
Proceedings on Privacy Enhancing Technologies ; 2017 (1):21–41

Jesse Victors, Ming Li, and Xinwen Fu
The Onion Name System
Tor-powered Decentralized DNS for Tor Onion Services

Abstract: Tor onion services, also known as hidden
services, are anonymous servers of unknown location
and ownership that can be accessed through any Tor-
enabled client. They have gained popularity over the
years, but since their introduction in 2002 still suffer
from major usability challenges primarily due to their
cryptographically-generated non-memorable addresses.

In response to this difficulty, in this work we
introduce the Onion Name System (OnioNS), a
privacy-enhanced decentralized name resolution service.
OnioNS allows Tor users to reference an onion service
by a meaningful globally-unique verifiable domain name
chosen by the onion service administrator. We construct
OnioNS as an optional backwards-compatible plugin for
Tor, simplify our design and threat model by embedding
OnioNS within the Tor network, and provide mecha-
nisms for authenticated denial-of-existence with mini-
mal networking costs. We introduce a lottery-like sys-
tem to reduce the threat of land rushes and domain
squatting. Finally, we provide a security analysis, inte-
grate our software with the Tor Browser, and conduct
performance tests of our prototype.

DOI 10.1515/popets-2017-0003
Received 2016-05-31; revised 2016-09-01; accepted 2016-09-02.

1 Introduction
Tor [11] is a third-generation onion routing system

and is the most popular low-latency anonymous commu-
nication network in use today. In Tor, clients construct
a layered encrypted communications circuit over three
onion routers in order to mask their identity and loca-
tion. As messages travel through the circuit, each onion
router in turn decrypts their encryption layer, exposing
their respective routing information. The first router is
only exposed to the client’s IP address while the last

Jesse Victors: Cigital, Inc.
E-mail: kernelcorn@torproject.org

Ming Li: Department of Electrical and Computer Engineer-
ing, University of Arizona, Tucson, AZ

E-mail: lim@email.arizona.edu
Xinwen Fu: Department of Computer Science, University of
Massachusetts Lowell, Lowell, MA

E-mail: xinwenfu@cs.uml.edu

router conducts Internet activities on the user’s behalf.
This provides end-to-end communication confidentiality
of the sender.

Tor users interact with the Internet and other sys-
tems over Tor via the Tor Browser, a security-enhanced
fork of Firefox ESR. This achieves a level of usability
but also security: Tor achieves most of its application-
level sanitization via privacy filters in the Tor Browser.
Unlike its predecessors, Tor performs little sanitization
itself. Tor’s threat model assumes that the capabilities
of adversaries are limited to traffic analysis attacks on
a restricted scale; they may observe or manipulate por-
tions of Tor traffic, that they may run onion routers
themselves, and that they may compromise a fraction
of other existing routers. Tor’s design centers around
usability and defends against these types of attacks.

1.1 Motivation
Tor also supports onion services – anonymous

servers that intentionally mask their IP address through
Tor circuits. They utilize the .onion pseudo-TLD, typi-
cally preventing the services from being accessed outside
the context of Tor. Onion services are only known by
their public RSA key and typically referenced by their
address, 16 base32-encoded characters derived from the
SHA-1 hash of the server’s key, i.e. 3g2upl4pq6kufc4m.
onion. This builds a publicly-confirmable one-to-one re-
lationship between the public key and its address and
allows onion services to be accessed via the Tor Browser
by their onion address within a distributed environment.
Fig. 1 illustrates how clients communicate with onion
services.

Tor onion addresses are decentralized and globally
collision-free, but there is a strong discontinuity between
the address and the service’s purpose. As their addresses
usually contain no human-readable information, a visi-
tor cannot categorize, label, or authenticate onion ser-
vices in advance. While a Tor user may explore and
bookmark onionsites within the Tor Browser, this is a
very narrow solution and does not scale well past a few
dozen bookmarks. Over time, third-party directories –
both on the clearnet and onionspace – have appeared in
an attempt to counteract this issue, but these directo-
ries must be constantly maintained and the approach is
neither convenient nor does it practically scale past sev-
eral hundred entries. The approximately 55,000 onion

3g2upl4pq6kufc4m.onion
3g2upl4pq6kufc4m.onion

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 22

Fig. 1. A Tor client, Alice, and an onion service, Bob, first mate
two Tor circuits (purple and red) at one of Bob’s long-term in-
troduction points (IP). They then renegotiate and communicate
over another pair of Tor circuits (blue and green) at an ephemeral
rendezvous point (RP). This achieves communication with bi-
directional anonymity [21].

Fig. 2. The number of unique onion addresses seen in the Tor
network between October 2015 and June 2016. [24].

services currently on the Tor network (Fig. 2) and the
potential for continued growth both suggest the strong
need for a more complete and wider solution to solve
the usability issue.

1.2 Contributions
In this paper, we present the design, analysis, and

implementation of the Onion Name System (OnioNS),
a decentralized, secure, and usable domain name sys-
tem for Tor onion services. Any onion service admin-
istrator can claim a meaningful human-readable do-
main name without loss of anonymity and clients can
query against OnioNS in a privacy-enhanced and ver-
ifiable manner. OnioNS is powered by a random sub-
set of Quorum nodes within the existing Tor net-
work, significantly limiting the additional attack sur-
face. We devise a distributed database that is resis-
tant to node compromise and provides proofs for au-
thenticated denial-of-existence. We also design a novel
lottery-based domain registration protocol to mitigate

of denial-of-registration attacks and analyzed its secu-
rity. We provide a backwards-compatible plugin for the
Tor Browser and demonstrate the low latency and high
performance of OnioNS. To the best of our knowledge,
this is the first alternative DNS for Tor onion services
which is decentralized, secure, and privacy-enhanced.

Paper Organization: This paper is divided into
eight main sections. In Section 2 we define our design
objectives and explain why existing works do not meet
our goals. In Section 3 we list prominent existing works.
In Section 4, we define our threat model, which includes
Tor’s assumptions and the capabilities of our adver-
saries. In Section 5, we describe the system overview and
define several key protocols. In Section 6 we analyze the
security of our assumptions and examine other attack
vectors. In Section 7 we describe and demonstrate our
implementation prototype and carry out performance
analysis tests. Section 8 contains further comparisons
with related works. We conclude in Section 9.

2 Problem Statement
To integrate with Tor, we must provide a secure

system, preserve user privacy, and avoid compromising
other areas of the Tor network. Additionally, we seek
to construct a distributed system and to providing a
mechanism for authenticated denial-of-existence, which
we describe in Section 5.5.2.

2.1 Design Objectives
Tor’s privacy-enhanced environment introduces dis-

tinct challenges to any new infrastructure. Here we enu-
merate a list of requirements that must be met by any
naming system applicable to Tor onion services. In Sec-
tion 3 we analyze existing works and show how these
systems do not meet these goals and in Section 5 we
demonstrate how we overcome them with OnioNS.

1. Anonymous registrations: The system should
not require any personally-identifiable or location infor-
mation from the registrant. Tor onion services publicize
no more information than a public key and a set of In-
troduction Points.

2. Privacy-enhanced queries: Clients should be
anonymous, indistinguishable, and unable to be tracked
by name servers. Tor already tunnels most Internet DNS
queries over circuits, thus any alternative naming sys-
tem should continue to preserve user privacy during
lookups.

3. Strong integrity: Clients must be able to verify
the authenticity of a domain-address pairing with cryp-

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 23

tographic guarantees. This objective provides a defense
against phishing attacks from malicious name servers.

4. Globally unique domain names: Any domain
name of global scope must point to at most one server.
Unique domain names prevent fragmentation of users
and also provides a defense against phishing attacks.

5. Decentralized control: Central authorities
carry absolute control over the system and root secu-
rity breaches can easily compromise the integrity of the
entire system. They may also be able to compromise
the privacy of both users and onion services or may not
allow anonymous registrations.

6. Low latency: The Tor network introduces
noticeable latency into communication, especially for
onion services, although this is not by design. The sys-
tem must promptly resolve queries to avoid negatively
impacting usability and exhausting the patience of Tor
users.

7. Optional: Not all onion services require mean-
ingful names. For example, applications such as Ric-
ochet [7] may create ephemeral onion services where
names may not be appropriate or necessary. Thus a
naming system should be optional but not required.
Systems that provide backwards compatibility by pre-
serving the Tor onion service protocol also achieve this
property.

8. Lightweight: In most realistic environments
clients have neither the bandwidth nor storage capacity
to hold the system’s entire database, nor the capability
of meeting significant computation burdens. The system
should have a minimal impact on Tor clients and onion
services.

3 Related Works
Vanity key generators (e.g. Shallot [16]) attempt

to find by brute-force an RSA key that generates a
partially-desirable hash. Vanity key generators are com-
monly used by onion service administrators to improve
the recognition of their onion service, particularly for
higher-profile services. For example, an onion service
administrator may wish to start his service’s address
with a meaningful noun so that others may more easily
recognize it. However, these generators are only par-
tially successful at enhancing readability because the
size of the domain key-space is too large to be fully
brute-forced in any reasonable length of time. If the ad-
dress key-space was reduced to allow a full brute-force,
the system would fail to be guaranteed collision-free.
Nicolussi suggested changing the address encoding to a
delimited series of words, using a dictionary known in

advance by all parties [20]. While Nicolussi’s encoding
improves the readability of an address, like vanity key
generators it does not allow addresses to be completely
meaningful.

The Internet DNS is already well established as
a fundamental abstraction layer for Internet routing.
However, despite its widespread use, DNS suffers from
several significant shortcomings and fundamental secu-
rity issues that make it inappropriate for use by Tor
onion services. First, the Internet DNS does not use
any cryptographic primitives. DNSSEC is primarily de-
signed to prevent forgeries and DNS cache poisoning
from intermediary name servers and it does not pro-
vide any degree of query privacy [28]. Additional pro-
tocols such as DNSCurve [2] have been proposed, but
DNSCurve has not yet seen widespread deployment
across the Internet. Secondly, both DNS and DNSSEC
are highly centralized; the entire .com TLD, for exam-
ple, is under the control of Verisign in the USA. The lack
of default security in DNS and its fundamental central-
ization prevent us from using it for onion services.

OnionDNS [26] is a seizure-resistant alternative res-
olution service for the Internet. OnionDNS is based on
DNS and uses unmodified BIND client software but
anonymizes the root server by hosting it as an onion
service. While OnionDNS does not require the user to
install specialized software and it provides DNSSEC and
other authentication mechanisms, the system is central-
ized by a single root server and thus vulnerable if the
root is malicious or is compromised. Although there is
a separation of duties in OnionDNS to allow for revo-
cation should the main signing key be compromised,
the revocation could take a long time. In contrast, our
scheme is decentralized. In addition, in OnioNS we pro-
pose a lottery-based domain registration protocol, which
effectively mitigates denial-of-registration attacks even
when the attacker compromises and colludes with some
Quorum nodes and has partial information about other
registrants. Note that OnionDNS and OnioNS were
named independently and readers should take care to
not confuse the two works.

