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ErasuCrypto: A Light-weight Secure Data
Deletion Scheme for Solid State Drives
Abstract: Securely deleting invalid data from secondary
storage is critical to protect users’ data privacy against
unauthorized accesses. However, secure deletion is very
costly for solid state drives (SSDs), which unlike hard
disks do not support in-place update. When applied to
SSDs, both erasure-based and cryptography-based secure
deletion methods inevitably incur large amount of valid
data migrations and/or block erasures, which not only
introduce extra latency and energy consumption, but
also harm SSD lifetime.
This paper proposes ErasuCrypto, a light-weight secure
deletion framework with low block erasure and data mi-
gration overhead. ErasuCrypto integrates both erasure-
based and encryption-based data deletion methods and
flexibly selects the more cost-effective one to securely
delete invalid data. We formulate a deletion cost min-
imization problem and give a greedy heuristic as the
starting point. We further show that the problem can
be reduced to amaximum-edge biclique finding problem,
which can be effectively solved with existing heuristics.
Experiments on real-world benchmarks show that Era-
suCrypto can reduce the secure deletion cost of erasure-
based scheme by 71% and the cost of cryptography-
based scheme by 37%, while guaranteeing 100% security
by deleting all the invalid data.
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1 Introduction
NAND flash memory-based Solid State Drives (SSDs),
given their advantages of high storage density, low en-
ergy consumption, fast random access latency, and high
shock resistance, are widely used in many computer sys-
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tems as secondary storage. In the meantime, users ex-
pect SSDs to deliver the same features as traditional
Hard Disk Drives (HDDs).

One important feature that concerns users’ privacy
is secure deletion of invalid data from the secondary
storage, which should make invalid data irretrievable
without affecting the accessibility of valid data. In tra-
ditional HDDs, many techniques [1–3] and tools [4–7]
achieve secure deletion through directly overwriting the
storage space of invalid data. This policy is not applica-
ble to SSDs, however, as they adopt a more complicated
data management scheme that brings extra challenges
to secure deletion. Specifically, data are read from or
write to the SSD at the granularity of a page. However,
due to its physical attributes, flash memory only allows
unidirectional write operations that change 1s to 0s. As
a result, in SSDs, new data cannot be directly written
to a physical page containing invalid data, but needs to
be written to blank physical pages instead. This out-of-
place update property makes all those overwriting-based
secure deletion approaches [1–7] ineffective for SSDs.
More crucially, this policy creates more invalid data in
the SSD since invalid data are created not only upon
deleting a file but also upon any update to the file.

To reuse invalid pages, the SSD controller has to
trigger erasure processes that employ a unidirectional
operation to change 0s to 1s. Leveraging this process
to erase all the invalid data pages in the SSD is a
straightforward methodology of secure deletion, which
is referred to as erasure-based method in this paper.
However, erasure can only be performed at the granu-
larity of an entire block, which usually contains 64 to
256 pages. As a result, if a block selected for erasure
contains valid pages, those pages must be migrated to
other blocks in order to maintain their availability. Both
erasure and the resultant valid-page migration are en-
ergy and time consuming. They are also harmful to SSD
lifetime: each SSD block can only sustain 104 to 106

Write/Erase (W/E) cycles [8] before the block wears
out and becomes unusablee.

An alternative method, which is referred to as
cryptography-based in this paper, encrypts a data when
writing it to the SSD. When the data becomes invalid,
it can be deleted by erasing the corresponding key [9].
Although this method avoids the need for large amount
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of data erasures, since a unique key is shared by n pages,
all the valid pages sharing the same key with a to-be-
deleted invalid page have to be migrated to other places.
On the other hand, when n=1, it is reported in [9] that
the SSD throughput will be affected due to the large
volume of key access requests.

