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Generic Adaptively Secure Searchable Phrase
Encryption
Abstract: In recent years searchable symmetric encryp-
tion has seen a rapid increase in query expressiveness
including keyword, phrase, Boolean, and fuzzy queries.
With this expressiveness came increasingly complex
constructions. Having these facts in mind, we present
an efficient and generic searchable symmetric encryp-
tion construction for phrase queries. Our construction
is straightforward to implement, and is proven secure
under adaptively chosen query attacks (CQA2) in the
random oracle model with an honest-but-curious adver-
sary. To our knowledge, this is the first encrypted phrase
search system that achieves CQA2 security. Moreover,
we demonstrate that our document collection prepro-
cessing algorithm allows us to extend a dynamic SSE
construction so that it supports phrase queries. We
also provide a compiler theorem which transforms any
CQA2-secure SSE construction for keyword queries into
a CQA2-secure SSE construction that supports phrase
queries.
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1 Introduction
Searchable Symmetric Encryption (SSE) is a mecha-
nism that allows untrusted storage providers, such as
clouds, to execute search queries over encrypted data.
In particular, an SSE system involves a client issuing
encrypted search queries to the cloud, and the cloud re-
turning the results of the search query without learning
the query itself.

SSE has been studied extensively since its initial
construction by Song, Wagner, and Perrig in 2000 [18].
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Publications that followed tended to focus on keyword
search [6, 7, 9, 18, 22]. These early works quickly con-
verged on an inverted index approach. An inverted in-
dex is a data structure that stores what keywords are
present in which documents. This index is encrypted in
a special way so that encrypted queries, known as to-
kens or trapdoors, may be evaluated over the encrypted
index. As a result of the query, the SSE system returns
either identifiers for the matching documents or the en-
crypted documents themselves.

There is no reason to limit SSE queries to just key-
words. Recent work has provided the primitive with
more expressive queries. There are now SSE systems
that support Boolean queries [5], fuzzy keyword queries
[14], and phrase queries [13, 21] (our focus).

SSE systems that support phrase queries provide
several enhancements and advantages over traditional
SSE. First, phrase queries allow for higher precision in
queries than keywords or Boolean queries. For exam-
ple, phrase queries can be used to retrieve only docu-
ments that contain “red bicycles” instead of having to
search for all documents that contain “red” and “bi-
cycles”. Second, phrase queries provide the ability to
perform certain context-sensitive searches. By this we
mean that phrase queries allow for context to be added
to keywords. For example, a law enforcement agency
may be concerned with searching for a “red Kona moun-
tain bike” in encrypted files containing theft reports. In
a keyword based system or Boolean query system this
query could return many additional results depending
on the definition of keywords. Third, unlike keyword
queries, phrase queries allow for arbitrarily long queries,
and thus arbitrarily specific queries to be executed over
the encrypted documents.

In this paper, we focus on searchable encryption
for phrase queries. We seek to reduce the complexity
of phrase query systems through the introduction of a
generic construction. In particular, we construct an effi-
cient and easy to implement phrase search system based
on the work of Cash et al. [4] (Section 6). Building on in-
sight developed from this construction, we introduce an
encrypted phrase search mechanism that makes black-
box use of any underlying keyword encrypted search
mechanism (Section 10). Black-box constructions for
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phrase SSE benefit from any improvements to the un-
derlying building blocks.

Our construction has the following contributions:
– It is CQA2 secure which, to our knowledge, is the

first such construction for phrase queries.
– It operates using a single round of communication

between the client and cloud to retrieve matching
documents. This is a substantial improvement over
the existing multi-round systems of Tang et al. [21]
and Kissel and Wang [13].

– It supports parallel processing of queries.
– It is straight forward to implement.

In addition to our basic construction, we also offer two
additional contributions important in their own right;
they are
1. A CQA2 dynamic SSE construction that supports

phrase queries;
2. A compiler theorem which translates any SSE sys-

tem for keyword queries to an SSE system for phrase
queries.

This paper is organized as follows. In Section 2 we will
discuss previous work on SSE. In Section 3 and 5 we will
set up the fundamental model of SSE and define our no-
tations. In Section 4 we will discuss the necessary back-
ground information to understand our construction pre-
sented in Section 6. In Section 7 we will discuss the secu-
rity issues in our construction. In Section 9 we will show
how to use our preprocessing mechanism in a different
classic keyword-based system. We present our compiler
theorem in Section 10 and conclude with final remarks
in Section 11.

2 Previous Work
Encrypted search can be based on either symmetric en-
cryption or asymmetric encryption, first studied by, re-
spectively, Song et al. [18] and Boneh et al. [1]. We will
only consider symmetric searchable encryption in this
paper. For a timely survey of the state of searchable en-
cryption research we recommend Bösch et al.’s article
[2].

Security for SSE was first formalized by Curtmola
et al. [8]. They introduced two notions of security
chosen-query attack 1 (CQA1) and chosen-query attack
2 (CQA2). In the CQA1 setting the attacker is not al-
lowed to make adaptive queries that are based on ob-
serving previous results. In the CQA2 setting the at-

tacker is allowed to make adaptive queries; thus CQA2
is a strictly stronger form of security. In addition to for-
malizing these two notions of security Curtmola et al.
provided constructions based on linked lists that satis-
fied both CQA1 and CQA2.

An early construction of phrase queries is due to
Tang et al [21]. Their construction operates as a two-
phase protocol. In the first phase, the cloud retrieves
the document identifiers for documents that contain all
the words in the phrase provided by the client, and
returns the identifiers to the client. This phase relies
on a global index shared among all documents in the
cloud. In the second phase, the client sends a query and
a list of document identifiers to the cloud. The cloud
searches for an exact phrase match for each document
in the per-document index and returns to the client
the actual encrypted documents that match the phrase.
Their protocol, however, only provides security under
the honest-but-curious (HBC) adversarial model. Tang
et al. further formulated, a definition of CQA1 security
for phrase encryption based on the work of Curtmola et
al. [8] and showed that their construction satisfies this
definition of CQA1 security.

Kissel and Wang [13] devised an encrypted phrase
search scheme for the semi-honest-but-curious adversar-
ial model. In this model the adversary is very similar to
an HBC adversary except that the adversary (cloud)
may return incomplete or incorrect results [6]. Often
times a system that provides security in the presence
of adversaries that lie about the number of results are
called verifiable. Loosely speaking, their construction
combines ideas from [21], which uses essentially a hybrid
Merkle tree [15], and [6]. In particular, they replaced the
first phase of the scheme of [21] with the verifiable key-
word index of [6], and modified the second phase of [21]
to include verification. These changes make both phases
of the scheme of [21] verifiable. They showed that the
resulting construction is CQA1 secure.

Recent advances greatly simplified and improved
the IO efficiency of SSE constructions for the HBC
model. Notably, the work Cash et al. [4] simplified con-
structions of SSE while achieving IO efficiency. Their
method allows any arbitrary history independent dic-
tionary data structure to be used as a black box in con-
structing an SSE system. In addition, their system is
clean, easily implemented, and has a form that is CQA2
secure. We will further elaborate on their contributions
in Section 4.