The GNU Name System [28] (GNS) is a decentral-
ized alternative DNS. GNS distributes names across a
hierarchical system of zones constructed into directed
graphs. Each user manages their own zone and dis-
tributes zone access peer-to-peer within social circles.
However, GNS does not guarantee that names are glob-
ally unique. Furthermore, the selection of a trustworthy
zone to use would be a significant challenge for using
GNS for Tor onion services and such a selection central-
izes control of the system. Awerbuch and Scheideler con-

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 24

structed a decentralized peer-to-peer naming system [1],
but like GNS, made no guarantee that domain names
would be globally unique.

Namecoin [8] is an early fork of Bitcoin [19] and
is the first fully-distributed alternative DNS that dis-
tributes meaningful and unique names. Like Bitcoin,
Namecoin holds information transactions in a decen-
tralized ledger known as a blockchain. Transactions and
information are added to the head of the blockchain by
“miners,” who solve a proof-of-work problem to generate
the next block. Users may also register DNS records or
other information, which consumes Namecoins. While
Namecoin is often advertised as capable of assigning
names to Tor onion services, it has several practical is-
sues that make it generally infeasible to be used for that
purpose. First, Namecoin generally requires clients to
pre-fetch the blockchain which introduces significant lo-
gistical issues due to high bandwidth, storage, and CPU
load. Second, since the blockchain is an append-only
data structure, it becomes less practical over time and
scales poorly to high levels of activity and popularity.
Third, although Namecoin supports anonymous own-
ership of information, it is non-trivial to anonymously
purchase Namecoins, thus preventing domain registra-
tion from being privacy-enhanced. These issues prevent
Namecoin from being a practical alternative DNS for
Tor onion services.

4 Assumptions and Threat Model
We assume that Tor circuits provides privacy and

anonymity. If Alice constructs a three-hop Tor circuit
to Bob with modern Tor cryptographic protocols and
sends a message m to Bob, we assume that Bob can
learn no more about Alice than the contents of m. This
implies that if m does not contain identifiable informa-
tion, Alice is anonymous from Bob’s perspective. This
also implies an assumption on the security of crypto-
graphic primitives and a lack of backdoors or analogous
breaks in cryptographic libraries. The security of Tor
circuits is also dependent on the assignment of consen-
sus weight. We assume that the majority of directory
authorities are at least semi-honest so that consensus
weight is an effective defense against Sybil attacks. We
also assume that honest parties control the majority of
Bitcoin’s computational power, which implies that the
Bitcoin blockchain is secure. We note that these assump-
tions are already made by Bitcoin and Tor and have held
over time.

We assume that an active attacker, Mallory, con-
trols some percentage of dishonest colluding Tor routers

as well as semi-honest routers; however this percent-
age is small enough to avoid violating our previous as-
sumption. We assume a fixed percentage of dishonest
and semi-honest routers; namely that the percentage of
routers under Mallory’s control does not increase in re-
sponse to the inclusion of OnionNS into Tor infrastruc-
ture. This assumption simplifies our threat model anal-
ysis but we consider it realistic because while Tor traffic
is purposely secret as it travels through the network, we
consider OnioNS information public so we don’t con-
sider the inclusion of OnioNS a motivating factor to
Mallory. However, we allow Mallory to operate and ac-
tively MitM attack any of our non-authoritative name
servers.

As onion services require no more than a configured
Tor client and a socket listener and are thus cheap to
create, we anticipate that actors in our system will per-
form any of the following use cases:

1. Create many onion services and attempt to register
many names.

2. Create one onion service and attempt to register
many names.

3. Create many onion services and attempt to register
a single name.

4. Create one onion service and attempt to register a
single name.

Scenarios one and two are expected to be performed
by adversaries attempting to register all popular names
in a “land rush” for financial gain or as a denial-of-
registration attack. Scenario three may indicate an at-
tempt by many legitimate actors to claim a highly desir-
able name, while scenario four is the expected behavior
of innocent actors. As onion services are anonymous by
nature, it is impossible to construct a system that differ-
entiates and selects between a single actor performing
the first scenario and many actors performing the fourth
scenario. However, we expect innocent actors to follow
the fourth use case such that one entity (considering
load-balancing) hosts one onion service.

5 Design of OnioNS
5.1 Cryptographic Primitives

OnioNS utilizes hash functions, digital signature al-
gorithms, a proof-of-work scheme, and a global source
of randomness.

– H(x) is a cryptographic hash function of a message
x. We define H(x) as SHA-256.

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 25

– SRSA(m, r) is a RSA digital signature function that
accepts a message m and a private RSA key r and
returns a digital signature. Let SRSA(m, r) use H(x)
as a digest function on m in all use cases. We define
SRSA(m, r) as EMSA4/EMSA-PSS.

– VRSA(m,S,R) validates an RSA digital signature by
accepting a message m, a signature S, and a public
key R, and return true if and only if the signature
is valid.

– PoW(x) is a one-way function that accepts an in-
put key k and returns a deterministic output. While
PoW(x) could ideally be set to memory-hard key
derivation function such as scrypt [22], for perfor-
mance reasons we define PoW(x) as H(x).

– G(t) is a cryptographically-secure beacon of random
numbers. G(t) periodically returns a random num-
ber at time t, which is unpredictable before t but is
publicly verifiable after t.

– R(s) is a cryptographically-secure pseudorandom
number generator (CSPRNG) that accepts an ini-
tial seed s and returns a list of pseudorandom num-
bers. In our design, s = G(t). For efficiency reasons,
we suggest AES in CTR mode using s as a key with
a fixed IV.

5.2 Definitions
This section lists commonly-used terms and Table

1 defines frequent mathematical notation.
The syntax of OnioNS domain names mirrors the

Internet DNS; we use a sequence of name-delimiter pairs
with a .tor pseudo-TLD. The Internet DNS defines a
hierarchy of administrative realms that are closely tied
to the depth of each name. By contrast, OnioNS makes
no such distinction. We let onion service administrators
claim second-level names and then control all names of
greater depth under that second-level name.

A ticket is a small and fundamental data structure.
It contains type, name, secondaryAddrs, subdomains,
contact, rand, signature, and pubHSKey. Tickets by de-
fault have type set to “ticket”, but this data structure
becomes a record if type is set to any of the operations
described in Section 5.5.7.

A mirror is Tor router that is acting as a name
server within the OnioNS network. Mirrors maintain
a textual database of system information and respond
to client queries but usually do not accept new DNS
records or other information from onion services. We
note that mirrors may be outside the Tor network, but
this scenario is outside the scope of this work.

Quorum candidates are mirrors that hold a cur-
rent copy of the database. They also have sufficient CPU
and bandwidth capabilities to handle OnioNS commu-
nication in addition to their normal Tor duties.

The Quorum is an authoritative subset of Quorum
candidates who have active responsibility to maintain
the OnioNS database. Quorum nodes accept and pro-
cess information from onion services but do not respond
to client queries. The Quorum is randomly chosen from
the set of Quorum candidates and is rotated periodi-
cally, as described in Section 5.5.

|S| the cardinality of the set S

|T | number of routers in the Tor network
|Q| size of the Quorum
Qi the ith Quorum where i is an iteration counter
∆q lifetime of the Quorum

r(f) if r is a record, the field f in r

Table 1. Frequently used notations.

5.3 Infrastructure
We embed OnioNS infrastructure within the Tor

network by utilizing existing Tor nodes as hosts for
OnioNS mirrors. Each Tor node may opt to run an onion
service which then powers an OnioNS mirror server
running on localhost. As these onion services are part
of OnioNS, they must be accessed by their traditional
.onion address, but this is acceptable as these servers
are never accessed directly by end-users. Our reliance
on onion services allows us to reuse existing TLS links
between Tor nodes and leverage Tor circuits to obscure
all communication between end-users and OnioNS in-
frastructure without requiring a modification to the Tor
executable. In essence, all communication with or within
OnioNS is hidden from outside observers by ephemeral
internal Tor circuits, increasing privacy and reducing
our attack surface.

We authenticate servers in our infrastructure us-
ing Ed25519 [3] keys. Starting with Tor 0.2.7, Tor
routers generate and manage Ed25519 keypairs and in-
clude their public key in the network consensus. We
use Ed25519 because of its strength, size, and speed
advantages over Tor’s original RSA-1024 identity keys.
OnioNS servers use their private key to digitally sign
outbound traffic from their onion service, achieving end-
to-end authentication of all OnioNS communication.

5.4 Overview
The data flow in OnioNS is illustrated in Fig. 3.

First, all parties retrieve G(t) (a beacon) from the Bit-

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 26

Fig. 3. An overview of data flow in OnioNS.

Fig. 4. The series of events within each Quorum’s lifetime.

coin network, shown via a blue dash line. They then use
CSPRNG R(G(t)) to select a set of Quorum nodes (Q)
within the Tor network. Second, an onion service (OS)
sends tickets or records to the Quorum. Since mirrors
(M) subscribe to Quorum nodes, this data also propa-
gates to mirror nodes. Each mirror maintains a Merkle
tree of all the records obtained from the Quorum. At a
later point, a client can query the mirror for the record.
The mirror returns the ticket or record along with a
path through the Merkle tree, shown in solid black. The
client then verifies the Merkle tree proof and checks that
the majority of Quorum published the same root in the
network consensus document (CD), shown in the purple
dash-dotted line. This procedure occurs much the same
way even if no such ticket or record exists for a given
name.

Next, we explain the series of events within each
Quorum’s lifetime. A set of Quorum nodes’ lifetime can
span one or multiple registration periods, each being 24
hours long, wherein onion services apply for a meaning-
ful name by generating a ticket and performing proof-
of-work. At the end of each registration period, Quo-
rum nodes process the tickets received during that pe-
riod, and use a new value of G(t) to determine a subset
of registrants that have won the lottery. These onion
services then receive their meaningful name and their
records are added to the Quorum’s and mirrors’ name
databases. This cyclic process is illustrated in Fig. 4.

5.5 Protocols
We now describe the protocols fundamental to

OnioNS functionality. These protocols are listed accord-
ing to their approximate order of execution in OnioNS.

5.5.1 Random Number Generation
G(t) is used as a basis for several of our protocols.

The key issue is how to obtain a secure and decentralized
source of randomness. One straightforward definition of
G(t) is the SHA-256 hash of Tor’s consensus documents.
If the Tor network is dynamic enough to provide signifi-
cant amounts of entropy into the consensus documents,
then G(t) may be considered cryptographically secure.
However, this assumption does not hold because cur-
rent router descriptors are publicly available before the
consensus documents are published, allowing G(t) under
this approach to be easily manipulated by a few mali-
cious Tor routers. The attack becomes significantly eas-
ier in the final moments before the directory authorities
publish the consensus.

