
Proceedings on Privacy Enhancing Technologies ; 2017 (1):79–99

Muhammad Ikram*, Hassan Jameel Asghar, Mohamed Ali Kaafar, Anirban Mahanti, and
Balachandar Krishnamurthy

Towards Seamless Tracking-Free Web:
Improved Detection of Trackers via One-class
Learning
Abstract: Numerous tools have been developed to ag-
gressively block the execution of popular JavaScript pro-
grams in Web browsers. Such blocking also affects func-
tionality of webpages and impairs user experience. As
a consequence, many privacy preserving tools that have
been developed to limit online tracking, often executed
via JavaScript programs, may suffer from poor perfor-
mance and limited uptake. A mechanism that can iso-
late JavaScript programs necessary for proper function-
ing of the website from tracking JavaScript programs
would thus be useful. Through the use of a manually la-
belled dataset composed of 2,612 JavaScript programs,
we show how current privacy preserving tools are in-
effective in finding the right balance between blocking
tracking JavaScript programs and allowing functional
JavaScript code. To the best of our knowledge, this is the
first study to assess the performance of current web pri-
vacy preserving tools in determining tracking vs. func-
tional JavaScript programs.
To improve this balance, we examine the two classes
of JavaScript programs and hypothesize that track-
ing JavaScript programs share structural similarities
that can be used to differentiate them from functional
JavaScript programs. The rationale of our approach is
that web developers often “borrow” and customize ex-
isting pieces of code in order to embed tracking (resp.
functional) JavaScript programs into their webpages.
We then propose one-class machine learning classifiers
using syntactic and semantic features extracted from
JavaScript programs. When trained only on samples of
tracking JavaScript programs, our classifiers achieve ac-
curacy of 99%, where the best of the privacy preserving
tools achieve accuracy of 78%.
The performance of our classifiers is comparable to that
of traditional two-class SVM. One-class classification,
where a training set of only tracking JavaScript pro-
grams is used for learning, has the advantage that it re-
quires fewer labelled examples that can be obtained via
manual inspection of public lists of well-known track-
ers. We further test our classifiers and several popular
privacy preserving tools on a larger corpus of 4,084 web-

sites with 135,656 JavaScript programs. The output of
our best classifier on this data is between 20 to 64%
different from the tools under study. We manually anal-
yse a sample of the JavaScript programs for which our
classifier is in disagreement with all other privacy pre-
serving tools, and show that our approach is not only
able to enhance user web experience by correctly clas-
sifying more functional JavaScript programs, but also
discovers previously unknown tracking services.

Keywords: Machine learning, one class SVM, pu-
learning, measurements, JavaScripts, tracking, privacy,
usability, security

DOI 10.1515/popets-2017-0006
Received 2016-05-31; revised 2016-09-01; accepted 2016-09-02.

1 Introduction
JavaScript programs are frequently used to track users
and to tailor advertisements on websites to the browsing
history and web activities of users [22, 47, 56]. Recently,
a class of tools (including web browser plugins) have
been developed in an attempt to preserve user privacy
(e.g., NoScript [14], Ghostery [8], and Adblock Plus [1]),
which block JavaScript programs and other components
of a webpage that may compromise user privacy and
enable tracking. However, aggressive blocking can hin-
der proper functioning of the website and impact user’s
browsing experience [19, 46] (an example of how a tool
may block content necessary for proper functioning of a
webpage is shown in Appendix A.5). A mechanism that
can properly isolate JavaScript programs necessary for

*Corresponding Author: Muhammad Ikram: Data61,
CSIRO and UNSW, Sydney, Australia, E-mail: muham-
mad.ikram@data61.csiro.au
Hassan Jameel Asghar: Data61, CSIRO, Sydney, Australia,
E-mail: hassan.asghar@data61.csiro.au
Mohamed Ali Kaafar: Data61, CSIRO, Sydney, Australia,
E-mail: dali.kaafar@data61.csiro.au
Anirban Mahanti: Data61, CSIRO, Sydney, Australia, E-
mail: anirban.mahanti@data61.csiro.au
Balachandar Krishnamurthy: ATT Research Lab, New
York, USA, E-mail: bala@att.com

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 80

“legitimate” functioning of the website from others that
are likely to be privacy-intrusive would therefore be use-
ful.

Web tracking in general happens through the use
of numerous technologies, e.g., cookies, supercookies,
Flash cookies, tracking pixels, ETag cookies, HTTP re-
ferrers and JavaScript programs [38, 50]1. Third-party
tracking, where “unauthorised” third parties retrieve
information from the “first party” websites visited by
users, enable a plethora of services including analyt-
ics, advertisement and online social interactions. While
third-party tracking [41] may happen through vari-
ous techniques, trackers frequently use JavaScript pro-
grams [22, 47, 52, 56] for tracking, and as such, most
tracking can be avoided by controlling the execution
of JavaScript programs on webpages. We refer to these
JavaScript programs as tracking. Consequently, most
privacy preserving tools (PP-Tools in short) are either
based on pre-defined (black)lists of URLs (or patterns
of URLs) of third-party trackers for which the execution
of JavaScript code is blocked or simply rely on blocking
any third-party JavaScript program.

However, not all JavaScript programs are used for
tracking and many are essential for proper function-
ing of a website, e.g., JavaScript programs that enable
media players to show an embedded video on a web-
page. We refer to these JavaScript programs as func-
tional JavaScript programs. In this paper, we show
that the current generation of PP-Tools are unable to
achieve a balance between blocking tracking and func-
tional JavaScript programs, which we believe has con-
tributed to their poor uptake with a recent study show-
ing about 3 to 20% uptake among web users [42].

This motivates our goal to develop a machine learn-
ing classification framework that is more effective in sep-
arating tracking from functional JavaScript programs
on a webpage. We impose two important design con-
straints. One is to avoid detection through regular ex-
pressions based on blacklists, which is used by existing
PP-Tools and, as measured later in the paper, is in-
effective. Another constraint is to enable classification
using a small single class of JavaScript programs that
are known to be either exclusively functional or track-
ing. Our motivation for this is that in the real-world one
can expect to have knowledge of only a subset of track-
ing or functional JavaScript programs, i.e., we cannot
expect to have an exhaustive list of either classes of

1 Tracking can also be generalised to the use of multiple user
identifiers for host-tracking including IP addresses, login IDs and
web browser user-agents. This is generally referred to as stateless
tracking. Interested readers may refer to [55] for further details.

programs. The key rationale of our proposed approach
is that web developers often embed JavaScript code used
by popular tracking libraries or re-use pieces of known
JavaScript code which they customise. Likewise, code
of several functional web components (including search
buttons, media players embedding, shopping carts, con-
tent fetching, etc.) are generally borrowed from previ-
ously published code. From that perspective, our tech-
nique resembles approaches taken to detect code plagia-
rism and malware code signatures.

In this paper, we develop machine learning
approaches that classify functional and tracking
JavaScript programs based on syntactic and semantic
features extracted from a number of JavaScript pro-
grams. We find that traditional two-class support vec-
tor machine (SVM) trained on labelled data from both
functional and tracking JavaScript programs can ac-
curately distinguish these JavaScript programs. More
importantly, we show that one-class machine learn-
ing classifiers, namely one-class SVM and positive and
unlabelled (PU) learning, trained using only tracking
JavaScript programs can achieve performance compa-
rable to two-class SVM. We believe the latter approach
is more practical as it requires fewer labelled samples
for training which can be obtained from well-known
tracking and advertising services, e.g., through black-
lists of PP-Tools (although manual effort would still be
required to remove wrong labels, since, as we show later,
not all JavaScript programs from known trackers are
tracking JavaScript programs). The proposed scheme
only works for tracking via JavaScript programs, other
techniques such as pixel abased tracking are excluded.
In summary, we make the following contributions:
– We propose two machine learning approaches for

automatic classification of tracking and functional
JavaScript programs that rely only on partial
knowledge of the former class. Instead of using
static code analysis or regular expression matching
on blacklists, we use an automated way to extract
features from JavaScript programs using syntactic
and structural models proposed in the literature to
quantitatively determine similarity between func-
tional and tracking JavaScript programs. Our pro-
posed approaches achieve accuracy2 of up to 99%,
well above the accuracy achievable by existing PP-
Tools (≤ 78%) as validated through our manually
labelled dataset.

2 Accuracy is defined as the sum of true positives and negatives
normalized by the population size (total number of JavaScript
programs). In our study, the tracking JavaScript programs con-
stitute the positive class.

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 81

– We evaluate the effectiveness of five major PP-
Tools by comparing their output against a set of
2,612 manually labelled JavaScript programs ex-
tracted from 95 different domains. Among these
five, Ghostery achieves the best balance between
true and false positive rates, 0.65 to 0.08. Others
who fare better in terms of the false positive rate
(≤ 0.06) pay the penalty with a considerably lower
true positive rate of 0.44 or less. NoScript achieves
the highest true positive rate (0.78), at the expense
of the poorest false positive rate (0.21). Our results
indicate that existing PP-Tools need considerable
improvement in finding an optimal balance between
true and false positives. To the best of our knowl-
edge, this is the first study that analyses and as-
sesses the performance of current privacy preserving
tools in terms of determining tracking vs. functional
JavaScript programs.

– We run our classifiers on a larger dataset of 4,084
websites, representing 135,656 JavaScript programs
and compare their output against the above men-
tioned PP-Tools to analyse their respective effec-
tiveness in the wild. Choosing our best classifier as
a benchmark, we observe that NoScript, Ghostery
and Adblock Plus agree with the output of our clas-
sifier between 75 to 80%, whereas Disconnect and
Privacy Badger showed an agreement of only 36%
and 43%, respectively. Between 11% to 14% of the
JavaScript programs labelled as functional by our
classifier were contradictorily classified as tracking
by the first three. The remaining two PP-Tools had
this number less than 7%.

– From this larger dataset we randomly sample two
subsets of 100 JavaScript programs each, corre-
sponding to the two sets of JavaScript programs la-
belled as functional and tracking by our classifier in
disagreement with all five PP-Tools. Through man-
ual inspection, we found that our classifier was cor-
rect in classifying 75 out of 100 JavaScript programs
it labelled tracking, and 81 out of 100 JavaScript
programs it labelled functional, meaning that the
PP-Tools were only correct in labelling 25 and 19
JavaScript programs in the two subsets, respec-
tively. We discuss, with examples, the main reasons
for misclassification by our classifier and PP-Tools.
Notably, we further show how our classifier is ca-
pable of revealing previously unknown tracking ser-
vices simply by relying on JavaScript code structure
and semantic similarity from popular tracking ser-
vices.

The rest of this paper is organised as follows. In Sec-
tion 2, we give a background on JavaScript based web
tracking and how the PP-Tools considered in our study
attempt to mitigate this. We discuss our main objec-
tives, methodology and data collection in Section 3. In
Section 4, we evaluate the effectiveness of PP-Tools us-
ing our labelled data set. Details on our choice of classi-
fiers and their validation are described in Section 5. We
evaluate the effectiveness of our classifiers and PP-Tools
in the wild in Section 6. In Section 7, we discuss pos-
sible limitations and challenges as well as avenues for
improvement of our proposed scheme. We review the
related work in Section 8 and provide some concluding
remarks in Section 9.

2 Background
2.1 Web Tracking and JavaScript

programs
A typical webpage consists of several web-components,
e.g., JavaScript codes, Flash-content, images, CSS, etc.
When a user opens a website in a web browser,
the fetched webpage typically generates several other
HTTP(S) connections for downloading additional com-
ponents of the webpage. These components can be
downloaded from the website visited by the user (re-
ferred to as first-party domain) or downloaded from
other third-party domains. Here, we focus on one type
of web-component, namely JavaScript codes, which
is loaded both from first- and third-party domains.
JavaScript programs are widely used by ad networks,
content distribution networks (CDNs), tracking ser-
vices, analytics platforms, and online social networks
(e.g., Facebook uses them to implement plugins).

