email address. The re-
sulting image is shown in Figure 10.

Before training an HMM, it was necessary to per-
form some manual forensics on the image; in particular,
we needed to identify the font’s typeface, size, and color,
the grid size of the mosaicing filter, and the offsets (in
pixels) of the text from the origin of the mosaic. The
font characteristics were easily identified from Google
Gmail, and the grid size by visual inspection. However,
it required a trial-and-error approach to identify the off-
sets. (In fact, this is often the most time-consuming part
of the recovery process.)

Once we identified the basic font and mosaicing pa-
rameters, the rest of the recovery process was fully au-
tomated. As data for our HMM, we randomly generated
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Fig. 10. Example of an email address redacted by mo-
saicing. Our HMM-based recognizer recovers the text
noreply@wallet.google.com, which is the correct address.

Randomly Generated Email Address

o4srjgz1d9ta@6yp20
hr9@c09z4g8razbtaa
innuz@wmvq4lphj36
9ybwj4wqzxb@64jd.3.qgrrt
gyna2h@7xt1ajwp2cb6
mo3of8p43ej2h@ehtmo

Table 2. Examples of randomly generated email addresses used to
train our HMM-based recognizers.

20,000 email addresses that matched a regular expres-
sion of the form [a-zA-Z0-9._]+@[a-zA-Z0-9.]+. Ta-
ble 2 shows a set of these randomly generated email ad-
dresses. We rendered the email addresses in 24p Arial,
applied a mosaic filter at the pre-determined grid size,
and split these images into a training set of 10,000 im-
ages (for estimating the model parameters of the HMM),
a validation set of 5,000 images (for estimating other
parameters of the recognizer, such as the degree of im-
age quantization, k), and a test set of 5,000 images (for
evaluating more systematically the model’s accuracy).
Once the model was trained, we used it to decipher the
redacted text in Figure 10.

Figure 11 shows the most likely sequence of hidden
states (representing pairs or triples of adjacent charac-
ters) inferred by the HMM for this example. In this ex-
ample, it is important to note that the mosaiced image
was saved in JPEG format with lower quality than the
original PNG of the screenshot. Perhaps for this rea-
son the brute-force approach was unable to recover the
email address; in particular, for this example it returned
gibberish.

We also performed a more systematic evaluation of
the HMM-based and brute-force recognizers on this data
set. Figure 9 show results from the same suite of ex-
periments that we ran on digit strings in the previous
section. Here again we see that the HMM-based and
brute-force recognizers perform equally well when the
mosaiced images are not compressed, recovering email
addresses over a wide range of mosaic grid sizes. How-

SICK Sentence

The young boys are playing outdoors and the man is smiling nearby.
Two young women are sparring in a kickboxing fight.
Nobody in snowsuits is lying in the snow and making snow angels.
People wearing costumes are gathering in a forest.
A group of people in a large Asian restaurant is eating.
Pink bellbottoms and a pink scarf aren’t to be worn by women.

Table 3. Examples of SICK sentences

ever, the HMM-based recognizers are much more re-
silient to JPEG artifacts. As the results are similar to
those of the previous section, we skip a more detailed
analysis.

3.5 Natural language

For our last application we study the effectiveness of
mosaicing as a redaction strategy for extended portions
of text. The framework here is identical to those of
previous sections, except that the strings we are try-
ing to recover consist of semantically meaningful words.
As we shall see, the HMM-based recognizers are very
well equipped to leverage this additional structure in
the text. In particular, because they explicitly model
the statistics of likely character sequences, they are able
to recover natural prose in more adverse settings than
random digit strings or email addresses.

The SICK corpus [13] is a collection of 20,000 En-
glish sentences, originally used for the construction of
distributional semantic models. Table 3 lists several sen-
tences from the corpus. For the experiments in this sec-
tion, we used 10,000 sentences for training, 5,000 for
validation, and 5,000 for testing.