Another alternative approach is the commitment
scheme proposed by Goulet and Kadianakis [15]. Their
algorithm modifies the consensus voting protocol that
is run once an hour by Tor directory authorities. In
their scheme, at 00:00 UTC each authority commits a
SHA-256 hash of a secret value v into each consensus
vote across a 12 hour period. Then at 12:00 UTC, each
directory authority reveals v across the next set of 12
consensuses. Finally, at 24:00 UTC, the revealed values
are hashed together to create a single random number,
which is then embedded in the consensus documents so
that it is efficiently distributed to both Tor routers and
clients. A different random number thus appears in the
consensus every 24 hours.

However, the above commitment scheme has a well-
known weakness when some of the directory authorities
are malicious. Namely, while reveals must demonstrably
match commits, each participant may choose to reveal
or not. If they do not reveal, their value is lost and the
protocol produces a different output. If Mallory controls
b participants, she can make this choice with each par-
ticipant in turn, allowing 2b different outcomes, which
can be used for Mallory’s favor, e.g. skew the RNG out-
put to select malicious and colluding Quorum nodes.
Since preventing such attack requires trust in all nine
directory authorities, which is contradictory to our goal
of decentralization, we will not use this approach.

Instead, we propose to construct G(t) using the
latest block in the longest (and most secure) Bitcoin
blockchain. Bitcoin blocks consist of an 80-byte header
and an array of transactions. The block header con-

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 27

tains a version number, timestamp, current difficulty
level d, a 32-bit nonce, a SHA-256 hash of the previous
block header, and a SHA-256 root hash of the Merkle
tree constructed from all transactions in that block.
Among these items, the nonce and Merkle hash are the
main contributors of entropy for the block header, since
the rest are predictable given all the previous blocks.
According to the recent analysis by Bonneau, Clark,
and Goldfeder [6], the amount of (computational) min-
entropy contained by a block header is d bits, (cur-
rently d > 68) from which one can extract a near-
uniform random number of at least 32 bits long. Since
the blockchain’s security relies on the assumption that
honest parties control the majority amount of computa-
tion power, the head of blockchain can be regarded as a
decentralized random source. We present more detailed
analysis of security on this topic in Sec. 6.

Following the suggestion by [6], we construct a ran-
dom beacon from the head of the blockchain as follows:

G(t) = Extk(Bt||H(Bt)), (1)

where Bt is the header of the latest mined block (at
time t) from the longest chain in Bitcoin, and Extk is
a standard randomness extractor such as HMAC, with
k as a key to randomly choose the extractor function.
In Bitcoin, such a valid block is mined about every 10
minutes by design.

Tor clients and Tor routers can acquire or calculate
G(t) in several ways. First, they can download the en-
tire Bitcoin blockchain from the Bitcoin network, find
the block at time t, and generate G(t) from its header.
However, this approach trades high security for signif-
icant storage, bandwidth, and processing costs, which
may be impractical or prohibitive in many cases. The
second method is for clients to query a trusted source
for an initial “seed block” on the main blockchain and
then download the remainder of the blockchain from
that block. They can either download the blockchain
peer-to-peer, from the Bitcoin network, or from a cen-
tralized server, but this choice does not matter since
the chain is verified against the seed block. Periodically,
clients could then reset the seed block to the latest block
and repeat the process. This offers a significant reduc-
tion in overhead, but requires a trusted source for the
initial seed block. The third, least secure, but cheapest
method is to download the header from a trusted source.
We allow Tor clients and Tor routers to perform any of
these methods. We provide an onion service server for
the seed block and header and note that we could also
distribute G(t) through the consensus documents.

5.5.2 Authenticated Denial-of-Existence
We described earlier that a malicious name server

may forge a response or may falsely claim non-existence
of a name. These are attack vectors that remain open
by naming systems that do not provide authentication
mechanisms. We use a Merkle tree [18] to defend against
these attacks with minimal networking costs. This tree
is a fundamental authentication mechanism for both ex-
isting and non-existing names. All mirrors, including
Quorum nodes, perform this algorithm. The tree’s root
hash is then checked by clients during other protocols.
Let Charlie be a mirror.

1. Charlie fills an array list S with the ri(name)‖H(ri)
for each record ri received from onion services.

2. Charlie sorts S by the name field.
3. Charlie constructs a Merkle tree T from S.
4. Charlie publishes the root hash of T in the consensus

as described in Section 5.5.3.

We note that a sorted Merkle tree does not support
dynamic record updates and must be rebuilt at each
update. While other data structures exist that support
proof of existence and non-existence and allow efficient
updates, such as a skip list [14], these structures are
significantly more complicated. We consider it sufficient
to use a Merkle tree as the tree is only rebuilt once per
day in O(n log(n)) time.

5.5.3 Quorum Qualification
Quorum candidates must prove that they are both

up-to-date mirrors and that they have sufficient capa-
bilities to handle the increased communication and pro-
cessing demands from OnioNS protocols, an additional
burden on top of their traditional Tor responsibilities.

The naïve solution to demonstrating the first re-
quirement is for all participants to simply ask mirrors
for their internal database, and then compare the re-
cency of its database against the databases from the
other mirrors. However, this solution does not scale well.
Tor has approximately 2.1 million daily users [24]: it is
infeasible for any single node to handle queries from all
of them. Instead, at 00:00 UTC each day, let each mirror
apply any record operations that it received in the last
24 hours, recompute the Merkle tree, and place the root
hash inside the Contact field of its router descriptor so
that the hash appears in the network consensus. The
Contact field is typically used to hold the email address
and PGP fingerprint of the router’s administrator, but
our use of the Contact field allows us to distribute the
hash without modifying Tor infrastructure. Mirrors can

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 28

also distribute their onion service address in the same
way.

Tor provides a mechanism for demonstrating the
latter requirement; Quorum candidates must have the
Fast, Stable, and Running flags. Tor routers with higher
CPU or bandwidth capabilities relative to their peers
also receive a proportionally larger consensus weight
from the directory authorities. This consensus weight
in turn strongly influences router selection during cir-
cuit construction: routers with higher weights are more
likely to be chosen in a circuit. This scheme also in-
creases Tor’s resistance to Sybil attacks. Thus, we can
benefit from this infrastructure by selecting the Quo-
rum from the pool of Quorum candidates by a similar
mechanism.

5.5.4 Quorum Formation
Once OnioNS mirrors and Tor clients have G(t),

they can check the aforementioned qualifications to lo-
cally derive the current or any previous Quorum in
O(|T |) time locally without performing any additional
network queries. Without loss of generality, let a client
Alice run this algorithm at 00:00 UTC.

1. Alice obtains and validates the consensus document
C published at 00:00 UTC. Since consensus docu-
ments are timestamped and signed by Tor directory
authorities, Alice may download the document from
any source without loss of security.

2. Alice obtains G(t1) where t1> 00:00 UTC, i.e. the
first beacon obtained after midnight, using the
method from Section 5.5.1.

3. Alice constructs a list S from C of Quorum candi-
dates that have the Fast, Stable, and Running flags.

4. For each group g ∈ S that publishes an identical
root hash, Alice computes sg =

∑|g|
j=0 wg(j) where

wg(j) is the consensus weight of Tor router j in
group g. The Quorum candidates, qc, is the group
with the largest value of sg.

5. Alice uses R(G(t1)) to select min(size(qc), |Q|) Quo-
rum nodes from qc with the probability of selecting
router x determined by

P (x) =
wqc(x)
sqc

For security purposes, Alice must apply G(t1) to a
consensus document published at time t2, where t1 > t2.
If t1 < t2, then an attacker who controls x Quorum
candidates can maliciously influence Quorum selection
after seeing the beacon by adding or removing some
candidates from the consensus. We avoid this attack by

retroactively applying the CSPRNG to an older consen-
sus document.

5.5.5 Database Selection
The OnioNS network propagates information in

near real-time in a peer-to-peer fashion; mirrors open
authenticated circuits to other mirrors and subscribe
for new tickets and records. All Quorum nodes sub-
scribe to each other, forming a complete graph, and
non-Quorum mirrors subscribe to all Quorum nodes.
Under this scheme, all mirrors that remain online and
at least semi-honest will process the information. How-
ever, mirrors that drop offline will be out-of-date and
must synchronize against the network by the following
algorithm. Let Charlie be a mirror.

1. Charlie asks each Quorum node for the SHA-256
hash of all records that the node has received.

2. Charlie finds the largest group, g, of Quorum nodes
that return the same hashes.

3. Charlie uses delta compression to download recent
records from any node in g.

4. Charlie verifies the integrity of all records and is
fully synchronized if all records pass inspection.

Quorum nodes that were temporarily offline con-
duct the same algorithm, but may also ask other Quo-
rum nodes to replay new tickets so that they may pro-
cess the lottery as part of the Domain Registration pro-
tocol.

5.5.6 Domain Registration
To prevent malicious domain registrations such as

land-rushing and denial-of-registration attacks, we need
to enforce some cost when an onion service administra-
tor registers a domain name. A common way to do so
in a distributed system is through proof-of-work (PoW)
[19]. A PoW algorithm is usually a cryptographic chal-
lenge which is difficult to solve but easy to verify. In
OnionDNS [26], the authors proposed an auction-based
PoW mechanism in which the registrant who spent the
most computing time for PoW wins a domain. It forces
the registrants to focus their computing power on a
small subset of domains rather than many at a time.
However, it assumes that the game has incomplete in-
formation, i.e. participants do not know who their op-
ponents are in each game when they are bidding on
a domain. If the game participant information is fully
known to the registrants, then for games with no hon-
est registrants, an attacker can always solve the puz-
zle at the minimum difficulty and therefore successfully
register many names. This makes it inapplicable to our

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 29

system because some of the Quorum nodes may be com-
promised and collude with powerful attackers trying to
register many names.

To resolve the above challenge, we propose a lottery-
based scheme. The key idea is two-fold: (1) require every
registrant to submit a “ticket” and solve a PoW problem
related to this ticket, where we enforce a threshold diffi-
culty level of PoW for all the registrants as a barrier-of-
entry; and (2) employ a weighted lottery drawing on the
valid tickets to determine the final winners, so as to limit
the rate of domain registration, where the weight is pro-
portional to the computational effort spent by each reg-
istrant. The scheme consists of two phases: first, ticket
generation and submission, and second, a lottery.

Ticket Generation and Submission. The ticket
generation period spans for a 24-hour period: from 00:00
UTC each day until 24:00 UTC −δt, where δt is a small
time period (e.g., five minutes). Starting from 00:00
UTC, an onion service administrator (a.k.a. registrant),
Bob, may enter into the OnioNS lottery by generating
a ticket, containing a second-level domain name for his
onion service. Then, all the registrants submit the hash
commitment of their tickets during the submission time
window [00:00 UTC, 24:00 UTC −δt], and reveal their
tickets after 24:00 UTC.

Bob generates an initial ticket by defining the fol-
lowing fields:

- type: “ticket”.
- name: a meaningful domain name.
- secondaryAddrs: a list of additional .onion destina-
tions for load-balancing across multiple servers

- subdomains, a map of domains of level three or
higher and their respective destinations, which may
be to either .tor or .onion domains.