Figure 1 illustrates a typical scenario of web track-
ing via JavaScript codes. Upon fetching a webpage from
first-party domains (steps 1 & 2), the user’s web browser
interprets the HTML tags and executes JavaScript pro-
grams within the HTML script tags. JavaScript code
execution enables the web browser to send requests to
retrieve additional content from third-party domains
(step 3). Depending on the implemented functionalities,
the JavaScript programs can be considered as useful
(functional), e.g., fetching content from a CDN, or as
tracking. In the latter case, when the webpage is com-
pletely rendered (step 4), the JavaScript codes track
user’s activities on the webpage [52], write to or read
from the cookie database [35, 46] (steps 5 & 6), or re-
construct user identifiers [22, 45]. Tracking JavaScript
programs may also be used to transfer private and sen-
sitive information to third-party domains (step 7) [38].

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 82

Cookie Database

cnn.com

User’s Browser - Rendered DOM

Third Party Domains

First Party Domains

Client Side Server Side

1

2

3

4

5 6

7

Fig. 1. Overview of a webpage rendering process and web track-
ing. Websites (in this case cnn.com) use third-party domains for
content provisions and analytics services.

2.2 Privacy Preserving Tools (PP-Tools)

In the following we briefly introduce five common PP-
Tools considered in our study.

NoScript (NS)3 blocks JavaScript programs, Java
programs, Silverlight, Flash and other executable con-
tent on a webpage that may undermine security includ-
ing tracking [14]. The default behaviour is to deny, thus
only allowing content that the user has explicitly per-
mitted (whitelists). This however requires frequent user
intervention and may cause usability issues.

Adblock Plus (AP) is primarily an advertisement
blocking tool based on blacklists [1]. It provides the op-
tion to choose from different blacklists, e.g., EasyList [5],
to block unwanted advertisements. It searches the ren-
dered HTML page (DOM tree) through regular expres-
sions and blocks the downloading of web-components
such as web bugs, ads or JavaScript programs that be-
long to blacklisted tracking and advertising services.

Disconnect (DC) is also a blacklist based tool [3],
which mainly blocks third-party tracking cookies and
JavaScript programs from social networks such as Face-
book and Twitter.

Ghostery (GT) finds and disables cookies and
scripts that are used for tracking [8]. It also searches
the DOM tree through regular expressions for adver-
tisers and trackers identified in a predefined blacklist.
It provides feedback to the user to selectively unblock
tracking domains.

Privacy Badger (PB) uses a blacklist [16] of
third-party tracking cookies that track users on multiple
first-party domains. It further uses a heuristic algorithm
3 Although NoScript is primarily a security add-on, it can also
be viewed as an extremely aggressive PP-Tool which blocks
third-party advertisements, analytics, and trackers.

that blocks content (JavaScript programs and ads) from
third-party domains who either read high entropy cook-
ies, and read cookies on multiple (at least 3) first-party
domains, and do not comply with an acceptable “Do
Not Track" policy statement [7].

3 Methodology
3.1 Objectives and Overview of our Work
Our objectives can be summarised as follows:

1. Assess the effectiveness of existing PP-Tools in
terms of correctly classifying tracking and func-
tional JavaScript programs.

2. Propose an effective machine learning approach
to classify tracking and functional JavaScript pro-
grams, trained on a subset of tracking JavaScript
programs only.

3. Analyse PP-Tools and our classifier(s) in the wild
and identify any trackers missed by the PP-Tools.

For the first objective, we use a labelled dataset, com-
posed of JavaScript programs, to evaluate the outcome
of each of the aforementioned five PP-Tools as observed
by a user navigating through a list of webpages. We
used a set of 95 websites and extracted 2,612 unique
JavaScript programs which were manually inspected
and labelled as either tracking or functional according
to a set of pre-identified rules (cf. Table 1). This dataset
is referred to as the labelled dataset (Section 3.3).

For the second objective, we build classifiers trained
only on partial knowledge, i.e., on knowledge of labels
from a subset of tracking JavaScript programs only.
These tracking JavaScript programs were extracted
from the above mentioned labelled dataset. The ac-
curacy of our classifiers is also validated using the la-
belled dataset, and compared against a traditional two-
class classifier trained on both functional and tracking
JavaScript programs from the labelled dataset.

We assess the effectiveness of our classifiers and the
PP-Tools in the wild, i.e., our third objective, by further
extracting 135,656 JavaScript programs from a set of
4,084 websites. We call this dataset, the wild dataset
(Section 6.1). We apply and compare results of the PP-
Tools and our classifiers on this wild dataset. We also
manually inspect two random samples of 100 JavaScript
programs each on which our classifier and all the other
PP-Tools disagree. As a result, we identify trackers that
are missed by the PP-Tools and reveal several functional
JavaScript programs that are being mistakenly blocked
by the PP-Tools.

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 83

3.2 Obtaining JavaScript programs
We developed a crawler based on the Selenium web-
driver [21] for automated downloading of target web-
pages. The Selenium framework allows us to retrieve
the whole content of a rendered webpage (DOM tree).
We configured our crawler to wait 180 seconds for each
target webpage to be rendered. The yielded, rendered
webpages were cached, i.e., stored locally. In a post-
processing step, we checked if the rendering of any web-
page stalled. If so, we reran the crawler on the webpage
by increasing the waiting time until the webpage is ren-
dered. Our crawling process consisted of the following
steps: 1) use Firefox’s Selenium webdriver to fetch the
landing page from a given list of webpages, 2) dump the
DOM tree and save it locally, 3) parse all script tags
to find in-page JavaScript programs, i.e., programs em-
bedded within the HTML script tag, and save them in
files, and 4) download all external JavaScript programs,
i.e., programs that are linked via external URLs.

For extracting JavaScript programs when the PP-
Tools are turned off, referred to as PP-Tools off,
we obtain JavaScript programs for both labelled and
wild datasets as above. For the labelled dataset, these
JavaScript programs are additionally assigned a label
(tracking or functional) using Firefox and Firebug as
detailed in Section 3.3. Likewise, when PP-Tools are
turned on (referred to as PP-Tool on), we simultane-
ously obtain the set of JavaScript programs for each of
the PP-Tools under consideration, by creating a sepa-
rate Firefox profile for each tool.

Due to their dynamic nature, the content of web-
pages is likely to change when accessed at different
times. This means that the JavaScript programs, which
load dynamic content such as ads, may also change on a
webpage. To ensure that the number and type of down-
loaded JavaScript programs were consistent, we exe-
cuted the five PP-Tools profiles (i.e., PP-Tools on) and
the PP-Tools off setting in parallel to access the target
webpages (with a wait time of 180 seconds per web-
page) simultaneously using separate VMs running on a
single host. However, this still leaves open the question
whether the JavaScript programs thus obtained were
the same across different profiles. To check this, we si-
multaneously accessed a set of 100 target websites with
6 crawlers (all with PP-Tools off) running in parallel
on separate machines on the same host and stored the
resulting JavaScript programs. The in-page JavaScript
programs were saved using the domain name of the web-
page containing them followed by the sequence in which
they appear in the rendered webpage, whereas external

JavaScript programs were saved using the domain name
associated with them.

As a first check, the number of JavaScript pro-
grams obtained through each crawler was the same,
i.e., 2,049. We then used Python’s diff utility, i.e.,
difflib [2], to determine differences between 6 copies
of the same JavaScript program by taking the first
crawler’s JavaScript programs as reference. By inspect-
ing the output of the diff utility, we found that 95% of
these programs were completely identical. The rest, i.e.,
5%, were different only in the values of the constants as-
signed to variables. A further examination of these codes
revealed that 75% of the constants were cookie values
whilst the remaining 25% were ad tag values read by
the JavaScript codes. For instance, JavaScript codes like
Google Tag Manager (gtm.js) and Facebook “connect"
(sdk.js) read tags and cookie values that were differ-
ent in our simultaneous crawlers. However, note that
differences in the values of constants do not change the
syntax or structure of JavaScript programs, nor their
nature (functional or tracking). Thus, our methodology
ensures consistent view of JavaScript programs for all
profiles.

3.3 The Labelled Dataset
We defined a set of 12 rules to guide our manual classifi-
cation of JavaScript programs as tracking or functional.
These rules were applied to the JavaScript programs
present in the stored (cached) copies of rendered web-
pages obtained through the method described in Sec-
tion 3.2. The rules were derived after detailed review
of example JavaScript programs and discussion among
the authors. Guided by the derived labelling rules, a sin-
gle expert analysed the JavaScript programs present in
the target websites, i.e., labelled dataset, and carried
out the actual labelling. There may be discrepancies
in judging the nature of JavaScript programs in case
of two or more reviewers. However, our classification
methods (discussed in Section 5) are robust since the
classifiers can be trained on whatever the view of func-
tional/tracking JavaScript codes is agreed upon. Note
that labelling was done prior to applying our classifiers
to ensure that it was not biased in giving our classi-
fiers any advantage over PP-Tools. As we discuss in Sec-
tion 7.2.3, the labelling process could be crowd-sourced
to resolve any issues, where the label of JavaScript pro-
grams may be decided based on majority decision or
any other agreed upon method. Table 1 summarises the
classification rules we used. Rules R1 and R2 in Table 1
label all JavaScript programs that create panels and set

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 84

Rule JS # Description

R1 7 216 All JS that create panels and set margins for
ads

R2 7 115 All JS that access and display ads
R3 7 45 All social media widgets
R4 7 324 All in-page JS that include external JS from

third-party analytics and advertisers
R5 7 353 All external JS from third-party analytics and

advertisers
R6 7 180 All cookie enablers, readers or writers
R7 3 542 All external JS that provide useful functionality

such as navigation menus, search and login
R8 3 509 All in-page JS that provide useful functionality
R9 3 132 All JS that fetch content from first-party con-

tent domains or third-party CDNs
R10 7 103 All JS in hidden iframe that belong to third-

party analytics, advertisers and social media
R11 7 40 All JS in hidden iframe that enable, read or

modify cookies
R12 3 53 All JS that track mouse or keyboard events

Table 1. Rules for labelling JavaScript programs - R stands for
Rule; JS stands for JavaScript program; # denotes the number
of JavaScript programs satisfying the corresponding rule in the
labelled dataset; 7 represents tracking JavaScript programs and
3 represents functional JavaScript programs.

margins for ads within a webpage or the ones that fetch
ads and display them, as tracking. Likewise we also la-
bel all programs that enable social media widgets, such
as Facebook ‘Likes’ and Twitter ‘Follow’, as tracking
(rule R3). We went through all the script tags, i.e., in-
page JavaScript programs, and labelled them as track-
ing if they include an external JavaScript code (within
the body) belonging to a known third-party advertiser
or analytic service (R4). It follows that all external
JavaScript programs contained in a webpage that be-
long to a known third-party advertiser or analytics are
labelled tracking (R5).

JavaScript programs
External In-page Average Total Tracking Functional

1,353 1,256 27.5 2,612 57% 43%

Table 2. Characteristics of JavaScript programs from 95 websites
in our labelled dataset.

To uniquely identify users, trackers enable, read,
write or update cookies on the users’ machine. We used
Firebug’s ‘Cookies’ panel to obtain a list of cookies. This
list contains the name and ID of a cookie as well as
the domain the cookie is stored for. We then searched
the DOM tree by the cookie name and ID to find the
JavaScript that enables, reads or modifies this cookie.
Note that the JavaScript corresponding to the cookie
contains its name and ID in its source code. If the do-
main for which the cookie is stored is a known analytic

or advertiser then we mark the JavaScript as tracking;
otherwise the JavaScript is marked as functional (R6).
We are aware that, in principle, cookie names can be dy-
namically generated. However, during manual labelling
we did not encounter this except for session cookies
(which may or may not be set by JavaScript programs).