Contemporary work is moving towards dynamic
SSE. In a dynamic form of SSE, the collection is allowed
to be modified. In indexed based constructions this in-
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volves securely modifying the index. A trivial solution
is to download the collection, modify, and then reen-
crypt. These solutions are mentioned in several early
papers and newer papers provide better results. For
example, Kamara et al. [12] presented a dynamic en-
crypted linked list based index and Kamara and Papa-
manthou [11] presented a dynamic encrypted red-black
tree. While efficient, the constructions in [12] and [11]
offer weak security around updates. Non-indexed based
approaches have also been tried. Specifically, Stefanov,
Papamanthou, and Shi created a non-index based solu-
tion [19, 20]. Their solution offers what is known as for-
ward security. Loosely speaking, forward security means
that insertion of new data into the collection does not
allow an attacker to infer if the new data would match
a previously issued query.

3 Searchable Phrase Encryption
Model and Notations

We extend the notations of Curtmola et al. [8] to obtain
notations for encrypted phrase search.

3.1 Notations

Let DB = (idi,Wi, Li)di=1 denote a corpus of d docu-
ments, where idi ∈ {0, 1}λ is a unique document iden-
tifier, Wi ⊂ {0, 1}∗ a set of keywords in document idi,
and

Li : Wi → P (N) ,

where P (·) denotes the power set. Li is a mapping from
a word to a set of location information for document i
(the meanings of Li will be made clear later). Let W be
the set of all words, namely, W =

⋃d
i Wi. Let

DB (w) = {(idi, u) : w ∈W and u ∈ Li (w)} .

Note that in the notations for keyword-based SSE there
is no word-location mapping Li.

We denote by w1 ‖ w2 the concatenation of words
w1 and w2, which is often denoted by w1w2 when there
is no confusion.

We denote a semantically secure symmetric encryp-
tion algorithm by (G,E,D), where G is a key generation
algorithm that takes a security parameter as input and
generates a key of the desired size, E a symmetric key
encryption algorithm that takes a key and a message
as input and returns a ciphertext, and D a decryption

algorithm that takes a key and ciphertext as input and
returns the original message. In addition, we will use a
family pseudo-random functions F that are indexed by
a secret key. Each member of the family will take a word
as input and produce a binary output.

3.2 Model

An SSE scheme is a collection of four polynomial-time
algorithms

SSE = (Setup,BuildIndex,Token, Search) .

Formally we have:
– Setup

(
1λ
)
. This is a probabilistic key generation

algorithm run by the data owner, who is also the
client. It takes a unary notation of λ, a security pa-
rameter, as input and returns a secret key K such
that the length of K is polynomially bounded in λ.

– BuildIndex (K,DB). This is a (possibly probabilistic)
algorithm run by the data owner. It takes as in-
put the secret key K and a document collection DB
that is polynomially bounded in λ, and returns an
encrypted index EDB such that the length of EDB
is polynomially bounded in λ.

– Token (K,w). This is run by the data owner. It takes
the secret key K and a word w as input, and returns
a token Tw.

– Search (EDB, Tw). This is run by the cloud C. It
takes an index EDB for a collection DB and the to-
ken Tw for word w as inputs, and returns DB (w),
the set of identifiers of documents containing w.

In our construction, we will slightly modify Token and
Search such that we operate on a phrase instead of a
keyword. Specifically Token will be given a sequence of
words as input and produce a sequence of tokens. Simi-
larly, Search will be provided with a sequence of tokens
previously produced by a single call to Token.

We say that a SSE scheme is correct if executing
Search with a token Tw for word w ∈W , returns DB (w)
with negligible probability of failure.

Intuitively we say that a phrase system is secure,
if a polynomial (in the security parameter) time ad-
versary can not learn anything meaningful about the
document collection from queries and their associated
results. The adversary should also not learn anything
meaningful about the query. A more formal discussion
of security is deferred to Section 7. For our purposes we
will constrain our work to HBC adversaries.
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4 Background on Generic
Keyword SSE

Cash et al. [4] recently presented an elegant SSE con-
struction that uses an generic history-independent dic-
tionary data structure.

A dictionary data structure T is any data struc-
ture that supports three operations: Insert, Lookup, and
Delete. We define these operations as follows:
– Insert (T, k, v). This function inserts a value v with

key k into the dictionary T .
– Lookup (T, k). This function returns the values in T

that are associated with key k. If there are no values
then ⊥ is returned.

– Delete (T, k). This function removes the value in dic-
tionary T associated with key k. It further removes
the key k if there is no other associated data.

We say that a dictionary is history independent [16, 17]
if any two sequences of Insert and Delete operations will
create the same content and generate the same distri-
bution over the memory representation of the dictio-
nary [17]. Essentially, the dictionary only depends on
what is inserted and deleted, not the order in which
these operations occur. As mentioned in [4], a simple
way to achieve history independence for dictionaries
is to sort all the key-value pairs before insertion into
the dictionary. If one wishes to remove dependence on
history-independent data structures this approach could
be used. Provided all inserts were done at one time.

In its basic form, known as ΠBas in [4], the system
of Cash et al. begins by building a list of key-value pairs
for every w ∈W :

(F (K1, c), EK2(id)),

where the value c denotes the c-th occurrence of w in
DB, id ∈ DB (w),

K1 = F (K, 1 ‖ w),
K2 = F (K, 2 ‖ w),

K is a secret key generated by Setup
(
1λ
)
, and F is

a pseudo-random function. The value F (K1, c) is also
referred to as a pseudo-random label. The system pro-
ceeds to insert the sorted key-value pairs into a history-
independent dictionary (e.g., the hash table of [17]). To
search for a keyword w, we first generate a search token
pair: (K1 = F (K, 1 ‖ w), K2 = F (K, 2 ‖ w)). The cloud
uses these tokens to execute Search queries on the dic-
tionary. The resulting document identifiers DB (w) are
returned to the client.

Any SSE construction will leak some information
about a client’s interaction with the cloud. Any adver-
sary, including the cloud, that observes this leakage will
be able to exploit the leakage to learn information about
the data collection. We break the leakage of any con-
struction into the following two types:
1. What is leaked about the data collection from the

existence of the encrypted index EDB.
2. What is leaked by a query and its processing.

Formally, we will denote the leakage of any SSE con-
struction using two stateful leakage functions L1 and
L2, where L1 captures what is leaked about DB, and L2
captures what is leaked as a result of issuing queries. By
assumption, both L1 and L2 implicitly share state.

In ΠBas the leakage stemming from the encrypted
index, L1 (DB), is the size of the index. The leakage
from the processing of a query, L2 (q), is: the number
of documents that match an issued query q for word
w (i.e., |DB (w)|); the document identifiers that match
an issued query (i.e., DB (w)); and if a query has been
repeated.

5 A Trivial Phrase System
Using ΠBas, with little modification, we can obtain a
generic SSE system that supports phrase search. The
idea is to tag every entry in EDB with location infor-
mation. The location information for a word is given
by the function Li which provides the position(s) of the
word in document i. Specifically, for w ∈ W we insert
the key-value pair

(F (K1, c) , EK2 (id, curr,next)) ,

where (curr,next) ∈ L′id (w). The function L′id is defined
as the set of pseudo-random labels for every entry in
Lid. Specifically,

L′i (w) = {(F (K3, x) , F (K3, x+ 1)) : x ∈ Li (w)} ,

where K3 is a key sampled uniformly at random from
{0, 1}λ during Setup. We note that key K3 is not present
in the original construction due to Cash et al and is used
for the entire document collection.