- contact: (optional) Bob’s PGP key fingerprint.
- rand: G(i).
- nonce: a nonce, which is a solution to the PoW prob-
lem.

- pubHSKey: Bob’s RSA public key.
- signature: output of SRSA(type ‖ name ‖

secondaryAddrs‖subdomains‖contact‖rand‖nonce, r)
where r is Bob’s private RSA key.

In the above, nonce should be a solution to the fol-
lowing PoW:

vPoW = H(signature||nonce) ≤ vth, (2)

where vth ∈ Z and vth < 2256. We use dth =
blog2(2256/vth)c−1 and dbob = blog2(2256/vPoW)c−1 to

denote the threshold and actual difficulty levels, respec-
tively (i.e., number of leading zero bits in the hash).

Note that Bob’s tickets are valid only when dBob is
larger than a difficulty threshold set by Quorum nodes.
Each iteration of the above PoW results in a different
and one-way output because SRSA(m, r) is a probabilis-
tic signature scheme. Bob must repeatedly resign and
recompute PoW until the formula is satisfied. Note that
this discourages Bob to outsource the PoW computa-
tion to a powerful cloud service, since computing the
signature requires possession of Bob’s private key. Once
the threshold difficulty is met, Bob must continue to
search for an answer to the PoW such that it reflects
the maximum difficulty (minimum vPoW) he can ob-
tain during the ticket generation period. No tickets are
submitted during the ticket generation period in order
to prevent malicious registrants from knowing the ticket
information of other registrants in advance. During the
submission time window (e.g., the last minute of the
day), Bob finalizes the ticket corresponding to the solu-
tion to the PoW with minimum vPoW he obtained so far
and generates a hash commitment of everything inside
his ticket: commitbob = H(type‖name‖secondaryAddrs‖
subdomains‖contact‖rand‖nonce‖pubHSKey‖signature).
Then he sends commitbob to all the Quorum nodes. No
tickets that are submitted after the ticket generation pe-
riod will be accepted for the current day’s lottery. After
all the tickets are submitted, all the registrants reveal
their ticket contents to the Quorum. These reveals form
an initial pool of tickets.

Ticket Processing. Following the ticket reveals,
each Quorum node Qi,k inspects every ticket in the ini-
tial pool, finds the actual difficulty for the PoW in each
ticket by recomputing vPoW = H(signature||nonce), and
performs the following to prune the tickets to form a lot-
tery ticket pool:

1. Rejects t if the hash of the record fields do not match
any commitment hash.

2. Rejects t if the t’s PoW value is greater than the
threshold, i.e. vPoW > vth.

3. Rejects t if the record’s signature is invalid or if any
other field is malformatted.

4. Rejects t if t’s name is already registered.
5. Rejects t if the onion service does not have a de-

scriptor in Tor’s distributed hash table.
6. Otherwise, it records t in its lottery pool, Ti.

Lottery Management. The lottery phase starts
after ticket processing. Note that name collisions may
exist in the lottery pool: multiple tickets claiming for

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 30

the same name. We resolve these collisions and ensure
one-to-one correspondence between names and tickets
in this phase. Each Quorum node performs the lottery
phase by the following algorithm. Let Charlie ∈ Qi.

1. Charlie publishes Ti to all subscribers.
2. Charlie uses R(G(i + 1)) to select a list of winning

tickets, Wi, from Ti. The detailed process is as fol-
lows. For each ticket tj ∈ Ti, associate a weight
inversely related to its actual PoW value obtained
(wj = b2256/vjc), where vj = H(signature||nonce)).
Compute a probability as pj = wj∑n

j=1
wj

. The lot-

tery is drawn (without replacement) among all the
tickets with their corresponding probabilities, with
the rule that once one ticket for a name is chosen,
all the other tickets for the same name are removed
from the lottery pool. This goes on until |Wi| win-
ners are drawn.

3. Charlie allows all members of Wi to receive their
names.

Although tickets are initially blinded, the above al-
gorithm is publicly verifiable. All mirrors, clients, or
other parties may verify Wi since Ti is public. As this
algorithm occurs at 00:00/24:00 UTC, mirrors then up-
date their Merkle root hash per the protocol described
in Section 5.5.3.

In order to prevent land-rushing attacks we adopt
a similar bootstrapping method as in OnionDNS. We
preload OnioNS with a large set of “reserved” names
by constructing a mapping between popular onion ser-
vices and their self-declared name. Although these pre-
existing onion services must still generate a lottery
ticket, they win names immediately. Similarly, we can
also reserve popular Internet domain names. This ap-
proach both increases the usability of our system and
removes a significant incentive for land rush attacks.

The lottery weight for each ticket is essentially pro-
portional to the amount of computation power that its
creator spends on the PoW, since the more CPU cy-
cles it spends, the less the PoW value v it can obtain.
Thus, if anyone wishes to win a single name’s ticket,
she needs to focus all its computation power to solve
its PoW. This is the strategy that the legitimate parties
will adopt. This algorithm is also resistant to denial-of-
registration attacks: if an attacker tries to prevent le-
gitimate onion services from registering a set of names,
the attacker must spend as much computation on those
tickets’ PoWs to ensure they have a statistical advan-
tage to win those names. If they do not specifically tar-

get any names and just randomly register many names
at once, they need to spread their computation power
over many names and each of those tickets will have low
weight. Our analysis shows that such attack’s impact is
bounded in terms of how many names they can win,
which is ensured by the rate-limiting lottery design and
the difficulty threshold.

Another desirable property of the above protocol
is that it prevents an attacker that colludes with a
compromised Quorum node from obtaining information
about the other registrants before the ticket submis-
sion phase, including the number of them, their claimed
names, and PoW difficulty/answers. During the ticket
submission, attackers may learn the total number of reg-
istrants, however others’ claimed names and PoW an-
swers are still hidden by the commitment scheme. Also,
since ticket submission window is short (e.g., 5 min-
utes), it will not be enough for the attacker to make
any meaningful changes to his own ticket (e.g., to com-
pute another PoW answer with significantly higher diffi-
culty). Therefore, the ticket generation and submission
phase ensures a uniform information game for all the
registrants.

5.5.7 Record Operations
OnioNS also supports common operations on

names. Bob, an owner of an onion service, may construct
modify, renew, transfer, or delete records and issue the
records to the Quorum. In all cases, Bob sets the type
field to the appropriate record type. Once received, mir-
rors hold the record in a queue and apply them at 00:00
UTC each day by the protocol specified in Section 5.5.3.
Thus updates take up to 24 hours to propegate through
OnioNS.

Bob can modify his registration by changing sec-
ondaryAddrs, subdomains or contact fields. Bob may
also transfer the registration to a new owner by issu-
ing a transfer record, which contains an additional field:
recipientKey, the public RSA key of the new onion ser-
vice. This transfer request can be authenticated since
Bob’s record is signed, similar to a Bitcoin transaction.
Bob may also relinquish control of his name by issuing a
deletion record. Bob does not need to recompute proof-
of-work for any of these records as these operations are
cheap for the Quorum to apply. However, OnioNS names
expire after 90 days, so name owners must periodically
renew registrations to maintain ownership. This can be
done by issuing a renew ticket with an updated G(i) and
recalculating the proof-of-work algorithm. The PoW re-
quirement here reduces the risk of name squatting.

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 31

5.5.8 Domain Query
Alice only needs Bob’s ticket or his latest record to

contact Bob by his meaningful name. She then uses the
Merkle tree structure to verify that her name server re-
sponds with the correct ticket or record, or to achieve
authenticated denial-of-existence if her query has no
corresponding data structure. Let Alice type a domain
d into the Tor Browser.

1. Alice contacts a name server Charlie via his onion
service.

2. Alice asks Charlie for a ticket or record r containing
d.

3. Charlie extracts the second-level name n from d.
4. If r exists, Charlie returns r, the leaf node contain-

ing n, and all the nodes from the leaf to the root
and their sibling nodes.

5. If r does not exist, Charlie returns two adjacent
leaves a and b (and the nodes on their paths and
siblings) such that a(name) < n < b(name), or in
the boundary cases that a is undefined and b is the
left-most leaf or b is undefined and a is the right-
most leaf.

6. Alice verifies the authenticity or non-existence of r
by
(a) Asserting that n is either contained in the sub-

tree or that n is spanned by the subtree leaves,
respectively.

(b) Asserting the correctness of the hashes in the
subtree.

(c) Asserting that the root hash matches the root
hash published by the largest agreeing set of
Quorum nodes, by validating every Quorum
node’s signature of its published root hash.

7. If these assertions fail, Alice knows that Charlie is
dishonest and she must repeat this protocol with a
different mirror.

8. If d in r points to a domain d2 which has a .tor
pseudo-TLD, Alice jumps to 2 and queries for d2.

9. Alice computes Bob’s .onion address from
r(pubHSKey) or randomly selects an .onion address
from r(secondaryAddrs) (if present), proceeding in
a round-robin fashion until she contacts Bob over
the onion service protocol.

It is impractical for Alice to download the whole
database from all Quorum nodes over slow 6-hop onion
service circuits. Alice uses the Merkle tree to verify the
authenticity (or non-existence) and uniqueness of r with
minimal networking costs even when the mirror Char-
lie is dishonest. This in turn requires trusting that the

largest agreeing subset of the Quorum has published the
correct root hash. We show in our security analysis that
this assumption holds in most cases even if the Quorum
is partially compromised.

Note that, although Alice needs to check all the
Quorum nodes’ signatures of the root hash, she does
not need to do so for every Domain Query. Instead, this
can be done once every registration period (24 hours)
after which the records are updated. In this way, the
signature verification cost is amortized.

5.5.9 Onion Query
OnioNS also supports reverse-hostname lookups. In

an Onion Query, Alice issues an onion service address
addr to Charlie and receives back all Records that have
addr as either the owner or as a destination in their
subdomain. Alice may obtain additional verification on
the results by issuing Domain Queries on the source
.tor domains. We do not anticipate Onion Queries to
have significant practical value, but they complete the
symmetry of lookups and allow OnioNS domain names
to have Forward-Confirmed Reverse DNS matches. We
suggest caching destination onion service addresses in a
digital tree (trie) to accelerate this lookup; a trie turns
the lookup from O(n) to O(1) while requiring O(n) time
and O(n) space to pre-compute the cache.

6 Security Analysis
In this section, we analyze the security of the Onion

Name System with regard to our security goals and
threat model. We supplement with a statistical analysis
of the Quorum in Appendix A.1 and A.2.