Similarly, we used Firebug’s ‘Network’ panel to
identify invisible iframes that belong to third-party
analytics, advertisers, or social media. We label the
JavaScript programs belonging to these iframes as
tracking JavaScript programs (R10). We also label the
JavaScript programs inside iframes that enable, read,
or modify cookies as tracking JavaScript programs (cf.
rules R10 and R11). Analytics and advertisers employ
hidden iframes by specifying the height and width of
the iframe to zero, one, or by positioning it so that it is
out of the visible area on a webpage. A hidden iframe
is positioned so that when a user interacts with a cer-
tain component of a webpage, his action and potentially
the information contained in corresponding cookie(s)
are redirected to the advertiser’s or analytic’s networks.

All JavaScript programs that facilitate access to
contents and services related to the target (visited)
webpage are labeled as functional. For instance, web-
pages contain JavaScript programs that enable search
boxes, accessibility options, authentication services,
shopping carts, prompts, navigation menu and bread-
crumbs (rules R7 and R8). Similarly, some JavaScript
programs are used to track mouse and keyboard events,
such as right click or caps lock on or off (R12) while
others are used to retrieve content from either first-
party content domains or third-party CDNs like Akamai
(R9). We created a manual list of well-known third-
party CDNs to differentiate them from other content
providers.

While we have tried to remain as objective as
possible with our definition of functional JavaScript
programs, there might still be instances in which a
JavaScript program satisfies both tracking and function
rules. In such a case, we consider it as tracking. For
instance, we considered social widgets to be privacy-
intrusive as they allow social networks to track users
[24]; however, these could potentially be perceived as
providing functional features as they allow users to in-
teract with their social network. Notably, mouse or key-
board related JavaScript programs are only considered
functional if they do not send information to third-
party servers (unlike JavaScript programs that belong
to e.g., ‘Moat’[13] that track users and send collected
data to third-party servers). Likewise, JavaScript pro-
grams that track user’s comments and send them to an

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 85

external server (e.g., ‘Disqus’[4]) were labelled as track-
ing JavaScript programs.

We selected 95 web domains such that 50 of them
were the top 50 Alexa websites, and the remaining 45
were randomly chosen from websites with Alexa rank
in the range 5,000-45,000. In total, we collected 2,612
JavaScript programs, which consisted of 1,376 tracking
and 1,236 functional JavaScript programs according to
our labelling. This constitutes our labelled dataset. Note
that the 2,612 JavaScript programs obtained correspond
to the PP-Tool off setting in our terminology. Table 2
summarizes the key characteristics of the JavaScript
programs in our labelled dataset. Note that 43% of the
JavaScript programs are functional indicating that the
scale of the problem we are addressing is significant.
Misclassifying even a small part of this can significantly
impair user’s web experience.

4 Effectiveness of PP-Tools
We first introduce metrics used in our evaluation.

4.1 Aggressiveness of PP-Tools and
Surrogate JavaScript Programs

Let H denote the set of DOM trees (webpages) in a
given dataset (in our case, H could be the labelled or
the wild dataset). Let J denote the set of all JavaScript
programs from H. Given a DOM tree h ∈ H, js(h) de-
notes the set of JavaScript programs contained in h.
This corresponds to the PP-Tools’ off setting. Let p de-
note a given PP-Tool. Then p(h) denotes the DOM tree
obtained after applying p to h, and js(p(h)) denotes the
set of JavaScript programs in the DOM tree p(h). This
corresponds to the PP-Tools’ on setting. We have the
condition that js(p(h)) ⊆ js(h), i.e., the set of JavaScript
programs obtained when a PP-Tool is on will always
be a subset of the set of JavaScript programs obtained
when the PP-Tool is off.

However, in our experiments, we found that some
PP-Tools, such as Ghostery and NoScript, replace
some JavaScript programs by new JavaScript programs,
called surrogate JavaScript programs, to ensure smooth
viewing of the webpage [9, 18]. For instance, Ghostery
replaces the JavaScript code enabling Twitter ‘Follow’
button with a surrogate JavaScript code that displays
a Ghostery button, while still blocking the functional-
ity of the Twitter button. When a surrogate JavaScript
codes is present in the DOM tree p(h), we consider
the replaced JavaScript code to be blocked by the PP-

Tool p, and as a result we do not include the surro-
gate JavaScript code in the overall count. That is, we
consider this situation as if the surrogate JavaScript
program is absent and the original JavaScript program
is blocked, thus ensuring that the PP-Tool is not pe-
nalised. This is consistent with our manual inspection
of the surrogate lists of Ghostery and NoScript, as all
the surrogates turned out to be functional (according to
our labelling rules).

We define the aggressiveness of a privacy-preserving
tool p as

a(h) = 1− |js(p(h))|
|js(h)| ,

which is the fraction of JavaScript programs blocked by
a PP-Tool p from the DOM tree h. In settings with PP-
Tools off, aggressiveness is 0. A PP-Tool is said to be
aggressive if it has high aggressiveness (i.e., closer to 1)
for a high portion of webpages from H.

4.2 Evaluation Results

We configured the PP-Tools so that their definitions of
tracking and functional JavaScript programs are consis-
tent with our labelling rules in Table 1. Specifically, we
configured NoScript so that it does not allow iframes,
consistent with rules R10 and R11 in Table 1. Likewise,
we disabled the default option “Allow all non-intrusive
ads” for Adblock Plus and we used The EasyList [5]
and Fanboy’s Social Blocking List [15] as blacklists for
Adblock Plus. We enabled “Blocking all Trackers and
Cookies” option for Ghostery. We used the default set-
tings for Privacy Badger and Disconnect since they do
not provide the user with any configuration options.
Summary of the set up used for PP-Tools is shown in
Table 9 in Appendix A.1.

To account for any “heating” phase of the PP-Tools,
we ran each of the tools over another set of 100 ran-
dom webpages (with Alexa rank between 5,000 and
50,000, excluding the webpages present in the labelled
and wild datasets). We call these heat-up webpages. Us-
ing the same rules for labelling tracking and functional
JavaScript programs described in Section 3.3 (and sum-
marized in Table 1), we determined the types and the
distribution of trackers in these heat-up webpages. We
focused on external JavaScript programs since inter-
nal JavaScript programs are not associated with do-
main names of trackers. The external JavaScript pro-
grams were saved with the domain names associated
with them. We observed that the tracking JavaScript
programs belonged to a total of 130 unique trackers

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 86

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a (h)

E
m

p
ir
ic

a
l
C

D
F

Privacy Badger

Disconnect

Adblock Plus

Ghostery

NoScript

Fig. 2. Aggressiveness of PP-Tools.

(domains). Only 8% of the trackers were found in only
one webpage, meaning that the overwhelming majority
(92%) of the trackers were present in at least two or
more webpages. Thus, we expect all analysed PP-Tools,
and in particular Privacy Badger (note that part of the
heuristic used by Privacy Badger needs the tracker to be
present in at least three webpages), to block JavaScript
programs belonging to most trackers from this list. In-
creasing the number of heat-up webpages further may
positively affect the output of PP-Tools, especially Pri-
vacy Badger. However, we believe that 100 webpages is
sufficient since we expect it to be way above the number
of domains an average user would visit over a reasonably
short period of time. For instance, according to the mar-
keting research company, Nielsen, the average number
of domains visited by a US citizen over a month ranged
between 89 and 99 between the years 2010 to 2013, in-
clusive [26]. Figures 4 and 5 in the appendix show the
distribution of trackers in the heat-up webpages.

PP-Tools On
JS NS GT AP DC PB

External 570 813 1,141 1,206 1,230
In-page 1,118 1,173 1,197 1,218 1,208
Total 1,688 1,986 2,338 2,424 2,438
Average per webpage 17.6 20.1 24.4 25.3 25.4

Blocked (%) 35.38 24.0 10.5 7.2 6.7
Allowed (%) 64.6 76.0 89.5 92.8 93.3

Table 3. Characteristics of JavaScript programs (JS) from the
labelled dataset marked as functional (allowed) by PP-Tools.

Table 3 shows the view of JavaScript programs from
the 95 webpages in the labelled dataset when the differ-
ent PP-Tools were on. The top-half of the table shows
the number of JavaScript programs (in-page and ex-
ternal) that are allowed when a particular PP-Tool is
used. The last two rows of the table show the number
of JavaScript programs that are blocked and allowed as
a percentage of the total number of JavaScript programs
in our dataset (2,612).

We further analyse the performance of the PP-Tools
by measuring their aggressiveness, i.e., a(h). Figure 2
shows the cumulative distribution function of a(h) for
the five PP-Tools when applied on the 95 websites. We
observe that NoScript’s aggressiveness is more than 0.2

PP-Tool Tracking Functional
Blocked Allowed Blocked Allowed

NoScript 0.78 0.22 0.21 0.79
Ghostery 0.65 0.35 0.08 0.92

Adblock Plus 0.44 0.56 0.06 0.94
Disconnect 0.40 0.60 0.06 0.94

Privacy Badger 0.37 0.63 0.06 0.94

Table 4. Comparison of the output of PP-Tools against our la-
belled set of tracking and functional JavaScript programs. true
positives and negatives, false positives and negatives.

for about 60% of the web domains whilst Ghostery’s ag-
gressiveness is more than 0.2 for about 40%. In contrast,
Adblock Plus, Disconnect, and Privacy Badger have an
aggressiveness of more than 0.2 for only about 10% of
domains, which indicates that they are comparatively
less aggressive in blocking JavaScript programs.

We are also interested to know whether there is an
inverse relation between aggressiveness and effectiveness
of PP-Tools, i.e., an aggressive PP-Tool breaks useful
functionality in a webpage (by incorrectly blocking func-
tional JavaScript programs), and a less aggressive PP-
Tool allows more tracking JavaScript programs go unde-
tected. Effectiveness is defined as the balance between
correctly blocking tracking JavaScript programs (true
positives) and incorrectly blocking functional JavaScript
programs (false positives).

For this, we measure the true positive and false posi-
tive rates of each of the PP-Tools. Our results are shown
in Table 4. We find that PP-Tools’ true positive rates
vary from 37% to 78% and false positives range from
6% to 21%. Not surprisingly, NoScript has the highest
true positive rate of 78% at the expense of the poorest
false positive rate of 21%. Adblock Plus4, Disconnect,
and Privacy Badger fair better in terms of false positive
rate (6%) but pay the penalty with considerably lower
true positives rates of 44%, 40% and 37%, respectively.
Both Ghostery and NoScript achieve the lowest aver-
age error rate (AER) of 0.215, where AER is defined as
the average of false positive and negative rates. How-
ever, Ghostery is better in terms of allowing functional
JavaScript programs, achieving a false positive rate of
only 8% with a lower true positive rate (65%) than No-
Script.

To summarise, these results suggest that current
PP-Tools are ineffective in terms of striking a good
balance between limiting tracking and adversely affect-

4 Adblock Plus can be configured using additional complimen-
tary lists such as EasyPrivacy [6]. This may improve its true
positive rate but it is likely to result in a higher false positive
rate. We leave it as future work to try different combinations of
complimentary lists [12] on Adblock Plus.

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 87

ing useful functionalities on webpages. There are sev-
eral possible reasons for this ineffectiveness. For instance
current PP-Tools use rather elementary techniques such
as manually maintained blacklists (whose maintenance
is hard amidst the rapid growth of trackers), regular
expression matching only on URLs within the script
tag or even completely blocking the use of JavaScript
programs. In our work, we go further by inspecting
JavaScript code itself.

5 Classification and Validation
In a real setting, we may only expect to collect a small
subset of JavaScript programs known to be functional or
tracking due to the sheer prevalence of JavaScript pro-
grams on the web. We hypothesise that it is sufficient to
have partial knowledge of only the tracking JavaScript
class. Our intuition is that tracking JavaScript programs
potentially share similar characteristics and these char-
acteristics can be leveraged in a one-class classification
framework. In what follows, we first introduce the vari-
ous models to extract JavaScript code features and then
present our machine learning approaches.

