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Abstract: The Stable Matching (SM) algorithm has
been deployed in many real-world scenarios including
the National Residency Matching Program (NRMP)
and financial applications such as matching of suppli-
ers and consumers in capital markets. Since these ap-
plications typically involve highly sensitive information
such as the underlying preference lists, their current im-
plementations rely on trusted third parties. This paper
introduces the first provably secure and scalable imple-
mentation of SM based on Yao’s garbled circuit pro-
tocol and Oblivious RAM (ORAM). Our scheme can
securely compute a stable match for 8k pairs four or-
ders of magnitude faster than the previously best known
method. We achieve this by introducing a compact and
efficient sub-linear size circuit. We even further decrease
the computation cost by three orders of magnitude by
proposing a novel technique to avoid unnecessary itera-
tions in the SM algorithm. We evaluate our implemen-
tation for several problem sizes and plan to publish it
as open-source.

Keywords: privacy-preserving, stable matching, garbled
circuit, secure function evaluation

DOI 10.1515/popets-2017-0005
Received 2016-05-31; revised 2016-09-01; accepted 2016-09-02.

1 Introduction

In Stable Matching (SM), there are two groups of indi-
viduals, e.g., men and women. Each individual ranks the
members of the other group in a list sorted based on her
preference. The goal is to assign the members of these
two groups to each other while satisfying the follow-
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ing post-match condition: there shall be no pairs from
the two groups such that they prefer each other more
than their already assigned partners. SM has substantial
real-world applications: The National Residency Match-
ing Program (NRMP) matches around 32k graduating
medical students to residency programs in the US every
year [23, 33]. The New York City Department of Edu-
cation (NYCDOE) matches over 90k entering students
to public high schools [1]. Also there are many financial
applications that require SM, such as vertical networks
and their application in supply chains [25].

SM use cases typically involve sensitive preference
lists which have to be kept private. The current practice
to ensure data privacy in SM is by exposing the personal
preferences to a third party server and relying on its
trustworthiness to perform a secure matching. However,
relying on the trusted third party might be unacceptable
because there is still a high risk of information leakage
and data abuse by the third party. Even if a third party
server is indeed trustworthy, it can accidentally expose
the user’s private data in the event of a compromise. In
addition to information leakage, multiple studies [9, 13]
show that if certain individuals in a SM problem know
the input of others, they could leverage this information
to manipulate the results [29, 37]. [36] studied strategic
issues in the SM model. They derived an optimal cheat-
ing strategy and showed that there is a possibility for a
woman to misrepresent her input in order to achieve a
more favorable assignment.

We can make the process of stable matching secure
by utilizing Secure Function Evaluation (SFE) proto-
cols. SFE allows to evaluate a function on private inputs
from multiple parties where each party wants to keep
her own inputs private. Today, the common drawback
of SFE protocols is their low efficiency, mainly due to
the communication, which prohibits the wide usage for
real-world applications. Therefore, for SFE protocols to
be widely adopted, it is crucial to devise methodologies
that increase the efficiency.

The inefficiency problem becomes even more pro-
nounced when one considers algorithms with intensive
memory access and high complexity such as Dijkstra’s
algorithm, subtree matching, or substring search. This
is due to the high cost of hiding memory content and
access pattern required by SFE. A well-known example
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that involves processing sensitive data is the SM prob-
lem which has quadratic memory access complexity.

Golle proposed a privacy-preserving SM system
based on Homomorphic Encryption [11]. Franklin et al.
then improved this system and made it more efficient
using an efficient multi-party indirect indexing [6, 7].
However, most of the previously proposed protocols for
secure SM use a large number of expensive public-key
operations and have not been implemented yet. The first
solution based on symmetric key encryption is proposed
by Keller et al. [15] (the previously best known method
in terms of computation and communication complex-
ity). They reported that their approach can solve se-
cure SM for 8k pairs (1/4 of the size of the NRMP) in
1.5-10'2 seconds, i.e., almost 47 000 years! The work of
[41] achieves a better runtime of 33 hours for set size
512 but it has higher computation and communication
complexity which limits its scalability. (See Table 2 in
Section 5 for a detailed comparison.)

This paper introduces the first scalable secure SM
system. Our approach leverages a well-known SFE pro-
tocol, called Yao’s Garbled Circuit (GC) [39], which is
mainly based on efficient symmetric cryptographic op-
erations. The input to this protocol is a Boolean circuit
description of the function that needs to be evaluated
securely. The total cost of the GC protocol is the total
number of gates in the Boolean circuit. The conven-
tional approaches in the GC protocol mainly relied on a
combinational (directed acyclic) circuit description. In
contrast, we utilize a recently proposed approach in [32]
to describe the SM functionality as a compact sequen-
tial circuit. The size of the sequential circuit is less than
the combinational circuit but it has to be evaluated for
multiple iterations. Therefore, the total cost of the GC
protocol is the product of the number of iterations and
the size of the sequential circuit.

We achieve an unprecedented level of efficiency for
solving secure SM by two sets of innovations. (i) We
propose the first compact and efficient circuit with sub-
linear size with respect to the number of pairs in SM
(n). The size of our circuit is O(log®n) which signifi-
cantly improves over O(n?logn) for the naive sequential
circuit. (ii) We present a novel technique, called early
termination, to significantly decrease the computation
time by reducing the total number of iterations that the
SM sequential circuit needs to be evaluated. For exam-
ple, for the set size 8k, early termination results in three
orders of magnitude improvement in computation time
and communication (reducing the execution time from
5.62 years to 1.25 days). Although our focus through-
out the paper is on the SM algorithm, our methodology
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can be applied to other memory intensive algorithms
by adapting our novel early termination technique and
creating a sub-linear sequential circuit.

1.1 Contributions

Here, we briefly list our contributions:

— We introduce the first feasible, scalable, and efficient
secure SM for real-world set sizes.

— We design the first sequential circuit for the SM
algorithm for Yao’s GC protocol. The compactness
achieved by the sequential description (as opposed
to prior combinational one) reduces the circuit size
from O(n*logn) to O(n?logn).

— We design the first sub-linear size circuit (w.r.t.
the SM set size). This circuit achieves unprece-
dented computation and communication efficiency
compared to the prior art by integrating sub-linear
ORAM and various memory access strategies.

— We introduce mathematical and statistical method-
ologies for early protocol termination which allows
us to trade-off between security and efficiency.

— We demonstrate a proof-of-concept implementation
of our approach for different secure SM settings with
various set sizes. We benchmark the state-of-the-
art sub-linear ORAM schemes and report the best
solution for various ranges of set sizes.