6.1 Global Randomness
The beacon G(t) should satisfy several security

properties: unpredictable, unbiased, universally sam-
pleable, and publicly verifiable [6]. The latter two prop-
erties follow directly from the construction. The first
two depends on the security of the Bitcoin blockchain.
The unpredictability can be quantified by the (compu-
tational) min-entropy of the beacon, while the unbiased
property is defined by the statistical closeness of G(t) to
an m-bit uniformly random string. In [6], the authors
showed that this beacon generates 32 near-uniform ran-
dom bits every 10 minutes. This would be sufficient for
our system: if we assume |Q| = 127, then each Tor router
is sampled at least ≈ 2% chance to be in a Quorum,
which is much higher than 2−32.

The above assumes normal operation when honest
parties control the majority of the computational power

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 32

in the Bitcoin network. Next, we analyze the security
of this assumption itself. Bitcoin miners, who perform
the PoW, are rewarded with an agreed-upon bounty
for generating a new block as well as the cumulation
of transaction fees. These provide an incentive to solve
the proof-of-work problem. While miners originally at-
tempted to solve the PoW problem independently, a
community of miners may organize themselves into a
“mining pool”. Each miner in the pool attempts to find
a solution to the PoW problem in the common block.
When the PoW is solved, the reward is split across min-
ers according to contributed processing power [12]. Since
this is more financially rewarding, the vast majority of
Bitcoin’s hashrate is performed in this way. The top
seven mining pools are shown in Fig. 2.

F2Pool 27%
AntPool 19%

BTCC Pool 15%
BW.COM 10%
BitFury 10%

Kano CKPool 4%
Slush 4%

(All others) 12%

Table 2. Distribution of the top seven mining pools in the Bitcoin
network as of June 2016 [5].

As of June 2016, the aggregrate Bitcoin hashrate
is 1.446 EH/s, or 1.446 × 1018 hashes/second [4]. An
attacker could compromise the security of the Bitcoin
blockchain through a 51% attack, wherein the attacker
controls the majority of the hashrate and can thus con-
trol the longest chain. This can occur if either F2Pool,
AntPool, and BTCC Pool collude (as they would then
control 61% of the hashrate) or if an attacker intro-
duce more than 1.446 EH/s of computational power
into the network. The most cost-effective and energy-
efficient ASIC miners are capable of up to 4.7 TH/s,
0.25 watts/GH, and an initial up-front cost of $520 USD
[17]. Based on these figures, we estimate that a 51% at-
tack would cost $158 million USD and would draw 395
megawatts. Therefore, so long as F2Pool, AntPool, and
BTCC Pool do not collude, the honest majority compu-
tation power assumption in Bitcoin holds.

We also must analyze whether this beacon is resis-
tant to manipulation attacks. In [6], the authors consid-
ered the scenerios where the attacker bribes the miners
in order to suppress certain valid blocks and thus make
the beacon predictable or otherwise favorable to the
attacker. They model a manipulation-resistant lottery
scheme as a finite-state Markov process and found that
the attacker must possess high stakes in the outcome of

a lottery to be economically feasible. In this paper, we
apply the same methodology to analyze the security of
the beacon. We can model the Quorum generation as a
single-stage lottery where |Q| nodes are chosen at a time
using one beacon (i.e., |Q| numbers derived from G(t)).
The attacker controls the Quorum only if Q contains
the majority of malicious nodes. Thus, it has a binary
reward function:

A(s) =
{

W : s ∈ S∗
0 : s /∈ S∗

(3)

where W is the reward of controlling the Quorum and
S∗ is the state set of all Quorum node combinations
where malicious nodes gain the majority. Denote p the
probability that attacker wins an unmanipulated lot-
tery (the Quorum compromise probability, or the ag-
gregated probability of states S∗), then p is very small
according to our analysis in Appendix A.1. For instance,
when |Q| = 63, percentage of colluding routers is 20%,
p = 5.5×10−16 (referring to Fig. 8). Thus, following Eq.
(4) in [6], the attack is advantageous whenever W > 1

p

Bitcoins. This amounts to $4.3×1017; suppose there are
50, 000 onion names in Tor as of now, each of them needs
to worth $8.6 trillion. This means it is practically infea-
sible for the attacker to bribe the miners to manipulate
the beacon and Quorum generation in OnioNS.

6.2 Integrity Guarantees
Merkle trees are widely used to achieve secure verifi-

cation of very large data structures. The security of the
Merkle tree rests on the underlying hash function and
its resistance to second pre-image attacks. During a Do-
main Query, clients fetch a subtree from mirrors, verify
the integrity of the ticket or record against the leaf node,
and recompute and verify the hashes of the subtree. The
second pre-image attack resistance of SHA-256 prevents
mirrors from forging or falsely claiming non-existence of
a ticket or record. Clients also check the subtree value
against the Quorum’s published hashes, preventing mir-
rors from forging the subtree or returning an obsolete
subtree. This approach provides strong integrity guar-
antees for both existent and non-existent records even
if the mirror is malicious.

In the unlikely scenario that the attacker controls
the majority of nodes in a Quorum, the attacker can
modify or substitute existing records during that Quo-
rum’s lifetime, which can mislead clients. However, a
malicious Quorum cannot overwrite history (e.g. records
from past Quorums) because the previous Quorums
maintain a read-only copy of its own historical records.
These historical records can also be stored by other mir-

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 33

rors, the current Quorum, or an external server. A client
can send the same query to past Quorums to see if
the records differ. If they do and the current Quorum
does not provide explanatory proof (such as a modi-
fication or transfer record) then the client can detect
expired/recaptured domains or malicious substitutions
and should warn the user. We introduce a flag into our
software for this purpose, which will also serve as a de-
terrent to malicious Quorums.

Tor’s resistance to Sybil attack helps to ensure the
integrity of the Quorum and the security of OnioNS
in general. New routers must demonstate long uptime
and high reliability before they receive notable consen-
sus weight. The arguably most prominent Sybil attack
occured in December 2014 when members of the Lizard
Squad group introduced approximately 3,300 new Tor
routers. Although Lizard Squad then controlled more
than half of the size of the Tor network, their routers
collectively had 0.2743% of the consensus weight. The
Sybil attack was noticed by the Tor community and the
offending routers were banned from the network. Small-
scale Sybil attacks have also been detected through
community-developed tools such as SybilHunter [30].

6.3 Lottery
Our lottery uses proof-of-work as a barrier-of-entry

and awards names to a fixed number of onion services
in any period to limit abuse. Here, we consider powerful
adversaries with significant computational capabilities
who may register many tickets as part of a land rush or
to perform a denial-of-registration (DoR) attack. On the
other hand, we anticipate that honest onion services will
only attempt to register a single name, therefore they
may be assumed to be computationally weak. We an-
alyze our scheme’s resilience against attacks in Section
A.3. We found that with appropriate selection of the
difficulty threshold, the attacker’s expected number of
winning names is approximately equal to the total num-
ber of winners scaled by the portion of its computation
effort over the combined effort of attacker and all the
legitimate registrants. Here, we recommend an initial
value for the difficulty threshold, dth.

Our analysis suggests that to effectively mitigate
DoR attacks, we should set the difficulty level of inno-
cent onion services to 1

4 of the expected maximum diffi-
culty that a high-end CPU can obtain in 24 hours. This
means that high-end CPUs should take about six hours
to generate a lottery ticket. We benchmarked the per-
formance of our reference implementation of the proof-
of-work algorithm on low-end and high-end consumer-

grade hardware. An Intel Core2 Quad Q9000 2.00 GHz
Penryn CPU from late 2008 performed 1,773.7 PoW it-
erations per second on one CPU core and 6,165.9 i/s
on all four CPU cores. Our high-end machine held an
Intel i7-6700K 4.0 GHz Skylake CPU from 2015 and per-
formed 8709.2 i/s on one CPU core and 33,930 i/s on
eight cores. Since each iteration is independent proba-
bility event, the following formula derives the minimum
value vth such that a CPU at S i/s has a 50% chance to
compute the result to the PoW in six hours:

vth ≈
0.5 · 2256

6 · 60 · 60 · S (4)

We consider that the i7-6700k represents the upper-end
of consumer CPUs and use this formula to recommend
vth = 2223.55 and dth = 256 − 224 = 32 bits. Even with
lower-end CPUs, fewer utilized cores, or a higher diffi-
culty, the proof-of-work algorithm will generate a valid
ticket eventually. We also suggest halving vth every two
years so as to keep pace with a global average increase
in computational power. With a sufficiently high value
of lottery winners and a sufficiently low value for vth, we
believe that our lottery can resist a well-resourced ad-
versary while simultaneously serving computationally-
weak innocent parties.

6.4 DNS Leakage
Accidental leakage of .tor lookups over the Inter-

net DNS via human mistakes or misconfigured software
may compromise user privacy. This vulnerability is not
limited to OnioNS and applies to any pseudo-TLD; Mo-
haisen and Thomas observed .onion lookups on root
DNS servers at a frequency that corresponded to ex-
ternal global events and highlighting the human fac-
tor in those leakages [27]. Closing this leakage is dif-
ficult. Arguably the simplest approach is to introduce
whitelists or blacklists into common web browsers to
prevent known pseudo-TLDs from being queried over
the Internet DNS. Such changes are outside the scope
of this work, but we highlight the potential for this leak.

7 Evaluation

7.1 Implementation
We have build a reference implementation of the

Onion Name System in C++11 as a supplement to this
work. We use JSON-RPC on top of microhttpd [23]
(a small HTTP server library) for networking and the
Botan [10] library for most cryptographic operations.
We encode all the data structures in JSON and base64-

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 34

Fig. 5. We load our onionsite, available at
“onions55e7yam27n.onion”, transparently under the “exam-
ple.tor” domain. The OnioNS software launches with the Tor
Browser.

encode binary data. Our code is licensed under the Mod-
ified BSD License, identical to Tor, and is available for
Linux through a software repository at our onion ser-
vice, http://onions55e7yam27n.onion.

We divided our software into three parts: OnioNS-
client, OnioNS-server, and OnioNS-HS, with OnioNS-
common as a shared library dependency. OnioNS-client
negotiates with the user’s Tor software to MitM all re-
quests for torified TCP streams. It filters for our .tor
pseudo-TLD while allowing all other lookups (IPv4,
.onion, or DNS) to pass unimpeded. Once it intercepts a
request for a .tor domain, it performs a Domain Query
and rewrites the domain to a .onion address before al-
lowing Tor to bind the request to a circuit. This ap-
proach preserves backwards-compatibility, achieving a
design objective and enhancing usability. The OnioNS-
server simply binds to a localhost TCP port and per-
forms our protocols. OnioNS-HS is a command-line
utility that prompts the user for domain information,
performs the proof-of-work, and uploads the ticket or
record to the current Quorum. In all three cases, our
software functions with minimal configuration.