5.1 Feature Models
The intuition. Consider the cookie setting code snip-
pets from Google Analytics [10] and Visual Revenue [20]
shown as Trackers 1 and 2, respectively. Notice that the
two are functionally and structurally similar, with dif-
ferences in variable names. More technically, the snip-
pets result in similar canonical representations which
we shall explain in Section 5.1.2. Similar examples indi-
cate that a similarity measure based on a feature space
composed of semantic or syntactic tokens from these
JavaScript programs should be effective in differenti-
ating between functional and tracking JavaScript pro-
grams.

Tracker 1. Google Analytics Cookie Setting

var _gaq = _gaq || [];
_gaq.push ([’ _setAccount ’, ’UA -1627489 -1 ’]);
_gaq.push ([’ _setDomainName ’, ’geo.tv ’]);
_gaq.push ([’ _trackPageview ’]);

Tracker 2. Visual Revenue Cookie Setting

var _vrq = _vrq || [],
_vrqIsOnHP = (document .body. className ||

’’). search (’pg -section ’) >=0 ? true : false;
_vrq.push ([’id ’, 396]);
_vrq.push ([’ automate ’, _vrqIsOnHP]);
_vrq.push ([’track ’, function () {}]);

To exemplify the existence of such similarity, we cre-
ate three distinct sets of 500 JavaScript codes (tracking-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PDG−7−grams tf−idf Cosine Similarity of JavaScript Codes

E
C

D
F

 o
f

J
S

Tracking JS − Tracking JS

Functional JS − Functional JS

Functional JS − Tracking JS

Fig. 3. Similarity between disjoint sets of functional and tracking
JavaScript codes (JS).

only, functional-only, and tracking and functional) from
our labelled dataset and calculate the term frequency
with inverse document frequency (tf-idf) based cosine
similarity values based on our “PDG-7-grams” feature
model, to be explained shortly in Section 5.1.2. Note
that, being a naïve approach, the cosine similarity met-
ric is shown here for illustrative purposes only. We shall
use our classifiers later (Section 5.2) to more efficiently
classify tracking and functional JavaScript codes.

Figure 3 plots the cumulative distribution function
(CDF) of the similarity values obtained. The long tail
we observe for “tracking vs. tracking” and “functional
vs. tracking” as compared to “functional vs. functional”
suggests that tracking (resp. functional) components do
indeed have higher intra-similarity. We provide exam-
ples of code similarity for tracking JavaScript codes
in [34].

In the rest of this section, we give details of the
syntactic and semantic models in use. But first, we in-
troduce some notation.
Notation and Problem Formulation. Let J repre-
sent all JavaScript programs in the corpus, and let J ′

be a small subset of them that are labelled. The labels
only belong to tracking JavaScript programs, which we
call positive labels. The totality of the negative labels,
i.e., functional JavaScript programs, are not known be-
forehand. The JavaScript programs from J − J ′ can be
either functional or tracking. The goal of the classifier is
to obtain a correct labelling of the JavaScript programs
in J . Assume that we have a feature vector j correspond-
ing to some JavaScript code j obtained through one of
the feature extraction models, to be discussed shortly.
Let y represent the class j belongs to. If j is a tracking
JavaScript, then y = +1; otherwise y = −1. Let us also
introduce the label flag l. If j is labelled, i.e., is assigned
a class via y = +1 or −1, then l = 1; otherwise l = 0.

To quantitatively measure similarity between dif-
ferent JavaScript programs, we use the tf-idf measure.
Central to this measure is the term t. How the term t is
defined gives rise to the different semantic and syntactic
models to be discussed shortly. For now let us assume

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 88

that each JavaScript program j ∈ J is composed of one
or more terms. We then use the boolean term frequency
(tf) measure such that tf(t, j) = 1 if t ∈ j and 0 oth-
erwise. The inverse document frequency measure idf is
defined as: idf(t, j, J) = log |J|

|{j∈J:t∈j}| . Finally, we ob-
tain tf with idf for each t ∈ j over the corpus J , as:
tf-idf(t, j, J) = tf(t, j) · idf(t, j, J). The tf-idf thus trans-
forms our corpus J to the feature vector space, where
the feature vector of a JavaScript program j is j. The
ith component of j, denoted j[i] corresponds to the term
ti and is equal to tf-idf(ti, j, J).

5.1.1 Syntactic Model

In the syntactic model, the term t is defined as a string
of characters representing one line of JavaScript code.5

Due to the large number of JavaScript codes in J the di-
mension of the feature space needed to be “capped” to
avoid making it impractically large. We experimented
with different sizes of the feature space by using the
top 200, 500, 1,000, 1,500 and 2,500 terms as ranked
by their tf-idf scores, in turn. We found no considerable
improvement in classification over the smallest size, i.e.,
200, and since this size was also the most computation-
ally efficient, we chose it as a cap on the feature vector
space.

5.1.2 Semantic Models

For a richer model that captures the structure of
JavaScript codes, we use the n-gram model introduced
in [32], which identifies tokens in programs. An exam-
ple of a token is one line of JavaScript code, as used in
the syntactic model. An n-gram, where n ≥ 1, refers to
n tokens which are dependent on each other. To con-
struct n-grams, the approach taken in [32] converts the
code into a canonical form. The canonical form is an
intermediate representation of a JavaScript code where
variable names and loop specifics are abstracted away
in an effort to apply natural language processing-like
techniques on the resulting code representation. From
the resultant canonical form, two different models can
be derived based on how the n-grams are constructed.
The difference lies in how different lines of the canonical
code are perceived to be dependent on each other. One
model relies on sequential dependency, wherein a line
of code is dependent on the execution of the previous
line, and so on. Thus, an n-gram of a statement in the

5 Given that many JavaScript codes are compressed by re-
moving whitespaces (sometimes into a single line), we used the
jsbeautifier Python library to unpack JavaScript codes before
applying our feature extraction models.

canonical code is a sequence of n lines. We call this the
sequential n-gram model.

Alternatively, since consecutive lines in source code
are often unrelated to each other, instead of comput-
ing n-grams via this trivial ordering, program depen-
dency graphs (PDGs) can be employed [32, 43]. In such
a graph, a node represents a single statement from the
canonical form. A node a of the graph is dependent on a
node b if its execution depends on the result of b or if it
takes as input a value written by b. If this is true, node
a is connected to b via a directed edge in the direction of
the latter. An n-gram of a particular gram x is then the
subgraph of the program dependency graph consisting
of all (backward) paths of length n − 1 starting from
x. This represents the second model and is referred to
as the PDG n-gram model. See Appendix A.2 for an
example of canonicalization and the resulting PDG.

Once n-grams have been constructed via the sequen-
tial or the PDG model, we use them in our tf-idf mea-
sure to calculate their relative importance [32], where
the term t is an n-gram. We can have different models
depending on the value of n in n-gram. For this study,
we use 4-gram and 7-gram variants. We tried several val-
ues of n in our n-gram models, but found no significant
improvement beyond n = 7.

5.2 Machine Learning Classifiers

We use two machine learning approaches, one-class
SVM [51] and positive and unlabelled (PU) learning [28,
40] that apply to our problem of binary classification
(tracking or functional JavaScript code) with only par-
tially known instances from one of the classes used in
training [33]. These two classifiers only require samples
from the positive class, i.e., tracking JavaScript pro-
grams, in the training phase. One-class SVM (OCSVM)
maps the feature vectors belonging to the training data
to a higher dimensional space through the use of an ap-
propriate kernel, and then finds the hyperplane whose
margin from the origin is maximized. One can view one-
class SVM as a regular two-class SVM with the dif-
ference that the origin represents the only member of
the negative class [51]. The PU learning technique con-
structs a probabilistic classifier that decides whether a
JavaScript code is tracking or functional from a proba-
bilistic classifier that decides whether a JavaScript code
is labelled or unlabelled. A brief introduction to PU
learning is given in Appendix A.3.

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 89

5.3 Validation

We use the traditional supervised two-class support vec-
tor machine (SSVM) [44, 49] as a benchmark for the per-
formance of our one-class classifiers. We run the three
classifiers (one-class SVM, PU-Learning and SSVM) fed
by syntactic and semantic features extracted from the
JavaScript programs in the labelled dataset. For the
PDG n-gram model, we construct the program depen-
dency graph from the canonical code by analysing the
abstract syntax trees produced by the V8 JavaScript en-
gine. We used the software shared by authors of [32] to
transform JavaScript programs into canonical forms and
to construct PDGs from the canonical forms. As men-
tioned before, feature vectors for the syntactic model
were constructed by considering the top 200 terms
ranked by their tf-idf score. On the other hand, no “cap”
was used for the sequential n-gram and PDG n-gram
models, as the feature vector size was already around
200.

For PU-learning and one-class SVM, we use 80%
of the tracking JavaScript programs from the labelled
dataset to constitute the training set (i.e., the train-
ing set only contains members of the positive class).
We mixed the remaining 20% of tracking JavaScript
programs with functional JavaScript programs in the
labelled dataset for the testing of these two classifiers.
For SSVM, we use 80% and 20% of JavaScript programs
(both functional and tracking) from the labelled dataset
for training and testing, respectively. We empirically
find the appropriate values for γ, a parameter for radial
basis function kernel [51], and ν, a parameter for SVMs
by performing a grid search on the ranges 2−15 ≤ γ ≤ 20

and 2−10 ≤ ν ≤ 20 with 5-fold cross-validation on
each training group. We use scikit-learn [48], an open
source machine learning library for Python that includes
a modified version of LIBSVM [25].

5.3.1 Performance of Classifiers

Table 5 shows the performance of our classifiers. Note
that for each feature model, we use the same training set
for PU-learning and one-class SVM. We observe that,
regardless of the feature model in use, PU-learning and
one-class SVM exhibit similar performance. They also
perform similar to supervised SVM in terms of false
and true negative rates (related to functional JavaScript
programs). In general, except for the syntactic feature
model where supervised SVM outperforms our one-class
classifiers in terms of false and true positives, the three
classifiers achieve very similar rates, with true positive

Feature Classifier Tracking Functional
Model Blocked Allowed Blocked Allowed

Syntactic SSVM 0.93 0.07 0.01 0.99
OCSVM 0.88 0.12 0.02 0.98

PU 0.86 0.14 0.02 0.98
PDG SSVM 0.96 0.04 0.03 0.97
4-gram OCSVM 0.95 0.05 0.03 0.97

PU 0.93 0.07 0.04 0.96
Sequential SSVM 0.98 0.02 0.01 0.99
4-gram OCSVM 0.98 0.02 0.02 0.98

PU 0.96 0.04 0.03 0.97
PDG SSVM 0.99 0.01 0.01 0.99
7-gram OCSVM 0.99 0.01 0.01 0.99

PU 0.98 0.02 0.02 0.98
Sequential SSVM 0.99 0.01 0.01 0.99
7-gram OCSVM 0.99 0.01 0.01 0.99

PU 0.98 0.02 0.02 0.98

Table 5. Performance of the classifiers against the labelled
dataset of tracking and functional JavaScript programs. true
positives and negatives, false positives and negatives.

and negative rates of up to 0.99 and false positive and
negative rates of only 0.01.

In comparison with the tested PP-Tools (cf. Ta-
ble 4), this shows an improvement in the true positive
rate by 21% to 62% and in the false positive rate by 5%
to 20%6. Not only do our classifiers outperform the PP-
Tools in effectively detecting tracking JavaScript pro-
grams, but they also do not suffer from high misclassi-
fication of functional JavaScript programs which would
result in poor user web experience.

5.3.2 Effect of Feature Models

Table 5 suggests that the feature models have an ef-
fect on the classification accuracy. The syntactic model
has the worst performance for all three classifiers. The
PDG 7-gram and sequential 7-gram models in contrast
show the best results for all the classifiers. We improve
the false negative rate by 11-12% in the case of the
one-class classifiers by using the 7-gram models. Inter-
estingly, the performance of the classifiers for classify-
ing functional JavaScript programs is similar across all
feature models, which suggests that perhaps functional
JavaScript programs have more inter-similarity than the
inter-similarity between tracking JavaScript programs.