1.2 Paper Organization

In Section 2, we give a summary of our approach. In
Section 3, we provide the formal description of the SM
problem and summarize Yao’s GC protocol which we
use for our system. Details of our proposed circuits used
in the GC protocol and their variations are discussed in
Section 4. In Section 5, we present a survey of the re-
lated literature and describe the differences/new aspects
of our approach compared to the earlier works. Compre-
hensive results and timing performance are given in Sec-
tion 6. Section 7 discusses the trade-off between privacy
and performance. Finally, we conclude in Section 8.

2 High Level Architecture

We implement a secure stable matching system based
on Yao’s GC protocol [39] which is an efficient method
for secure function evaluation between two parties. Se-
cure SM is inherently a multiparty SFE problem where



multiple parties provide their inputs. However, we use
a known technique based on XOR-secret-sharing that
translates this problem into two-party SFE.

In the GC protocol, the underlying function has to
described as a Boolean circuit. The input of each party is
an input to this circuit. Then two parties, called Garbler
and Evaluator, run the GC protocol and find the results.
Implementing the entire SM as a acyclic Boolean circuit
(combinational) is neither practicable nor scalable and
hence no one has tried to implement it so far. In our
work, we design a compact sequential circuit which en-
ables an efficient implementation of the SM algorithm.

Here, we explain how two proxies (the Garbler and
Evaluator) are able to securely perform the SM for mul-
tiple parties using the GC protocol (see [22] for details).
For each input bit I, each party does the following;:

1. Generate a random mask [ 4.
2. Compute Ip =14 1.
3. Send I4 to Garbler and Ig to Evaluator.

The SM circuit is extended by one layer of XOR gates,
one gate for each input bit. Each XOR gate receives I 4
and Ip as inputs, provided by Garbler and Evaluator
respectively, and computes I = I4 & Ip as output. The
outputs of these gates are the inputs to the main SM
circuit.
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Fig. 1. Global flow of our secure SM system.
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Figure 1 shows the global flow of our system which
consists of two parts. First, the offline pre-processing
and then the online execution which preforms the GC
protocol. In the first part we synthesize the circuit, gen-
erate the netlist and sort the gates topologically. This
ordered netlist is given to the Garbler to generate the
garbled circuit for the online phase. In the online phase,
the constant-round GC protocol is executed: the Evalu-
ator gets all information that she needs to evaluate the
garbled circuit. At the end, both Garbler and Evaluator
share the results to find the outputs and deliver them
to all parties.

The SM algorithm is considered to be secure if it
outputs a stable match without revealing any additional
information about preference list except what can be
inferred from the output. Our scheme is secure against
honest-but-curious adversaries. Our system realizes se-
cure SM as it takes the encrypted inputs from each party
and securely computes a stable match. Our methodol-
ogy is secure as it relies on the security of the GC proto-
col which has been proven to be secure against honest-
but-curious adversary in [18]; getting inputs from each
party with the XOR-sharing technique is secure because
Garbler and Evaluator see only random numbers from
which they cannot infer any information [22]. The out-
put is a correct stable match since our circuit for SM
implements the Gale and Shapley algorithm that was
proven to correctly compute a stable match [8].

It is worth mentioning that in our method, users
do not have to install any cryptographic libraries or do
complicated tasks. Each individual only needs to gener-
ate a random bit string and XOR it with her input. She
then only needs to send the random string to one server
and the XORed version to the other.

3 Background

3.1 Problem Statement and Notations

In this section, we illustrate the detailed description of
the SM problem. A number of researchers have focused
on addressing the SM problem, but Gale and Shapley
[8] were the first to formalize the SM algorithm. They
centered their work on the special case of the marriage
problem. In this case, there is a set of men and a set of
women. They introduced an algorithm which resulted in
stable marriage. Gale and Shapley also proved that the
stable match always exists. However, they showed that
there can be more than one stable assignment and so the



stable matching is not a unique assignment. Roth [29]
demonstrated that there is always a stable match pre-
ferred by men (male-optimal) and there is always a sta-
ble match preferred by women (female-optimal). The
algorithm which Gale and Shapley proposed consists of
a number of rounds in which the men propose and the
women review these proposals. This algorithm always
produces a match which is preferred by men and thus
is male-optimal. (For more detail, see [13].)

In a general SM problem we have two groups of in-
dividuals that can represent various types of entities.
Thus, for simplicity, we call these two groups women
and men. We denote the size of the group of women by
|W| and that of men by |M|. In general the cardinality
of these two sets can be different. We assign an ID from
0 to |IW|—1 to each woman and 0 to |M|—1 to each man;
ID is unique among each group. Each woman and man
ranks the members of the other group as she/he prefers
which we call vector of preferences. Each woman can
rank up to K, men and each man can rank up to K,,
women. Generally, K,, and K,, can be different from
|M| and |W| respectively. For simplicity we will show
the complexity of our protocol in terms of n throughout
the paper (assuming |M| = |W| = n). The preference
vectors altogether, will form a preference matrix. Thus
we have one preference matrix for the women’s group
and one for men’s in which each row represents the pref-
erence vector of each member of that group, see Figure 2
for an example: If woman #1 ranks the men as [1,2, 0],
this means that she prefers man #1 over man #2 and

SO Oon.
Priority Priority
Woman ID || Higher — Lower Man ID || Higher — Lower
0 1 o0 2 0 2 0 1
1 12 0 1 2 10
2 o 1 2 2 o 1 2
(a) Women (b) Men

Fig. 2. Example of preference matrices.

Therefore the preference matrix is of size |W| x Ky,
for women and |M| x Ky, for men. These two matrices
are the only input to the SM algorithm. After the algo-
rithm is finished, the result is a stable match, meaning
that there are no two individuals that they both pre-
fer to be matched to each other but are not already
assigned.

Figure 3 shows one stable match and one unsta-
ble match. The match in Figure 3a is stable because
it satisfies the above definition and the match in Fig-
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ure 3b is unstable because man #0 prefers woman #2
over woman #1 and also woman #2 prefers man #0
over man #1 and this violates the definition of SM.

Woman ID" Man ID

0 2
1 0
2 1

(b) Unstable

Woman ID" Man ID

0 2
1 1
2 0

(a) Stable

Fig. 3. Example of stable and unstable match.

A stable match is called optimal for men or women
if every member of that group is matched to the best
person he/she prefers that could have been matched in
any other stable match. Roth [29] showed that this spe-
cific version of SM can always be found for one of the
sets but not for both.

3.2 Stable Matching Algorithms

Here, we explain the Gale-Shapley SM algorithm [8]; the
authors also prove the stability of its outcome in their

paper.

