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Abstract: We identify two vulnerabilities for existing high-
speed network-layer anonymity protocols, such as LAP and
Dovetail. First, the header formats of LAP and Dovetail leak
path information, reducing the anonymity-set size when an ad-
versary launches topological attacks. Second, ASes can launch
session hijacking attacks to deanonymize destinations. HOR-
NET addresses these problems but incurs additional band-
width overhead and latency.
In this paper, we propose PHI, a Path-HIdden lightweight
anonymity protocol that solves both challenges while main-
taining the same level of efficiency as LAP and Dovetail. We
present an efficient packet header format that hides path in-
formation and a new back-off setup method that is compati-
ble with current and future network architectures. Our exper-
iments demonstrate that PHI expands anonymity sets of LAP
and Dovetail by over 30x and reaches 120 Gbps forwarding
speed on a commodity software router.
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1 Introduction
Revelations about governments’ mass-surveillance programs
have demonstrated their capability of conducting pervasive
surveillance on huge volumes of domestic and international
traffic [4, 9]. Meanwhile, an increasing number of users have
begun using anonymous communication software to protect
their privacy. For instance, Tor [27] has on average 2 million
active users per day [13]. However, most anonymity software
today is built as an overlay network composed of end hosts’
voluntarily-contributed nodes [6, 8, 14]. As a consequence,
users experience poor performance due to long propagation
delays and limited bandwidth, along with intrinsic queuing
and retransmission delays of the protocols [28].

Recent research has proposed anonymity as a principal
network function to benefit from short paths and high through-
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LAP Low Low Yes Yes Yes No
Dovetail Low Low Yes Yes No Yes
HORNET Medium Medium No No No Yes

PHI Low Low No No No No

Table 1. Comparison of high-speed network-layer anonymity
protocols.

put of network devices [21, 34, 46]. These proposals demon-
strate that it is viable to build lightweight cryptography into
network routers to help anonymize the huge volumes of traffic
accessible to mass surveillance programs today. We compare
these protocols in Table 1.

LAP [34], for example, adds an encrypted path into each
packet, and LAP routers forward packets using only sym-
metric cryptography. However, a compromised first-hop Au-
tonomous System (AS) can deanonymize both the source and
the destination and thus immediately compromise anonymity
because LAP’s setup process leaks the destination address.
Dovetail [46] overcomes the limitation by using an indirec-
tion node, called “match maker”, to conceal the destination
node from the first-hop AS. However, Dovetail requires that
the source have full control over the traversed path, which
harms its compatibility with current network architectures.

Furthermore, we focus on two vulnerabilities of LAP and
Dovetail. First, their headers, even with the proposed defense
to hide a path’s length and routers’ positions on a path [34],
still leak such path information. Thus, an on-path router can
reduce the size of the source’s anonymity set based on pub-
licly available network topology. Second, payload encryption
is detached from the path in Dovetail, enabling a session hi-
jacking attack to deanonymize destinations.

In contrast to LAP and Dovetail, HORNET [21] hides the
path information by using an onion-encrypted data structure
to embed path information and prevents the session hijack-
ing attack. However, HORNET’s solution incurs additional
costs: first, HORNET’s connection setup requires Elliptic-
Curve Diffie-Hellman (ECDH) computation between a sender
and each intermediate on-path nodes, adding computational la-
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tency; second, HORNET requires the sender to anonymously
retrieve and verify the public keys of on-path nodes, introduc-
ing further latency and potential identity leakage vectors.

At a first glance, one is bound to an unfortunate choice be-
tween weaker anonymity and additional latency. In this paper,
we demonstrate that it is possible to achieve the best of both
worlds. We propose a Path-HIdden lightweight anonymity
protocol, named PHI, that improves anonymity over LAP and
Dovetail and is equally efficient.

PHI improves on LAP and Dovetail by introducing three
new techniques. First, PHI places nodes’ state in a pseudo-
random order in a packet header to conceal information about
node positions. Second, PHI leverages a back-off path con-
struction method to eliminate the need for a source to fully
control the path traversed. Third, PHI prevents session hijack-
ing attacks by binding payload encryption to paths.

Our paper makes the following contributions:
1. We identify two attacks that reduce sizes of anonymity

sets in LAP and Dovetail. In particular, we model and ana-
lyze the path information leakage when LAP and Dovetail
intentionally obscure path information by using variable-
size segments (see Section 2). In comparison, existing
work, HORNET, only shows that LAP and Dovetail leak
path information without such protection mechanism.

2. We propose a path-hidden header format that is more ef-
ficient than the ones used by onion routing protocols.

3. We present a new approach to establish an end-to-end path
for a source node with no control over the path traversed.

4. We design the Path-HIdden lightweight anonymity pro-
tocol (PHI), an efficient network layer protocol that pro-
vides stronger anonymity properties than LAP and Dove-
tail with the same level of efficiency.

5. We evaluate PHI’s security and performance. Evaluation
results confirm that PHI’s performance is comparable to,
or more efficient than LAP and Dovetail, while expanding
the sizes of anonymity sets.

2 Background

2.1 Network-layer Anonymity Protocols

Network-layer anonymity protocols assume that network in-
frastructure (e.g., switches and routers) perform anonymiza-
tion operations when forwarding packets. They function at the
network layer as a complementary or as an alternative option
to the Internet Protocol (IP) to anonymize packets’ sources and
destinations. Compared to existing anonymity systems built on
overlay networks such as Tor [27], network-layer anonymity
protocols aim to offer low-latency and high-throughput packet

forwarding and scale to handle high volumes of traffic seen in
the Internet [21, 34, 46].

To achieve fast forwarding and high scalability on net-
work devices whose per-packet computation and per-flow stor-
age are usually extremely limited, network-layer anonymity
protocols share two design choices: 1) that packet forward-
ing only needs symmetric crytography, and 2) that forwarding
state should be carried by packets instead of stored on network
devices. While using symmetric cryptography is also common
in latest overlay-based anonymity systems, the second choice
mainly distinguishes network-layer anonymity protocols. At
the beginning of each connection, a source node and a des-
tination node exchange setup packets that traverse each Au-
tonomous System (AS) on the path. Within a setup packet,
each on-path AS (or a node) creates a path segment containing
its forwarding state. These path segments are carried by data
packet headers so that a node can retrieve its state and know
how to forward the packets.

Lightweight vs. onion-routing protocols. We divide existing
network-layer anonymity protocols into onion-routing proto-
cols and lightweight protocols based on their different require-
ments for computation and header overhead. An onion-routing
protocol, like HORNET [21], requires an on-path network de-
vice to compute an expensive asymmetric crytographic opera-
tion for setting up a flow and applies per-hop authenticated en-
cryption over every data packet. Each on-path node also needs
to store necessary keys within its path segment, resulting in
large packet headers. In comparison, lightweight anonymity
protocols, such as LAP [34] and Dovetail [46], only require
a network device to decrypt and verify a path segment that
contains minimal information for forwarding packets, and use
end-to-end packet encryption to offer confidentiality.

Topology-based attacks. Unlike a node in an overlay-based
anonymity system that can forward packets to any other node,
an AS can only forward packets according to its physical con-
nections and business contracts with its neighbors. Therefore,
network-layer anonymity protocols are inherently subject to
so called “topology-based attacks”. With publicly-available
network topology information, a compromised node receiv-
ing a single packet from a victim can narrow down the vic-
tim’s anonymity set. For example, in Figure 1, if we assume
that AS2 is AS3’s customer, by knowing the topology and re-
ceiving a packet from AS2, AS3 can conclude that the source
node must be within {AS0, AS1, AS2, AS4, AS5}, which also
forms the anonymity set. If the adversarial AS further discov-
ers its AS-level distance from the source’s AS, it can reduce
the size of the victim’s anonymity set. In Figure 1, if AS2 is
AS3’s customer and AS3 uncovers that the source of a packet
from AS2 is 3 hops away, AS3 can infer that the source’s
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AS0 AS1 AS2 AS3

AS5

AS4 Internet

Fig. 1. Topology-based attacks. AS3 is a compromised AS and
receives a packet form AS2 and conducts topology-based attacks
to de-anonymize the packet’s source node. The arrow from an
AS points to its provider and the relationship between AS2 and
AS3 can be peer-to-peer, customer-to-provider, and provider-to-
customer.

anonymity set only contains AS0, which significantly harms
the source’s anonymity.