Our results show that one-class classifiers, as non-
expensive learning techniques, perform similarly. Now
we aim to apply our one-class SVM and PU-learning
classifiers in the wild and compare their output to PP-
Tools. For this purpose, we choose the best and the
worst performers of the lot: sequential 7-gram and the
syntactic model, respectively. Note that although, per-

6 We reiterate that our comparison is fair since we configured
these PP-Tools to be consistent with our rules in Table 1.

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 90

formance wise, sequential 7-gram and PDG 7-gram are
similar, we chose the former as it requires less pre-
processing (no construction of PDGs).

6 Evaluation in the Wild
We evaluate and compare the output of our classifiers
and the PP-Tools on a set of JavaScript programs col-
lected from a large number of websites, called the wild
dataset.

6.1 The Wild Dataset
The wild dataset consists of JavaScript programs ex-
tracted from the landing page of 4,084 websites. These
websites were selected such that 3,500 of them were
top Alexa websites ranked between 51 to 3,550 inclu-
sive (since the top 50 websites were already used in the
labelled dataset), with the remaining 584 having a rank
in excess of 5,000 (excluding the 45 websites with rank
in this range used in the labelled dataset (Section 3.3)).
A total of 135,656 JavaScript programs were present
in these websites. The composition of JavaScript pro-
grams into external and in-page JavaScript programs is
shown in Table 6 (under the column labelled PP-Tools
off). The table also shows the number of in-page and
external JavaScript programs allowed by each PP-Tool
considered in our work. Again, we observe that NoScript
is the most aggressive tool, blocking on average 37.7%
of the JavaScript programs per website, closely followed
by Ghostery (34.8%) and AdBlock Plus (26%). In com-
parison, Privacy Badger and Disconnect block 11.5% of
JavaScript programs per website.

PP-Tools PP-Tools on
JS off NS GT AP DC PB
External 71,582 29,345 38,492 48,191 59,488 60,817
In-page 64,074 54,972 49,952 51,389 60,546 59,250
Total 135,656 84,428 88,444 99,580 120,034 120,067
Average per webpage 33.2 20.7 21.7 24.4 29.4 29.4
Blocked (%) - 37.7 34.8 26.6 11.5 11.5
Allowed (%) - 63.3 65.2 73.4 88.5 88.5

Table 6. Characteristics of JavaScript programs (JS) collected
from 4,084 websites with PP-Tools on and off as viewed from a
Firefox Selenium-controlled browser.

6.2 Comparing PP-Tools and our
Classifiers

We trained our PU-Learning and one-class SVM classi-
fiers using only the tracking JavaScript programs from
the labelled dataset. The trained classifiers were then
run on the wild dataset. Next, we assess the extent to
which our two classifiers agree or disagree with each
PP-Tool.

6.2.1 Agreement Ratio

Denote by Tc and Fc the set of tracking and functional
JavaScript programs, respectively, in the wild dataset
as classified by a classifier c (i.e., one-class SVM or
PU learning). Likewise, Tp, resp. Fp, denotes track-
ing, resp. functional, JavaScript programs as marked by
the PP-Tool p. Then, the ratio of agreement between c
and p on tracking JavaScript programs is |Tc ∩ Tp|/|J |,
where J is the set of JavaScript programs in the wild
dataset. Similarly, the ratio of agreement on the func-
tional JavaScript programs is |Fc ∩ Fp|/|J |. The ratio
of agreement between a classifier c and a PP-Tool p
is simply (|Tc ∩ Tp|+ |Fc ∩ Fp|)/|J |. To avoid excessive
notation, we shall denote the ratios simply by their
constituent sets. For instance, the agreement ratio for
tracking JavaScript programs will simply be written as
Tc∩Tp. Table 7 lists the values of agreement and the cor-
responding disagreement ratios (defined as 1 minus the
agreement ratio). Figure 7 in Appendix A.4 illustrates
these ratios graphically.

6.2.2 Performance of Classifiers

From Table 7, we first note that the two classifiers are
similar in terms of their agreement/disagreement with
PP-Tools, yielding very high disagreement ratio in the
syntactic model (ranging from 39% to 58%) and sig-
nificant disagreement in the sequential 7-gram model
(20% to 64%). Overall, the two classifiers are relatively
more in agreement with NoScript, followed closely by
Ghostery and Adblock Plus. This agreement, however,
is mostly in terms of classifying tracking JavaScript pro-
grams.

In terms of agreement on functional JavaScript pro-
grams, the two classifiers are more in tune with Discon-
nect and Privacy Badger. These two PP-Tools however
are the least in agreement with our classifiers in terms
of tracking JavaScript programs (ranging between 13%
and 27%). One possible explanation for this, is that Dis-
connect mostly blocks social plugins and buttons such
as Facebook Likes and Twitter Follow. This leaves a host
of other trackers allowed.

Another possible explanation for the disagreements
with PP-Tools is related to R4 in Table 1. If an In-page
JavaScript code that does not write or read cookies but
loads a tracking JavaScript code, PP-Tools may block
only the tracking JavaScript code to effectively prevent
tracking. However, following R4 (cf. Table 1), our mech-
anism classify them as tracking JavaScript codes. More-
over, the results for Privacy Badger are similar because
it mainly blocks JavaScript codes that track users across

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 91

Feature Model Classifier PP-Tool Tc ∩ Tp Tc ∩ Fp Fc ∩ Tp Fc ∩ Fp Agreement Disagreement
Syntactic OCSVM NoScript 0.56 0.10 0.29 0.05 0.61 0.39

Ghostery 0.54 0.13 0.27 0.06 0.60 0.40
Adblock Plus 0.47 0.20 0.25 0.09 0.56 0.44
Privacy Badger 0.23 0.44 0.11 0.22 0.45 0.55
Disconnect 0.17 0.50 0.08 0.25 0.42 0.58

Sequential 7-gram OCSVM NoScript 0.71 0.06 0.14 0.09 0.80 0.20
Ghostery 0.67 0.10 0.15 0.08 0.75 0.25

Adblock Plus 0.62 0.15 0.11 0.13 0.75 0.25
Privacy Badger 0.27 0.5 0.07 0.16 0.43 0.57
Disconnect 0.19 0.58 0.06 0.17 0.36 0.64

Syntactic PU NoScript 0.50 0.07 0.36 0.07 0.57 0.43
Ghostery 0.47 0.10 0.35 0.08 0.55 0.45

Adblock Plus 0.43 0.14 0.30 0.13 0.56 0.44
Privacy Badger 0.18 0.38 0.15 0.28 0.46 0.54
Disconnect 0.13 0.44 0.12 0.31 0.44 0.56

Sequential 7-gram PU NoScript 0.70 0.05 0.16 0.09 0.79 0.21
Ghostery 0.65 0.10 0.16 0.09 0.74 0.26

Adblock Plus 0.61 0.14 0.12 0.13 0.74 0.26
Privacy Badger 0.18 0.57 0.07 0.18 0.36 0.64
Disconnect 0.26 0.49 0.07 0.18 0.44 0.56

Table 7. Agreement and disagreement in classification of tracking and functional JavaScript programs between our classifiers and PP-
Tools on the wild dataset; agreement, disagreement; Tp and Fp represent JavaScript programs classified as tracking and func-
tional, respectively, by the PP-Tool p, and Tc and Fc represent JavaScript programs classified as tracking and functional, respectively,
by the classifier c.

multiple websites through cookies, which is routinely
done by social widgets.

6.2.3 Effect of Feature Models

Table 7 also shows that the sequential 7-gram model of
the two classifiers is more in agreement with NoScript,
Ghostery and Adblock Plus as compared to the syntac-
tic model, by around 20%. However, the difference is
nominal for Disconnect and Privacy Badger, with our
classifiers agreeing more with these two PP-Tools in the
syntactic model. In the following, we further analyse the
observed disagreement by using the sequential 7-gram
model of the one-class SVM as it showed superior results
during our validation experiments (Section 5.3).

6.3 Analysing Disagreements
We delve into the set of JavaScript programs on which
all PP-Tools and our one-class SVM with sequential 7-
grams classifier disagree. We are interested in the two
facets of disagreement: JavaScript programs that our
classifier considers tracking but all the PP-Tools con-
sider functional, i.e., the set Tc ∩p Fp, and JavaScript
programs that our classifier deems tracking while all
PP-Tools consider functional, i.e., Fc ∩p Tp. Note that
subscripts c and p stand for our classifier and a PP-Tool,
respectively.

The number of JavaScript programs for which our
classifier and all PP-Tools are in disagreement is 9,071,

representing 6% of the total number of JavaScript pro-
grams in the wild dataset. These JavaScript programs
are split as 4,610 for Tc∩pFp and 4,461 for Fc∩p Tp. In-
specting these sets of disagreement would shed light on
the main reasons for disagreement. Unfortunately, man-
ually inspecting thousands of JavaScript programs (us-
ing the process used for producing our labelled dataset)
is a tedious and time consuming process. We instead
took a pragmatic approach, where we randomly sampled
100 JavaScript programs each from the two sets of dis-
agreement. We then manually inspected each JavaScript
from the two samples and classified them as tracking
or functional following the rules and methodology de-
scribed in Section 3.3. The results of this manual process
are shown in Table 8.

Our classifier is correct in its labelling of 75 out of
the 100 JavaScript programs it considered tracking. All
these JavaScript programs are marked as functional by
all the PP-Tools, implying that the PP-Tools are correct
in labelling only 25 of these JavaScript programs. More-
over, our classifier correctly deemed 81 out of the 100
JavaScript programs as functional, implying that the
PP-Tools correctly labelled only 19 of the JavaScript
programs in the random sample. Note that these num-
bers should not be taken as reflecting the overall classifi-
cation performance of our classifier, which was validated
in Section 5.3. These samples merely represent the cor-

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 92

Disagreement Total Sample Manual Labelling
Tracking Functional

Tc ∩p Fp 4,610 100 75 25
Fc ∩p Tp 4,461 100 19 81

Table 8. Comparison of random samples of disagreement between
our classifier and All PP-Tools. manual labelling agrees with
classifier and disagrees with PP-Tools, manual labelling dis-
agrees with classifier and agrees with PP-Tools.

ner cases of complete disagreement with all other PP-
tools. In other words, these numbers do not directly give
us the true and false positive rates of our classification
methodology.

We first look at the 75 JavaScript programs cor-
rectly labelled as tracking by our classifier, and in-
correctly considered as functional by the PP-Tools.
Table 10 in Appendix A.4 shows 10 representative
JavaScript programs from this sample. We identify
two typical reasons the PP-Tools miss blocking these
JavaScript programs:

1. PP-Tools do not perform regular expression match-
ing on the body of JavaScript programs to identify
known trackers. Examples from these “misses” are
JavaScript programs #2 and #3 in Table 10, which
are allowed by all PP-Tools even though the referred
domain doubleclick.net is included in their black-
lists; this is because these JavaScript programs refer
to this domain in their body, and the PP-Tools per-
form a regular expression match only on the URL
of the JavaScript within the script tag.

2. As expected PP-Tools are unable to block track-
ers that are not in the blacklist. An example is
JavaScript #9 in the table which we manually check
to be a social widget allowing users to ‘like’ com-
ments on the webpage while tracking the user ac-
tivity which is then transmitted to the first party
domain. All PP-Tools miss this JavaScript because
it does not belong to a popular social media do-
main. Similarly, JavaScript #4 in the table belongs
to a Russian tracking and advertising service do-
main i-vengo.com, but it is not in the blacklists of
PP-Tools.

Our classifier correctly marked these JavaScript pro-
grams as tracking as these scripts were syntactically and
structurally similar to the tracking JavaScript programs
used for training our classifiers. We stress that our clas-
sifiers do not need to know about all tracking scripts a
priori; in fact, our classifiers are able to find new track-
ing scripts leveraging the syntactic and semantic sim-
ilarity between known tracking scripts and previously
unknown tracking JavaScript programs.