3.2.1 General Stable Matching

The first algorithm relates to the case when each indi-
vidual ranks all of the members from the other group.
More specifically, K,, = [W| and K,, = |M|. There is a
list of size |W| which holds the up-to-now assigned part-
ner to each woman. This temporary assignment will be-
come finalized when the algorithm terminates. We have
the notion of free and engaged persons during the exe-
cution of the algorithm. Engaged persons are those who
have a partner up to that round and free persons are
those who do not. Each man could become engaged and
after that free and again engaged and so on. But as soon
as a woman gets engaged, she remains engaged until the
end of the matching process. The algorithm consists of
R proposals. In each proposal, a free man proposes to
the woman he prefers the most and he has not pro-
posed to yet. Then if that woman who is proposed to is
free, they become engaged. If she is engaged, she looks
at her preference list and sees whether she prefers the
proposing man over her already assigned partner or not;
if yes, she becomes engaged to the new man and the
previous man becomes free and if she does not prefer,



she rejects the proposal and the man remains free. The
algorithm runs until all men are engaged. Algorithm
1 shows the pseudo-code of the limited SM algorithm
where w <— m denotes assigning man m to woman w
and pc is the proposal counter for men.

Algorithm 1: General Stable Matching
while |free men| # 0 do
m < choose from free men

w = most preferred woman that m has not yet
proposed to
if w is free then
w—m
else
m' < man who is currently engaged to w
if w prefers m over m’ then
w—>m
m' gets free
end if
end if
end while

Gale and Shapley showed that this algorithm takes
at most Ryqe = n2 —n-+1 proposals (R < Ryaz), where
n is the size of each participating group. As proven
by Gale and Shapley, a stable match always exists and
the algorithm terminates with the male-optimal stable
match.

3.2.2 Limited Stable Matching

In the following, we describe a variant of the SM algo-
rithm where each person ranks only a subset of the other
group. More specifically, K,,, < |W| and K,, < |M]|.
This version is called limited SM. In this case, each per-
son ranks up to a certain number, meaning that he/she
prefers to be unmatched rather than being assigned to a
person who is not in the list. Algorithm 2 is the pseudo-
code for limited SM where the only difference to Algo-
rithm 1 is that there is a limit on the total number of
listed preferences.

The number of proposals in this case is upper
bounded to R = K, -|M|. Although this algorithm lim-
its the number of choices, it takes a number of propos-
als which is far smaller than that of the general version:
Rgeneral € O(n?) whereas Riimited <= Ky, - [M| € O(n)
for constant K,,. Since the total number of proposals
are fixed and are less than Rgeperqs, it might be the
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Algorithm 2: Limited Stable Matching
initialize pc[i| = K for ¢ € {0, |M| — 1}
while Jman : pc[man] > 0 A man is free do

m <— choose that free man
w = most preferred woman that m has not yet
proposed to
pc[m] < pc[m] — 1
if w is free then
w—>m
else
m’ < man who is currently engaged to w
if w prefers m over m’ then
w—m
m' gets free
end if
end if
end while

case that some individuals remain unmatched after the
algorithm is finished.

3.3 Yao’s GC Protocol

Here, we explain the underlying SFE protocol of our sys-
tem which is Yao’s GC protocol [39] and is one of the
most promising solutions for two-party SFE. In this pro-
tocol, two parties (Garbler and Evaluator) jointly eval-
uate a function on their inputs while keeping their own
data private. The function is represented as a Boolean
circuit. The GC protocol consists of three algorithms:
circuit garbling which is done only by the Garbler, data
exchange which involves both parties, and evaluation
which is done only by the Evaluator. First, Garbler as-
signs two random keys to each Boolean value in the
circuit and then encrypts the truth table of each gate
using the keys. Garbler sends the encrypted tables to
the Evaluator together with the keys corresponding to
her inputs. Evaluator receives the keys corresponding to
his inputs from the Garbler through 1-out-of-2 Oblivi-
ous Transfer (OT) protocol, without letting her to know
his inputs. Then, Evaluator decrypts the tables, one by
one, using the received keys until he reaches the output
keys. Finally, Garbler reveals the mapping of the keys
to the semantic values to Evaluator in order to achieve
the final result in plain-text.



3.3.1 Optimizations

We benefit from the state-of-the-art optimizations for
the GC protocol. We utilize the Free-XOR, technique
[16] which makes the cost of garbling an XOR gate virtu-
ally zero. Therefore, the cost of the GC protocol can be
measured only in terms of the number of AND gates in
the circuit. We also use garbling with a fixed-key block-
cipher [3] together with the half gates technique [40] for
efficient evaluation of AND gates. For OT required in
the initial data exchange of the GC protocol, we use
the OT Extension method [2, 14]. We use TinyGarble
[32], an automated framework for generating optimized
Boolean circuits for the GC which is based on logic syn-
thesis tools. It optimizes the generation of a Boolean
circuit for the GC protocol by customizing the flow of
the logic synthesis tool. It uses a customized technology
library consisting of logical descriptions of basic gates.
The library also includes the corresponding parameters
like timing and area. In the case for the GC, the tim-
ing parameter is not needed as the GC depends only
on the size of the circuit (area, in synthesis tools’ ter-
minology). The area parameter of an XOR gate is set
to 0 and all other two input gates to 1. The circuit is
then synthesized using Synopsys Design Compiler (DC)
2010.03-SP4 [35]. Synopsys DC minimizes the number
of non-XOR gates because the area for these gates is set
to one whereas for XOR gates it is zero.

TinyGarble also proposes using sequential circuits
that are more compact than the conventional combina-
tional circuits. In sequential circuits, the states of the
computation are stored in some memory elements (reg-
isters). Unlike combinational circuits, the output of the
sequential circuits depends both on the input to the
circuit and the value of the registers. For a same func-
tionality, a sequential circuit has less number of gates
compared to a combinational one. However, the sequen-
tial circuit has to be evaluated for multiple iterations
(clock cycles). For garbling a sequential circuit, Tiny-
Garble stores the labels associated to registers and uses
them in the next iteration. Sequential description re-
duces the memory footprint of the GC protocol because
less number of labels has to be stored in the memory
for garbling and evaluation.

3.3.2 Oblivious RAM

Goldreich and Ostrovsky [10] proposed a two-party
mechanism that lets a client store her data on a re-
mote server while hiding her data and access pattern
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from the server. They also showed that the lower bound
for the cost of accessing a single entry in the memory
is sub-linear with respect to the size of the memory.
A naive implementation of ORAM linearly scans the
entire memory for each access such that the client can
choose the desired entry using multiplexer (MUX) which
is called Linear ORAM.

Gordon et al. [12] proposed to use ORAM mecha-
nism inside two-party SFE (e.g., GC) in order to reduce
the amortized cost of accessing a memory entry from lin-
ear to sub-linear. There are several improvements on the
original idea of ORAM including [28, 31, 34] which re-
duced the amortized per-access complexity to O(log® n).