As a first set of experiments, each sentence was ren-
dered in 18p Arial font and mosaiced with varying grid
sizes. Figure 12 compares the accuracy of HMM-based
and brute-force recognizers on the mosaiced images of
these sentences. As in the previous experiments on digit
strings and email addresses, we see that both types of
recognizers degrade in performance as the mosaic grid
size becomes larger than the font size. But now, even in
the absence of JPEG compression, there is a significant
difference between the two recognizers at larger grid
sizes; the HMM-based recognizers perform much bet-
ter. In fact, the brute-force recognizers exhibit a fairly
catastrophic drop in performance when the grid size ex-
ceeds the font size.

Why do the two methods perform so differently at
larger grid sizes? One likely explanation is that the
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Fig. 11. The most likely sequence of hidden states inferred by the HMM for the mosaiced email address in Figure 10. Concatenating
overlaps, we obtain the correct address noreply@wallet.google.com.
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Fig. 12. Accuracy of text recovered by HMM-based and brute-
force recognizers for mosaiced images of sentences from the SICK
corpus in 18p Arial font.

HMMs are exploiting the statistics of likely character
sequences. In particular, the transition matrix elements
in the HMM (as learned from sentences in the SICK cor-
pus) reflect these statistics. Consider the followed con-
trived example. Imagine that a mosaic grid is exactly
wide enough to average the pair of letters ‘qu’. Notice
in this case that a sliding window which contains a mo-
saiced image of ‘qu’ is indistinguishable from a sliding
window which contains a mosaiced image of ‘uq’. The
brute-force method, which enumerates both of these
possibilities, has no way to distinguish between them.
On the other hand, the HMM will assign a much higher
likelihood to the former—assuming that the character
‘q’ was observed to precede the character ‘u’ in the SICK
corpus many more times than the other way around.
These sorts of ambiguities in the brute-force recognizer
seem likely to multiply as the grid size increases, causing
a propagation of errors in its recovery process.

We ran a comprehensive suite of experiments on
mosaiced images of sentences from the SICK corpus,
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Fig. 13. Accuracy of recovered sentences across multiple exper-
imental configurations (font typeface, mosaic grid size, JPEG
quality) by HMM-based and brute-force recognizers. The HMM
accuracies (y-axis) always exceed the brute-force accuracies (x-
axis). See text for details.

evaluating the accuracy of HMM-based and brute-force
recognizers against multiple fonts (Arial, Comic Sans,
Verdana, Courier), mosaic grid sizes, and levels of JPEG
compression. Figure 13 summarizes the results of all
these experiments in a scatterplot, with the accuracy
of the brute-force recognizers plotted along the x-axis,
and the accuracy of the HMM-based recognizers plot-
ted on the y-axis. The diagonal line in the plot separates
cases where the HMM-based recognizers outperformed
the brute-force approach. We note that all the results
occur above the diagonal; we did not observe a single
scenario in which the HMM-based recognizers were out-
performed by a non-statistical, enumerative approach.
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Font Average Score (%) on SICK Corpus
8p 12p 16p 20p 24p 28p 32p

Arial 92 93 93 93 93 94 96
Comic Sans MS 92 93 93 93 94 95 96
Courier New 91 92 92 92 93 93 94
Verdana 92 92 93 93 93 94 96

Table 4. The average scores on the SICK corpus as font type
and size vary. Mosaic grid size is the same as the font size. These
experiments were run with no JPEG quality loss.

Lastly we explored how well the HMM-based recog-
nizers recover redacted text of varying font size. These
results are shown in Table 4. For these experiments, we
fixed the mosaic grid size to be the same as as font size
(e.g., 16p grid size for 16p Arial font). The table shows
that the accuracies are fairly constant over a 4x differ-
ence in font size; as expected, however, there is a small
improvement for larger font sizes due to the finer clarity
of their rendered text. We also found the HMM-based
recognizers to recover the redacted text in real-world
examples over a similar range of font sizes.