To generate a search token for a phrase
p = w1w2 · · ·wk, we must generate k search tokens. The
Search operation proceeds to follow the general Search
operation of ΠBas. Once all the results are collected,
the curr and next information is used, by the stor-
age provider, to determine documents that contain the
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phrase p. The storage provider performs this operation
as follows:
1. Collect all document identifiers and the associated

location information present in results for w1 into
a set S. In other words, compute DB (w1) and add
the results to S.

2. Processing in succession for every i > 1 and word
wi ∈ p:
(a) Collect into set S′ all document identifiers

where the value of curr in the wi results match
the value of next in the wi−1 results. Formally,

S′ = {(id, curr,next) ∈ DB (wi) :
∃
(
id, curr′,next′

)
∈ S where

curr = next′
}
.

(b) Set S = S′.

3. All of the document identifiers, in S, are sent to the
client.

5.1 Analysis of the Trivial System

The trivial system allows for arbitrarily long phrase
queries and parallel search. Thus most of our goals are
satisfied. The security of our system is sufficient as well
(can be shown to be CQA2 secure). Observe that our
trivial system exhibits a minor addition in the what
is leaked about the execution and results of a query.
Specifically due to position obfuscation, only relative
word position relationships are leaked in a given docu-
ment.

The efficiency of the trivial construction can be im-
proved. In the trivial construction, EDB is very large
which directly impacts the time required to execute a
query. In particular, the size of EDB is proportional to∑
w∈W |DB (w)|. Because of the size of EDB, the Search

operation wastes time following false positives. Statisti-
cally, most of the entries we check will not be useful in
processing the final query. This is because the the trivial
system checks every occurrence of a word in the docu-
ment collection. This leads to the processing of entries in
EDB for documents that only contain at most one word
of the query. We proceed to improve this situation.

6 An Efficient SSE Construction
for Phrase Search

For greatest generality, we base our construction on
ΠBas given in [4]. We, however, take a very different ap-

w1

Vocabulary

w2

w3

w4

w2

Next Word
1, (< 9, 1, [4] >)
Postings List

w4 1, (< 3, 2, [3, 7] >)

w1 2, (< 3, 2, [4, 8] >,< 5, 3, [5, 7, 11] >)

w3

w2

1, (< 3, 2, [4, 8] >)

2, (< 3, 2, [5, 9] >,< 5, 3, [6, 9, 12] >)

Fig. 1. A sample next-word index.

proach in the construction of DB. Specifically, we must
add a significant one-time preparation phase in order to
construct a suitable DB. A key piece of our preparation
phase is inspired by next-word indexing [23].

6.1 Next-word indexing

A Next-word index is an inverted index structure con-
sisting of the following three components:
1. a vocabulary list of every word wi in W ;
2. a set of next-word lists consisting of each word

wj ∈W that directly follows wi in some document
in DB;

3. a set of postings list information consisting of, for
each pair of words (wi, wj), the number of docu-
ments that contain the pair and a set of lists. Each
list consists of the document identifier that contains
the pair, the number of occurrences of the pair in
that document, and the list of locations of the pairs
in that document (see Fig. 1).

For example, a posting-list entry of “1, (〈9, 1, [4]〉)”, in
Figure 1, means that the word pair (bigram) w1w2 oc-
curs in one document in the entire database DB. In par-
ticular, it occurs once in document 9 at position 4.

To search for a phrase p = w1w2 · · ·wk in a next-
word index we proceed as follows:
1. Allocate an empty set S.
2. Processing in succession for every i in the range 1 ≤

i < k:
(a) Find the next-word list associated with wi.
(b) Walk the next-word list until you find wi+1, if

not found the result set is empty and the search
stops.

(c) Collect into set S′ all document identifiers and
locations.

(d) If S 6= ∅, for each document identifier d in S′
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i. Let L′d be the list of locations associated
with document d in set S′. Let Ld be the
list of locations associated with document d
in set S.

ii. If Ld is does not exist, remove data associ-
ated with d from S′

iii. For every entry l ∈ L′d check if (l − 1) ∈ Ld.
If (l − 1) /∈ Ld then, remove l from L′d. If Ld
becomes empty, remove all data associated
with d from S′.

(e) Set S = S′.

3. All of the document identifiers in S are the results
of the search.

The next-word index is a very efficient data structure
that is often used in phrase searching in the information
retrieval space. As mentioned in [23], the next-word in-
dex allows for faster phrase queries as the next-word in-
dex is smaller than an index that catalogs the positions
of every word in the document collection. In addition,
there is only a limited reduction in query expressive-
ness. Namely, single word queries are not possible in
the standard next-word index. However, to overcome
this problem, an inverted index of just the words and
their associated document identifiers can be constructed
to resolve single word queries.

It is possible to generalize the next-word indexing
technique to longer subphrases. Generalizing to a length
n subphrase will require n−1 additional inverted indexes
to maintain phrase search. Observe that an index for a
subphrase of length n can only identify phrases p with
|p| ≥ n. This means our n − 1 subphrase indexes are
used to track correct location information for phrases
longer than one word and shorter than n. Thus, the
space optimal subphrase length for the next-word index
is n = 2.

6.2 Preparing the Collection

Our preparation of the collection for phrase search takes
its inspiration from the observation that the next-word
index structure can be linearized while still retaining
its power. In a next-word index every pair of words has
a posting list associated with it, where the posting list
contains a series of document identifiers along with the
locations in the identified document. The preparation
phase seeks to collapse a next-word index into a key-
value pair format, defined as follows:
– Key. The keys are pairs of consecutive words in the

next-word index.

– Value. The value for each key is an ordered list of
the identifier of a document that contains the key
and a location in the document.

The following is an example of a key-value pair:
(w1w2, (id, l)), where w1w2 appears in document id at
location l (i.e., l ∈ Li (w1w2)). To handle all entries in
the posting list, multiple key-value pairs must be cre-
ated that share the same key.

If we wish to support queries with a length of
one word, we must insert a special key-value pair
(w1 ⊥, (id, l)), where w1 appears in id, ⊥ is a special
slug that does not appear as a word in the document
collection, and l is a unique location beyond the last
word in the document.

In what follows we will use WPi to denote the set
of all consecutive word pairs wjwj+1 in the document
with document identifier idi. Let WP be the set of all
unique bigrams in the entire collection.

For every document identifier idi (1 ≤ i ≤ d), the
client constructs a list of key-value pairs

Didi
= {(w1w2, (idi, l)) : w1w2 ∈WPi and
l ∈ Li (w1w2)} .

The key-value pairs need to undergo obfuscation to
reduce potential query time (L2) leakage. Since the key-
value pairs are to be stored in the cloud, they must be
encrypted. However, we also want the cloud to be able
to link the current location of a word pair to the next
word pair in order to carry out phrase search.

In particular, the client proceeds to generate a key
K3 ∈ {0, 1}∗ sampled uniformly at random. Then for
every list Didi

, replaces each location l with (curr,next),
where curr = F (K3, l) and next = F (K3, l + 1).