In both LAP and Dovetail, path segments are succes-
sively appended to a header by each on-path node, and each
header tells the forwarding router which path segment to pro-
cess. As a result, even a single compromised router can de-
termine the number of hops between the end host and itself
by counting path segments in the header. As demonstrated by
Chen et al. [21], such an attack can successfully reduce the
anonymity-set size of the source and destination. HORNET,
on the other hand, avoids leaking such information by onion
encrypting and shifting path segments in a header.

To defend against such attacks, LAP proposes using
Variable-Size Segments (VSS) to hide path information. With
VSS, each path segment is padded to a random size of multi-
ple blocks chosen independently by on-path ASes. However,
VSS doubles or triples the packet-header size, adding to band-
width overhead. If the maximum number of segment blocks is
A, the resulting VSS path in a packet header is A times larger
than a path without VSS. In the following, we call A “path-size
amplification factor”, or simply “amplification factor”.

2.2 Challenges of Lightweight Protocols

We identify two attack vectors to existing lightweight proto-
cols that can further reduce anonymity-set sizes of end hosts.

Probabilistic path information leakage. Although VSS
helps obscure the number of path segments inserted in a packet
header, it cannot fully hide the information. In fact, an on-path
adversary can still determine the probability distribution of its
position on the path and the path length. With the knowledge
of the distribution, the adversary can increase the probability

of identifying a victim and thus reduce equivalent anonymity-
set size. For example, in Figure 1, if each AS can output a
path segment of either 1 or 2 basic blocks, and AS3 observes
that there are 6 basic blocks before its own path segment, AS3
can derive that the source node must reside in AS0. We will
mathematically model the path information leakage of VSS in
Section 6.

2.2.1 Session Hijacking Attacks

In both LAP and Dovetail, payload encryption is essential to
prevent adversaries from deanonymizing either end by scru-
tinizing identity information in packet payloads. A common
practice is to use DH key exchange to negotiate a shared sym-
metric key for encrypting subsequent payloads in a session. In
order to thwart an adversary in hijacking the key exchange pro-
tocol by launching Man-in-the-Middle (MitM) attacks, both
parties should verify the public key of the other end.

Nevertheless, when sender anonymity is at stake, end
hosts can only conduct one-way authentication, i.e., a source
verifies the public key of its destination but not vice versa.
Consequently, an on-path adversarial node is able to hijack the
key exchange session by replacing the source’s public key with
its own. Because the destination cannot verify that the public
key is from an anonymous source or from an adversarial node,
the adversary can communicate with the destination in place
of the source, and compromise the destination’s identity.

Note that in LAP an on-path adversarial node can directly
obtain the destination from setup packets without launching
session hijacking attacks. Dovetail, improving over LAP by
using a helper node to conceal the destination’s identity, is
susceptible to the hijacking attack described above. A first-
hop node, who knows the source by its advantageous position,
can leverage such an attack to deanonymize the destination in
the following way. The adversary waits until a source node
establishes an end-to-end path using Dovetail’s session setup,
during which process the adversary can obtain the created path
as well. The adversary then uses the intercepted path to com-
municate with the destination and sets up a secure channel by
using the DH key exchange protocol. Because the destination
cannot verify that the public key of the other end, it cannot tell
whether it communicates with the actual source or an adver-
sarial node. With this attack, the first-hop node can potentially
compromise the destination’s identity, defeating Dovetail’s se-
curity goal.
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3 Problem Definition

3.1 Network Model

We regard ASes as the network entity to route packets. Each
AS maintains a set of interfaces through which all traversing
traffic enters and exits the AS. Depending on the inter-domain
routing protocol agreed upon by all ASes, an AS can route an
incoming packet by either locally-stored forwarding informa-
tion (e.g., BGP [45]) or routing information within the packet
itself (e.g., NIRA [49], Pathlet [30], and SCION [50]). We
also consider a model with loose AS boundaries. In particu-
lar, in Pathlet [30], an AS is further divided into virtual nodes
(vnodes), each of which serves as an independent principal to
forward packets. In this paper, we use the generic term node to
denote an AS or a vnode in the case of Pathlet. We consider the
fact that ASes in the inter-domain network follow various net-
work policies, and our anonymity protocol should be versatile
in supporting existing network policies.

For anonymity purposes, we assume that an AS upgrades
its border routers to support necessary symmetric cryptogra-
phy such as AES. Each AS also keeps a local secret key and
updates it periodically. All the anonymity-supporting routers
should share the secret key and synchronize the key updates.

3.2 Communication Model

A source can anonymously communicate with a destination
through a session, which is composed of traffic that shares
cryptographic state. Each session is divided into two phases:
a setup phase and a forwarding phase.

The setup phase helps the source and destination to estab-
lish necessary state to communicate anonymously. First, the
source creates a setup request based on the intended destina-
tion. Then the source sends the initial packet, called setup re-
quest, through the path. Routers of on-path ASes insert nec-
essary forwarding state into the setup packet. When the setup
request reaches the destination, the destination constructs a re-
ply based on the request and sends it back to the source. As
the reply reaches the source, the source can extract all crypto-
graphic state required to communicate in the session.

The forwarding phase enables high-speed packet forward-
ing. The source and destination create packet headers for data
packets belonging to that session. Processing the headers al-
lows a router to determine the next router without learning in-
formation beyond the router’s previous and next-hop nodes.

3.3 Threat Model

We target a curious but cautious adversary: the adversary aims
to link an action (e.g., visiting a webpage) to an identity in
a given anonymity set but wants to avoid detection. We al-
low the adversary to compromise any single AS, or any des-
tination host in the network. By compromising an entity, the
adversary obtains all the entity’s cryptographic keys. The ad-
versary can perform passive deep packet inspection or active
traffic manipulation, such as dropping, injecting, and modify-
ing packets that traverse a compromised entity. Furthermore,
we assume that the adversary possesses full knowledge about
the network topology. However, we do not consider an adver-
sary that can perform passive or active traffic analysis. Our
adversary model is in line with Dovetail and removes the as-
sumption about trusting the first-hop node in LAP.

3.4 PHI’s Security and Performance Goals

PHI achieves the following security goals:
– Sender/sender-receiver anonymity. PHI offers two types

of anonymity properties: sender anonymity and sender-
receiver anonymity, as defined by Pfitzmann and Köhn-
topp [44]. As a network-layer anonymity protocol, PHI
considers an end host to be anonymous if its network lo-
cation cannot be distinguished from that of a set of other
hosts, called the anonymity set. However, because the
first-hop AS is directly connected to the source node, PHI
only offers relationship anonymity [44] against the first-
hop adversary.

– Session unlinkability. Traffic from different sessions can-
not be linked together by an adversary to de-anonymize
end hosts.

– Path-information confidentiality/authenticity. An on-path
compromised node cannot uncover the total number of
nodes on the path or its distance from end hosts on either
side. In addition, an adversary cannot modify an existing
path or fake new paths so that resulting paths still traverse
the network.

PHI also aims to offer a series of performance properties:
– Low bandwidth overhead. PHI adds a small header to each

data packet.
– Low latency. Processing a PHI packet only incurs low ad-

ditional latency.
– Scalability. PHI nodes maintain no per-flow state.
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4 Design
PHI adopts two design features that are common among
network-layer anonymity systems. First, for high-speed data-
packet forwarding, it uses only symmetric cryptography for
packet forwarding to achieve low end-to-end latency and high
throughput. Second, to scale to large traffic volumes, PHI
packet headers carry state required by routers to forward the
packets, relieving routers from storing per-session state that
can overflow their limited memory.