3.6 Real-world issues

We concede that one time-consuming element of the re-
covery process (which applies to both the brute-force
and HMM-based approaches) is that we must first iden-
tify the correct horizontal and vertical offsets of mo-
saiced images, as measured in pixels, with respect to
the start position and baseline of the text. This may
require a laborious manual effort, so it is natural to ask
whether the results are sensitive to incorrect estimates
of these offsets. Figure 14 shows a confusion matrix of
results when HMMs trained on mosaiced images with
one vertical offset were tested on images with another
vertical offset. As expected, the highest scores are ob-
tained along the diagonal, when the training and testing
offsets are perfectly matched. However, the scores fall off
quickly with every pixel shift of these offsets. The results
suggest that it is necessary to identify the correct offsets
before the beginning of the modeling process. Another
possibility would be to train multiple HMMs, one for
each pairing of horizontal and vertical offsets (from zero
pixels to the mosaic grid size), and evaluate them all on
the redacted text of interest.

In addition to the synthetic examples described in
this section, we have collected many real-world uses
of mosaicing (and blurring) “in the wild” where these
methods are used to redact sensitive text from online
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Fig. 14. Confusion matrix when HMMs trained with one vertical
offset are tested on mosaiced images with another vertical offset.
The sentences in these experiments were drawn the SICK corpus
and rendered in 24p Arial font with a mosaic grid size of 14p.

screenshots. We have been successful in recovering the
redacted text using our approach from each such im-
age that we have examined; the most difficult step, as
noted above, has typically been reproducing the param-
eters by which the original image was generated. While
we understand the value of demonstrating our approach
on other than synthetic examples, we think it is un-
ethical to make the published version of this paper an
archival means for the dissemination and preservation of
information posted by people who meant to obscure it.
However, we invite researchers who wish to study these
real-world examples to contact us directly.

It is natural to ask whether similar results could
have been obtained with fewer training examples, or
whether better results could be obtained with even
more. It is known that larger data sets generally yield
better results for problems in natural language process-
ing. For example, even larger data sets would be desir-
able to estimate the transition probabilities of longer-
range n-gram models. For recovery of more constrained
text, however, this does not seem necessary. Indeed, we
obtained similarly accurate HMMs for check numbers
with only 1K examples and for email addresses with
only 5K examples.

4 Extension to Blurring
Another popular redaction method (perhaps more so
than mosaicing) is blurring. In the most common type
of blur, the original image of text is convolved with a two
dimensional Gaussian whose standard deviation deter-
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Score (%) Recovered Text

100 Nobody is practicing water safety and wearing preservers.
90 Nobody is practicing water safety and wesaring prerservers.
80 Nobody is peracticing waler safey ard wearing preservemas.
70 Nokedy is praching water safey anct waring pracarvers.
60 Nokedy is pracking watbr watwong anoftean ing pracarvers.
50 Nobody is jersetiking w sler baPesng anowir wsaling junsthrsuns.
40 Nobody is g machoing bre barbon aro f stalig g mackeroris

Table 5. Examples of scores of recovered text. The higher the
score, the less effective the redaction.

Fig. 15. Example of Gaussian-blurred text with blur radii (from
top to bottom) of 0p, 15p, 30p, and 45p.

mines the radius of the blur. Figure 15 shows an example
of blurred text with different blur radii.

Though blurring and mosaicing both reduce the vi-
sual resolution of images, the former does not reduce
the absolute number of pixels in the image. For exactly
this reason, mosaicing can be a useful form of post-
processing for reducing the variability of blurred images
before attempting to model them. Consider, for exam-
ple, an image of text that has been blurred with two
slightly different blur radii. The two blurred images will
have slightly different pixel values at the original reso-
lution of the image. But if the two images are mosaiced
with a grid size near their blur radius, the resulting mo-
saics will be identical or nearly so. We are accustomed
to regarding mosaicing as an inherently lossy (therefore
destructive) operation, but in this context, it is serving
a useful purpose. In particular, it may be prohibitively
expensive to build statistical models of blurred text for
every conceivable blur radius. By working with mosaiced
images, however, we can restrict ourselves to increments
of the blur radius that are roughly equal to mosaic grid
sizes.