7.2 Integration Test
We have deployed a small testing network of Quo-

rum and mirror servers. We first created an onion ser-
vice for our project, set up a small web server, and
used Shallot to generate a semi-meaningful address,
“onions55e7yam27n.onion”. We then used OnioNS-HS
to create a lottery ticket for “example.tor” and then to
transmit it to the Quorum. This sole ticket won the lot-
tery and we received our name. Our ticket then propa-
gated through the network to mirrors. Finally, we in-
stalled our client software into Tor Browser 6.0.1, a
fork of Firefox 45.2.0 ESR. We typed “example.tor”
into the Tor Browser and the request was intercepted,
resolved through a Domain Query, and rewritten to
“onions55e7yam27n.onion”. The Tor binary then com-
municated with our onion service and returned the con-
tents back to the Tor Browser. This process did not
require any further user input and occurred behind-the-

scenes, so the Tor Browser retained the “example.tor”
name in the address bar and in the mouse-over text
for relative hyperlinks. We illustrate the result in Fig.
5. The software performed asynchronously and allowed
normal browsing to both the Internet and other onion
services while it resolved “example.tor”.

7.3 Performance
7.3.1 Client-Side Overhead

We measured the client-side overhead of record ver-
ification after a Domain Query. We tested the perfor-
mance of our OnioNS-HS and OnioNS-client software
on two machines, Ma and Mb, the Q9000 and i7-6700k
CPUs mentioned earlier. We measured the wall-time
needed for a client to verify a record or ticket and aver-
aged 200 samples. The results are shown in Table 3.

Description Ma (ms) Mb (ms)
Parsing JSON 5.21 2.42

H(x) 4.35 2.15
VRSA(m, S, E) 6.35 2.74
Total Time 15.91 7.31

Table 3. The processing time required to verify a record. These
measurements also apply to Quorum nodes and mirrors as they
also verify tickets and records.

The measurements show that clients can fully vali-
date a record in less than 20 ms even on low-end hard-
ware. Clients must also verify the Merkle tree proof
from the mirror to authenticate record and confirm its
uniqueness, and they must verify the router descriptors
of all Quorum nodes in the consensus in order to authen-
ticate the Merkle tree root hash. The overhead associ-
ated for Merkle tree verification is tree height (log2(n))
multiplied by the cost of H(x). We can estimate the
overhead of verifying router descriptors by multiplying
the above numbers by |Q|. For example, if |Q| = 127,
then Mb takes 928 ms. Note that this is a one-time cost
per registration period.

7.3.2 Communication Overhead
Although Tor is a low-latency network, all OnioNS

communications occur over six-hop onion service paths
through Tor, which introduces latency into most of our
protocols. The exact round-trip latency is highly de-
pendent on queuing delays, processing latency, and the
speed of each router selected by either party, as well as
the length and speed of the links between the routers.
The latency is most significant for clients and adds an
additional delay between the time that a user enters an
OnioNS domain into the Tor Browser and the moment
that Tor begins loading the onion service.

http://onions55e7yam27n.onion
http://onions55e7yam27n.onion
http://onions55e7yam27n.onion
http://onions55e7yam27n.onion

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 35

In May 2016 we conducted 10,000 measurements
of the communication overhead of onion service paths
through the Tor network. Each endpoint was hosted on
a 24 Mbits AT&T residential connection. Before each
measurement, we cleared Tor’s state file for both the
client and the onion service, forcing both endpoints to
generate fresh circuits and select new guard nodes. This
allows our measurements to reflect the expected perfor-
mance in a distributed environment wherein the clients
and onion services select their own circuit. We then mea-
sured circuit construction to the onion service, the aver-
age time of three round trips, and the bandwidth mea-
sured during a transfer of a 2 MB payload. We observed
that the median circuit construction overhead was 3952
ms, the median circuit latency is 470 ms, and the median
bandwidth is 188 KB/s. We have provided supporting
box plots of our results in Section A.4.

We expect that a ticket or record would be less than
1 KiB. The mirror must transmit two SHA-256 hashes
for each node in the Merkle tree to ensure verifiability.
If OnioNS contains Z names, then the expected byte
size of a serialized Merkle subtree is approximated by
2 · (49+e) · log2(Z) where 49 is the byte size of a base64-
encoded SHA-256 hash and e represents markup and
other formatting overhead in the transmission and is
approximately 98 in our implementation. Assuming 470
ms RTT and 188 KB/s median bandwidth, the client
can download up to 99.6 KB of Merkle subtree data to
stay within sub-second performance. The expected size
of the subtree is 99.6 KB when Z = 2339, suggesting
that the Domain Query scales to a very large number
of names. The client can eliminate circuit construction
overhead by connecting to a mirror at startup.

7.3.3 Quorum Scalability
In the Domain Registration protocol (section 5.5.6)

potential registrants upload tickets and records to all
Quorum nodes. The committment form of these tick-
ets must be uploaded within a short time period (e.g.,
five minutes) to minimize any information leakage to a
potential attacker. Our analysis in Appendix A.1 rec-
ommends |Q| = 127, so registrants must upload tickets
to 127 Quorum nodes within this small window. Con-
sidering the aforementioned overhead of 6-hop circuits,
in August 2016 we used the same setup as described
above to measure the average time required to upload
to a variable Quorum size. Our results, shown in Table
4, show that more than a minute is needed to upload to
127 Quorum nodes. Based on these measurements, we
recommend a window of 5 minutes, which also provides
a margin of error for clock skew.

Quorum Size Avg. Time (sec)
7 4.62
15 9.24
31 17.95
63 39.84
127 78.41
255 148.89

Table 4. The time required to upload tickets to 2x − 1 Quorum
nodes using 8 threads to accelerate communication.

We also measured the storage, memory, and process-
ing overhead for Domain Queries for a variable number
of records. We generated fixed-size records of ≈ 1 KB
each with random names and followed Authenticated
Denial-of-Existence algorithm to construct a Merkle
tree. Since Table 3 and Appendix A.4 show that the
overall time is dominated by the overhead and latency of
6-hop circuits, we removed the network component and
measured performance while querying from the same
machine. Our results are shown in Table 5.

Records Disk (MB) RAM (MB) CPU (µs)
214 18 19 7
215 36 21 32
216 71 25 145
217 142 31 257
218 284 42 634
219 568 63 1285
220 1137 108 2272

Table 5. The server-side storage and memory costs to hold the
records and the Merkle tree, respectively, and the processing over-
head for a Domain Query. The measurements occurred on one
thread of the Mb machine with -O3 compiler optimizations.

The table suggests that the processing time is very
light and scales logarithmically with respect to the
number of records. This time can be further improved
through multi-threading as multiple Domain Queries
can easily be performed in parallel. The memory and
storage costs both scale linearly as expected, as the
Merkle tree contains O(n) nodes. These nodes are rela-
tively cheap to store in RAM. The CPU cost to answer a
query is very low, since the Merkle tree is pre-computed.

8 Discussions
In this section we further discuss and compare our

work with related works. Our work shares several sim-
ilarities with Namecoin and OnionDNS. The Domain
Query protocol uses a Merkle tree to minimize net-
working costs, akin to the Simplified Payment Ver-
ification (SPV) scheme [19] for thin clients in Bit-
coin. Our authenticated denial-of-existence algorithm is
analagous to NSEC3 in DNSSEC. However, our system

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 36

also provides some features and practical advantages
that Namecoin, OnionDNS, and DNSSEC do not.

OnioNS has significantly less overhead than Name-
coin: unlike an append-only blockchain, our database
can be modified or deleted in-place and mirrors only re-
member records for non-expired names. Namecoin does
not provide any rate-limiting on name registration and
is thus vulnerable to land-rushes, denial-of-registration,
and domain squatting attacks. This is evident by the
severely skewed distribution of wealth in Namecoin;
43.7% of all Namecoins are held by the richest 10 ad-
dresses and 90.5% are held by the richest 1,000 ad-
dresses. By contrast, 5.3% and 37.5% of all Bitcoins
are held by the richest 10 and 1,000 addresses, re-
spectively. [4] Additionally, Namecoin does not provide
any mechanisms for authenticated denial-of-existence.
Clients must either trust the server or download the
blockchain to confirm the claim. We also note that as
of June 2016, Namecoin has a hashrate of 440 PH/s,
30.4% of Bitcoin’s hashrate [4]. Since we use Bitcoin’s
blockchain as a beacon to generate G(t), we consider
OnioNS more resistant to computationally-powerful ad-
versaries than Namecoin.

Hashed Authenticated Denial of Existence [13]
(NSEC3) is an extension for DNSSEC which authen-
ticates NXDOMAIN responses by DNS servers. NSEC3
uses a sorted list of hashed names to prove non-
existence; the client can quickly verify that no record ex-
ists between two names that canonically span the target.
This mechanism also aims to avoid zone enumeration. In
our work, we adapt this approach to also provide an au-
thenticated denial-of-existence mechanism. OnioNS and
Namecoin both allow full enumeration of all registered
domains; however we do not consider this a significant
threat to our system as registrations do not contain per-
sonal information. Both systems operate under weaker
adversarial models than GNS, which assumes than an
attacker may participant in any role, may infiltrate the
network by large-scale Sybil attack, and is assumed to
have more computational power than all honest partic-
ipants combined. Neither Namecoin, OnioNS, nor Tor
provide full defenses against such well-resourced adver-
saries. Tor onion services may become de-anonymized
under GNS’ adversarial model so we do not assume that
our adversaries are that powerful.

We introduce the secondaryAddrs field into the
record data structure to achieve load-balancing at a
name level, similar to the round-robin scheme in In-
ternet DNS. We note that other tools exist for this
purpose such as OnionBalance [9], which uses special-
ized descriptors to distributes onion service requests

across multiple backend Tor instances. We reduce the
additional communication overhead by load-balancing
requests at the name level. OnioNS also load-balance
across its network because clients will query randomly-
selected mirrors for tickets or records. If this selection
is skewed by consensus weight, then the load will be
distributed according to the capabilities of each mirror.

In OnioNS, users trust the Quorum, Tor directory
authorities, and Bitcoin during a query. We consider
these trustworthy due to Tor’s resistance to Sybil attack
(Section 6.2), the economic defenses in Bitcoin (Section
6.1), and the low likelihood of Quorum compromise (Ap-
pendix A.1 and A.2). As we described in Section 6.2, an
OnioNS client can also query past Quorum nodes for ad-
ditional verification. Transfer and modification records
also allow the mirror to prove the authenticity of up-
dates and the user can be warned if the record changes
and this proof is not received during a query.

9 Conclusions and Future Work
We have presented the Onion Name System

(OnioNS), a decentralized, secure, and privacy-
enhanced alternative DNS that maps globally-unique
and meaningful names to onion service addresses.
OnioNS enables any onion service administrator to
anonymously claim a human-readable name for their
server and clients to query the system in a privacy-
enhanced manner. We introduce mechanisms that
let clients authenticate existent names and denial-of-
existence claims with minimal overhead. We use Bit-
coin as a cryptographically-secure beacon and utilize
the existing and semi-trusted infrastructure of Tor. This
significantly narrows our threat model to already well-
understood attack surfaces and allows our system to
be integrated into Tor with minimal effort. Our refer-
ence implementation shows the automatic resolution of
domain names, which will allow scaling beyond human-
maintained directories. This demonstrates that OnioNS
can address the major usability issue that has been with
Tor onion services since their introduction in 2002.