PHI offers stronger anonymity than Dovetail but only re-
quires the same level of overhead, and is compatible with
legacy network architectures. In particular, PHI defeats the
identified attacks of existing lightweight protocols, i.e., that
headers leak information about node positions and that they
are vulnerable to session hijacking attacks.

We now describe the core ideas introduced in this paper.
PHI’s packet header design randomizes path-segment posi-
tions to prevent leaking topological information, and enlarges
the expected anonymity set compared to VSS. (Section 4.2).
Next, PHI uses a helper node to hide the destination from the
nodes close to the source and allows the network itself to select
the helper node using a back-off method (Section 4.3). There-
fore, PHI is compatible with network architectures where dy-
namic global topology information is inaccessible, e.g., the
Internet, not limiting itself to Pathlet. Lastly, during the path
setup phase, PHI binds the source’s public key to the estab-
lished path, thwarting an on-path node from launching session
hijacking attacks (Section 4.4).

4.1 PHI High-level Overview

Figure 2 shows an example of PHI path setup phase. Suppose
a source node S wants to anonymously communicate with D
using PHI. It starts by picking a third node M to establish a full
path from S to D. In this paper, we call M the helper node. M
can be either a service operated by an ISP or a server volun-
tarily run by another user. During the entire process, M knows
D’s network location but has no knowledge about S’s. In addi-
tion, M only forwards on average fewer than 2 setup packets
for each session.

First, S encrypts D’s address using M’s public key and cre-
ates a path to M. Based on M’s address, each AS on the path
between S and M independently decides how to forward the
packet, encrypts the decision using a local secret, and places
the resulting ciphertext in a pseudo-random position in the
header determined by the session’s identifier and the AS’s lo-
cal secret. In Figure 2, the full path between S and M is {AS0:
S → a, AS1: b→ c, AS2: d → e, AS3: f → M}. Each AS

S
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Fig. 2. An example of PHI session setup.

places its routing decision in a pseudo-random position in the
header. For example, AS0 embeds S→ a in the 3rd position
in the header, AS1 inserts b→ c into the 5th position, and etc.
Because each AS independently selects a random position for
its routing decision, it is possible that their selections are in
conflict. We will address this issue in detail in Section 4.2.

Inserted routing decision is indistinguishable from empty
slots. Initially, the source generates random bits to fill the
empty header. Each AS encrypts its routing decision with a lo-
cal secret key before inserting routing decision into the header.

Once the setup packet reaches M, M decrypts D’s address
and initiates a back-off process that helps S find a midway
node, e.g., AS2 in Figure 2. The midway node is responsi-
ble for forwarding all subsequent data packets in the forward-
ing phase between S and D. M uses the header received in the
setup packets to route packets in the reverse direction. For in-
stance, AS3 retrieves its routing decision f →M and forwards
the back-off packet to AS2 through interface f .

The back-off process stops when an AS W on the path
from S to M is willing to forward the packet to D through an
interface that is different from the one where the first setup
packet is received. We name this AS W the midway node. In
Figure 2, AS2 can forward a packet to D through interface g,
which is different from the interface d where the first setup
packet is received.

W continues the setup process until the setup packet
reaches D. D can retrieve the bi-directional end-to-end path
between S and D from the setup packet’s header. The rest of
the setup phase and the data forwarding phase is essentially
equivalent to LAP and Dovetail. D sends the created path back
to S using the path in the reverse direction, and S and D can
communicate anonymously using the newly established path.

4.2 Randomizing Path-segment Positions

The key idea behind hiding path information in PHI is to ran-
domize the position of a node’s segment in packet headers. As
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SID
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Ingress egress
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MAC

Fig. 3. Randomize a path segment’s position in a packet
header.

shown in Figure 3, a node ni computes its segment’s position
in the header by using a Pseudo-Random Function (PRF) with
its local secret kpos

i as the key and the session’s id sid as the
input.

pos = PRF(kpos
i ;sid) (1)

In addition, the node can find its previous-hop node’s segment
using the “previous hop” field in the packet header, denoted as
posprev.

If the packet is a setup request packet, the node ni com-
putes its path segment Si using the routing information Ri, a
local encryption key kenc

i , a local MAC key kmac
i , and a MAC

Mi−1 in the previous node’s segment Si−1 as follows:

Ei = ENC(kenc
i ;Ri ‖ posprev ‖ f lags) (2)

Mi = MAC(kmac
i ;Ei ‖Mi−1) (3)

Si = Ei ‖Mi (4)

Here, the actual form of Ri depends on the network architec-
ture that PHI is based on. For instance, it can take the form
of (input link, output link). ni then replaces the current path
segment in the packet request with the newly generated Si.

If the packet is a data packet, ni retrieves its path segment,
decrypts the segment to find the routing information, and ver-
ifies the integrity of its path segment in the inverse process of
Equations 2 to 4.

4.2.1 Resolving Collisions

For packet setup requests, because each node independently
computes its path segment’s position, it is possible that the
position in the packet request is already occupied by seg-
ment of another node nc. A collision in picking segment po-
sitions causes information loss for nc’s path segment. When
the source uses the resulting packet header with collision to
forward packets, the MAC verification will fail at nc.

To avoid using a packet with collided path segments, the
source sends more than one setup request packets to increase

its success rate. Let the total number of on-path nodes be r, the
maximum path segments in the header be m. To reach a suc-
cess rate of c, the source can send N setup requests all together
to satisfy the following condition:

1−
(

1− Pr
m

mr

)N

≥ c (5)

where Pr
m computes the number of r-permutations of a set with

n element.

Resolving local collisions. Because to each node, the posi-
tion of its previous-hop node’s segment is revealed by the field
posprev, the node can further rule out one type of collision:
its own segment’s position collides with that of its previous
node’s segment. If such a collision happens, a node itself can
resolve the collision without recourse to other nodes or end
hosts. The node computes a new position as follows:

posnew = PRF(s;sid⊕ ctr) (6)

where ctr is the first value satisfying posnew 6= posprev starting
from 1.

Resolving the local collision in the above manner poses a
new challenge for retrieving the segment for a node. Since the
node attempting to retrieve its segment from a packet header
has no prior knowledge about where its previous-hop node’s
locates, it may end up with choosing the default position with
ctr = 0. However, we remark that the node can detect this sce-
nario by verifying the MAC contained in the segment. A fail-
ure indicates that there must be a local collision when setting
up the packet header and the node should increment the ctr to
locate a new position to retrieve its segment.

The resulting number of setup requests, N, satisfies:

1−
(

1− Pr
m

m(m−1)r−1

)N

≤ c (7)

4.2.2 Probabilistic Header Sizes

The above method runs into a dilemma when the path length
r is close to the maximal path segments that a header can con-
tain m. For example, as Section 7.1 shows, when m = 12, the
required number of setup packets to reach 90% success rate
amounts to 4. We can increase m to reduce the required num-
ber of setup packets. When m = 21, the source only needs 3
setup requests to guarantee 90% success rate. However, with
a larger m comes larger packet header for every data packet,
which proportionally increases the bandwidth overhead.

However, we observe that the probability that a long path
exists between a random pair of source and destination is low.
According to our experiment in Section 7.1, the probability of
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a path that is longer than 7 AS hops is below 0.01%. As a re-
sult, we can leverage a probabilistic header size to mitigate the
dilemma between the number of setup packets and the band-
width overhead.

When the source finds the total path length r is above
7, the source always selects a large value for m, e.g., 48, to
keep the number of sent packets small. When r is below 7, the
source still chooses a large m with probability P. The source
selects a small m for the rest of the paths. In the scenario where
P = 0, the algorithm is equivalent to using separate header
sizes for long and short paths, which leaks path length infor-
mation by packet header sizes. The source can select larger
values for P to add stronger protection to conceal the fact that
a long path is used.

To estimate path lengths r, the source can download an
AS-level topology, e.g., from CAIDA [38], and run a lo-
cal simulator to calculate the path length. The resulting path
length is in turn an input into the algorithm to determine the
size of the path. Note that a wrong estimate of r due to inaccu-
rate simulation can potentially increase the collision rate and
increase setup latency when the estimated r is smaller than the
real path length.