Next, we look at the 81 JavaScript programs cor-
rectly labelled as functional by our classifier, and incor-
rectly considered as tracking by the PP-Tools. Table 11
in Appendix A.4 shows 10 JavaScript programs from
this sample. The predominant reason for the PP-Tools
mistakenly blocking these JavaScript programs is be-
cause they belong to a tracking domain, even though the
JavaScript itself performs a useful functionality. A typi-
cal example is JavaScript #10 in the table, which fetches
content from the first party domain buzzfeed.com with-
out sending or collecting user information.

Lastly, we believe that the main reason our classifier
misclassified 25 functional JavaScript programs and 19
tracking JavaScript programs is due to their structural
similarity with representatives of the opposite class. For
instance, the JavaScript jquery.cookie.js in the web-
site pnc.com modifies cookies for this non-tracking do-
main. The PP-Tools rightly allow this JavaScript be-
cause pnc.com is not a tracking domain. But, due to the
structural similarity of this JavaScript with JavaScript
programs that modify cookies for tracking domains, our
classifier deemed it as tracking. Similarly, our classifier
misclassified the JavaScript count.js that gathers com-
ment statistics on the website listverse.com and sends
this information to the domain disqus.com, which is
listed as a tracker by the PP-Tools. Our classifier mis-
read this due to its similarity with JavaScript programs
that maintain comments on a webpage but do not send
this information through to third party trackers. For
brevity, we do not enlist samples of these two categories
of JavaScript programs misclassified by our classifier.

7 Discussion
In the following, we discuss possible uses and limitations
of our approach.

7.1 Possible Uses
We envision at least two different uses of our technique:
7.1.1 Browser Extension

A natural application of our technique is a client-
based browser extension to evade trackers. We are cur-
rently developing a Firefox browser extension which ex-
tracts the JavaScript programs while a webpage is being
loaded (prior to rendering) and calculates the similar-
ities of the observed JavaScript programs against the
training model which is kept locally. As discussed later
in this section, we aim to periodically update the train-
ing model using a semi-supervised learning technique
[23]. We believe that such an extension is practical, as
our current system classifies in the order of millisec-
onds per website. Development of the browser extension

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 93

would also enable us to directly compare the actual per-
formance of our system in terms of time and memory
with existing PP-Tools.

7.1.2 Updating Blacklists and Whitelists

Another possible use of our technique is to improve the
accuracy of existing PP-Tools by updating their filtering
lists. These tools could submit sets of JavaScript pro-
grams embedded in webpages (randomly chosen via a
web scanner) to the classifier which would identify them
as functional or tracking. The domains corresponding to
the URLs linking these JavaScript programs can then
be deemed tracking or tracking-free. The newly identi-
fied URLs can be used to update the PP-tool’s blacklists
(generally locally stored on the user browser) or to refine
whitelists used by some tools such as NoScript. How-
ever, it is important to note that the generated URLs
might lead to errors, potential false positives and nega-
tives, as the same domain may produce both functional
and tracking JavaScript programs, and thus the deci-
sion to mark the domain tracking or tracking-free lacks
the contextual information used by the classifier. One
trivial example is http://static.bbci.co.uk domain
which can be observed in both functional and tracking
JavaScript programs. Another important caveat is that
the blacklist based approach inherently does not filter
in-page JavaScript programs, and as such the PP-Tools
considered in this paper do not block their execution,
with the exception of NoScript (which, as we have seen,
aggressively blocks execution of JavaScript codes).

7.2 Limitations and Possible
Improvements

7.2.1 Classification Arms Race - Feature-exploit Case

In principle, machine learning based detection is prone
to exploits that introduce features absent from the train-
ing set [27]. In our case, the tracker could introduce some
unique or rare piece of tracking code in the JavaScript
code. Due to the uniqueness of the resulting JavaScript
code, its feature set is unlikely to be present in the train-
ing model, and is therefore likely to go undetected. This
can particularly be the case with non-pervasive “hand-
crafted” trackers. However, as these pieces of code be-
come ubiquitous and with periodic re-training of the
classifier, this exploit can be circumvented.

7.2.2 Classification Arms Race - Code Obfuscation
Case

A tracker might also evade detection by obfuscating a
tracking JavaScript code either by renaming it or by
making changes to its code. In the first case, since our

approach is based on code similarity of JavaScript codes,
renaming does not affect the efficiency of our classifiers
(unlike blacklist based PP-Tools). In the latter case, the
attacker might (i) rename function or variable names,
(ii) add or remove whitespaces, (iii) add zero-impact or
dummy code, (iv) or encode the JavaScript code [54].
In the semantic feature models, our classifiers are re-
silient against the first two types of JavaScript code
obfuscation strategies. We illustrate this via an exam-
ple in Appendix A.6. On the other hand, the attacker
might evade detection by applying the last two types
of JavaScript code obfuscation techniques. We believe
that this presents the classical arms race issue which we
elaborate (Appendix A.6), as a limitation of our work.

7.2.3 The manual labelling challenge

In this work, we used a relatively small set of labelled
tracking and functional JavaScript programs (2, 612 to
be precise). Our choice was dictated largely by the time
consuming nature of the labelling process. Obviously,
the performance of the classifier can be improved by in-
creasing this number. One approach is to rely on crowd-
sourcing and recruit “tech-savvy” users as reviewers of a
JavaScript code. This is not a trivial task as it requires
considerable effort in providing guidelines (i.e., Table 1)
to the reviewers, a platform for interaction, and the need
to resolve conflicts in labelling due to variable technical
expertise of reviewers.

Alternatively, hybrid schemes such as semi-
supervised learning [23] can be used. The basic idea be-
hind semi-supervised learning is to use unlabelled data
to improve the training model that has been previously
built using only labelled data. Semi-supervised learn-
ing has previously been successfully applied to real-time
traffic classification problems [29], showing that auto-
mated identification of re-training points is possible.
Note that our model does not have to be re-trained as
frequently as updating the blacklists of PP-Tools. Black-
lists need to be frequently updated so that PP-Tools can
keep track of new tracker URLs. In our case, re-training
is only required in case new tracking JavaScript codes
with unconventional code structure emerge. This is ex-
pected to occur far less frequently.

8 Related Work
In recent years, there has been much research on privacy
implications of web tracking [22, 30, 35–38, 45, 52, 53].
For a recent and comprehensive survey on web tracking
techniques and tracking prevention policies, see [41].

Specific to automated detection of trackers, the
work of Gugelmann et al. [31] is related to ours in the

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 94

sense that they use a machine-learning approach to de-
tect tracking JavaScript codes. However, there are fun-
damental differences: (1) they use HTTP traffic traces
instead of code analysis (which is done in our case). The
resulting features are therefore traffic-based features as
opposed to our approach where we use JavaScript syn-
tax and structure based features. The features are ex-
tracted by inspecting HTTP requests sent from the
users’ browsers. The HTTP request statistics can be
hard to gather and can be privacy intrusive themselves
as is acknowledged by the authors themselves [31]; (2)
Gugelmann et al.’s approach requires collaboration be-
tween different network nodes and services to gather
traffic traces to apply machine learning algorithms on
them (also, once again, raising privacy issues). In com-
parison, our approach can be used via a client-side
browser extension where the machine learning algo-
rithms are applied on the webpages directly. Thus, our
approach relies on data treated locally from one node
only (the client’s browser), whereas the approach in [31]
relies on data as monitored and accumulated from the
network; (3) Finally, their approach is focused on aiding
and complementing a list of trackers from the blacklist
of Adblock Plus, whereas our main objective is to build
a standalone detection of tracking entities.

Similarly, the closest work to ours is by Orr et
al. [47] who proposed a machine learning approach to
detect JavaScript-based advertisements. However, [47]
detects only ad-related JavaScript codes, while we tar-
get and identify a wider class of tracking JavaScript
codes, which on top of advertisements, includes ana-
lytics, cookie readers/writers, social media widgets, etc.
In addition, Orr et al. use static code analysis of ad
related JavaScript codes to come up with a set of 20
features to discriminate between ad related and non-
ad related JavaScript codes. Since we consider the class
of trackers to be much more diverse, static code analy-
sis of such a diverse class is not only infeasible, but it
might not result in a common set of features for all dif-
ferent classes of trackers. Therefore, the approach used
in our paper is to generate dynamic features from the
code syntax and structure of JavaScript codes through
a tf-idf approach. This approach is fundamentally dif-
ferent from static code analysis, as these features are
based on syntax and structure rather than manual ex-
traction of features, which makes our approach more
feasible and generic. Finally, Orr et al. do not evaluate
their classifiers in the wild and it is unclear how the clas-
sifier performs against PP-Tools that specifically block
advertisements. Hence, it is difficult to determine the
advantage of their approach over ad-blocking PP-Tools.

In our paper, we compare the performance of our clas-
sifiers against existing PP-Tools and show classification
performance improvement.

Tran et al. [52] use tainting for dynamic analysis of
JavaScript execution to assess private information leak-
age. They end up detecting one tracking website in ad-
dition to the services listed by Ghostery. In contrast,
our framework reveals more than 4,000 new JavaScript
codes showing tracker-like behaviour, and based on a
representative sample we estimate that 75% indeed of-
fer traditional advertisement and analytics services.

In [32], authors focus on plagiarism detection of
codes. We inherit the n-grams technique from [32]
to identify similarity between functional and tracking
JavaScript codes. However, for the purpose of our clas-
sification problem, we need also to distinguish between
two classes of programs, functional and tracking, for
which we use more specialized approaches: one-class
SVM and PU learning.

Lastly, we remark that our work on the effectiveness
of PP-Tools is complementary to prior work on their
performance aspects, such as [39] which focus on the
user-friendliness of PP-Tools.

9 Concluding Remarks
This paper presented a new automated mechanism to ef-
fectively filter tracking JavaScript programs from func-
tional JavaScript programs, both embedded and exter-
nally linked, within the DOM trees of webpages. We first
study the (in)effectiveness of popular privacy-preserving
tools with respect to balancing blocking of tracking
JavaScript programs and allowing functional JavaScript
programs. We then postulate and verify that one-class
machine learning techniques that utilize similarities be-
tween tracking JavaScript programs based on syntactic
and semantic features can effectively improve user’s web
experience. One key aspect of our work is the ability
of our classifiers to discover previously unseen tracking
JavaScript programs. We stress that our methodology is
generic and can be adapted to more conservative choices
of what are considered functional JavaScript codes (e.g.,
JavaScript codes related to social media). Our current
labelling is strict on what is considered tracking. Our
classifiers can easily be tuned by simply adding or re-
moving few instances of JavaScript programs from the
tracking set used in training. In the future, we aim a
characterizing JavaScript programs’ obfuscation tech-
niques to improve the resiliency of our proposed scheme.
Finally, we also aim to evaluate our scheme against
browser fingerprinting JavaScript programs.

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 95

References
[1] Adblock Plus. https://www.adblockplus.org.
[2] difflib – Helpers for computing deltas. Python 2.7.11 docu-

mentation, https://docs.python.org/2.7/library/difflib.html.
[3] Disconnect. https://www.disconnect.me/.
[4] Disqus. http://www.disqus.com/.
[5] EasyList. https://easylist-downloads.adblockplus.org/

easylist.txt.
[6] Easyprivacy. https://easylist.to/easylist/easyprivacy.txt.
[7] EFF DNT Policy. https://www.eff.org/dnt-policy.
[8] Ghostery. https://www.ghostery.com.
[9] Ghostery 5.4.7 is ready to run! https://www.ghostery.com/

intelligence/consumer-blog/product-releases/ghostery-547-
is-ready-to-run/.

[10] Google Analytics. https://www.google.com/analytics/.
[11] Javascript Obfuscator. Dan’s tools, http://www.danstools.

com/javascript-obfuscate/.
[12] Known Adblock Plus Subscriptions. https://adblockplus.

org/subscriptions.
[13] Moat. http://www.moat.com/.
[14] NoScript. https://www.noscript.net.
[15] PFanboyList. https://easylist-downloads.adblockplus.org/

fanboy-social.txt.
[16] Privacy Badger Firefox. https://github.com/EFForg/

privacybadgerfirefox/blob/master/data/cookieblocklist.txt.
[17] Real-Time Digital Advertising That Works | Criteo. http:

//www.criteo.com.
[18] Script Surrogates Quick Reference. https://hackademix.net/

2011/09/29/script-surrogates-quick-reference/.
[19] Search Results in Ghostery - 381 Topics Found for Break-

ing. https://getsatisfaction.com/ghostery/searches?query=
breaking&x=15&y=10&style=topics.