An ORAM scheme uses an oblivious data structure
in order to hide the access pattern and it must imple-
ment two protocols: initialization protocol and access
protocol. Initialization protocol is used to create and
initialize the oblivious data structure from the given ar-
ray of data. Access protocol is used to implement the
actual access to the data structure. It translates the log-
ical address that is created in the SFE protocol to the
sequence of physical addresses. In RAM-based secure
computation (RAM-SC), the memory accesses are han-
dled by ORAM. Once the secret logical address is gen-
erated inside the SFE protocol, it is translated into mul-
tiple physical addresses by the access protocol (client-
side) that are revealed to both parties. Both parities
then provide the requested memory entities back to the
SFE protocol. At the end, the SFE protocol changes all
the memory entities’ data to hide which element was
accessed and how it was changed and then it sends
them to two parties to store them. There are differ-
ent data structures for ORAM. Goldreich and Ostro-
vsky [10] introduced two hierarchical layered structure
ORAMs: Square-Root ORAM and Hierarchical ORAM.
Shi et al. [31] initiated a tree-based ORAM scheme.

So far, the best asymptotic complexity for ORAM
inside SFE is Circuit ORAM proposed by Wang et
al. [38] which is a tree-based ORAM. A very recent
paper [41] revisits Square-Root ORAM, an alternative
ORAM structure that has lower initialization cost than
Circuit ORAM. Despite the fact that it has higher
asymptotic complexity, it outperforms Circuit ORAM
for medium-sized memory.

We have used the implementations and results of
Circuit ORAM [38] and Square-root ORAM [41]. We
have benchmarked them and we show the results in Sec-
tion 6. Integrating ORAM with our circuit requires to
put a Boolean circuit description of client-side function-
ality in our circuit to run the “access” algorithm de-
scribed in [38, 41]. Also, two parties, Garbler and Eval-



uator, have to be the server-side and interact with the
client-side Boolean circuit to deliver the memory enti-
ties.

3.3.3 Adversary Model

The GC protocol, on which we base our implementa-
tion, is secure against honest-but-curious (also known as
semi-honest or passive) adversaries which assumes that
all parties follow the protocol but they may be curious
to extract additional information from the data which
they are receiving. Although this security model is not
the strongest attack model, it is a first step towards be-
ing secure and it is commonly used in the literature.
Also there are several reasons for having this security
model:

— It is acceptable in many scenarios, e.g., when par-
ties are reasonably trusted like hospitals, companies
or government agencies but they need to obscure
their private information for legal reasons or to pre-
vent future break-ins. Moreover, this model prevents
against passive observers that want to steal informa-
tion.

— Many useful privacy-preserving applications inher-
ently have the properties that let them fit well into
this security model. For instance, when all parties
have an incentive to generate flawless outcomes like
financial fraud detection when banks pull together
all of the data to detect corrupt accounts or person-
alized medicine when a patient and a drug company
collaborate to find the best medicine, they are basi-
cally interested to reach the correct result and hence
they will adhere to the protocol steps.

— Since we design Boolean circuits that are evaluated
with Yao’s GC protocol, the very same circuits can
be evaluated with (less efficient) protocols that pro-
vide security against stronger active/malicious ad-
versaries, e.g., [17, 19, 24, 30].

4 Circuits for Stable Matching

As explained in Section 3.3, the GC protocol for the
two-party SFE takes a Boolean circuit as a function
description. In this section, we describe how we gener-
ate such circuits for SM. We describe a combinational
circuit for SM in Section 4.1. Afterward, we introduce
the first sequential circuit ever implemented for SM in
Section 4.2. In Section 4.3, we analyze the circuit run-
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time. Section 4.4 describes a novel sub-linear size circuit
for SM that we have designed. Finally, in Section 4.5
we analyze the memory usage and ORAMS’ access cost
complexities.

4.1 Combinational Circuit

To the best of our knowledge, there exists no implemen-
tation of the combinational circuit that gets the men’s
and women’s preference matrices as an input and out-
puts the stable match. The reason might be that it is rel-
atively complicated to design such a large circuit with-
out proper tool support. In this section, we calculate a
lower bound for the size of this circuit. Considering n to
be the number of the pairs in SM, we have preference
matrices of size O(n?logn) bits, because each of the n
individuals ranks the n members of the other group and
each entry needs to be represented by logn bits. Access-
ing an entry, without using a sub-linear ORAM, requires
a multiplexer which needs O(n?logn) AND gates. Com-
paring two entities of length logn requires logn AND
gates. We have to compare n entities for each man, yield-
ing total O(n?logn) AND gates. This is just for access-
ing and comparing two preferences. To implement the
algorithm, it is extraordinarily hard to design a generic
circuit. One solution might be to design a circuit that
has R (the number of proposals) layers and each layer
processes one proposal made by a man until we reach
the stable match. Knowing that in the worst case, we

2 —n + 1 proposals, this accounts for

need Riyar = N
the number of layers of the circuit. Another solution
might be for each man to find his match instantly. This
requires that for each of the n women on his list, we
find whether she accepts the proposal by that man or
not and this also depends on the preference list of other
men. So in this way, we need n circuits of size O(n)
(for each woman) times n (for each man) to compare
the preferences. This results in O(n?) comparisons on
O(nlogn) values. In both cases, the lower bound of the
circuit size is O(n* log n) which is a huge circuit size even
for relatively small values of n. Therefore, the actual im-
plementation is not feasible for real-world applications,
since there is no automated tool to generate and syn-
thesize a circuit of such size.

4.2 Sequential Circuit

Describing the SM circuit in a sequential way enables
us to implement the circuit in a highly compact format.



This compact format allows us to synthesize the circuit
for larger group size and meet the size of real-world
applications. This compactness also provides us with
the ability to store the circuit on the platforms with
lower computational and memory capabilities.

In the rest of this section, we describe our sequential
circuit for SM. Figure 4 shows the block diagram repre-
sentation of the circuit. The inputs to the circuit are the
preference matrices of men and women. The outputs of
the circuit comprise the final stable match list and the
finish signal. Jumping ahead, when using the early ter-
mination technique (ETT) (discussed in Section 4.3),
we output the finish signal to both parties at each iter-
ation whereas the final list is output only if the finish
signal is 1, but kept secret otherwise. The circuit con-
sists of the following modules: Algorithm Computation
Circuit (ACC), vectorized Preference Compare Circuit
(PCC), and Man Selection Circuit (MSC), and Mem-
ory (registers for storing the state values). We consider
linear-complexity ORAM techniques to store the data
for this circuit.
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Fig. 4. Block diagram architecture of the sequential circuit for
implementing secure SM.