4.3 Back-off Path Setup

To hide destinations’ addresses from ASes that are close to
the source, PHI uses helper nodes as indirection for source
nodes to reach their destinations. Helper nodes can either be
end hosts or ISPs that provide PHI indirection service. The in-
formation about which nodes serve as helper nodes can be dis-
tributed to end hosts or retrieved by end hosts without compro-
mising anonymity of communication that happen afterwards.

PHI’s assumptions are weaker than Dovetail: source
nodes in PHI do not have to possess control over the path that
packets traverse. This relaxed assumption allows PHI to op-
erate on architectures like the Internet where a source lacks
control over packets’ paths.

In this subsection, we discuss the back-off path setup em-
ployed by PHI to support the relaxed assumption. We then an-
alyze the resulting anonymity-set size of the proposed tech-
nique.

4.3.1 Path Setup Using Helper Nodes

Figure 4 shows how to establish an end-to-end path using a
helper node in PHI. To construct a PHI path to reach the des-
tination D, a source node S from AS0 selects a helper node M
in AS4 and establishes a first half path towards M. Like LAP,
S only places M’s address into the setup request, so that each

AS2 AS5

AS1

AS0 AS4

AS6

AS7

AS3

S M D

P2C

P2P

Constructing first half path

Backing off 

Constructing full path

D’

Fig. 4. Back-off path setup. The arrow standing for P2C rela-
tionship always points from the provider to its customer. The
shaded node is the midway node. We call the path between S and
M the first “half path” and the one between M and D the second
“half path”.

on-path AS can determine how to approach M. On-path nodes
AS1 to AS4 follow the algorithm described in Section 4.2 to
determine the positions of each individual path segment and
insert them into the setup request (see Section 5).

In addition, S also encrypts D’s address by using ECDH
with M’s public key. When M receives the setup request
packet, it can obtain D’s address and continue to establish the
second half path to D.

Nevertheless, simply concatenating the first and second
half paths to form the full path is undesirable. On one hand, M
may not want to, or be able to, forward all traffic between S and
D. On the other hand, the resulting long path incurs additional
communication latency.

In PHI, M, on behalf of S, finds a node W on the first half
path, called “midway node”, that forwards data packets to D.
In Figure 4, AS2 serves as the midway nodes that bridge the
first half and second half paths together. Instead of traversing
AS3 and AS4 twice, data packets can be directly forwarded
towards D by AS4.

M uses a “back-off” technique to find the midway node
with the network’s help, while preserving each node’s local
policy. M sends a midway request packet (see Section 5) in
the reverse direction of the first half path towards S. M also
embeds D’s address in the midway request packet. Each on-
path node checks its previous hop and D’s address, and decides
whether it is the midway node based on its local policy. For ex-
ample, AS4 cannot be the midway node because of the valley-
freeness policy: it will not forward a packet from its provider
AS4 back to AS4. In comparison, AS2 is the first node that can
forward packets from AS1 to AS7 without breaking valley-
freeness. Therefore, AS3 becomes the midway nodes. Once
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chosen, the midway node sends a path request to the D based
on the received midway request.

PHI’s header format inherently supports the above back-
off technique because of its “automatic recycling” feature.
When receiving a midway request packet containing the first
half path, an on-path node can retrieve its previous path seg-
ment, verify its integrity, and decrypt information including
the previous hop node. If the node decides not to become the
midway node, its path segment in the header is automatically
recycled by other nodes: another node can insert its path seg-
ment in the same position as an old segment to overwrite the
legacy one.

Automatic recycling keeps header sizes small. As demon-
strated in Section 4.2, to avoid setup failure caused by path-
segment collisions, the header size increases exponentially
with respect to the length of the path contained. With path-
segment recycling, S only needs to consider the length of the
longer path between the path from S to M and the one from M
to D.

4.3.2 Maximizing Anonymity-set Size

To quantify each session’s anonymity, we consider anonymity
sets of source-destination pairs. Let N be the maximum
anonymity set for source or destination that contains all possi-
ble end hosts, A (n), n ∈N be the anonymity set of source-
destination pairs that a compromised node ni observes. If we
further denote the anonymity set of the source node that an ad-
versarial n observes AS(n) and the anonymity set of the des-
tination node that n observes AD(n), we have the following
relationship:

|A (n)|= |AS(n)|× |AD(n)| (8)

where | · | is the size of a set.
We show that the midway node W , if compromised, can

observe the smallest anonymity set. Consider AS(n) for the
first half path. It increases monotonically for the nodes in the
order from S to M. For instance, in Figure 4, AS(AS3) is
larger than AS(AS2), which in turn is larger than AS(AS1).
For nodes in the second half path, AS(n) is always N . As for
AD(n), the resulting anonymity set is N for nodes before the
midway point, but AD(n) for nodes after M is {D} because
these nodes know D’s address from the midway request and
the second path request. Table 2 summarizes the anonymity-
set size for each group of nodes.

Hence, we can use A (W ) as a metric to measure the min-
imum level of anonymity that a session offers.

Choosing helper nodes. In fact, the source can determine
which AS becomes the midway node by using AS-level net-

Node group |AS| |AD|
n between S and W 1≤ |AS(n)| ≤ |N | |N |

W 1≤ |AS(W )| ≤ |N | 1
n between W and M |AS(W )| ≤ |AS(n)| ≤ |N | 1

M |N | 1
n between W and D |AS(W )| ≤ |AS(n)| ≤ |N | 1

Table 2. Anonymity-set sizes observed by each group of nodes,
if compromised.

work topology and AS-relationships available to the pub-
lic [38], and obtain the anonymity set accordingly. Because the
source node also possesses information about available mid-
dle nodes in the network, the source can improve the result-
ing anonymity-set size. The source first selects a subset of the
helper nodes, computes the corresponding midway nodes and
their respective anonymity-set sizes, and uses the helper node
that yields the largest anonymity-set sizes.

However, it is dangerous for the source to use all or most
of the available helper nodes to optimize the anonymity set, be-
cause an adversary located between the source and the midway
node can reduce the anonymity set of the destination based on
the selected helper nodes.

4.4 Integrating Payload Encryption

PHI explicitly requires payload encryption. To defend against
session hijacking attacks, PHI binds a source’s DH public key
to an established path. Upon setting up each session, the source
node randomly generates a pair of DH keys for negotiating
shared symmetric keys with the midway node and the destina-
tion. As opposed to Dovetail, PHI uses the hash of public key
as the session identifier to bind the encryption key to the ses-
sion itself. As a result, an adversary that hijacks the connection
by simply replaying headers with the adversary’s payload will
be detected immediately by the destination.

Not only the destination, but also the midway node needs
to check that the session identifier is associated with the source
node’s public key. If the midway node fails to verify that the
session identifier matches the public key encrypting the desti-
nation’s address, a node between the source node and the mid-
way node can still hijack the session setup process: the midway
node can replace the session identifier with the hash of its own
public key and circumvent the destination’s verification.

Note that the midway node and the on-path nodes after the
midway node can still launch hijacking attacks. During setup
sessions, they can replace the session identifiers with hashes
of their own public keys. However, these nodes have no incen-
tives to launch such attacks because they already obtain full
knowledge about the destinations, shown in Table 2.
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5 PHI Protocol Details
In this section, we describe PHI’s packet format and its session
setup phase in detail. We also briefly state how PHI achieves
sender-receiver anonymity.

5.1 Packet Format

There are 4 types of packets in PHI: path requests, midway
requests, path replies, and forward/backward data packets. As
a network-layer protocol, all PHI headers are placed after the
respective layer 2 headers. A path request allows a node to
create or extend a path towards its intended entity while con-
cealing its network location. A source node uses path request
to create the first half path to the helper node that it chooses.
A midway node uses the path request to extend the path to
reach the destination to create a full path. A midway request,
as its name indicates, is used by the helper node to perform
the back-off method described in Section 4.3 to find the mid-
way node. When a destination receives a full path established
from the source, the destination uses a path reply to send the
path back to the source so that they can start transmitting ac-
tual data using data packets. Appendix A.1 graphs a reference
packet header format in detail.