Following publication, we will expand our imple-
mentation and pursuit deploying it onto the Tor net-
work. OnioNS introduces new software and a new .tor
pseudo-TLD but requires no changes to the Tor exe-
cutable. OnioNS is also forwards-compatible to changes
in Tor circuits or the onion service protocol and requires
only small modifications to become compatible to [25],
the proposed next generation of Tor onion services.

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 37

10 Acknowledgments
We would like to thank Roger Dingledine, George

Kadianakis, Yawning Angel, Nick Mathewson, and
other Tor developers and volunteers within the com-
munity for their technical support and commentary on
our work. We thank the anonymous reviewers for their
insightful comments and suggestions that helped to sig-
nificantly improve the paper, and also thank Rob Jansen
for shepherding our paper. This work was partially
supported by NSF grants CNS-1111539, CNS-1314637,
CNS-1520552, CNS-1218085, and ACI-1547428.

References
[1] Baruch Awerbuch and Christian Scheideler, Group spreading:

A protocol for provably secure distributed name service,
Automata, Languages and Programming, Springer, 2004,
pp. 183–195.

[2] Daniel J Bernstein, Dnscurve: Usable security for dns, http:
//dnscurve.org/, 2009.

[3] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe,
and Bo-Yin Yang, High-speed high-security signatures, Jour-
nal of Cryptographic Engineering 2 (2012), no. 2, 77–89.

[4] BitInfoCharts, Crypto-currencies statistics, https://
bitinfocharts.com/, 2016.

[5] Blockchain.info, Hashrate distribution, https://blockchain.
info/pools, 2016.

[6] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder, On
bitcoin as a public randomness source, IACR Cryptology
ePrint Archive 2015 (2015), 1015.

[7] John Brooks, Anonymous peer-to-peer instant messaging,
https://github.com/ricochet-im/ricochet, 2016.

[8] Ryan Castellucci, Namecoin, https://namecoin.info/, 2015.
[9] Donncha O’ Cearbhaill, Onion balance, https://github.com/

DonnchaC/onionbalance, 2016.
[10] Botan Developers, Botan: Crypto and tls for c++11, http:

//botan.randombit.net/, 2016.
[11] Roger Dingledine, Nick Mathewson, and Paul Syverson, Tor:

The second-generation onion router, Tech. report, DTIC
Document, 2004.

[12] Ittay Eyal, The miner’s dilemma, Security and Privacy (SP),
2015 IEEE Symposium on, IEEE, 2015, pp. 89–103.

[13] Internet Engineering Task Force, Dns security (dnssec)
hashed authenticated denial of existence, https://tools.ietf.
org/html/rfc5155, 2008.

[14] Michael T Goodrich, Roberto Tamassia, and Andrew Schw-
erin, Implementation of an authenticated dictionary with
skip lists and commutative hashing, DARPA Information
Survivability Conference & Exposition II, 2001. DIS-
CEX’01. Proceedings, vol. 2, IEEE, 2001, pp. 68–82.

[15] David Goulet and George Kadianakis, Random number gen-
eration during tor voting, https://gitweb.torproject.org/
torspec.git/tree/proposals/250-commit-reveal-consensus.txt,
2015.

[16] katmagic, Shallot, https://github.com/katmagic/Shallot,
2012.

[17] Trace Mayer, Bitcoin mining hardware guide, https://www.
bitcoinmining.com/bitcoin-mining-hardware/, 2016.

[18] Ralph C Merkle, A digital signature based on a conventional
encryption function, Advances in Cryptology-CRYPTO’87,
Springer, 1988, pp. 369–378.

[19] Satoshi Nakamoto, Bitcoin: A peer-to-peer electronic cash
system, Consulted 1 (2008), no. 2012, 28.

[20] Simon Nicolussi, Human-readable names for tor hidden
services, Bachelor thesis, Leopold–Franzens–Universitat
Innsbruck, Institute for Computer Science, 2011, http:
//www.sinic.name/docs/bachelor.pdf.

[21] Lasse Overlier and Paul Syverson, Locating hidden servers,
Security and Privacy, 2006 IEEE Symposium on, IEEE,
2006, pp. 15–pp.

[22] Colin Percival and Simon Josefsson, The scrypt password-
based key derivation function, Tech. report, September
2012, https://tools.ietf.org/html/draft-josefsson-scrypt-
kdf-00.

[23] GNU Project, Microhttpd, https://www.gnu.org/software/
libmicrohttpd/, 2016.

[24] The Tor Project, Tor metrics, https://metrics.torproject.
org/, 2015.

[25] , Next-generation hidden services in tor, https://
gitweb.torproject.org/torspec.git/tree/proposals/224-rend-
spec-ng.txt, 2016.

[26] Nolen Scaife, Henry Carter, and Patrick Traynor,
OnionDNS: A seizure-resistant top-level domain, IEEE Con-
ference on Communications and Network Security (2015).

[27] Matthew Thomas and Aziz Mohaisen, Measuring the leak-
age of onion at the root, Tech. report, Verisign Labs, 2014.

[28] Matthias Wachs, Martin Schanzenbach, and Christian
Grothoff, A censorship-resistant, privacy-enhancing and
fully decentralized name system, Cryptology and Network
Security, Springer, 2014, pp. 127–142.

[29] K. T. Wallenius, Biased sampling: The non-central hyper-
geometric probability distribution, Ph.D. Thesis, Stanford
University, Department of Statistics. (1963).

[30] Philipp Winter, Roya Ensafi, Karsten Loesing, and Nick
Feamster, Identifying and characterizing sybils in the tor
network, arXiv preprint arXiv:1602.07787 (2016).

A Appendix

A.1 Quorum Size
In Section 4, we assume that an attacker, Mallory,

controls some fixed fE fraction of routers on the Tor
network. Quorum selection may be considered as an
|Q|-sized random sample taken from an |T |-sized popu-
lation without replacement, where the population con-
tains |T | · fE entities that we assume are compromised
and colluding. Then the probability that Mallory con-
trols |E| Quorum nodes is given by the hypergeometric
distribution, whose probability mass function is shown
in Equation 5. Mallory controls the Quorum if either

http://dnscurve.org/
http://dnscurve.org/
https://bitinfocharts.com/
https://bitinfocharts.com/
https://blockchain.info/pools
https://blockchain.info/pools
https://github.com/ricochet-im/ricochet
https://namecoin.info/
https://github.com/DonnchaC/onionbalance
https://github.com/DonnchaC/onionbalance
http://botan.randombit.net/
http://botan.randombit.net/
https://tools.ietf.org/html/rfc5155
https://tools.ietf.org/html/rfc5155
https://gitweb.torproject.org/torspec.git/tree/proposals/250-commit-reveal-consensus.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/250-commit-reveal-consensus.txt
https://github.com/katmagic/Shallot
https://www.bitcoinmining.com/bitcoin-mining-hardware/
https://www.bitcoinmining.com/bitcoin-mining-hardware/
http://www.sinic.name/docs/bachelor.pdf
http://www.sinic.name/docs/bachelor.pdf
https://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00
https://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00
https://www.gnu.org/software/libmicrohttpd/
https://www.gnu.org/software/libmicrohttpd/
https://metrics.torproject.org/
https://metrics.torproject.org/
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 38

|E| > |Q|2 , or |E| < |Q|2 when the largest agreeing subset
of legitimate Quorum nodes has size smaller than |E|.
The latter scenario is difficult to model theoretically or
in simulation, but the probability of the former can be
calculated. If all Quorum nodes are selected with equal
probability, then Pr(|E| > |Q|

2) is given by the p-value
of the hypergeometric test for over-representation, ex-
pressed in Equation 6.

Pr(|E|) =

(|T |·fE

|E|
)(|T |−|T |·fE

|Q|−|E|
)(|T |

|Q|
) (5)

Pr(|E| > |Q|2) =
|Q|∑

i=d |Q|
2 e

(|T |·fE

i

)(|T |−|T |·fE

|Q|−i

)(|T |
|Q|
) (6)

Odd choices for |Q| prevents the network from splin-
tering in the event that the Quorum is evenly split across
two databases. We provide the statistical calculations of
Equation 6 for various Quorum sizes in Fig. 6.

Fig. 6. The values for Pr(|E| >
|Q|
2) for Quorum sizes of 31, 63,

127, 255, and 511. All probabilities exceed 0.5 when more than
50 percent of the Tor network is under Mallory’s control. We set
our population to 4540 routers; the average number of routers
with the Fast, Stable, and Running flags across all consensuses in
June 2016 [24].

However, we select Quorum members according to
consensus weight, akin to router selection in a Tor cir-
cuit. The distribution of consensus weight (and thus the
selection probabilities) for routers with the Fast, Stable,
and Running flags closely follows an exponential distri-
bution, as shown in Fig. 7. The figure suggests that the
Tor network contains a low number of high-end routers
and a large number of low-end routers.

We now re-examine Equation 6 with regard to
this distribution of consensus weight. Consider that
the hypergeometric distribution describes the probabil-
ity of selecting k Mallory-controlled routers in an |Q|-
sized Quorum from an N -sized population containing

Fig. 7. The normalized distribution of consensus weights of Quo-
rum candidates in June 2016, reflecting the probabilities of in-
clusion in the Quorum. The distribution may be modelled by an
exponential trendline with R2 = 0.9884, but appears slightly
super-exponential.

K Mallory-controlled routers. Let L(x) be the proba-
bility distribution of selecting a router whose consensus
weight is at the lowest x percentile. Then the proba-
bility of compromise is given by Equation 8 where K,
the expected number of compromised routers in a pop-
ulation of size N , is given by Equation 7, and R is the
probability that routers outside the lowest x percentile
set are compromised. Note that, the probability in Eq.
8 is an approximation of the actual probability of quo-
rum compromise, as we model this problem as sampling
balls from an urn without replacement, while the prob-
ability of choosing each ball is different. Currently there
is no closed-form expression for such a problem. Thus
we scale the number of compromised routers with their
probabilities of being chosen.

We illustrate the probabilities against discrete val-
ues of x and various Quorum sizes in Fig. 8 using
N = 4540, consistent with the population in Fig. 6.

K = N ·

 x∫
0

(L(x)) +R ·
1∫

x

(L(x))

 (7)

Pr(|E| > |Q|2) =
|Q|∑

i=d |Q|
2 e

(
K
i

)(
N−K
|Q|−i

)(
N
|Q|
) (8)

In contrast to Fig. 6 which demonstrates that an
unweighted selection leads to a high probability of com-
promise with small levels of collusion, Fig. 8 suggests
that biasing Quorum selection by consensus weight pro-
vides a strong defense against large-scale Sybil attacks.
Indeed, even when 60 percent of the low-end Quorum
candidates are malicious, most Quorum sizes produce
negligible probabilities of compromise. We consider it
reasonable to assume that low-end routers are under
Mallory’s control as these routers are the cheapest and

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 39

logistically easiest to operate. Our approach remains re-
sistant to this attack: these routers will be included in
the Quorum very infrequently because of their low con-
sensus weight.