[20] Visual Revenue. http://www.visualrevenue.com.
[21] What is Selenium? http://www.seleniumhq.org/.
[22] G. Acar, C. Eubank, S. Englehardt, M. Juarez,

A. Narayanan, and C. Diaz. The Web Never Forgets: Persis-
tent Tracking Mechanisms in the Wild. CCS, 2014.

[23] S. Basu, M. Bilenko, and R. J. Mooney. A Probabilistic
Framework for Semi-supervised Clustering. KDD, 2004.

[24] A. Chaabane, M. A. Kaafar, and R. Boreli. Big Friend is
Watching You: Analyzing Online Social Networks Tracking
Capabilities. WOSN, 2012.

[25] C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Support
Vector Machines. ACM ToIST, 2011.

[26] N. Corporation. January 2013: Top U.S. Entertainment Sites
and Web Brands. Visited 23 May 2016, http://www.nielsen.
com/us/en/insights/news/2013/january-2013--top-u-s--
entertainment-sites-and-web-brands.html, 2013.

[27] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. ZOZZLE:
Fast and Precise In-browser JavaScript Malware Detection.
USENIX SEC, 2011.

[28] C. Elkan and K. Noto. Learning Classifiers from Only Posi-
tive and Unlabeled Data. KDD, 2008.

[29] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and
C. Williamson. Offline/Realtime Traffic Classification Us-
ing Semi-supervised Learning. Perform. Eval., 2007.

[30] P. Gill, V. Erramilli, A. Chaintreau, B. Krishnamurthy,
K. Papagiannaki, and P. Rodriguez. Follow the Money:

Understanding Economics of Online Aggregation and Adver-
tising. IMC, 2013.

[31] D. Gugelmann, B. Ager, and V. Lenders. An Automated
Approach for Complementing Ad Blockers’ Blacklists. PETs,
2015.

[32] C.-H. Hsiao, M. Cafarella, and S. Narayanasamy. Using Web
Corpus Statistics for Program Analysis. OOPSLA, 2014.

[33] M. Ikram, H. Asghar, M. A. Kaafar, and A. Mahanti. On
the Intrusiveness of JavaScript on the Web. CoNEXT, Stu-
dent Workshop, 2014.

[34] M. Ikram, H. J. Asghar, M. A. Kaafar, B. Krishnamurthy,
and A. Mahanti. Towards seamless tracking-free web: Im-
proved detection of trackers via one-class learning. arXiv
(pre-print), doi: 603.06289.

[35] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An Empirical
Study of Privacy-violating Information Flows in JavaScript
Web Applications. CCS, 2010.

[36] B. Krishnamurthy. I Know What You Will Do Next Summer.
SIGCOMM CCR, 2010.

[37] B. Krishnamurthy, D. Malandrino, and C. E. Wills. Mea-
suring Privacy Loss and the Impact of Privacy Protection in
Web Browsing. SOUPS, 2007.

[38] B. Krishnamurthy, K. Naryshkin, and C. Wills. Privacy
leakage vs. Protection measures: The Growing Disconnect.
W2SP, 2011.

[39] P. Leon, B. Ur, R. Shay, Y. Wang, R. Balebako, and L. Cra-
nor. Why Johnny Can’T Opt out: A Usability Evaluation of
Tools to Limit Online Behavioral Advertising. In SIGCHI,
2012.

[40] B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu. Building
Text Classifiers Using Positive and Unlabeled Examples.
ICDM, 2003.

[41] J. R. Mayer and J. C. Mitchell. Third-Party Web Tracking:
Policy and Technology. IEEE S&P, 2012.

[42] H. Metwalley, S. Traverso, and M. Mellia. The Online
Tracking Horde: a View from Passive Measurements. TMA,
2015.

[43] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. MK Publishers Inc., 1997.

[44] K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and
B. Scholkopf. An Introduction to Kernel-based Learning
Algorithms. ToNN, 2001.

[45] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless Monster: Exploring
the Ecosystem of Web-Based Device Fingerprinting. IEEE
S&P, 2013.

[46] L. Olejnik, C. Castelluccia, and A. Janc. Why Johnny Can’t
Browse in Peace: On the Uniqueness of Web Browsing His-
tory Patterns. HotPETs, 2012.

[47] C. R. Orr, A. Chauhan, M. Gupta, C. J. Frisz, and C. W.
Dunn. An Approach for Identifying JavaScript-loaded Adver-
tisements Through Static Program Analysis. WPES, 2012.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python. J. Mach. Learn. Res., 2011.

[49] Rieck, Konrad and Krueger, Tammo and Dewald, An-
dreas. Cujo: Efficient detection and prevention of drive-
by-download attacks. ACSAC, 2010.

https://www.adblockplus.org
https://docs.python.org/2.7/library/difflib.html
https://www.disconnect.me/
http://www.disqus.com/
https://easylist-downloads.adblockplus.org/easylist.txt
https://easylist-downloads.adblockplus.org/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://www.eff.org/dnt-policy
https://www.ghostery.com
https://www.ghostery.com/intelligence/consumer-blog/product-releases/ghostery-547-is-ready-to-run/
https://www.ghostery.com/intelligence/consumer-blog/product-releases/ghostery-547-is-ready-to-run/
https://www.ghostery.com/intelligence/consumer-blog/product-releases/ghostery-547-is-ready-to-run/
https://www.google.com/analytics/
http://www.danstools.com/javascript-obfuscate/
http://www.danstools.com/javascript-obfuscate/
https://adblockplus.org/subscriptions
https://adblockplus.org/subscriptions
http://www.moat.com/
https://www.noscript.net
https://easylist-downloads.adblockplus.org/fanboy-social.txt
https://easylist-downloads.adblockplus.org/fanboy-social.txt
 https://github.com/EFForg/privacybadgerfirefox/blob/master/data/cookieblocklist.txt
 https://github.com/EFForg/privacybadgerfirefox/blob/master/data/cookieblocklist.txt
http://www.criteo.com
http://www.criteo.com
https://hackademix.net/2011/09/29/script-surrogates-quick-reference/
https://hackademix.net/2011/09/29/script-surrogates-quick-reference/
https://getsatisfaction.com/ghostery/searches?query=breaking&x=15&y=10&style=topics
https://getsatisfaction.com/ghostery/searches?query=breaking&x=15&y=10&style=topics
http://www.visualrevenue.com
http://www.seleniumhq.org/
http://www.nielsen.com/us/en/insights/news/2013/january-2013--top-u-s--entertainment-sites-and-web-brands.html
http://www.nielsen.com/us/en/insights/news/2013/january-2013--top-u-s--entertainment-sites-and-web-brands.html
http://www.nielsen.com/us/en/insights/news/2013/january-2013--top-u-s--entertainment-sites-and-web-brands.html

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 96

PP-Tool Filtering Method Setting

NS (v2.6.9.11) Block all JS Default blocking mode with
iframes blocking option on

GT (v5.4.1) Blacklist Enabled ‘Blocking all tracker
and cookies’ option

AP (v2.6.7) Blacklist EasyList and Fanboy’s list and
disabled ‘Allow non-intrusive
ads’ option

DC (v3.14.0) Blacklist Default
PB (v0.1.4) Heuristics and Default

cookies blacklist

Table 9. PP-Tools’ settings used with Firefox v32.0.

[50] F. Roesner, T. Kohno, and D. Wetherall. Detecting and
Defending Against Third-party Tracking on the Web. NSDI,
2012.

[51] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola,
and R. C. Williamson. Estimating the Support of a High-
Dimensional Distribution. NC, 2001.

[52] M. Tran, X. Dong, Z. Liang, and X. Jiang. Tracking the
Trackers: Fast and Scalable Dynamic Analysis of Web Con-
tent for Privacy Violations. ACNS, 2012.

[53] C. Wills and D. Uzunoglu. What Ad Blockers Are (and Are
Not) Doing. WPI-CS-TR-16-02, 2016.

[54] W. Xu, F. Zhang, and S. Zhu. The Power of Obfuscation
Techniques in Malicious JavaScript Code: A Measurement
Study. MALWARE, 2012.

[55] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host Fin-
gerprinting and Tracking on the Web: Privacy and Security
Implications. NDSS, 2012.

[56] C. Yue and H. Wang. Characterizing Insecure Javascript
Practices on the Web. WWW, 2009.

A Appendix

A.1 PP-Tools Settings And Trackers
Distribution in Heat-up Webpages

Table 9 presents the PP-Tools and their settings used in
our experiments to collect the datasets as discussed in
Section 3.2. Figure 4 and Figure 5 show the type and dis-
tribution of trackers, respectively, in heat-up webpages
as explained in Section 4.2.

A.2 Canonicalization of JavaScript
programs

The canonical form is an intermediate representation of
the JavaScript program where variable names and loop
specifics are abstracted away in an effort to apply natu-
ral language processing-like techniques on the resulting
code representation. To explain the canonical form and

PDG of a JavaScript program, consider the following
(toy) ‘equalTest’ Javascript function:

Listing 1. An Example of JavaScript Program

function equalTest (a, b){
if(a == b){

return true ;}
return false ;}

The canonical form of this routine is:

Listing 2. Canonical form of JavaScript code in Listing # 3

function equalTest (a, b){
1: begin;
2: $0 = a === b;
3: if($0){
4: return true ;}
5: return false;
6: end ;}

One line of the canonical form consists of a binary
operation, its operands or an assignment. The PDG of
this routine is shown in Figure 6a. The 2 and 3-grams of
line 3 above is shown in Figure 6b. For a more detailed
example of these concepts, see [32].

A.3 Positive and Unlabelled (PU)
Learning

The PU learning technique, translated to our prob-
lem space, constructs a probabilistic classifier that de-
cides whether a JavaScript code is tracking or functional
from a probabilistic classifier that decides whether a
JavaScript program is labelled or unlabelled. More pre-
cisely, it constructs the classifier f(j) = Pr[y = +1 | j]
from the classifier g(j) = Pr[l = 1 | j]. The two classes
in g(j) are the labelled and unlabelled JavaScript pro-
grams, whereas the two classes in f(j) are positive
(tracking) and negative (functional) JavaScript pro-
grams. To understand the concept behind PU learning,
notice that the assumptions (a) only positive examples
(tracking JavaScript programs) are labelled, (b) the set
of labelled examples is chosen uniformly at random from
all positive examples, lead to the result Pr[l = 1 | j, y =
−1] = 0 and Pr[l = 1 | j, y = +1] = Pr[l = 1 | y = +1].
The probability Pr[l = 1 | y = +1] is the constant prob-
ability that a positive example is labelled (as it is inde-
pendent of j). Now we can have Pr[l = 1 | j] as

Pr[l = 1 | j] = Pr[l = 1 | j, y = −1] Pr[y = −1 | j]
+ Pr[l = 1 | j, y = +1] Pr[y = +1 | j]
= Pr[l = 1 | y = +1] Pr[y = +1 | j].