Here, we explain how the entire circuit works.
We design the sequential circuit such that it pro-
cesses one proposal in one iteration of the sequential
circuit. There is a very close similarity between the
Boolean circuit and Algorithm 1, e.g., MSC imple-
ments “choose from free men” (it outputs the ID of
the next free man that can propose), PCC implements
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“w prefers m over m'”, and ACC implements the rest

of the main body of the algorithm.
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MSC finds the next free man. The internal structure
of MSC is similar to a priority encoder. Therefore, this
module looks in the men’s list and selects the first free
man for the next iteration of the sequential circuit. In
Section 4.3, we will explain how MSC and the finish
signal work together. Once a free man is selected, he
should propose to the most preferred woman that he has
not already proposed to (see Algorithm 1). Therefore, a
counter storing the number of proposals is required for
each man; we call it Proposal Counter (PC). In order
to access the desired women ID, a MUX on the man’s
preference list is required. This MUX needs O(n?logn)
AND gates.

ACC implements the main part of Algorithm 1 as a
Boolean circuit. ACC processes the proposal: if a woman
is free, then the man and she will be engaged and the
status of the assignment will be updated in the memory.
If she is not free, ACC needs to check whether or not
she prefers the man over her current match. Therefore,
we need to access the preference vector of the woman
using MUX and deliver it to PCC together with the
values for the man ID and the women’s current match
ID. PCC linearly scans the preference vector and checks
which one of the two men is more preferable (which one
comes first in the preference list). It is important that
PCC does this task in one iteration, otherwise the entire
circuit will be unnecessarily evaluated and the efficiency
will be reduced. As a result, one proposal can be done
in one iteration of the sequential circuit. In Section 4.3,
we will explain how many iterations the circuit should
be evaluated.

Figure 5 illustrates the inside of the PCC. This cir-
cuit is designed to minimize the number of AND gates.
In fact, PCC looks at the woman preference list and sees
which man ID came first. The 1-bit output becomes 1
if the new man is more preferable. The first two layers’
wires are logn bits. Then there is one linear layer of
XOR gates and three linear layers of AND gates which
at the end are OR-ed and produce the output. The fi-
nal logical OR gate is implemented by n — 1 two-input
AND gates and 3n — 3 XOR gates. Thus, PCC uses
2nlogn + 3(n — 1) AND gates. In summary, the total
number of AND gates in the circuit is O(n?logn) dom-
inated by MUXs for accessing the preference list.

4.3 Number of Proposals and Circuit
Runtime

Gale and Shapley have proved that after at most
Ripaz = n%2 —n + 1 proposals in Algorithm 1, the algo-
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Fig. 5. Preference Compare Circuit (PCC).

rithm will output a stable match. However in the GC,
the intermediate status of each man’s engagement is en-
crypted and cannot be accessed in plain-text. There-
fore, the process of finding the next free man becomes
challenging. One naive implementation can be to iter-
ate over all men and let them to propose regardless of
the engagement status. But if the man was not free, the
proposal should be invalidated. This approach is dra-
matically inefficient. The reason is as follows: since all
the information in the circuit is encrypted, there is no
way to distinguish a valid proposal from an invalid one.
Thus, we have to evaluate the circuit regardless of the
validity of the proposal. As a result, we need to run
the circuit even for more iterations than the mathemat-
ical worst case of the number of proposals (Ryq.). This
problem arises both for general SM and limited SM. To
overcome this problem, we have designed Man Selection
Circuit (MSC). This circuit wisely choses the next free
man ahead of time to avoid invalid proposals (unneces-
sary execution of the circuit).

MSC makes the number of iterations that the cir-
cuit should be evaluated exactly equal to the number
of required proposals. In the worst case, this number is
equal to Ry,... However, based on our extensive statis-
tical analysis, we have observed that the average num-
ber of required proposals is linearithmic in terms of the
set size n. Our experiment is performed for 10000 dif-
ferent randomly generated preference matrices for each
set size. It can be seen from Figure 6 that the statistical
maximum of the number of proposals is also linearithmic
with respect to the set size n. The error bars show the
minimum and maximum number of proposals for each
set size. In [20], authors provide a probabilistic analysis
and they show that the average number of proposals is
indeed ©(nlogn).

We can take advantage of this fact by two different
approaches. (i) The first approach is to run the circuit
for a constant number of times. This number can be sta-
tistically guaranteed instead of mathematically guaran-
teed and it means that we can run the circuit for some
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fixed statistically driven number like m 4+ a X o, where
m is the average number of proposals, o is the stan-
dard deviation, and « is a constant to be determined by
the probability of proper termination. « is fixed prior to
running the protocol and is known by both Garbler and
Evaluator. Higher o means it is more likely that by the
time the protocol is finished, the output is a final stable
match but higher a also requires more iterations to be
run. Figure 6 plots the statistical worst case for a = 8
(this is chosen so that m+« x o is higher than the maxi-
mum error bar for all set sizes). (ii) The second approach
is to produce the “finish signal” by ACC and stop the
algorithm as soon as the stable match is reached. We
call this approach Early Termination Technique (ETT).
ACC produces the finish signal by checking if all the
men (or women) are engaged. It tracks the status of
all men and if all of them are matched, then the finish
signal is true.
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Fig. 6. Number of proposals needed for different scenarios in
the general SM. Statistical worst case is computed for a = 8).
The error bar shows the minimum and maximum value in the
simulation. Experiment is performed 10000 times for each set
size with randomly generated preference list.

In order to verify the termination condition in the
middle of the GC protocol, the parties have to reveal the
shared secret associated only to the finish signal. Reveal-
ing this secret in an iteration will not leak any informa-
tion about the rest of the secure computation except the
fact whether or not the computation is finished up to
this iteration. Thus in our implementation, the compu-
tation and communication can be scaled down almost
by a factor of O(n). This is a privacy/efficiency trade-



off though (see Section 7 for more details on information
leakage and Section 6 for performance results).

4.4 Sub-linear Sequential Circuit

In Section 4.2, we proposed a sequential circuit for
general and limited SM. The size of the circuit is
O(n?logn). We also discussed in Section 4.3 that the
circuit should run for O(n?) iterations for the worst
case scenario and can be reduced using early termina-
tion (ETT) to O(n). Therefore, the overall computa-
tion and communication complexity of the secure SM is
O(n®logn) using ETT. This overall cost is the product
of the number of iterations and the size of the circuit.
For the set size of the NRMP (n = 32k), the cost is in the
order of 2°0 AND gates which incurs 32PB communi-
cation! The number of iterations (proposals) is already
minimized by MSC and ETT and cannot be reduced
further. Thus, the only way is to reduce the circuit size.
To do so, we propose four tweaks for the sequential cir-
cuit.

First, we replace the MUXs accessing the memory
(e.g., preference list of men and women) with sub-linear
ORAM. It allows us to access the memory of size m with
the cost of less than O(m). We will discuss the choice of
ORAMs and their trade-offs in Section 4.5.