5.2 Managing Keys

Each node in the network maintains a master secret key, from
which it can derive three keys: a position key kpos, an encryp-
tion key kenc, and a MAC key kmac. The position key is used
by the node to determine the position of its path segment in
a packet header. The encryption key encrypts the routing in-
formation in a path segment. The MAC key computes a MAC
that helps a node to verify its path segment.

The destination node needs to generate a pair of DH keys.
To communicate anonymously with the destination, a source
node needs to obtain the destination’s public key through an
out-of-band channel. In order for a source to communicate
with a destination in a new session, the source also needs to
generate a new pair of DH keys for the session to negotiate
with the destination a shared symmetric key to encrypt data
payloads.

5.3 PHI Session Setup

There are four steps in PHI’s session setup phase. First, the
source node selects a helper node and establishes a half path
to the helper node. Second, the helper node uses the back-off

technique to search for a midway node. Third, the midway
node extends the existing path to become a full end-to-end path
between the source and its destination. Finally, the destination
sends the created path back to the source. In this section, we
walk through details of all four steps in an Internet setting.
We remark the same process can be adapted to other network
architectures.

Constructing a path to the helper node. To communicate
with a destination node D, the source node S first selects a
helper node M. If it is the first time for S to use M, S also needs
to retrieve M’s public key with its associate certificate. For ex-
ample, S can obtain the information about the helper nodes’
public keys from directory services like those employed in
Tor [27]. S needs to verify M’s public key before using it.

S then creates a path request. S first randomly generates
a pair of DH keys for the session and uses the hash of the
public key as the session identifier. Then, S generates random
bits to initiate the path. S also encrypts the destination address
using M’s public key and puts the resulting ciphertext as the
packet’s payload. At last, S fills the address field in the path
request header with M’s address and sends it towards M.

Depending on the required success rate, S repeats the
above process to create a number of setup packets in case
that a single setup packet cannot achieve the desired success
rate. S sends all setup packets to M together and then waits
for responses. In addition, because the setup process can fail,
S keeps a timer so that it can resend setup packets.

When receiving a path request, each on-path node follows
the procedures described in Section 4.2. Based on the address
specified in the packet header, an on-path node first creates
its path segment following Equation 4. Then the node deter-
mines its path segment’s position in the header field by Equa-
tion 1 and replaces the current path-segment with its own. Af-
terwards, the node can proceed to forward the packet towards
M. The same process repeats itself until the packet reaches M.

Back-off to find the midway node. After M receives a path
request from S, M first verifies that the session identifier is
indeed the hash of the session’s public key in the payload. If
so, M decrypts D’s address. M creates a midway request packet
by placing D’s address in the header’s address field and using
the path in the path request. M then sends the midway request
back to the AS where the path request comes from.

An on-path node receiving the midway request first re-
trieves its segment inserted into the path. It decrypts the rout-
ing information and checks the corresponding MAC. If the
MAC in the path segment successfully verifies, the node de-
cides whether it is the midway node based on D’s address, the
previous-hop AS, and its local policy. If becoming a midway
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node violates its policy, it simply forwards the midway request
toward S using the ingress port in the path segment.

Create a full path. If a node decides to be the midway node,
the node creates a new path segment. It changes the egress port
field to the one towards D, and sets the midway flag in the seg-
ment. Then, it replaces the current segment with its newly cre-
ated one. Finally, it creates a new path request that addresses
to D’s and contains the path and the session’s public key, and
forwards it to D.

Nodes between the midway node and D process the path
request in the same way as the nodes between S and M. They
calculate the positions of their path segments, insert their new
path segments accordingly, and forward the packet.

Path replies. When D receives the path request sent by the
midway node, D first verifies that the public key matches the
session identifier. Then, D conducts a DH key exchange op-
eration to generate a symmetric key shared with S. The key
is used as the master key to encrypt payloads of subsequent
data packets. D uses the path composed in the forward path to
send a path reply back to S. Every on-path node, including the
midway node, retrieves its path segment, obtains its routing
information, and forwards the packet towards S. Finally, when
the path reply reaches S, S can retrieve the path and construct
data packets with it.

5.4 Sender-Receiver Anonymity

PHI achieves sender-receiver anonymity defined by Pfitzmann
and Köhntopp [44] using an indirection node, called ren-
dezvous node. In order for a destination node to conceal its
identity, it first chooses an available rendezvous node and es-
tablishes a session with it. After obtaining the path between
the rendezvous node and itself, the destination node can pub-
lish the path together with the address of the rendezous node
through an out-of-band channel, like a website, so that a source
node intending to connect to the destination node can retrieve
the path.

For a source to connect to the anonymous destination, af-
ter fetching the path and the rendezvous node’s address, the
source first establishes a path between the rendezvous node
and itself. Then the source can place both two paths in its data
packets sent to the destination node. When the rendezvous
node receives a data packet from the source, it forwards the
packet following the path established by the destination.

6 Security Analysis
In this section, we first quantitatively analyze in detail the se-
curity of PHI compared to VSS used in LAP and Dovetail un-
der topology-based attacks. Then, we discuss PHI’s defense
mechanisms against various known active and passive attacks.

6.1 Defending Against Topology-based
Attacks

We compare the probability that an adversarial AS success-
fully discovers a packet’s source node in PHI’s segment-
position randomization method and VSS. VSS differs from
segment-position randomization in that it provides to the ad-
versary additional information about the number blocks al-
ready inserted. To quantitatively compare between PHI and
VSS’s defenses against topology-based attacks, we conduct an
experiment with the Internet topology considering the IPv4 ad-
dress space.

Modeling anonymity-set size for VSS technique. We model
the probability P(x = S|Y = y,m = l) that an adversarial AS
can locate a source node S given that the number of blocks in
a header Y = y and the maximal number of blocks that can be
occupied by a path segment m = l. P(D = d) is the distribution
of distances between the source of adversarial ASes. P(Y =

y|D= d,m= l) is the conditional probability of d nodes output
a sequence of path segments with total length y. P(x = S|D =

d) is the probability that the source can locate S if it is d hop
away from S. dmax is the maximal diameter of the network. We
use the following equation to compute P(x = S|Y = y,m = l)
from P(D = d), P(Y = y|D = d,m = l), and P(x = S|D = d):

P(x = S|Y = y,m = l) =
P(x = S|m = l)
P(Y = y|m = l)

=
∑

dmax
d=1 P(x = S|D = d,m = l)P(D = d)

∑
dmax
d=1 P(Y = y|D = d,m = l)P(D = d)

=
∑

dmax
d=1 P(x = S|D = d)P(D = d)

∑
dmax
d=1 P(Y = y|D = d,m = l)P(D = d)

(9)

We define the equivalent anonymity-set size observed by the
adversarial AS as 1

P(x=S|Y=y,m=l) .

Experiment setup. We use the CAIDA AS-relationship
dataset [1] and the RouteView dataset [10] to construct an AS-
level Internet topology annotated with both AS relationship
and each AS’s address space sizes. In our experiment, for each
AS α , we compute the anonymity set observed by a neighbor-
ing AS β receiving packets from α in one of three cases: 1)
β is α’s provider (C2P), 2) β is α’s peer (P2P), and 3) β is
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(a) m = 2, y = 4 (b) m = 2, y = 8 (c) m = 2, y = 14

(d) m = 3, y = 6 (e) m = 3, y = 12 (f) m = 3, y = 21

Fig. 5. Cumulative Distribution Functions (CDF) of entropy in VSS and PHI. In VSS, we vary the maximal number of path-segment
blocks per hop, denoted as m, and the observed total number of path-segment blocks Y . We also distinguish between the case where
the adversary received a packet from its customer (C2P) or peer (P2P) and the case where the adversary received a packet from its
provider (P2C). We consider IPv4’s address space, so the maximal entropy is 32. Note 99.9% of paths are less than 8 hops long ac-
cording to Section 7.