To summarize, while both erasure-based and
cryptography-based schemes guarantee deletion of all the
invalid data, solely utilizing one of them will result in
high erasure and/or data migration overhead. In this
paper, we propose to integrate both methodologies into
a framework named ErasuCrypto. While ensuring that
all the invalid data are securely deleted, this framework
brings the flexibility of selecting for each invalid page
the cheaper way to delete it. In a nutshell, the contri-
butions of this paper are the following:
– We identify the challenge of secure data deletion in

SSDs, targeting invalid data created due to not only
file deletion but also file updating.

– We analyze the cost of erasure-based and
cryptography-based secure deletion methods, and
propose a hybrid ErasuCrypto framework to delete
invalid data while reducing the deletion cost.

– We propose and model the deletion cost optimiza-
tion problem, and furthermore prove that the prob-
lem can be reduced to a maximal-edge biclique find-
ing problem, which is proven to be NP-hard.

– We propose several heuristics to solve the deletion
cost optimization problem.

The rest of the paper is organized as follows. Section
2 provides background knowledge on SSDs and reviews
related works on secure data deletion. Section 3 intro-
duces the threat model, the design goals, and the tech-
nical motivation. Section 4 proposes the secure deletion
cost optimization problem and provides two heuristics.
Section 5 describes the ErasuCrypto framework. Section
6 presents disk access traces based experimental results,
while Section 7 concludes the paper.

2 Technical Background

2.1 Properties of Solid State Drives

SSDs typically adopt a four-level storage hierarchy.
There are multiple elements in each flash memory while
each element comprises multiple planes. Each plane in-
cludes multiple blocks, while each block consists of mul-
tiple pages, which are the smallest unit of SSD access.
Fig. 1 shows a commodity 64GiB SSD with 8 elements;
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Fig. 1. The four-level hierarchy of SSD.

each element contains 4 planes, each comprising 2048
blocks of 64 4KiB pages.

One of the characteristics of flash-based storage is
its out-of-place update property. There are three basic
operations in SSDs: read, write, and erase. Write can
only change a cell from 1 to 0, and a cell has to be
erased to 1 before it can be re-written. Read and write
are performed at the granularity of a page, while erase
is performed at the granularity of a block (typically con-
taining 64–256 pages). Thus intuitively, to update the
data in a page, first all the valid pages in the block
have to be stored in a buffer, and then after erasing the
block, the buffered pages plus the newly updated page
have to be written back to the block. In order to avoid
this time- and energy-consuming process, SSDs do not
directly update a written page, but write the new data
to a free page. This property is known as out-of-place
update. Due to this property, a physical page in an SSD
has 3 states: Free, Valid, and Invalid. The erase opera-
tion changes pages from Invalid to Free, while the write
operation changes pages from Free to Valid, and from
Valid to Invalid.

An illustrative example is shown in Fig. 2. Fig. 2 (a)
shows the state of pages before updating logical page
LP1 in the SSD. LP1 is mapped to physical page 1 in
block A. Block B that contains the pointer to the next
free page to be written is called the active block. There
is only one active block in each SSD plane. Fig. 2 (b)
shows the effect of the update process: the old data in
page 1 is marked as invalid, while LP1 is re-mapped to
page 5 in block B, which stores the new data.

Since the physical address of data changes upon
each update, Flash Translation Layer (FTL) is added
to the control layer of SSDs to keep track of the vary-
ing mapping between Logical Page Number (LPN) and
Physical Page Number (PPN). Upon each write opera-
tion, the associated entry in the FTL is updated. FTL
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Fig. 2. Stale data generated by out-of-place update.

can be in page-level or block-level granularity, or even a
combination of both [10, 11]. The coarser the FTL gran-
ularity, the less the storage overhead, but the worse the
SSD performance and storage efficiency. Overall, many
commercial SSDs adopt page-level FTLs [11].