Second, we need to change the size of PCC from lin-
ear to sub-linear. PCC outputs a binary indicating if a
woman prefers the new proposing man over her already
assigned man. PCC linearly scans the woman’s prefer-
ence list (a vector of man’s ID) in order to find which
man came first in the list. (Note that the list is sorted
from most desirable to the least.) This incurs O(n) AND
gates. To make PCC sub-linear, we store the inverse of
the preference list of each woman. For example if man
#5 is the 3" one in the preference list, in the inverse
list, the value of the 5** position is 3. Now instead of
a linear search, we need two accesses to the inverse list
and compare their values to determine the more desir-
able man. However, access cost using MUX is still O(n).
But the MUX can be replaced with sub-linear ORAM
to make the total cost sub-linear with respect to n.

Third, ETT needs to access the status of all men in
order to determine the finish signal (O(n) AND gates).
Accessing the men’s status list using sub-linear ORAM
does not solve the problem since we still need to access
men’s status list n times at each iteration. This makes
the overall cost even worse than Linear ORAM. There-
fore, we store the total number of engaged men in a
counter. We initialize the counter with zero and each
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time a free man becomes matched with a woman, we
increase the counter by one. When a new assignment re-
quires old assignment to break, we simply do not change
the counter. Also, when a proposal gets rejected, we do
not change the counter. Using this approach, we only
need to store logn bits, add a addition block, and put a
multiplexer before the registers. The total overhead for
this approach is O(logn).

Fourth, MSC requires scanning over the status of
all men at each iteration to choose the next free man.
Similar to ETT, this incurs O(n) AND gates. Unlike
the solution for ETT, we cannot skip this computation
for any iteration. We propose to store the ID of all free
men in a queue. We dequeue a free man and process
his proposal. If his proposal gets rejected, we enqueue
him to the back of the queue. Or if in the process of
the proposal, a previously assigned man becomes free,
we enqueue this man to the queue. The queue should be
initialized by all men at the beginning of the SM. There-
fore, the capacity of the queue should be exactly n. We
implement this queue using an array of size n and cir-
cular indexing. This is the most efficient and simplest
solution and incurs a constant number of accesses per
each enqueue or dequeue operation. By storing this ar-
ray in a sub-linear ORAM, the size of MSC will become
sub-linear.

4.5 Memory Analysis and Choosing
ORAM Scheme

There are several ORAM schemes in the literature [38,
41]. Each of them has different initialization cost and
access complexity. Depending on the intensity of mem-
ory accesses and size of the memory, each ORAM may
outperform the others. Thus, it is important to find at
which memory size, one ORAM scheme starts to out-
perform the others. This is called the breakeven point.
To the best of our knowledge, Circuit ORAM [38] has
the best asymptotic complexity O(log>n). However, for
small memory sizes, Linear ORAM (MUX) outperforms
all sub-linear ORAMs including Circuit ORAM. The
reason is twofold: (i) The cost of initialization for Linear
ORAM is negligible compared to sub-linear ORAMs.
(ii) The constant coefficient for its access cost complex-
ity is lower than the one for sub-linear ORAMs.

For medium set size, another sub-linear ORAM,
Square-Root ORAM [41], outperforms both Linear
ORAM and Circuit ORAM. The reason is that it has
lower initialization cost compared to Circuit ORAM but
has better access cost complexity of O(y/nlogn) com-



pared to Linear ORAM. As the set size increases, Cir-
cuit ORAM eventually outperforms both Square-Root
ORAM and Linear ORAM.

Based on the characteristics and performance of dif-
ferent ORAM schemes, we integrated our sequential cir-
cuit with the best ORAM scheme. Integrating ORAM
means putting a client-side Boolean circuit (for handling
access requests) inside the main garbled circuit and con-
necting necessary interfaces to our sub-linear sequential
circuit. Also two parties should act as servers who then
store the memories and communicates with the client
circuit to deliver the requested memory entity to the
client (the servers hold the encrypted memory).

The choice of ORAM also depends on which variant
of secure SM we want to use (General SM or Limited
SM) and whether or not we are interested to use the
early termination technique.

Table 1 shows the overall asymptotic complexity
which includes both initialization and per-access cost.
Note that in order to find the most efficient one, we
need to perform experiments. In Section 6.2, we will
show what is the best choice of ORAM depending on
the set size and SM variant based on our experiments.

5 Related Work

Golle [11] was the first to develop privacy-preserving
SM. He persuasively illustrates that implementing such
an algorithm has a great practical impact. In his frame-
work, he devises a variant of the classic Gale-Shapley
algorithm with some techniques for concealment. Each
party should send the encrypted preference list to some
honest-but-curious matching authorities. During the al-
gorithm men and women are divided into two disjoint
groups, those who are engaged and those who are free.
Then, m fake men are added and are engaged to women
at the beginning of the algorithm and this enables some
appealing concealment properties, such as that the num-
ber of engaged men and free men are always constant
and this could prevent any information leaking of inter-
mediate changes of free and engaged men sets. Golle
then defines a bid as an encrypted representation of
the preference of one man for a woman in addition to
some “book-keeping” information. There are free and
engaged bids, a bid paired up with a woman. The Al-
gorithm follows 4 steps for R iterations beginning with
initial bids to reach a stable match by resolving a con-
flict between bids at each time. Those four steps are (i)
randomly choosing a free bid and opening it mutually

Toward Practical Secure Stable Matching = 72

by matching authorities, (ii) finding a conflict bid since
there is always exactly one conflicting bid, (iii) resolv-
ing the conflict, and (iv) mixing bids internally and ex-
ternally. Golle uses an additively homomorphic seman-
tically secure threshold public key encryption scheme
like a threshold version [4, 5] of Paillier [26] and re-
encryption mix networks to implement this. Golle ar-
gues that the algorithm terminates after n iterations and
reaches a stable match between n men and n women.
The complexity then is dominated by O(n?) modular
exponentiations and the corresponding communication
complexity is also O(n?polylog(n)).

However, Franklin et al. [6] show that Golle’s pro-
posal is not promising and in the worst case, his algo-
rithm will be executed n? iterations. This results in a
computation complexity of O(n®) modular exponentia-
tions and O(vn®) communication complexity, where v
is the number of matching authorities. They also de-
velop another solution for this problem based on Golle’s
framework but also add n fake women. There are some
modifications to the original framework. They added
Private Information Retrieval (PIR) for reading and
writing privately in a shared database. PIR is imple-
mented using the protocol of Naor and Nissim [21]
which is based on the Oblivious Transfer and requires
O(polylogn) communication and is used a constant
number of times in each iteration. Franklin et al. use the
GC protocol to compare the preference of women and
also to increment the number of times that each man
has proposed. The communication complexity is domi-
nated by re-encryption mixnets just like Golle’s which
results in O(v n3polylogn) communication complexity.
Yet, computation complexity is dominated by access-
ing the database. In each iteration, the database access
takes O(n?/logn) work and the total computation com-
plexity is O(n*y/logn) public key operations. In that
work they also optimize the protocol when there are ex-
actly 2 matching authorities and they achieve a better
performance as listed in Table 2. However, this protocol
is complicated and not yet implemented.