Fig. 8. The values for Pr(|E| >
|Q|
2) from Equation 8 for various

Quorum sizes. We assume that all routers ∈ L(x) are under Mal-
lory’s control, while routers /∈ L(x) have a 10 percent chance of
being under Mallory’s control.

Small Quorums are also more susceptible to node
downtime or denial-of-service attacks. Fig. 8 shows that
the choices of |Q| = 31 is suboptimal; it is more easily
compromised even with low levels of collusion. |Q| =
63 is more resistant, but not significantly more so. We
therefore recommend |Q| ≥ 127.

A.2 Quorum Rotation
In Section 4, we assume that fE is fixed and does not

increase in response to the inclusion of OnioNS on the
Tor network. If we also assume that |T | is fixed, then we
can examine the impact of choices for ∆q and calculate
the probability of Mallory compromising any Quorum
over a period of time t. Mallory’s cumulative chances of
compromising any Quorum is given by 1 − (1 − fc)

t
∆q

where fc is Mallory’s chances of compromising a single
Quorum. We estimate this over 10 years in Fig. 9.

Fig. 9 suggests that although larger values of ∆q
positively impact security, the choice of |Q| is more sig-
nificant. Furthermore, even "stable" routers in the Tor
network may be too unstable for very slow rotation
rates, and small values for ∆q also reduces the disrup-
tion timeline for a malicious Quorum. Therefore, based
on Fig. 9, we further reiterate our recommendation of
|Q| ≥ 127 and suggest ∆q = 7. Although a malicious
Quorum would have the capabilities to deploy a variety
of attacks on the network, the proper selections of |Q|
and ∆q reduces the likelihood of this occurring to near-
zero probabilities. We consider this a stronger solution

Fig. 9. The cumulative probability that Mallory controls any Quo-
rum at different rotation rates over 10 years at fE = 50 for
Quorum sizes 31, 63, 127, and 255. We base these statistics on
the probabilities from Fig. 8 at 50 percent collusion.

than introducing countermeasures to specific Quorum-
level attacks.

A.3 Lottery Analysis
As mentioned in Section 5.5.6, the land-rush at-

tacks are largely prevented by bootstrapping OnioNS
with a reserved set of popular names, including existing
Tor onion services. Second, we analyze the effectiveness
of the lottery scheme, by studying the DoR attacker’s
best strategies and outcomes. Obviously, since there are
many unpredictable factors in reality (e.g., the number
of domain names honest services that will register every
day, how everyone registers names, and each registrant’s
computation power), it is difficult to analyze against all
possible scenarios. Thus, we make reasonable assump-
tions when necessary and try to abstract out the essen-
tial idea behind our lottery scheme.

Notations and Assumptions. We assume there
is a single well-resourced DoR attacker in the system,
who controls na >> 1 CPUs (or cores). Each attacker
CPU’s speed is denoted as sa. There are multiple (mg)
honest onion services which are homogeneous, i.e., each
of them has ng = 1 CPU, with the same speed sg, and
only claims one name. The attacker may try to regis-
ter ma ≥ 1 names. Therefore, the total computation
power of attacker is expressed in terms of CPU cycles:
Pa = sa · na, while the total power of honest services
is: Pg = sg · mg. The ticket generation period is ∆t.
Assume that it takes chash CPU cycles to do one SHA-
256 operation and that the attacker equally spreads its
computation power among ma names. For each of its
claimed name, the maximum number of hash opera-
tions for the PoW that attacker can carry out during
∆t is: ωa = Pa·∆t

ma·chash
. Let the minimum PoW value vmin

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 40

he can compute during ∆t be equal to ωa
1, which is

used as each of his ticket’s weight in the lottery. Sim-
ilarly, for each honest onion service’s ticket, we have
ωg = sg ·∆t/chash . The minimum difficulty every ticket
needs to satisfy is denoted as dth .

Theoretical Analysis. Now we consider two ex-
treme cases. First, there are no collisions among at-
tacker’s claimed names and honest services’ names. Sec-
ond, that there are a maximum number of collisions
possible among those names. We assume that honest
service’s names are all unique and there can be at most
two tickets per name under collision (one from attacker
and one from honest service). In the first case, since the
attacker’s and honest services’ tickets generally have dif-
ferent weights and probabilities of being chosen, the lot-
tery process can be modeled as a random sampling pro-
cess without replacement (urn model) with bias. This
can be captured by the Wallenius’ noncentral hyper-
geometric distribution: if an urn contains ma red balls
(attacker’s tickets) and mg white balls (honest services’
tickets), totalling N = ma +mg balls. Each red ball has
the weight ωa and each white ball has the weight ωg.
The odds ratio is ω = ωa/ωg. Then, W ≤ N balls (win-
ners) are randomly sampled from this urn. Thus, the
expected number of attacker’s tickets chosen as winner
is given by the positive solution µ to the following equa-
tion [29]:

µ

ma
+ (1− W − µ

mg
)ω = 1 (9)

Since the above equation does not have closed-form
solution, we can solve it using numerical methods.

In the second case, when the number of attacker’s
tickets is smaller than honest services’ (ma < mg), each
attacker’s ticket has a collision with an honest service’s
ticket. For those collided names (ma), no matter whose
ticket is chosen, the other ticket is removed from the lot-
tery. The rest of mg−ma have no collisions. Thus, if we
regard two tickets under each collided name as a whole
red ball, the non-collided tickets as white balls, this is
again mapped to a Wallenius’ noncentral hypergeomet-
ric distribution, with odds ratio being ω = (ωa +ωg)/ωg,
m′a = ma, m′g = mg −ma. Now the expected attacker
winners is computed as:

µ′ = µ · ωa

ωa + ωg
, (10)

1 This is an approximation. To obtain a value less than v, the
expected number of hash operations is 2256 /v.

where µ is the solution to Eq. 9, with m′a and m′g as the
parameters in it.

When the number of attacker’s tickets is larger than
honest services’ (ma > mg), each honest service’s ticket
has a collision with an attacker’s ticket. Similarly, we
can derive the expected attacker winners in this sub-
case:

µ′ = µ+ (W − µ) · ωa

ωa + ωg
, (11)

where µ is again the solution to Eq. 9, with m′a = ma−
mg, m′g = mg, and ω = ωa/(ωa + ωg) as the parameters
in it.

Finally, because of the minimum threshold difficulty
requirement for every ticket’s PoW, if ωa < dth , that is,
if ma >

Pa·∆t
dth ·chash

, all of attacker’s tickets will be removed
and he will have zero winners in the lottery.

Numerical Results. We did a numerical simula-
tion in Matlab with the following parameter settings as
an example. We assume W = mg = 50 (there are 50
honest onion services that win unique names each day),
sg = sa = 3 GHz, the total number of CPUs possessed
by the attacker na ≥ 1, ∆t = 86400s (one day), and
chash = 512 CPU cycles to do one SHA-256 operation
(according to the benchmark results2). Also, attacker’s
strategy ma is a variable, which can range from 1 to
1000. We plot the result as the expected number of at-
tacker won tickets v.s. ma, for both cases (with or with-
out collisions), with different amount of attacker com-
putation powers na. It can be seen from Fig. 10 that,
the attacker’s expected winner size grows with ma and
has a cutoff when its difficulty is less than the thresh-
old. The blue dashed line stands for the power ratio,
which is the fraction of the attacker’s total computa-
tion power to the total power of attacker and honest
services’. When ma is larger than na (the point when
each of attacker’s name is backed by equal computa-
tion power to a honest one), the expected attacker win-
ners grow at a decreasing rate, until the cutoff point.
If we choose the threshold difficulty level to be a lit-
tle smaller than what legitimate service’s computation
power allows (i.e., 1/4 of the maximum difficulty level
a legitimate high-end CPU can compute in a 24 hour
period, shown in Fig. 10), the maximum expected per-
centage of attacker’s presence in the lottery winners is
approximately the power ratio. This is important since
the attacker needs to compete with the entire set of
honest services’ computation power to launch the DoR

2 https://www.cryptopp.com/benchmarks.html

The Onion Name System – Tor-powered Decentralized DNS for Tor Onion Services 41

Number of names claimed by the attacker

0 50 100 150 200 250 300 350 400 450 500

E
x
p
e
c
te

d
 n

u
m

b
e
r

o
f
n
a
m

e
s
 w

o
n
 b

y
 t
h
e
 a

tt
a
c
k
e
r

0

5

10

15

20

25

30

35

40

45

50

n
a
=100

n
a
=50

n
a
=10

collision, n
a
=100

collision, n
a
=50

collision, n
a
=10

Fig. 10. The expected number of attacker-won tickets in the
lottery.

attack. The honest services always have a chance of be-
ing selected as winners regardless of the strength of the
attacker.

Another observation is that in the name collision
case when ma is small, the expected attacker winners is
smaller than the no-collision case, but whenma is big, it
is larger. This is because, whenma is small, honest onion
services also have a chance being selected. Whenever
that happens, it removes one ticket from the attacker,
thus it reduces the chance of the attacker winning.

Comparing with OnionDNS’s domain registration
method [26], if the attacker can estimate the number of
honest services and their difficulty levels, in OnionDNS
the attacker would win many names using the minimum
difficulty level since most of them may not have a com-
petitor, and if attacker has a higher difficulty level it
wins an individual game deterministically. However, in
our design, this is not possible due to the randomiza-
tion and rate-limiting factor of the lottery, and also the
fact that the lottery weight of a ticket is proportional to
their computation power dedicated to each ticket, which
diminishes exponentially with the difficulty level of the
PoW in each ticket. So it is not possible for an attacker
gain overwhelming presence in the final set of winners.
We consider that the registration schemes in OnionDNS
and our work can potentially be complimentary since
our lottery scheme is more suitable for a distributed
Quorum.

A.4 Communication Overhead of Onion
Service Circuits

As we mentioned in Section 7.3.2, we measured the
performance of 6-hop onion service circuits. We mea-
sured the time required to construct initial circuits to
the onion service, the average round-trip time (RTT),
and the bandwidth for a 2 MB payload. We performed
10,000 samples and reset Tor’s state file on both end-
points each time, forcing each Tor instance to negotiate
fresh circuits through the network. We provide box-and-
whisker plots of our results in Fig. 11, 12, and 13.

Fig. 11. The median overhead for connecting with an onion
service is 3952 ms with a standard deviation of 1794 ms. The
whiskers span the 3rd to 97th percentile at 2907 ms and 7353
ms, respectively.

Fig. 12. The median latency of an onion service circuit is 470 ms
with a standard deviation of 184 ms. The 3rd and 97th percentile
are 338 ms and 805 ms, respectively.

Fig. 13. The median bandwidth for a 2 MB transfer over an
onion service circuit is 188 KB/s with a standard deviation of 23
KB/s. The 3rd and 97th percentile are 116 KB/s and 203 KB/s,
respectively.