α’s customer (P2C). In our experiment, we assume that every
IPv4 address has equal probability to send the packet. As a re-
sult, the anonymity-set sizes are calculated as the sizes of IPv4
address spaces. We also assume that ASes obey the valley-free
policy when forwarding packets. We compare PHI and VSS by
the cumulative distribution of the anonymity-set sizes yielded
by both schemes.

To compute anonymity-set sizes observed by AS β when
using PHI, we add the anonymity-set sizes of all ASes that can
send packets traversing the link from α to β without breaking
the valley-free policy. For example, in Figure 1, if AS2 is α ,
AS3 is β , and α is β ’s customer, the anonymity-set size ob-
served by β in this case is the sum of the IPv4-address-space
sizes of all customers of AS2 including AS2 itself, i.e., {AS0,
AS1, AS2, AS4, AS5}. For VSS, we compute the equivalent
anonymity-set size observed by β when receiving a packet
from α .

We can compute P(x = S|D = d) directly from the topol-
ogy by add up the anonymity-set sizes of the ASes that are d
hops away from β and can send packets through link α → β

following the valley-free policy. For example, in Figure 1, if
AS3 is AS2’s provider and it is malicious, and d = 3, the

anonymity-set size is simply the AS0’s address-space size.
P(D = d) is inversely proportional to P(x = S|D = d) because
we assume that every IPv4 address has the same probability
to originate the packet. Finally, if we additionally assume that
each AS uniformly and independently picks the size of its path
segment, we can derive P(Y = y|D = d,m = l) by combina-
tional algebra.

Results. Figure 5 graphs the resulting CDF of observed
anonymity-set sizes in the form of entropy. Each sub-figure
draws the CDF of PHI and VSS with different m and Y . We
also vary inter-AS relationship between malicious ASes and
their neighbors. The results from C2P and P2P are exactly the
same, therefore we use the same line to represent both of them
in each sub-figure. For fairness, when calculating PHI’s CDF
in each sub-figure, we only consider β who can actually ob-
serve that Y = y when M = m.

In general, PHI provides 30–60000 times larger
anonymity sets than VSS when the relationship is C2P or
P2P, and 4–60 times larger anonymity sets than VSS when
the relationship is P2C. The differences generally enlarge
with larger values of m and y. When m = 2 and y = 4, PHI’s
anonymity-set size is around 30 times larger than VSS’s for
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C2P or P2P, and 4 times larger for P2C. When y increases, the
gap grows wider. In fact, when m = 2 and y = 14, PHI offers a
250 times larger anonymity-set size than VSS for C2P or P2P,
and 5-6 times larger for P2C. The gap further increases with a
larger m. When m = 3 and y = 21, PHI provides an anonymity
set that is almost 60000 times larger than those for C2P & P2P,
and 70 times larger for P2C.

We also observe that PHI provides an anonymity-set size
of almost 232 when the AS relationship is P2C. This makes
sense in a well connected network like the Internet. For exam-
ple, in Figure 1, if AS2 is AS3’s provider and AS3 is com-
promised, every packet that AS2 sends to AS3 can potentially
come from the entire Internet with the valley-free policy pre-
served. The observation implies that choosing the destination
node’s providers or topological ancestors can be as secure as
selecting an arbitrary third party end host without breaking the
valley-freeness rule and introducing a longer path.

Impact of inaccurate simulation. As described in Sec-
tion 4.3.2, the anonymity-set size depends on the anonymity-
set size of the source node observed by the midway nodes.
Thus, an inaccurate topology simulation might direct the
source node to pick a wrong helper node, and thus a wrong
midway node, which can potentially reduce the anonymity-set
size.

6.2 Attacks Against Anonymity

With respect to the case where an adversary only controls a
single AS, PHI can resist various passive or active attacks
against anonymity besides the topology-based attacks dis-
cussed in Section 6.1. By passive attacks, we refer to the at-
tacks that only require observation or logging of the traversing
packets. In comparison, an adversary that conducts active ac-
tions can delay, drop, or modify traversing packets, to impact
the anonymous traffic.

PHI defends against the following passive attacks in addi-
tion to topology-based attacks:
– Observing packet payloads. Packet payloads contain

various identifiers, such as browser cookies, which can
help correlate packet flows and deanonymize users. PHI
defeats such attacks by requiring the source node to en-
crypt end-to-end all the traffic between itself and the des-
tination node. In addition, all data packets are padded to a
fixed size to prevent information leakage in PHI.

– Session linkage. If an adversary correlates sessions initi-
ated by the same source node, the adversary can profile
the user and subsequently deanonymize him or her. PHI
prevents this attack by requiring the source to generate a
random session identifier for each session. Hence, even if

multiple sessions from the same source node follow the
same path, the resulting path segments differ. Moreover,
the source also generates a new pair of keys for end-to-
end encryption to prevent session linkage from a set of
colluding destinations.

PHI also defeats the following active attacks:
– Session hijacking attacks. A compromised on-path node

can hijack a session by replacing the session’s public key
with its own. PHI derives the payload encryption key from
the session’s public key, which in turn is bound to the des-
tination address. For nodes between a source node and a
helper node, to whom the destination address is unknown,
replacing the session’s public key is detected by the helper
node when decrypting the destination’s address is unsuc-
cessful.

– Packet-header modification. Adversarial nodes can
modify packet headers to change the paths that the pack-
ets traverse. If the adversary directly modifies the path
embedded in the packets, benign nodes can detect the
changes because the verification of the MAC in its path
segment fails. During the session setup, an adversary can
also attempt to modify the address field in a path request
or a midway request. Nevertheless, without colluding
ASes, modifying the address field only disrupts the ses-
sion setups, but does not reduce the observed anonymity
set.

– Replay packets. An adversary node can replay packets.
However, the replayed packets only traverse the same path
that the previous packets traverse, yielding no new infor-
mation about the either end of the session.

– Pre-computation attacks. An adversary can send many
packets with different session identifiers to determine
the positions of AS segments. PHI defeats the pre-
computation attack by requiring that sources generate
fresh session identifiers and ASes update their master keys
periodically.

7 Evaluation
In this section, we first simulate and compare the overhead of
PHI and VSS with Internet data traces from iPlane [7] and
CAIDA [12]. Then we evaluate the performance of HORNET,
LAP, Dovetail, and PHI on a high-speed software router.
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7.1 Comparison of Overhead between PHI
and LAP with VSS

We simulate the bandwidth overhead of both PHI and VSS-
based LAP using iPlane traceroute data [7] and CAIDA
anonymized Internet traces obtained by monitoring on high-
speed backbone links [12]. Our CAIDA data traces include all
traffic from a backbone link between 13:00 to 14:00 on Mar.
20th, 2014.

Path lengths. We first analyze the distribution of the number
of setup packets required by PHI. We obtain the distribution of
total number of hops between source and destination by using
iPlane traceroute data. For each trace, we count the number of
AS hops. Our results show that the mean AS-path length is 4.2,
and 99.99% of paths are within 7 AS hops. Thus, in this paper,
we choose 7 as the maximum length of a normal AS path, and
paths with lengths larger than 7 are long paths. With regard to
paths longer than 7, setting m = 48 can achieves 90% success
rate when 5 setup packets are used.

Packet-header sizes. We use CAIDA anonymized Internet
traces to compute the probability that a setup phase succeeds
given different packet-header sizes. We vary the maximum
number of path segments m and apply Equation 7 to each flow
of AS path length r. Our result show that when 4 setup packets
are used, a setup phase succeeds with probability 75% when
m = 8 . The probability of success increases to 90% when
m = 12.