Naor et al. [22] suggest an architecture for privacy-
preserving protocols for mechanism design and they
mention SM as one of the related applications. They
argue that the complexity of implementing their archi-
tecture for SM problem depends on a combinational cir-
cuit which implements the SM algorithm. They did not
implement such a system nor designed such a circuit.
Naor et al. suggest that the classical Gale-Shapley algo-
rithm necessitates the usage of indirect addressing of a
RAM and that translation into a circuit is inefficient.
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Table 1. Total complexity for implementing each variant of SM using different ORAM schemes, where n is the set size and k is the

limit of number of proposals in limited SM.

ORAM Scheme

| General SM | General SM + ETT |

Limited SM

Linear ORAM O(n? logn)
Square-Root ORAM | O(n3 log? n)
Circuit ORAM O(n? log®n)

O(n3 logn)
O(n? log? n)
O(n?log3n)

O(n?k? logn)
O((n k)15 log!®(nk) log®®n)
O(nk log?(nk) logn)

Table 2. Different protocols for performing secure SM and corresponding complexities, where n is the size of each group and v is the

number of matching authorities. Our protocol is faster by orders of magnitudes as it uses efficient Symmetric-Key operations instead of

costly Public-Key operations.

Protocol

Computation Complexity

Communication Complexity

Round Complexity

Golle [11]

Franklin et al. [6]

Franklin et al. [7]

Ours without using ORAM
Revisiting SQRT ORAM [41]
Ours using ORAM

Keller et al. [15]

Ours using ORAM and ETT

O(nd)

O(n*\/logn)

O(n*polylogn)

Public-Key Operations
Public-Key Operations
Public-Key Operations
O(n*logn) Symmetric-Key Operations
O(n3log? n) Symmetric-Key Operations
O(n? log® n) Symmetric-Key Operations
O(n?log®n) Symmetric-Key Operations
O(n?log®n) Symmetric-Key Operations

O(vn®)
O(vn?3)
O(vn?)
O(n*logn)
O(n3log?n)
O(n? log®n)
O(n? log®n)
O(n?log®n)

O(n3polylogn)
O(n?polylogn)
O(n?polylogn)
o(1)

O(n?polylogn)
O(n?polylogn)
O(n?polylogn)
O(n?polylogn)

Franklin et al. [7] develop an efficient multiparty
Look-Up Table (mLUT) protocol and suggest that one
can design a secure SM system by implementing the al-
gorithm of [6, Section 5] into a circuit with access to a
RAM. Especially in the multiparty setting, mLUT for
array/matrix access reduces the complexity of such a
setting to the situation when we have 2 matching au-
thorities as shown in Table 2. However, this system has
only been suggested but has not been implemented yet.

Keller et al. [15] were the first that reported im-
plementing secure SM using GC and oblivious mem-
ory. Without presenting implementation details, they
reported that in the worst case, the general SM with
8k pairs can be done in 1.5 - 10'? seconds. The com-
plexity of related work is reported in Table 2. Zahur et
al. [41] reported a runtime of more than 33 hours for
set size of 512 pairs. Although they have the previously
best known runtime for this set size, their computation
and communication complexity is O(n®log®n) which
limits the scalability of their approach significantly.
While our computation and communication complex-
ity is O(n?log®n) without using ETT, we also achieve
a better runtime of 8 hours without using ETT and 5
minutes by using ETT for the same set size.

6 Evaluation and Comparison

In this section we summarize and compare the complex-
ity of different algorithms for general SM and its limited

variant.

6.1 Evaluation Setup

We use Synopsys Design Compiler 2010.03-SP4 to gen-
erate our sequential circuits. The timing analysis are
done on two similar machines with Intel Core i7-2600
CPU @ 3.4GHz with 12GB RAM on an Ubuntu 15 op-
erating system connected using 1 Gbps Ethernet. In all
of the experiments, the GC security parameter is 128-
bit and the security failure probability for ORAM is set
to at most 2789, The experiments that take more than
10° seconds are estimated based on the computational
and communication complexity. For sub-linear ORAMs
(Circuit ORAM and Square-Root ORAM) we used the
circuit size of ORAM based on the results in [41].

6.2 ORAM Analysis

Figure 7 shows the memory cost for the general SM
running for worst case scenario. There are 3 different
zones. For very small set sizes (< 2°), the linear ORAM



(MUX) is the most efficient solution. In the next region
up to set sizes (~ 2'2), the Square-Root ORAM outper-
forms linear ORAM. For set sizes larger than (~ 2'2),
the Circuit ORAM outperforms all other solutions. For
the NRMP, the set size is roughly 2'° and therefore the
Circuit ORAM is the most efficient method. However, it
takes 10® seconds (~ 3 years) and seems still not prac-

tical.
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Fig. 7. Total running time of the GC protocol using different
ORAM schemes for general SM without using ETT.

Figure 8 shows the memory cost for the general SM
using ETT. In this case the number of iterations is re-
duced by a factor of O(n). ETT makes the algorithm less
memory intensive thus initialization cost of ORAM be-
comes dominant. Since the initialization cost of Square-
Root ORAM is less than Circuit ORAM, it outperforms
Circuit ORAM for any set size. Here we have only one
breakeven point in which Square-Root starts to out-
perform Linear ORAM at set size 2°. For the NRMP
(2'® pairs), the Square-Root ORAM is the most effi-
cient method and it takes 10% seconds (~ 24 days). This
is the first time that the NRMP stable matching can be
securely evaluated in less than a month. The solution
of [15] reports 47000 years of computation for SM on a
set size 1/4 of NRMP.

Figure 9 shows the memory cost for limited SM
where the number of preferences for each person is lim-
ited to k = 20. The breakeven point between Linear
ORAM and Square-Root ORAM is at set size 2°. In
this scenario, the cost of initialization is as important
as the cost of accessing the memory. Hence, Square-Root
ORAM outperforms Circuit ORAM for a wide range of
set sizes.
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General Stable Matching with Early Termination
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Fig. 8. Total running time of the GC protocol using different
ORAM schemes for general SM using early termination technique.
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Fig. 9. Total running time of the GC protocol using different
ORAM schemes for limited SM with k& = 20.

6.3 End-to-End Secure Stable Matching

Table 3 shows the total end-to-end execution time and
communication cost of general SM for various set sizes
when using three different ORAM schemes. For each set
size, the best result is shown in bold format. Our scheme
can securely compute a stable match for 8k pairs four
orders of magnitude faster than the method of [15] (the
previously best method in terms of complexity).