To build the database DB, the client inserts every
key-value pair into the collection. To do this, construct,
for each w1w2 ∈WPi, the following set:

L′i (w1w2) = {(curr,next) :
(w1w2, (idi, l)) ∈ Didi

} ,

where l ∈ Li (w1w2). Thus our collection becomes

DB =
(
idi,WPi,

{
L′i (w1w2) : w1w2 ∈WPi

})d
i=1 .
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1: function Setup(1λ)
2: Sample K uniformly from {0, 1}λ

3: return K

4: end function

1: function BuildIndex(K,DB)
2: Allocate empyt list L
3: for each two word phrase (w1 ‖ w2) ∈WP do
4: K1 ← F(K, 1 ‖ (w1 ‖ w2))
5: K2 ← F(K, 2 ‖ (w1 ‖ w2))
6: c← 0
7: for each (idi, cur, next) ∈ DB (w1 ‖ w2) do
8: `← F(K1, c)
9: d← EK2 (idi ‖ cur ‖ next)

10: c← c+ 1
11: . Insert in L lexicographically by `
12: Insert(L, (`, d))
13: end for
14: end for
15: allocate dictionary EDB
16: for each (`, d) ∈ L do
17: Insert(EDB, `, d)
18: end for
19: return EDB
20: end function

1: function Token(K, p)
2: Parse p as w1 ‖ w2 ‖ · · · ‖ w|p|
3: Tp ← 〈〉
4: for i← 1 to |p| − 1 do
5: Append (F(K, 1 ‖ (wi ‖ wi+1)),

F(K, 2 ‖ (wi ‖ wi+1))) to sequence Tp
6: end for
7: return Tp
8: end function

1: function Search(EDB, Tp)
2: Allocate empty list list1
3: first ← True
4: n← 0
5: for each pair (K1,K2) ∈ Tp do
6: n← n+ 1
7: c← 0
8: Allocate an empty list list2
9: repeat

10: d← Lookup(EDB, F (K1, c))
11: if d 6=⊥ then
12: (id, cur,next)← DK2 (d)
13: if first = True then
14: Insert(list1, (id, cur,next))
15: else . Check for match in list1.
16: if Match(list1, id, cur) = True

then
17: Insert(list2, (id, cur,next))
18: end if
19: end if
20: end if
21: c← c+ 1
22: until Lookup returns ⊥
23: if first = False then
24: list1 ← list2
25: end if
26: first = False
27: end for
28: Using list1, return the set of matching document

identifiers, DB (p), to the client.
29: end function

Fig. 2. The ΠBas (Cash et al.) protocol extended for encrypted phrase search

6.3 Instantiating the system

The client instantiates the operations as seen in Figure
2. Given a security parameter λ, the client is respon-
sible for running Setup to generate a new key K and
preparing the collection DB. From the collection, the
client constructs an index EDB using the BuildIndex al-
gorithm and forwards the index to the cloud. Letting
WP = ∪di=1WPi, the index is constructed as follows:
For each key w1w2 ∈WP, let

K1 = F (K, 1 ‖ w1w2) , K2 = F (K, 2 ‖ w1w2) .

For every key w1w2 found in DB, suppose that w1w2
appears in the c-th record, the client assigns to it a

unique label
` = F (K1, c).

This label will become the key for a corresponding entry
in EDB. The value associated with this label is

EK2 (id ‖ cur ‖ next) ,

where id ‖ cur ‖ next comes from the c-th occurrence of
w in DB. That is, the corresponding entry in EDB is the
following key-value pair:

(F (K1, c), EK2 (id ‖ cur ‖ next)).
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6.4 Query

To run a query on a phrase w1w2 · · ·wk, the client makes
a call to Token to get a search token, for each consecutive
pair of words:

w1w2, w2w3, · · · , wk−1wk.

The resulting tokens are
k−1⋃
i=1

(F (K, 1 ‖ wiwi+1) , F (K, 2 ‖ wiwi+1)) .

These tokens are then given to the cloud.

6.5 Search

Upon receiving the query tokens, the cloud runs the
Search algorithm to search for the document identifiers
that contain the query phrase. These identifiers are then
returned to the client. The Search algorithm treats the
token as a sequence of pairs. For each pair, the cloud
will generate a series of key labels by incrementing an
initially zero value c. The cloud will stop once a Lookup
operation on EDB fails.

Processing the first pair in the token, the cloud de-
crypts the results of each Lookup operation and stores
it in a list list1. On subsequent pairs from the tokens,
the cloud creates a new list list2, and potentially adds
an entry to the list list2 after each Lookup operation. In
order for an entry to be added to list2, it must be the
case that the value returned from the Lookup operation
matches an entry in list1. An entry is matched if the en-
try has both the same document identifier as the result
and the entry’s next value matches the curr value in the
result (represented by the function Match in Figure 2).
After all Lookup operations are completed for a pair in
the token, list2 becomes the new list1. After the entire
token has been processed the document identifiers from
list1 are returned to the client.

It should be noted that thanks to the structure of
the index EDB, the Search procedure can easily be par-
allelized. We inherit this feature from the base ΠBas
protocol. We note that parallel search is not a feature
presented in previous encrypted phrase search systems.
Moreover, EDB is space and time optimal.

7 Security
To establish security we must bring our construction
into the random oracle model (ROM). In particular, we

assume the existence of a random oracle

H : {0, 1}2λ → {0, 1}λ

and define our cryptographic operations, either all or in
part, using this oracle. In particular, we define a pseudo-
random function F by

F (K,x) = H (K ‖ x) .

We define encryption on plaintext messages m drawn
from {0, 1}λ as

EK (m) = (r,H (K ‖ r)⊕m) ,

where r is drawn uniformly at random from {0, 1}λ. No-
tice that this is very similar to the standard CPA secure
construction of encryption based on pseudo-random
functions.

7.1 Leakage

We will establish two stateful leakage functions L1 and
L2 that implicitly share state information. These func-
tions describe what information is leaked by our system.
The function L1 describes what is leaked to an adver-
sary about the collection DB. This information is solely
what is available from looking at EDB. In the case of our
protocol, the leakage is just the number of documents
associated with each word pair. Formally,

L1 (DB) =
∑

w1w2∈WP
|DB (w1w2)| .

The collection DB is saved as state information.
The L2 leakage function tracks what is leaked as a

result of issuing queries. Specifically, this is the results
of each subquery including obfuscated location infor-
mation, if a query or portion of it has been repeated,
and the collection of document identifiers that are ulti-
mately returned to the client. This leakage is tracked as
described below:

The first time the L2 function is invoked on a query
q, denoted by L2 (q), an empty list called the query list,
denoted by Q, is created as well as a special counter qcnt
that is set to one. For a query q = w1w2 · · ·w|q|, the L2
leakage is formally defined by

L2 (q) = (DBq,SPq) ,
DBq =

{
DB′ (wiwi+1) : 1 ≤ i < |q|

}
,

SPq = {SP (wiwi+1) : 1 ≤ i < |q|} ,

where DB′ (wiwi+1) is defined as

DB′ (wjwj+1) = {(idi, (u, v)) : wjwj+1 ∈WPi and
(u, v) ∈ L′i (wjwj+1)

}
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and SP (wiwi+1) = {j : (j, wiwi+1) ∈ Q}. Intuitively, the
set SPq is the search pattern consisting of the identifiers
for repeated subqueries. The set DBq is sometimes re-
ferred to as the query results.