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 97

0

20

40

60

GoogleAds

GoogleAnalytics

Doubleclick

Tealium
Gemius

Cloudfro
nt

Sizmek
AdTech

Omniture

AppNexus

BaiduAds

Rubicon

AdOcean
Crite

o

FacebookLike
s

SmartA
dServe

r

KruxDigital
Twitte

r

ScorecardResearch

Chartb
eat

AudienceScience

Outbrain

Taboola

FacebookSDK

GoolgePlusone

VisualRevenue

Ensighten

Pubmatic

Maximiser

Mediaplex

Optim
izely

LavaNetwork

Parse.ly

TribalFusion

AdobeTag

of

 H
ea

t−
up

 W
eb

pa
ge

s

Frequency of Trackers in Heat−up Webpages

Fig. 4. Top 35 trackers (x-axis) in heat-up webpages as discribed in Section 4.2

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

of Heat−up Webpages

C
u

m
m

u
la

ti
v
e

 T
ra

c
k
e

rs
 C

o
u

n
t

Fig. 5. Distribution of trackers in heat-up webpages as discribed
in Section 4.2

begin

===

if

return

end

return

1

2

3

4

6

5

(a)

===

if

2

3

begin

===

if

1

2

3

(b)

Fig. 6. (a) Program dependency graph of the equalTest canoni-
cal form. (b) 2-gram (top) and 3-gram (bottom) of line 3 of the
program dependency graph.

As Pr[l = 1 | y = +1] is a constant, we get the clas-
sifier f(j) from g(j). We need only to estimate Pr[l =
1 | y = +1]. For this, a validation set consisting of only
labelled examples, say P , can be used. Note that, ac-
cording to the assumption above, the labelled examples
are all positive. Therefore, in the above equation, for
j ∈ P , the term Pr[y = +1 | j] is 1. This means that g(j)
is equal to the constant Pr[l = 1 | y = +1] for the valida-
tion set P . Thus, we can use the trained classifier g(j)
on the validation set P to estimate this constant prob-
ability by 1

|P |
∑

j∈P g(j). In this work, we choose SVM
as the trained classifier, i.e. g(j). The reader can refer
to [28, 40] for a more comprehensive treatment on PU
learning.

A.4 Analyzing Disagreement : Examples

Examples where there is disagreement between our clas-
sifier and PP-Tools are shown in Table 10 and Table 11.
In essence, we show examples of JavaScript codes that
are classified as tracking JavaScript codes (resp. func-
tional) while classified as functional (resp. tracking) by
the ensemble of PP-Tools. We discuss these details in
Section 6.3. For reference, the ratio of agreement and
disagreement between our classifier and PP-Tools on the
wild dataset is also illustrated in Figure 7.

A.5 Surrogate JavaScript Programs

While using PP-Tools, certain content might not be
working properly [19]. This is known as broken web-
pages. This happens when certain web-components are
blocked on a website which might be necessary for
smooth browsing. In order to tackle broken pages, ex-
ceptions and errors, PP-Tools often inject snippets of
non-tracking JavaScript programs, also called surrogate
scripts, when they block content from loading. Through
manual inspection, we observed that both Ghostery
and NoScript inject surrogate scripts. We investigated
Ghostery and NoScript source codes to derive a com-
prehensive list of surrogates.

Interestingly, however, we noticed that using its
‘block all trackers’ setting, certain Ghostery surrogate
scripts do not necessarily facilitate smooth browsing. In-
stead, they block useful content. For instance, Figure 8
shows an example where Ghostery injects a surrogate
script for the brightcove widget. The resulting surro-
gate script blocks the video content on the webpage,
which is arguably a useful functionality.

A.6 JavaScript Code Obfuscation

In this section, we further illuminate on the resiliency
of our classifier against JavaScript code obfuscation

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 98

NS GT AP PB DC
0.0

0.2

0.4

0.6

0.8

1.0

Tc ∩Tp
Fc ∩Fp

Tc ∩Fp
Fc ∩Tp

0

30K

60K

90K

120K

135K

(a) Syntactic OCSVM.

NS GT AP PB DC
0.0

0.2

0.4

0.6

0.8

1.0

Tc ∩Tp
Fc ∩Fp

Tc ∩Fp
Fc ∩Tp

0

30K

60K

90K

120K

135K

(b) Sequential 7-gram OCSVM.

NS GT AP PB DC
0.0

0.2

0.4

0.6

0.8

1.0

Tc ∩Tp
Fc ∩Fp

Tc ∩Fp
Fc ∩Tp

0

30K

60K

90K

120K

135K

(c) Syntactic PU.

NS GT AP PB DC
0.0

0.2

0.4

0.6

0.8

1.0

Tc ∩Tp
Fc ∩Fp

Tc ∩Fp
Fc ∩Tp

0

30K

60K

90K

120K

135K

(d) Sequential 7-gram PU.

Fig. 7. Agreement (&) and disagreement (&) in classification of tracking and functional JavaScript programs between our
classifiers and PP-Tools on the wild dataset. Tp and Fp represent JavaScript programs classified as tracking and functional, respec-
tively, by the PP-Tool p, and Tc and Fc represent JavaScript programs classified as tracking and functional, respectively, by the classi-
fier c; NS, GT, AP, PB, and DC stand for NoScript, Ghostery, Adblock Plus, Privacy Badger, and Disconnect, respectively.

Website JavaScript Program Referred Domain Function Performed

1 examiner.com cdn2-b.examiner.com/.../ex_omniture/s_code.js omniture.com Analytics
2 bbc.com static.bbci.co.uk/bbcdotcom/.../adverts.js pubads.g.doubleclick.net Analytics + Ads
3 telegraph.co.uk telegraph.co.uk/template/ver1-0/js/gpt.js pubads.g.doubleclick.net Analytics + Ads
4 vesti.ru s.i-vengo.com/js/ivengo.min.js www.i-vengo.com Analytics + Ads
5 climatempo.com.br http://s1.trrsf.com/metrics/inc/br/201411250000d.js scorecardresearch.com Analytics
6 amc.com amc.com/wp-content/plugins/amcn-common-

analytics/js/common-analytics.js
omniture.com Track user activities

7 lancer.com static.lancers.jp/js/ga_social_tracking.js google.com Tracker user activities
8 iqiyi.com static.iqiyi.com/js/pingback/qa.js pps.tv, baidu.com, 71.com Tracker user activities
9 babyblog.ru act.babyblog.ru/static844/likes.js babyblog.ru Social widgets
10 autoscout.de s.autoscout24.net/unifiedtracking/gtm.js autoscout.de Tracks user activities

Table 10. Ten JavaScript programs our classifier correctly classified as tracking and all the PP-Tools wrongly classified as functional
verified through manual labelling.

Website JavaScript Program Referred Domain Function Performed

1 crateandbarrel.com j.c-b.co/js/account_1505080410.js crateandbarrel.com Creates user accounts
2 suomi24.fi kiwi27.leiki.com/focus/mwidget.js leiki.com Magnifying widget
3 nhl.com b3.mookie1.com/2/LB/3115965742.js cdn-akamai.mookie1.com Fetches content
4 michael.com edgesuite.net/js/picturefill.min.js - Fetches content
5 ing.nl ensighten.com/ing/NL-ingnl-prod/code/fc_90aaa8fc7.js ing.nl Fetches content
6 worldoftanks.ru mc.wargaming.net/tsweb.js wargaming.net Sets session cookie
7 divyabhaskar.co.in nr.taboola.com/newsroom/bhaskar-divyabhaskar/getaction.js taboola.com Enables user interac-

tion
8 15min.lt 15minadlt.hit.gemius.pl/_1431091788674/redot.js squarespace.com Timestamps user lo-

gin
9 abovetopsecret.com casalemedia.com/j.js abovetorespect.com Fetches content
10 buzzfeed.com ct-ak.buzzfeed.com/wd/UserWidget.js s3.amazonaws.com Fetches content

Table 11. Ten JavaScript programs our classifier correctly classified as functional and all the PP-Tools incorrectly classified as tracking
verified through manual labelling.

(Section 7.2.2). In the semantic feature models, our
classifiers are resilient against the first two types of
JavaScript code obfuscation strategies: (i) rename func-
tion or variable names and (ii) add or remove whites-
paces. For instance, Criteo[17] sets its tracking cookies
at dailymotion.com with the JavaScript code shown in

Listing 3. By using an online obfuscation tool [11], the
obfuscated version of this code is shown in Listing 1,
with variable names replaced and white spaces removed
(i.e., type (i) and (ii) obfuscation as mentioned in Sec-
tion 7.2.2). The canonical form (cf. Appendix A.2) of
both the original code and the obfuscated code is the

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 99

(a) (b)

Fig. 8. Ghostery’s filters (a) video content by blocking
brightcove widget on www.9news.com.au. Once unblocked,
brightcove loads (b) video content on the web-page.

same, as shown in Listing 2, meaning that our seman-
tic feature models based classifiers will still detect the
obfuscated, tracking JavaScript codes.

Listing 3. An Example of JavaScript Program

var crtg_nid ="1822";
var crtg_cookiename =" co_au ";
var crtg_varname =" crtg_content ";
function crtg_getCookie (c_name){
var i,x,y, ARRCookies = document .

cookie .split (";");
for(i=0;i< ARRCookies . length ;i++)
{

x= ARRCookies [i]. substr (0, ARRCookies [i].
indexOf ("="));

y= ARRCookies [i]. substr (ARRCookies [i].
indexOf ("=")+1);

x=x. replace (/^\s+|\s+$/g ,"");
if(x== c_name){

return unescape (y);
}
}
return "";

}

Listing 1. Type (i) and (ii) obfuscation.

var a ="1822"; var b=" co_au "; var c=" crtg_
content "; function crtg_getCookie (e){ var i,x,y,
d= document . cookie .split (";"); while(i<d. length)
{x=d[i]. substr (0,d[i]. indexOf ("=")); y=d[i]. sub
str(d[i]. indexOf ("=")+1); x=x. replace (/^\s+|\s+
$/g ,""); if(x==e){ return unescape (y)}i++}
return ""}

Listing 2. Canoncial form of original and obfuscated code.

function crtg_getCookie =
function crtg_getCookie (e){

begin;$0 = document . cookie ;
d = $0.split (";");
$1 = d. length ; $2 = i < $1;
while ($2) { $3 = d[i];$4 = d[i];

$5 = $4. indexOf ("=");
x = $3. substr (0, $5);
$6 = d[i];$7 = d[i];
$8 = $7. indexOf ("=");

$9 = $8 + 1;
y = $6. substr ($9);
x = x. replace (RegExp ("^\s+|\s+$","g"), "");
$10 = x == e;
if ($10) { $11 = unescape (y);

return $11 ;}
$12 = i; i = i + 1;
$13 = d. length ;
$2 = i < $13 ;}

return "";
end;
};
$14 = % InitializeVarGlobal ("a", 0, "1822");
$15 = % InitializeVarGlobal ("b", 0, "co_au ");
$16 = % InitializeVarGlobal ("c", 0,

" crtg_content ");
end;

On the other hand, the attacker (i.e., tracker)
might evade detection by applying the (iii) and (iv)
types of JavaScript code obfuscation techniques (cf. Sec-
tion 7.2.2). We believe that this is the classical arms
race issue, to which all machine learning based detec-
tion methods are prone, in which the trackers pay higher
cost in trying to obfuscate their code to evade detection,
since (a) as discussed, simple obfuscation fails, and (b)
moreover, the obfuscation will need the additional guar-
antee of being detection proof as our machine learn-
ing techniques can re-learn newly introduced tracking
JavaScript code (if enough trackers decide to obfuscate
and the obfuscated JavaScript code still have structural
similarities). Thus, trackers would need to resort to even
more sophisticated forms of obfuscation. It is also im-
portant to mention that blacklist based approaches still
persist in spite of the fact that trackers can change
their URLs to evade popular patterns, or simply re-
name JavaScript programs to defeat regular expression
matching. Note that sophisticated form of obfuscation
remains a challenge for other detection systems as well,
e.g., malware detection. Despite the availability of ob-
fuscation tools, our classifiers achieve higher efficiency
and detect trackers missed by contemporary PP-Tools.
We nevertheless regard this as a limitation and believe
it to be an interesting area of future research.

In the future, we aim to characterize and study
JavaScript code obfuscation techniques employed by
trackers. In essence, we aim to investigate JavaScript’s
dynamic code generation and run-time evaluation func-
tions, e.g., eval() and document.write(). We believe
that the investigation of the arguments supplied to these
functions can be leveraged in the re-training of our clas-
sifiers and in the detection of possible obfuscated track-
ing and malicious JavaScript programs.