Table 4 shows the total end-to-end execution time
and communication cost of general SM with ETT for
various set sizes when using three different ORAM
schemes. For each set size, the best result is shown
in bold format. The computation and communication
cost are further decreased, for example for set size 8k
by three orders of magnitude compared to general SM
without ETT.
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Table 3. Timing and communication results without using early termination technique.

. Linear ORAM Square-Root ORAM Circuit ORAM
Set Size - - ;
Time Comm. Time Comm. Time Comm.
8 9.1 ms 1.22 MB 25.7 ms 3.44 MB 107.1 ms 14.37 MB
128 23.21 min 186.92 GB 5.43 min 43.78 GB 31.68 min| 255.18 GB
512 53d 61.52 TB 7.9 h 381 TB 1.05d 12.17 TB
2k 454y 19.25 PB 26.59d 308.4 TB 36.95d 428.54 TB
Table 4. Timing and communication results using early termination technique.
Set Size ' Linear ORAM Square—Root ORAM ' Circuit ORAM
Time Comm. Time Comm. Time Comm.
8 5.69 ms 764 KB 15 ms 2.01 MB 100.5 ms 13.48 MB
128 54.4s 7.3 GB 12.75 s 1.71 GB 2.12 min 17.11 GB
512 1.24h| 600.81 GB 4.63 min 37.32 GB 41.96 min| 337.93 GB
2k 4.05d 46.99 TB 1.56 h| 753.83 GB 13.79h 6.66 TB
8k 306.53 d 3.55PB 1.25d 14.54 TB 11.96d 138.7TB
32k - - 2347d 272.2TB 251.65d 291 PB

Table 5 shows the total end-to-end execution time
and communication cost of limited SM with & = 20
for various set sizes when using three different ORAM
schemes. For each set size, the best result is shown in
bold format.

Table 6 compares our timing results with the pre-
viously best known runtime for mid-size set sizes pre-
sented in [41] (they did not report the communication
results). We achieve approximately 4x and 450X im-
provement without and with ETT respectively com-
pared to the results reported in [41]. The maximum set
size that is compared is 512 because they have not re-
ported set sizes higher than 512.

7 Discussion

Security. Security of our protocol follows from the
proof of security of Yao’s GC protocol in [18] and that of
ORAM constructions for secure computations [38, 41].
The security of XOR sharing is based on the security of
One-Time Pad (OTP). Our optimizations are applied
to the Boolean circuit (used inside one step of the GC
protocol) leaving the flow of the GC protocol intact.
The only exception is the optional Early Termination
Technique for which we discuss the privacy-efficiency
trade-off next.

What would be leaked by early termination? As
we discussed earlier in Section 4.3, we can terminate

the GC protocol as soon as it has reached the stable
results in order to enhance the performance greatly. We
do this by producing a 1-bit “finish signal” and revealing
its real value at each iteration. Revealing this one bit
means sharing the actual wire label by Evaluator and
the type of the wire by Garbler where the real value of
finish signal wire would be the XOR of these two.

Please note that both parties share the information
about this 1-bit wire only. Since the type of each wire is
generated randomly, revealing the type of one wire does
not convey any information about other bits and hence
this technique does not affect the rest of the protocol
and no more information would be revealed.

Although using the finish signal may leak the num-
ber of proposals R, there are plenty of different cases
when this setting could be employed. Such as when each
matching authority agrees not to reveal the number of
real proposals because no one has any interest to do
so. In this case, there is no desire to reveal the number
of proposals. If we add a random initiator to the MSC
and the next-man-selection algorithm, we can achieve
the randomness which will make R nondeterministic. In
this case, even for the same inputs, each time R is differ-
ent. However, leaking the number of total proposals can
convey some information about the preference lists. For
example, if the matched partners were their mutually
first choices, then the algorithm will terminate immedi-
ately after the first iteration. This is very different from
the case when each individual is matched with her last
choice, in which case the algorithm will terminate after
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Table 5. Timing and communication results for limited SM where k = 20.

. Linear ORAM Square-Root ORAM Circuit ORAM
Set Size : ; -
Time Comm. Time Comm. Time Comm.

8 22.76 ms 3.05 MB 51.8 ms 6.95 MB 200 ms 26.84 MB
128 3.62 min 29.2 GB 50.97 s 6.84 GB 5.73 min 46.15 GB
512 497 h 2.4 TB 18.52 min| 149.21 GB 1.42 h 688.2 GB
2k 16.21d 187.98 TB 6.23h 3.01TB 20.2h 9.76 TB
8k 335y 14.21 PB 5.01d 58.11 TB 13.94d 161.74 TB

Table 6. Timing results comparing with previously best method [41] (in terms of runtime).

Set Size Revisiting Our best case Our best case w/
z SQRT ORAM " Early Termination
8 510 ms 9.1 ms 5.69 ms
64 2.41 min 33.19s 2.59s
512 1.38 d| 79h 4.63 min

O(n?) iterations. Therefore, knowing R can give some
information about the quality of the assignment. This
problem can be mitigated by running the protocol for
at least the statistical worst case (see Figure 6). In or-
der to avoid unnecessary iterations and terminate the
protocol, R is the least information possible to leak.

It is worth mentioning that in real-world, as shown
in Figure 6, the standard deviation of actual number of
proposals is relatively small, meaning that the execution
time for different inputs would be about the same and
cannot convey significant information about the prefer-
ence lists. In a nutshell, this variant of our protocol is a
trade-off between privacy and efficiency where we have
an unprecedented performance improvement but the to-
tal number of proposals is leaked. Note that the early
termination technique is optional and can be avoided.

It is in fact a recent direction in secure computa-
tion to give up some privacy in order to achieve better
runtime, see for example the private DBMS BlindSeer
which leaks some (hard to quantify) information about
the search tree [27].

8 Conclusion

We present the first efficient and scalable implementa-
tion of secure Stable Matching (SM). This is the first
work which makes secure SM feasible for real-world ap-
plications such as the National Residency Matching Pro-
gram (NRMP) with 32k pairs in a reasonable time. Al-
though the execution time for very large inputs is still

substantial, this is not unreasonable, as applications of
SM usually do not have to be run online, but instead
can be run offline, e.g., during a month. This is because
in many applications, a large latency is not the main
concern, but performing the stable match privately is.
We designed different variations of SM (general and lim-
ited) and a novel technique to significantly decrease the
computation time by reducing the total number of SM
iterations. We also proposed a sequential circuit with
sub-linear amortized size with respect to the number of
pairs in SM. We benchmark three different Oblivious
RAMs (ORAM) in our evaluation and determine the
breakeven points for each variant of SM.
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