With the above idea in mind, we have all the ma-
chinery in place from the previous section to build an
HMM-based recognizer for blurred text. In particular,
given an image of blurred text, we can roughly estimate
its blur radius by mosaicing the image at different grid
sizes and noting the grid size where the blurred image

Fig. 16. A blurred image is mosaiced, and then the most likely
text inferred by an HMM. We can see that the word enthusiasti-
cally is missing an ‘l ’, but otherwise the recovery is accurate.

begins to degrade further due to the mosaicing. (There
has been work [2] to calculate the blur radius analyt-
ically, or at least to estimate it more precisely, which
we did not pursue.) Let us assume, also, that the font
metrics (e.g., typeface, size, color) of the text can be de-
termined from auxiliary information. Then we can fol-
low the same procedure as before to recover the blurred
text:

1. Render many images of known text in the same
typeface, font size, color, etc.

2. Blur the images of text from step 1 at the estimated
blur radius.

3. Mosaic the blurred images from step 2 at an appro-
priate grid size, so as to reduce their dimensionality
without incurring a significant loss of visual infor-
mation.

4. Train an HMM on the images of blurred, mosaiced
text from step 3.

5. Recover the unknown blurred text by mosaicing it
at the grid size from step 3 and inferring the most
likely sequence of hidden states in the HMM from
step 4.

Figure 16 shows an application of this approach, where
an HMM recovers the text from a blurred image after
it has been mosaiced. The recovery is nearly perfect de-
spite a considerable degree of blurring.

Within this framework we also performed a more
systematic set of experiments on the sentences in the
SICK corpus. The text in these experiments was ren-
dered in 24p Verdana font and convolved by Gaus-
sian filters with different blurring radii. In addition, all
blurred images were post-processed with a mosaic of
grid size 8p. Our results are summarized in Figure 17,
which shows the accuracy of recovered text versus the



Mosaicing and Blurring Text 416

0

25

50

75

100

0 20 40 60
Gaussian Blur Radius (pixels)

A
ve

ra
ge

 S
co

re

 HMM Brute Force

Fig. 17. Results on SICK sentence blurred data, generated as 24p
Verdana font using 8p mosaic tiles post blur

radius of Gaussian blurring. The results are similar to
those of the previous section. As one expects, the ac-
curacy of recovered text decreases with increasing blur
radius, but here again the HMM-based recognizers are
more resilient to lower-resolution redactions than the
brute-force recognizers.

Recall from Table 5 that an accuracy score of 70%
corresponds roughly to the threshold of sensical vs non-
sensical text. From Figure 17, we see that the HMM-
based recognizers achieve this score up to a Gaussian
blur of radius 45p, whereas the brute-force recognizers
achieve this score only up to a blur of radius 15p. Fig-
ure 15 shows that a 15p blur is nearly readable to the
human eye. Many real-world examples of blurring are
much more severe.

5 Conclusion
In this paper we have demonstrated the ineffectiveness
of mosaicing and blurring as tools for text redaction.
Our approach, based on HMMs, is able to recover text
perfectly for many common fonts and parameter set-
tings. Moreover, in more challenging problems for re-
covery, our approach substantially outperforms a brute-
force strategy based on exhaustive search and simple
template-matching. Our results have shown that HMMs
enjoy the advantages of a probabilistic, data-driven ap-
proach: when noise is present in the images, they bene-
fit by modeling the underlying density of pixelated text,
and when words are present in the text, they benefit by
incorporating the statistics of likely character sequences.

Mosaicing and blurring are popular forms of redac-
tion because they have a certain aesthetic appeal to the
naked eye. The images that these methods produce are

highly suggestive of text; as a result, they do not disrupt
the visual appearance of documents to the same extent
as cut-out or black box methods for redaction. But while
mosaicing and blurring are lossy transformations, they
preserve far more information than most users realize.
Our goal in this paper has been to demonstrate, through
the use of statistical models, just how much information
these methods leave on the page. Given the widespread
adoption of these methods in online communities, we
hope that our results will raise a greater awareness of
their weaknesses.
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