As more writes are performed to the SSD, the num-
ber of Invalid pages increases. To recycle these Invalid
pages, SSDs employ a Garbage Collector (GC), which
selects blocks with a majority of Invalid pages, moves
Valid pages in the selected blocks to other places, up-
dates the FTL to record new page mappings, and erases
the selected blocks to make them ready for future use.
The frequency of GC invocation largely determines the
Quality-of-Service (QoS) and the lifetime of SSDs. In
most SSDs, GC is triggered only when necessary (i.e.,
when the number of free blocks fails below a threshold),
and targets those young blocks (i.e., with below-average
W/E counts) which have a majority of Invalid pages.

2.2 Related Work on SSD Secure Deletion

Although the out-of-place update property is profitable
for reducing SSDs access latency, it induces additional
privacy threats to SSDs. Specifically, invalid data will
be generated not only upon file deletion, but also upon
file update. This property can be clearly observed in
Figure 2. When the logical page LP1 is re-mapped to
page 5 in block B, the old data in page 1 is not over-
written. Therefore, every “update” operation increases
the number of invalid pages in the SSD. Secure deletion
should target all the invalid pages in the SSD, regardless
of whether they belong to a deleted file or not.

The secure deletion challenge in SSDs has already
caught the attention of some research works. In [12], the
authors propose a page-level deletion operation called
scrubbing. The idea is to directly overwrite an invalid
data page to turn all the bits in the page to 0, thus delet-
ing the invalid data. In [13], a scheme combining garbage
collection and per-page scrubbing is proposed for flash
memory. In [14], scrubbing is also utilized to implement
flash-based physical unclonable functions (PUF). How-

ever, due to program disturb effect1 [15], scrubbing a
page may introduce unpredictable errors to the pages
within the same block. In other words, scrubbing may
impact data accessibility of the valid data. This disturb
effect is even more severe [15] in multi-level cell (MLC)
flash memory, which is used more commonly in commer-
cial products than single-level cell (SLC) flash. To min-
imize errors, MLC flash adopts a sequential program-
ming strategy, and in-place reprogramming is neither
supported nor suggested by flash manufacturers [15, 16].

Wei et al. [17] propose a “verifiable” SSD sanitation
scheme called Scramble and Finally Erase (SAFE), with
the goal of not only erasing all the data in an SSD, but
also verifying that security erasure is successfully per-
formed. They argue that encrypting data and deleting
the key is fast but not verifiable, since reliably destroy-
ing the cryptography keys is challenging. On the other
hand, erasing all the blocks in the SSD is slow but ver-
ifiable. The SAFE scheme combines both methods to
provide a fast and verifiable secure deletion approach.
In their model, all the data in the SSD is encrypted
with a key. When performing SAFE, it first deletes the
key to make the SSD “keyless”, and then erases the
entire SSD to make the deletion “verifiable”. However,
this technique can only sanitize the entire SSD. In other
words, there will be no valid data left after the process.

Another set of research develops file system level
secure deletion approaches for SSDs. In [18], a secure
deletion approach for the YAFFS file system [19] is pro-
posed. All the files are kept encrypted and the cryp-
tography keys are stored at the header of each file. To
securely delete a file, the block that contains the key will
be erased. This method works well for deleting an entire
file, but is not able to handle the invalid data generated
due to file updates. DNEFS [9] is another file system
level secure deletion scheme that leverages cryptogra-
phy. It encrypts each data node (the unit of read/write
in the file system) with a unique key. To delete a data
node, the corresponding key will be deleted. However,
as this scheme does not maintain a deterministic map-
ping between pages and key, it has to record, for each
page, the position of its key in the header of the page.

A user-level secure deletion scheme named purging
is proposed in [20], which requires no modifications to
the storage system. Since the user does not have direct

1 The program operation on one page subjects the other pages
in the same block a weak programming voltage. This phenomena
is called program disturb effect. This effect is most significant to
pages adjacent to the page being programmed [15].
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control to the lower-level storage controller, a passive
method is applied: the user should fill all the empty
space in the file system with as much junk files as it
can holds. This process will impassively trigger many
garbage collection operations, thus securely deleting the
invalid data. While this scheme ensures secure deletion,
the purging processes incur high deletion latency and
degrade SSD lifetime, especially when the empty space
to be filled is large.