Every call to L2 results in the set of tuples

{(qcnt + (i− 1) , wjwj+1) : 1 ≤ j < |q|}

being inserted into the list Q followed by qcnt being in-
cremented by |q|. It should be noted that due to the
obfuscation of the locations of bigrams within a docu-
ment, the L2 leakage does not provide the exact location
of a word pair in a given document.

7.1.1 Leakage Based Attacks

The L2 leakage provides an adversary with the ability
to glean several pieces of additional information that is
not explicitly requested by the party issuing the query.
Similar to traditional SSE systems, the adversary (stor-
age provider) learns the most frequent queries. In this
case it means the adversary learns the most common
bigrams which allows for a classical frequency attack.

Beyond the classical SSE attacks [3, 10, 24], our
phrase search scheme allows an adversary to:
1. construct a token for any subphrase, of length

greater than two, using the token corresponding to
a previous phrase; and

2. use tokens for previous subphrase queries to con-
struct a token for a new phrase query.

Observe that from the L2 leakage, the adversary can re-
cover all the subphrases since the adversary is provided
with all of the bigram location information. The obfus-
cation of the location information prevents absolute lo-
cation information but, determining if a word is present
in a document can still be easily tested. The simple way
of mitigating this attack would be to treat every pos-
sible phrase as a keyword thus collapsing phrase query
based SSE to a keyword SSE. We add that this would
require an exponential amount of storage and thus is
infeasible.

From the L2 leakage, the adversary can generate
new tokens for phrases that were not previously queried.
The primary danger here is a compound attack where
the adversary uses a frequency analysis to guess at bi-
grams and use the obfuscated location information to
construct possible results to new phrase queries.

As an example of our attack, suppose the adver-
sary has observed two distinct phrase queries: “Trade
300 shares of Apple” and “Trade 500 shares of IBM.”

Observing these encrypted tokens an adversary can
construct a new token that corresponds to the phrase
“Trade 300 shares of IBM.” As mentioned previously,
this would require the adversary to use frequency anal-
ysis to guess at the subtokens of a query.

Our construction leaks a lot more than the best
known SSE schemes, and in particular, allows the ad-
versary to construct tokens for new queries. We do not
claim this leakage is reasonable, we do however hope
that the ideas in our work lead to progress in the de-
sign of SSE schemes. We also note that both reducing
the leakage of our encrypted phrase search schemes and
designing inference attacks against their leakage pro-
file are both important research directions. The latter,
in particular, would lead to a better understanding of
leakage and motivate stronger constructions.

7.2 Adaptive chosen query attack security

Our security goal is to ensure that any probabilistic
polynomial-time (PPT) adversary cannot compromise
the system even if they are allowed to make adaptive
queries. By adaptive queries we mean that the queries
may depend directly or indirectly on the results of previ-
ous queries. To formalize our security notion we will uti-
lize computational indistinguishability and assert that
the system is secure if there does not exist a proba-
bilistic polynomial-time adversary that can distinguish
interacting with a genuine cloud from interacting with
a simulator.

Formally, we define Adaptive Chosen Query At-
tack (CQA2) security using the real/ideal simulation
methodology. In the real/ideal simulation methodology,
two games are defined for an adversary A interacting
with either a real system, called the real game, or a
simulator S that has access to leakage functions L1 and
L2. The interaction with the simulator is called the ideal
game. We denote the real game for a protocol Π and ad-
versary A as RealΠA (λ), where λ is the security parame-
ter. We similarly denote the ideal game as IdealΠA,S (λ).

In both games, the adversary A first selects a
database DB and passes it to the game. The real game
runs algorithms in the real system and the ideal game
runs algorithms based on a simulator of the system. Our
goal is to show that the adversary cannot distinguish
from which games the search results are obtained. The
games are defined as follows:
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RealΠA (λ)
1. Adversary A selects a database DB and passes it to

the game.
2. The game runs Setup to determine the key K and

runs BuildIndex (K,DB) to construct the index EDB.
3. The game gives EDB to A.
4. Query Phase (repeated a polynomial, in the security

parameter, number of times)
(a) Adversary A requests the token for query q.
(b) The game returns to A the result of Token (K, q).
(c) Adversary A may now execute a search.

5. Adversary A returns, as output, a bit.

IdealΠA,S (λ)
1. Adversary A selects a database DB and passes it to

the game.
2. The game runs simulator S of our system on L1 (DB)

to obtain the encrypted index EDB.
3. The game gives EDB to A.
4. Query Phase (repeated a polynomial number of

times)
(a) Adversary A requests a token for query q.
(b) The game gives L2 (q) to S.
(c) S returns a token t to the game which is for-

warded to A.
(d) Adversary A may now execute a search.

5. Adversary A returns, as output, a bit.

We say that Π is (L1,L2)-secure against adaptive attacks
(CQA2-secure, in short) if for all adversaries A, there
exists a simulator algorithm S such that∣∣Pr

[
RealΠA (λ) = 1

]
− Pr

[
IdealΠA,S (λ) = 1

]∣∣ ≤ negl (λ)

In other words, a system is secure if there does not exist
a PPT distinguisher that can distinguish the distribu-
tion generated by RealΠA (λ) from IdealΠA,S (λ).

Theorem 1. Our SSE system is CQA2-secure if our
pseudo-random functions and encryptions are generated
with a random oracle.

Proof. (sketch; a full proof is given in the appendix)
In order to demonstrate the security of our system we
must demonstrate how to construct a simulator S for
the game IdealΠA,S (λ). In step two of the Ideal game,
we are given with L1 (DB) = N which is the number
of entries in DB. We begin by constructing a list of N
random values of the form (κ, (r, v)). The simulator then
orders the key-value pairs in increasing order by the key.

Finally, the simulator inserts all the key-value pairs into
a dictionary EDB, which is returned to the adversary A.

When A issues a query in the game, L2 (q) is pro-
vided to the simulator S. The simulator S then uses the
results from L2 (q) to program a random oracle. There
are two cases for each result in the L2 (q): (1) the sub-
query is new and the simulator has not committed to
an entry in EDB; (2) a piece of the query was repeated
and thus the simulator S has committed to a location in
EDB. We have the following cases for each of the |q| − 1
subqueries:

Case 1: The subquery is new. Select two random
keysK1 andK2 uniformly at random from {0, 1}λ. Thus
emulating the portion of Token associated with the sub-
query. We then add the pair (K1,K2) to a dictionary
indexed by a subquery identifier. For each result of the
subquery we select a new location in (κ, (r, v)) in EDB.
The random oracle is programmed as follows:
– H [K1 ‖ i] = κ, where i is the ith response with the

same document identifier.
– H [K2 ‖ r] = v ⊕ (id ‖ curr ‖ next), where

(id ‖ curr ‖ next) is part of the current result.

Add the pair (K1,K2) to the token.
Case 2: The subquery is being repeated. In this

case the subquery identifier is used to look up (K1,K2)
in the subquery dictionary. This simulates Token on the
subquery. The resulting key pair is then added to the
token.

Using a hybrid argument, via a sequence of games,
we can show that the game IdealΠA,S is computation-
ally indistinguishable from RealΠA. We will give the full
hybrid argument in appendix A. We conclude that our
system is CQA2-secure.