Bandwidth Overhead. We then evaluate the bandwidth over-
head caused by larger headers in VSS compared to the over-
head of additional setup requests in PHI. We conduct a trace-
based simulation of both schemes using our CAIDA dataset.
We assume all the flows in the dataset are converted to PHI and
VSS sessions and we compute the extra bandwidth overhead
introduced by both schemes with different configurations. Fig-
ure 6a demonstrates the resulting bandwidth cost. For PHI, we
vary two parameters: the number of path segments that a nor-
mal header contains m and the probability that a larger header
m = 48 is used for a short path P. We also test the bandwidth
cost of VSS with different packet header sizes corresponding
to an amplification factor of 2 to 4.

We observe that the bandwidth overhead increases as m
and P get larger. With small headers where m = 8 and P =

0.01, PHI’s bandwidth cost is 43% smaller than VSS with an
amplification factor A = 2. When end hosts increase P to offer
stronger security for sessions with longer paths, the bandwidth
cost is still small. When m= 8 and P= 0.2, the bandwidth cost
of PHI is only as large as that of VSS with A = 2 and at least
65% smaller than VSS with larger A. When latency of setup

phases is concerned and m = 12 is used, the bandwidth cost
of PHI is 11% smaller than VSS with A = 2 when P = 0.01.
In the following evaluation, we choose m = 12 for a normal
header and m = 48 for a large header.

7.2 Performance Evaluation

Implementation and testbed setup. We implement PHI on a
high-speed software router using Data-Plane Development Kit
(DPDK) (version 2.1.0) [3]. For comparison, we also imple-
ment HORNET, LAP, and Dovetail in the same setup.

To accelerate the underlying cryptography, we use Intel
AESNI technology. In our implementation, we use 128-bit
AES in CBC mode and 128-bit AES CBCMAC as our respec-
tive encryption and MAC functions. To implement the DH key
exchange protocol and public key cryptography in HORNET,
we use curve25519-donna library [2].

We test our implementation on a testbed composed of
a high-speed software router and a Spirent TestCenter traf-
fic generator/monitor [11], which are connected by twelve
10 Gbps links. Our software router has Intel Xeon E5-2680
CPU with 2 sockets and 8 cores per socket, 64 GB RAM, and
3 Intel 82599ES NICs supporting in total 120 Gbps maximal
throughput. In all of our experiments, we configure our DPDK
library to assign 1 CPU core to each port to process incoming
packets.

Setup latency. We first measure the latency of processing
setup requests in HORNET and in PHI. Table 3 shows the la-
tency for processing setup requests for HORNET and PHI with
different packet sizes. We observe that processing a HORNET
session request requires almost 800 times more time than pro-
cessing a PHI because the former needs a DH key operation
but the latter only needs symmetric cryptography. Moreover,
processing setup requests of different sizes incur similar la-
tency, because the amount of computation needed is indepen-
dent from header sizes. A single core can process PHI setup re-
quests/replies at a speed of up to 3.76 Mpkt/s on a single core.
According to our analysis of the CAIDA data trace used in
Section 7.1, the average number of flow initiation on a 40 Gbps
backbone link is 1721 per second. Hence, PHI can potentially
satisfy the requirement of future traffic at today’s budget.

Data-forwarding latency. We evaluate the latency for for-
warding data packets with various payload sizes by a single
core on a 10 Gbps link using PHI, VSS, and HORNET. We
base our comparison on LAP using VSS to hide path informa-
tion. The latency of Dovetail data forwarding should yield sim-
ilar results because both LAP and Dovetail require decrypting
a single block and check a MAC.
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Fig. 6. a) Bandwidth cost of PHI under different configuration. Lower is better. For PHI, we vary the number of path segments m
that a header can contain for each line. Different lines have different probability P to select a large header for a short path. We fix the
size of large headers so that they can contain 24 path segments. For comparison, we also draw VSS’s bandwidth cost with different
header sizes. All the bandwidth cost is normalized by dividing the bandwidth cost without anonymity. b) Latency of processing data
packets in HORNET, VSS, and PHI when different payload sizes vary. Lower is better. c) Goodput of HORNET, LAP, Dovetail,
and PHI with different payload sizes on a 10 Gbps link. Higher is better. For VSS, we test the configurations of 2 path segments per
hop and 3 path segments per hop. For PHI, we evaluate the cases where m equals 12 and 48 respectively.

Scheme Cycles µs
HORNET (6.60 ± 0.28) ×105 (2.00 ± 0.09) ×102

PHI (m = 12) 821 ± 83 0.249 ± 0.025
PHI (m = 48) 962 ± 132 0.291 ± 0.040

Table 3. Latency for processing setup packets in HORNET and
PHI.

As shown in Figure 6b, in general, the latency needed by
processing a HORNET data packet is 3 times higher than that
of PHI. The latency increases linearly when the payload size
grows, because HORNET data forwarding process encrypts or
decrypts the entire header and payload. With respect to the
comparison between PHI and VSS, PHI consumes on average
30% more time to forward a data packet than VSS as PHI re-
quires additional PRF computation to locate the current path
segment within the header. However, differing from HORNET,
the computation required by PHI and VSS is constant and does
not increase together with enlarging payloads.
Goodput. We also measure the goodput of different schemes
on a 10 Gbps link with respect to various payload sizes. Fig-
ure 6c graphs the results. There are two factors impacting the
goodput of a protocol: forwarding speed and header sizes.
Higher forwarding speed yields higher goodput while smaller
header sizes help increase goodput. Yet, there is a third factor
in our experiment that limits the goodput of LAP, Dovetail,
and PHI: the maximal transmission rate on the link. In fact,
LAP, Dovetail, and PHI can achieve 10 Gbps even with the
payload size as small as 32. Hence, only the header size will
influence their goodput.

We observe that PHI with m = 12 and Dovetail using 2
path segments per hop achieves the highest goodput among all

the evaluated schemes because their efficient data forwarding
and small headers. Compared to LAP with 2 path segments
per hop, they achieve 18% and 12% more goodput. As larger
headers are used, all three schemes’ goodput decreases. On the
other hand, because HORNET’s throughput is lower than the
maximal throughput, its goodput increases faster as the pay-
load sizes increase. In general, HORNET’s goodput is 60%
lower than PHI with m = 12.

Maximum throughput. Lastly, we evaluate the maximum
throughput on all 12 ports, which can possibly switch pack-
ets at the speed of 120 Gbps. We observe that LAP, Dovetail
can fully saturate the 120 Gbps even with the smallest pack-
ets possible for individual protocols. In comparison, HORNET
can only provide at maximum 90 Gbps with 1500-byte pack-
ets. But this number drops to around 50 Gbps when the pack-
ets contain payloads of 32 bytes. PHI’s maximum throughput
is very close to LAP and Dovetail. PHI can offer 106 Gbps
with 32-byte payloads, and it can saturate 120 Gbps when us-
ing payloads larger than 128 bytes. In summary, PHI data for-
warding can achieve similar maximum throughput as those of
LAP and Dovetail, and can offer 35–200% speed-up against
HORNET depending on packet sizes.

Limitations. The performance results from our single-node
testbed indeed apply to a larger testbed, because the amount
of computation required by forwarding is independent of traf-
fic types or a node’s position in the network. However, there
are several limitations of our single-node evaluation compared
to an end-to-end evaluation on a larger testbed. First, given
the small computation latency of PHI, propagation latency
will dominate end-to-end latency. An end-to-end evaluation
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will better demonstrate user-experienced latency. Second, the
single-node evaluation cannot reflect real networks’ hetero-
geneity such as connectivity and throughput.

8 Discussion

RTT-based timing attacks. The PHI protocol provides an
efficient method to hide path information in packet headers.
However, because PHI is a low-latency anonymity protocol,
an on-path AS can potentially employ RTT-based timing at-
tacks to measure its distance from the source or the desti-
nation [32]. Although PHI itself cannot defeat such a side-
channel attack using RTT information, employing PHI poses
a few challenges for such RTT-based timing attacks to func-
tion. First, RTT-based timing attacks require that the packets
from vantage points to traverse the same path as the victim
traffic. However, more and more ISPs begin to deploy load-
balancing in the network [15] which undermines these attacks’
assumption. Furthermore, network architectures, such as Path-
let [30] and SCION [50], provide high path diversity, which
additionally reduces the possibility that victim traffic paths are
traversed. Second, PHI enables sources and destinations to use
other mechanisms to defeat RTT-based attacks. For example,
a source and its destination can insert random delays into the
timing information to obscure real RTTs. Finally, large-scale
anonymity systems like PHI require the adversary to control
vantage points located in a large number of ASes, which frus-
trates attackers with limited resource budgets.