8 Implementation and
Asymptotic Bounds

We implemented the system in ≈ 5000 lines of C using
OpenSSL’s libcrypto and GNU’s implementation of the
dbm key-value store. We tested our system on plain-
text books, written in English, from the Project Guten-
berg collection. For our purposes we were seeking exact
phrase matches so no stemming or stop-word prepro-
cessing was performed on the collection. A machine with
16 GB of RAM, 1 TB of disk space, and an AMD FX
8350 64-bit processor with 8 cores (supporting AES-NI)
was used to collect the results.
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Books Key-Value Pairs Average Time Standard Deviation
10 492938 10.348 0.5561334772
20 1145852 24.875 0.6637310366
30 1795315 39.823 0.8878819992
40 2485966 55.132 1.1966323115
50 3187650 74.718 0.7698744486
60 3717873 86.406 5.3062315567
70 4298303 98.327 2.5036153858
80 4706366 109.545 2.3839381517
90 5111302 118.437 3.4830511847
100 5380289 127.037 3.2911330369
110 6007276 145.482 3.1928663542
120 6709367 160.881 4.7882018198
130 7175834 173.864 4.7569439303
140 7854670 189.891 5.1834854211
150 8393357 201.347 4.8515245027

Table 1. The BuildIndex average run time (in seconds) by num-
ber of key-value pairs (size of DB). These numbers only take
into account the time it takes to produce EDB. Each test was
repeated 100 times.

The time it takes for BuildIndex to construct EDB
for a given DB was measured. The results are in Table
1 and Figure 3. As can be seen, the behavior is linear
in the size of DB as the theoretical bound states. The
rising standard deviations for 60 books and up appear
to be influenced greatly by one or two outliers occurring
sporadically through the run. The size of the databases
on disk is captured in Table 2.
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Fig. 3. The performance of BuildIndex on a varying number of
key-value pairs. The graph plots only the average time it takes to
produce EDB.

To test the query performance, a phrase common
to all documents in the collection was chosen. In this
way the work performed by the query operation is max-
imized. A single bigram, which is equivalent to a key-
word search in our system, was also chosen to maximize
the number of lookups that would have to be performed

Books Key-Value Pairs Encrypted DB Size
10 492938 217
20 1145852 497
30 1795315 797
40 2485966 1087
50 3187650 1448
60 3717873 1643
70 4298303 1871
80 4706366 2040
90 5111302 2253
100 5380289 2424
110 6007276 2760
120 6709367 3011
130 7175834 3184
140 7854670 3449
150 8393357 3660

Table 2. The BuildIndex encrypted database size (in MB) by
number of key-value pairs (size of DB).

by the query operation. The results are summarized in
Figure 4. The sharp jump in the time from the length
four version of the phrase and the length five version
of the phrase is due to the addition of a very common
word pair, “for the.”
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Fig. 4. The performance of Search on a varying number of key-
value pairs and query sizes. Each query is found in every docu-
ment in the collection.

The asymptotic bounds are summarized in table 3.
We denote the length of a phrase query q as |q| and the
total number of bigrams inspected by evaluating query
q as m =

∑
w1w2∈q |DB (w1w2)|.

9 Extensions and Modifications
Our main preprocessing step can be applied to other
classic keyword based systems. We chose ΠBas for sim-
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Operation Asymptotic Bound
Setup Θ (1)
BuildIndex Θ (|DB|)
Token Θ (|q|)
Search O (m)

Table 3. The asymptotic complexity of the SSE operations for
phrase queries.

plicity. Recall from our preprocessing step that we are
able to generate a new DB of the form

DB =
(
idi,WPi,

{
L′i (w1w2) : w1w2 ∈WPi

})d
i=1 .

This increases the leakage of the underlying system by
introducing the leakage of relative position of bigrams
as well as slightly modifying any Search in much the
same way as described in Section 6.5.

With some additional work we can also enrich cut-
ting edge dynamic SSE constructions.

9.1 Non-Index Based Forward Secure
Dynamic SSE

We can adapt the dynamic SSE construction devised
by Stefanov et al. [19, 20] to work with phrases queries.
Their construction is non-indexed based. In particular,
they used a binary tree where each level of the tree stores
encrypted edits to the document collection. These edits
are either additions or deletions and the encryptions are
computed under a per-level key.

In addition to the non-indexed approach, Stefanov
et al’s construction provides the first forward-secure
SSE system. By forward-secure we mean that past query
tokens can not be used to determine if an item inserted
after the query belongs to the result set for the query
in question.

For our purposes we are only concerned with setup,
insertions, token generation, and searching. For ease of
exposition, we will treat DB′ as a collection without lo-
cation information.

9.1.1 Setup

To setup the system the client will select a master en-
cryption key mk and instruct the cloud to allocate an
m level complete binary tree. For each level of the tree,
the client will create an encryption key k` which will be
maintained with mk as private state information.

9.1.2 Element Insertion

To insert an element (idi, w) ∈ DB′ into EDB′, the in-
sertion process requires the construction of an ordered
triple (hkey, c1, c2). To compute these values we begin
by looking for the first empty level, `, of the binary tree.
Select the corresponding level key k` for constructing an
hkey as

hkey = HF (k`,h(w)) (0 ‖ op ‖ cnt) ,

where h is a cryptographic hash function, H a keyed
cryptographic hash function, op either add or delete,
and cnt represents the number of occurrences of w.

The value of c1 is

c1 = idi ⊕HF (k`,h(w)) (1 ‖ op ‖ cnt) .

The value of c2 is

c2 = Eesk (w, idi, op, cnt) ,

where esk is a special collection-wide key.
The client proceeds to download all levels above the

empty level. Next, the client decrypts all of the c2 values
and rebuilds every entry using the new level key k`.
During the rebuild, all cnt values must be appropriately
adjusted. Finally, the items from the downloaded levels
are deleted from their original locations and the newly
constructed entries are stored in level `. See Figure 5 for
an graphic depiction of the process.

9.1.3 Token Generation

To generate a search token for keyword w, the client
computes a search token for every non-empty level of
the binary tree. In particular, if there are n non-empty
levels the token returned will be:

T = 〈F (k0, h (w)) , F (k1, h (w)) , . . . , F (kn−1, h (w))〉 .

9.1.4 Search

Given a token T , the cloud searches for documents
that match a keyword using breadth-first traversal
starting with level 0. The processing of a level works
by setting ctr = 0 and iteratively determining if
hkey = HF (k`,h(w)) (0 ‖ add ‖ cnt) is contained in the
level. If it is, the associated c1 value is used to com-
pute which identifier is to be added to the result set Ra.
This is achieved by computing

idi = c1 ⊕HF (k`,h(w)) (1 ‖ add ‖ cnt) .
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(b) Compress all levels into level three.

Fig. 5. Inserting edit e4 requires locating an empty level in the
tree (white nodes in Figure 5a). The gray nodes (Figure 5a) are
filled with edits and must be downloaded in order to fill the level
three in the last step of the insertion. The last level then becomes
Figure 5b. We denote by e′

i the new encryption of node ei. The
encryptions are ordered by the hkey value left-to-right across the
level

When an entry is not found the search proceeds to the
next level of the tree.

Once all of the levels have been processed for add
operations, the process is repeated for delete operations.
Any identifiers recovered are added to the result set Rd.

The cloud will return to the client the set of identi-
fiers Ra \Rd.

9.2 Making a Dynamic SSE with Phrase
Queries

We can modify the construction of Stefanov et al. to
support phrase queries using our preprocessing step,
which provide us with a collection containing obfuscated
keyword pair locations. We demonstrate how to make
the appropriate modifications to element insertion, to-
ken generation, and search.

9.2.1 Element Insertion

To insert an element (idi, w1w2 ‖ curr ‖ next) from
DB into EDB we again construct an ordered triple
(hkey, c1, c2). The insertion process follows the same
method as described in Section 9.1.2 except in the way
we define hkey, c1 and c2. For phrase search we let

hkey = HF (k`,h(w1w2)) (0 ‖ op ‖ cnt) ,

c1 = (idi ‖ curr ‖ next)⊕HF (k`,h(w1w2)) (1 ‖ op ‖ cnt)

and let

c2 = Eesk (w1w2, idi, curr, next, op, cnt) ,

where esk is a special collection-wide key. Any level re-
building will follow the above definitions of hkey, c1, and
c2.

9.2.2 Token Generation

To generate a search token for phrase p = w1w2 . . . wm,
the client computes a search token for every non-empty
level of the binary tree for every two subphrase in p.
In particular, if there are n non-empty levels the token
returned will be:

T = 〈F (k0, h (w1w2)) , . . . , F (kn−1, h (w1w2))〉
∪ 〈F (k0, h (w2w3)) , . . . , F (kn−1, h (w2w3))〉
...
∪ 〈F (k0, h (wm−1wm)) , . . . , F (kn−1, h (wm−1wm))〉 .

9.2.3 Search

Given a token T = 〈T1, T2, . . . Tm〉 the cloud searches
for documents that match a phrase sub-token using a
breadth-first traversal starting with level 0. This means
we look at all the matches for the first token in all the
levels before proceeding to the next level.

The processing of a level works by setting a ctr = 0
and iteratively determining if

hkey = HTi
(0 ‖ add ‖ cnt)

is contained in the level. If it is, the associated c1 value
is used to compute which identifier and location pair is
to be added to the result set Ra. This is achieved by
computing

(idi ‖ curr ‖ next) = c1 ⊕HTi
(1 ‖ add ‖ cnt) .
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When an entry is not found the search proceeds to the
next level of the tree.

Once all of the levels have been processed for add
operations, the process is repeated for delete operations.
Any identifiers recovered are added to the result set Rd.

At the end of processing token Ti, we remove all
document from Ra with document identifiers in set Rd
result in set R′a. In particular,

R′a = {(idi ‖ curr ‖ next) : (idi ‖ curr ‖ next) ∈ Ra and(
idi ‖ curr′ ‖ next′

)
6∈ Rd for all

(
curr′,next′

)}
.

Next, given the current result set R we construct the
set

R′ =
{

(idi ‖ curr ‖ next) : (idi ‖ curr ‖ next) ∈ R′a,(
idi ‖ curr′ ‖ next′

)
∈ R, and curr = next′

}
.

Lastly, we set R = R′ and begin processing the next
token. Once all tokens have been processed, we return
all the document identifiers found in set R to the client.

9.2.4 Security

We claim that our modifications do not change the se-
curity of the base system. Informally, we do not change
the cryptography around insertions specifically; our only
difference is the inclusion of location information. While
this information changes what is leaked as a result of is-
suing a query, it does not change forward-security which
is achieved through level download and re-encryption.

Our argument therefore hinges on CQA2 security
for search. Observe that any simulator that simulates
the original system can also simulate the augmented
system as c1 is a non-committing encryption. In partic-
ular, the exclusive-or used in the computation of c1 will
allow us to suitably program a simulator such that our
desired location information can be available on search.

10 A Compiler Theorem
In this section we show that given any CQA2-secure
SSE construction for keyword queries that leak DB (q),
there exists a CQA2-secure SSE construction for phrase
queries. Our proof is constructive and thus provides a
method for compiling keyword constructions into phrase
query constructions.

Before we formally state our theorem we set up a
model for our SSE primitive based on our formal model

defined in Section 3.2. From Section 3.1 we know we
can think about DB being treated as solely binary data.
Following this line of reasoning, the output of Search
should be a subset of binary strings of polynomial length
in λ. The key intuition is that we can encode information
in the binary output of Search. More specifically, we
notice that idi ‖ curr ‖ next can be treated as a binary
string. In addition any symmetric cryptography used to
protected idi can easily be extended to handle the longer
string by replacing it with a suitably defined pseudo-
random function.

Theorem 2. Given any CQA2-secure SSE scheme
S = (Setup,BuildIndex,Token,Search) that supports key-
word queries and leaks the document identifiers as
part of L2 (q), there exists a related CQA2-secure
SSE scheme S′ = (Setup,BuildIndex,Token, Search)
that supports phrase queries for document collection
DB = (idi,WPi, {L′i (w1w2) : w1w2 ∈WPi})di=1.

Proof. (sketch; a full proof is given in the appendix) We
begin by constructing S′ in terms of S. Specifically,
– S′.Setup (λ) simply calls S.Setup (λ) directly and re-

turns K to the caller.
– S′.BuildIndex (K,DB) first flattens collection DB into

a form that S.BuildIndex can process. This is
achieved by rewriting DB into DB′:((

(idi ‖ c ‖ n,WPi)(c,n)∈L′
i
(w1w2)

)
w1w2∈WPi

)d
i=1

.

This means that the location of every word pair in
a document is going to result in a new document
identifier. Each entry in WPi is a binary string so
there is no change their over the collection of bi-
nary strings W in a traditional SSE construction.
We then call S.buildIndex

(
K,DB′

)
and return EDB

to the caller.
– S′.Token (K,w1w2 · · ·wm) generates the necessary

search tokens by calling S.Token for each of the two
word subphrases in w1w2 · · ·wm. The call returns
with:

T =
m−1⋃
i=1
{S.Token (K,wiwi+1)} .

– S′.Search (EDB, T ) proceeds as follows:
1. Parse T as T1, T2, . . . , Tm.
2. Let A = ∅.
3. For i = 1 to m:

(a) Let R = ∅
(b) Set R = S.Search (EDB, Ti)
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Operation Blowup
Setup Θ (1)
BuildIndex Θ (|DB|)
Token Θ (|p|)
Search Θ (|p|)

Table 4. The time blowup for base SSE keyword system for
phrase p.

(c) If A is the empty set, then set A = R oth-
erwise compute

A′ = {(idi ‖ curr ‖ next) ∈ R :(
idi ‖ curr′ ‖ next′

)
∈ A and

curr = next′
}

;

set A′ = A.
4. Return all of the document identifiers found in

A to the caller.

We highlight the fact that if S is CQA2-secure than
so is S′. To see this observe that if the underlying
system is CQA2 secure then there must be a simula-
tor that commits to document identifiers only after a
query is made. Since, we have modified our document
identifier to contain an encoding of location informa-
tion, these new identifiers can also be simulated by the
same simulator. We add that the query-time leakage
will be adapted such that the new document identifiers
are also maintained as part of the leakage. The token
algorithm runs the underlying token algorithm multi-
ple times which also can be handled by the simulator.
Finally, the search algorithm allows the cloud to learn
relative positions, but is not able to break the CQA2-
security of S which is used to retrieve the information
for S′. Combining the above, we can conclude that S′ is
also CQA2 secure.