Deployment of PHI. Prerequisites for deploying network-
layer anonymity systems range from updating routing hard-
ware to implementing Future Internet Architectures (FIA). On
one end of the spectrum, as demonstrated in our evaluation,
advances in incorporating cryptographic functions into hard-
ware, such as Intel AESNI [5], have shown promising results
for high-speed data forwarding, implying the possibility of de-
ploying PHI on core routers. On the other end, unlike Dovetail
and HORNET, PHI adapts well to both current BGP routing
and FIAs by assuming no control of packet routes from end
hosts, thus excluding the roadblock of FIA deployment.

Regarding deployment motivation, note that an ISP can
advertise anonymity as a service to its customers as a competi-
tive strategy. Both private and business customers may be will-
ing to incur an additional cost for privacy, they might choose
an ISP that offers privacy protection over one that does not.
With respect to incremental deployment, a few ISPs that de-
ploy PHI can establish tunnels between each other and begin
to provide privacy services for their customers.

Integration with upper-layer anonymity tools. As a
network-layer anonymity protocol, PHI concentrates on pro-
viding intermediate-level anonymity against topological at-
tacks and achieving high throughput and low latency. Users
who desire stronger anonymity can employ higher-layer
anonymity tools, such as onion-routing networks [6, 8, 14], or
Mix networks [19, 41]. In particular, when the source node is
close to its intended destination in the network topology, e.g.,
they share the same AS, the source should at least use a VPN-
like service to redirect its packets to avoid de-anonymization.

Attacks using multiple nodes. PHI is a network-layer
anonymity system, which in general cannot defend against
attacks using multiple colluding nodes. These attacks range
from sophisticated traffic analysis [17, 33, 39, 40] (which
are demonstrated effective against stronger anonymity proto-
col [27] by the research community), to identifier-based infor-
mation aggregation (where identifiers about users, e.g., cook-
ies, are used to filter and aggregate traffic belonging to the
same user for more expensive analysis) [4].

We remark that PHI defends against the latter real-world
attack by preventing identifier extraction. PHI employs end-
to-end payload encryption to prevent application data from ex-
posing application-level identifiers. In addition, PHI’s session
identifier can only be used to group traffic within the same
flow, but cannot be linked to either a specific source node or
its destination. By forcing adversaries to resort to more expen-
sive techniques, PHI can help thwart mass surveillance.

9 Related Work

Anonymity systems using overlay networks. Chaum pio-
neered the first “Mix network” that anonymizes users’ traffic
in the Internet [20] using layered encryption, packet batch-
ing, and packet mixing. Several Mix networks have since
been implemented and deployed based on Chaum’s initial
ideas [24, 25, 31, 41]. Typically, they offer strong anonymity
properties but incur prohibitively high latency and computa-
tion for real-time applications.

Shifting the balance between security and usability, a
number of low-latency onion-routing networks [16, 27] pro-
pose to create circuits that limit the usage of asymmetric cryp-
tographic operations during circuit setup. But these systems
are vulnerable to traffic analysis attacks [22, 40, 42, 43].

The research community also seeks to simultaneously
achieve both strong anonymity and high usability. P5 [47] and
Tarzan [29] propose to organize onion routers as a P2P net-
work, where neighboring routers obscure real traffic patterns
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by adding chaff traffic. Aqua [36] divides the network into an
edge network and a core network. To thwart traffic analysis,
it forms broadcast channels for users in each edge network
and uses multi-path communication together with chaff traffic
for the core network. Dissent [48] relies on DC-nets [18] and
verifiable shuffles to defend against traffic analysis. Finally,
Drac [23] and Herd [35] focus on offering traffic-analysis re-
sistance for applications with low-volume communication.

Network-layer anonymity systems. Recently, the research
community has advocated building the anonymous commu-
nication as a principal function of underlying network archi-
tectures, and a number of network-layer anonymity systems
have been proposed since [21, 26, 34, 37, 46]. LAP [34] and
Dovetail [46] provide a medium-level anonymity by requir-
ing each router to encrypt its routing information in packet
headers to conceal network locations of end hosts. The re-
sulting anonymity guarantee is weaker than that offered by
onion routing systems, due to lack of bit-content unlinkabil-
ity. However, LAP and Dovetail enable high-speed data for-
warding and can scale to support Internet-scale usage. Tor in-
stead of IP [37] and HORNET [21] explore the possibility for
routers to adopt onion routing to anonymize traversing traffic.
HORNET demonstrated that it is viable to provide high-speed
onion routing on network devices. Nevertheless, compared to
LAP and Dovetail, HORNET introduces longer latency and
requires more computation. In particular, HORNET’s session
setup requires public-key cryptographic operations that are ex-
pensive and can be used as a DoS vector.

10 Conclusion
We introduce PHI, a new lightweight network-layer
anonymity protocol that enhances anonymity and compati-
bility over previous high-efficient protocols and maintains the
same level of efficiency. PHI leverages a new cryptographic
header format that efficiently hides nodes’ positions, and a
new back-off setup method that uses a helper node and re-
quires no prior knowledge about network topology on end
hosts. A prototype implementation of PHI demonstrates its
capability to saturate 120 Gbps links on commodity hardware,
evincing its potential to anonymize high volume of real-time
traffic in the Internet.
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A Appendix

A.1 Reference Packet Header Format

Figure 7 demonstrates a reference packet header formats for
PHI headers, which we use in our prototype implementation.
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Fig. 7. Formats of a path segment and packet headers. The
shaded fields are encrypted using a node’s local secret key.

Common header fields. In all PHI packet headers, there are
4 common fields: type, length, previous hop’s position, and a
session identifier. The type field specifies which type the PHI
packet header belongs and whether it uses a normal path or
a long path. The length field describes how long the header
is. The previous-hop-position field records the position of the
last-hop node’s path segment so that the current node can ver-
ify its path segment. Lastly, the session identifier helps identify
which session the packet header belongs to and should be ran-
domly generated by a source node.

Path. Another basic building block of PHI headers shared by
all types of PHI packets is a PHI path. A PHI path contains
a sequence of path segments. As shown in Figure 7, a path
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segment is a 16-byte block containing an 8-byte encrypted in-
formation block and an 8-byte MAC. An encrypted informa-
tion block contains an ingress port field, an egress port field,
a previous-hop position field, and flags. The first two fields
help a node keep records of where to forward a packet, and
the previous-hop field assists a node in finding the path seg-
ment of the previous-hop node so that the node can verify its
MAC. Lastly, the flags help a node to keep record of its role.
For example, the midway node sets the “midway flag” so that
it remembers its role when processing a data packet.

Path/midway requests. In addition to common headers, both
path and midway request headers also have a 4-byte address
field, a path, and the source node’s DH public key. For a path
request from a source to a helper node, the source node fills
the address field with the helper node’s address so that on-
path nodes can decide how to forward the path request. The
actual destination address is encrypted using the shared key
between the source node and the helper node, and appended
to the path request. For a path request from a midway node
to the destination, the address field contains the destination’s
address. The address field of a midway request also contains
the destination address, which is used in the back-off technique
for an on-path node to decide whether it is the midway node.
With respect to the DH public key, both the helper node and
the destination node use it to derive shared symmetric keys
with the source node. We use ECDH key exchange protocol
for small public key sizes.

Path replies/data packets. A path replies and a data packet
share the same header format. The only field in addition to the
common header is an end-to-end path. The selected destina-
tion and the midway node are already implicitly specified in
a path. Therefore, there is no need to specify their addresses
explicitly.
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