The performance of the construction that results for
the compiler is competitive. We offer reasonable time
blowups over the keyword SSE system fed into the com-
piler. These are summarized in Table 4

11 Conclusion
In this paper we demonstrated an asymptotically effi-
cient, CQA2-secure, and parallelizable generic construc-
tion solving the encrypted phrase search problem. To
our knowledge, this is the first such system. Addition-
ally, we demonstrated how our preprocessing phase can

be used to enhance an existing forward-secure dynamic
SSE system so that it supports phrase queries. Of special
interest is the fact that this system is forward secure.

Lastly, we provided a compiler theorem that allows
us to convert any SSE construction for keyword queries
into an SSE construction for phrase queries with only a
small amount of additional query time leakage.
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A Full Proof of Theorem 1
We proceed to give the full proof of Theorem 1. To do
this we employ a hybrid argument to show that, given
any probabilistic polynomial-time adversary A and sim-
ulator S, we have∣∣Pr
[
RealΠA (λ) = 1

]
− Pr

[
IdealΠA,S (λ) = 1

]∣∣ ≤ negl (λ) .

In a hybrid argument one constructs a sequence of
G0, . . . , Gn games, where n is bounded by some polyno-
mial in λ. We start with G0 being the game RealΠA (λ)
and Gn being the game IdealΠA,S (λ). For all games Gi
(i > 0), we will define game Gi in terms of game Gi−1.
In particular, Gi is formed by replacing a cryptographic
operation in game Gi−1 with its idealized form. We will
argue that the distribution generated by game Gi is
computationally indistinguishable from the distribution
generated by game Gi−1. If we can find a sequence of
such games, through transitivity of computational indis-
tinguishability, we can conclude that the distributions
of game G0 and game Gn are computationally indistin-
guishable. In what follows, we will denote computation-
ally indistinguishability of the distributions for game Gi
and Gj using the notation Gi≈cGj .

In all games below, except G0, we assume that the
adversary A and simulator S will have access to a table
H. All queries from the adversary A will run on the
algorithms from the SSE model with the changes noted
in the game.

Let game G0 be RealΠA (λ) as defined in Section 7.2.
Let game G1 be defined in terms of G0 with a

slight modification of the BuildIndex and Token algo-
rithm. Specifically, G1 will use a simulator that replaces
the first generation of K1 in K2 in the BuildIndex algo-
rithm with the selection of random binary strings from
{0, 1}λ. This information is recorded in the table H with
the key (K ‖ 1 ‖ w1w2) for K1 and (K ‖ 2 ‖ w1w2) for
K2. Any time that K1 or K2 need to be recomputed,
the simulator will access the appropriate location in the
table. Any time that the BuildIndex algorithm in G0
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tries to compute K1 or K2, the simulator will respond
as described above. By the definition of pseudo-random
functions we know that the behavior of F is computa-
tionally indistinguishable from an oracle that generates
random strings of the same length. Because this is the
only change between games G0 and G1 we can conclude
that G0≈cG1.

Let game G2 be defined in terms of G1 except
the simulator will replace the generation of the value
` = F (K1, c) in BuildIndex with a random string from
{0, 1}λ and store that value with key K1 ‖ c in the table
H. Any time the value of ` needs to be computed it can
be looked up in table H. Any time the simulator in G1
tries to compute `, the simulator for G2 will respond
as described above. By the definition of pseudo-random
functions we know that the behavior of F is computa-
tionally indistinguishable from an oracle that generates
random strings of the same length. Because, this is the
only change between games G1 and G2 we can conclude
that G1≈cG2.

Let game G3 be defined in terms of G2 except the
simulator will replace EK2 (idi ‖ cur ‖ next) with a bi-
nary string of appropriate length. Because we must pre-
serve decryption in Search, we will add two entries to the
table H. For encryption we will select a binary string,
r ‖ v at random from {0, 1}2λ and assign it to location
idi ‖ cur ‖ next. For decryption, we will add to location
K2 ‖ r the value v ⊕ (idi ‖ cur ‖ next). Any time the
simulator in game G2 uses encryption or decryption op-
erations, the simulator for G3 will respond as described
above. By the definition of pseudo-random functions we
know that the behavior of F is computationally indistin-
guishable from an oracle that generates random strings
of the same length. Because, this is the only change be-
tween games G2 and G3 we can conclude that G2≈cG3.

Notice that the EDB produced by BuildIndex in
game G3 is exactly like what is produced by the
game IdealΠA,S (λ), so is the programming of the ran-
dom oracle (table) H. Thus, the distribution gener-
ated is exactly the same as that of IdealΠA,S (λ). We
can conclude that G3 is IdealΠA,S (λ). Since the num-
ber of games is polynomial in λ, we can conclude that
RealΠA (λ)≈cIdealΠA,S (λ).

B Full Proof of Theorem 2
We proceed to give a full proof of Theorem 2. We de-
note by Sk the simulator for the keyword SSE system
used by the compiler and the simulator we construct

for the phrase SSE system by Sp. The leakage for our
keyword based SSE system is defined in terms of two
stateful leakage functions, Lk1 and Lk2 . Our leakage for
the system produced by the compiler is denoted as L1
and L2 which is defined in Section 7.1. Formally, we will
define the leakage of a keyword SSE system by:

Lk1 (DB) =
∑
w∈W

|DB (w)| ,

where W is the set of all words in the collection, and

Lk2 (w) = (DB (w) ,SP (w)) ,

where the search pattern behaves as defined in Section
7.1. In the above DB (w) is just the set of identifiers for
documents that contain w.

The simulator Sp is constructed to respond to the
ideal game. In step two Sp is given L1 (DB) which is
equivalent to Lk1 (DB), provided the document identifiers
are allowed to be long binary strings. Thus L1 (DB) is
provided, unmodified, to Sk by Sp. The resulting EDB
generated by Sk is passed back to Sp, and finally by Sp

to the game.
During the query phase Sp receives L2 (q) where

the query consists of m = |q| subqueries. For a given
query q, L2 (q) =

(⋃m
i=1 DB′ (qi) ,

⋃m
i=1 SP (qi)

)
. From

this leakage Sp can construct the Lk2 that needs to be
given to Sk. For each subquery qi:
1. Construct DB (qi) by collapsing all of the location

information and document identifier information
into one long binary string. Formally,

DB (qi) =
{

(id ‖ c ‖ n) | (id, (c, n)) ∈ DB′ (qi)
}
.

2. Pass Lk2 (qi) = (DB (qi) ,SP (qi)) to Sk. The resulting
token is appended to Sp’s token.

After all subqueries have been processed, Sp’s token is
given back to the game.

Observe that Sp’s operation depends entirely on Sk

which is a simulator for a CQA2 secure keyword SSE
system. In fact, the only work that Sp does is apply
a small transformation to the leakage. Therefore if the
underlying keyword SSE system is CQA2 secure then,
we must conclude that our phrase SSE system is CQA2
secure.