In addition to these research works, current SSDs
also provide some built-in sanitation support. For exam-
ple, both SCSI and ATA offer sanitation command [21]
to erase all the data blocks in the SSD. However, san-
itation cannot be used towards secure deletion, which
should delete only invalid data while retaining valid
data intact. Some commercial SSDs provide cryptog-
raphy support for data accesses, such as Intel SSD 320
series and SSD 520 series [22]. Data stored in the SSD
are in ciphertext form, while encryption/decryption is
performed upon each SSD write/read access. In these
SSDs, users’ privacy is secured with a master password
stored in BIOS. However, this scheme does not make in-
valid data unrecoverable. An adversary who steals the
device can obtain the password stored in BIOS. Or, the
user may be forced to surrender the password upon a
subpoena. On the other hand, destroying the master key
will sanitize the entire SSD, therefore is not preferable
if the user still wants to access valid data.

3 Technical Motivation

3.1 Threat Model
We assume that the target computer system is equipped
with an SSD as secondary storage. The attack method is
the so-called coercive attack described in [9]. In partic-
ular, an attacker may utilize coercion method, such as
legal subpoena, to force the user to disclose the device
and any necessary information related to data privacy
of the device. The attacker is then able to access any
data, valid or invalid, stored on the device. With this
threat model, encryption will be ineffective to protect
data privacy since the key might be forfeited.

The user may request all the invalid data on the
device, for example the photos or text messages pre-
viously deleted from the file system, become unrecov-
erable. However, in the meantime, all the valid data
stored on the device should still be accessible. This goal
is different from that of disk sanitation, which deletes
all the data on the device, no matter whether they are
valid or invalid.

The defenders in the threat model are SSD ven-
dors. They will provide functionality to fulfill the secure
deletion need of users, and flexibility to choose whether
and when to trigger secure deletion. In addition, given
the potentially high deletion cost, it is preferable to
minimize the secure deletion cost. It is assumed that
the SSD controller provides some cryptography support
(e.g. AES [23, 24]) for data accesses, such as Intel self-
encrypting SSDs [22], that the defender can take advan-
tage of. The defender also has the flexibility to select
different keys for different pages and determine where
to store the keys.

One important criterion for evaluating defense
schemes is the amount of information that needs to
be kept in secret. It is noteworthy that our proposed
scheme does not rely on any secret information. The
cryptography keys are stored in the SSDs and can be
obtained by the attacker if they are not erased. The at-
tacker can extract logical-to-physical mapping informa-
tion stored in the FTL, and may even know the exact de-
fense scheme used in the SSD. In either case, the privacy
level achievable by the proposed destruction scheme will
not degrade.

3.2 Design Goals

Based on the threat model, a high-quality secure data
deletion scheme should achieve the following two goals:
– Securely delete all invalid pages. After secure

deletion, data in an invalid page must be irretriev-
able even if the page can be physically accessed. The
constraint is that all the valid data should still be
accessible after secure deletion, that is, they should
either stay in their original locations without being
touched, or be migrated to other pages. This goal
evaluates the effectiveness of a scheme.

– Minimize the secure deletion cost. As men-
tioned before, the cost of secure deletion process
can be measured by the number of block erasures
and the number of page migrations. While the first
goal must be satisfied, the deletion cost should also
be minimized. This goal evaluates the efficiency of
a scheme.

3.3 A Concrete Example

As briefly discussed in Section 1, the two secure dele-
tion major methods, namely, the erasure-based and the
encryption-based schemes, are able to meet the first de-
sign goal listed above. However, they both incur high
deletion cost, as will be explained below.



ErasuCrypto: A Light-weight Secure Data Deletion Scheme for Solid State Drives 136

Original blocks

(b) Page states after erasure-based secure deletion

Active blocks

Free page Valid page Invalid page
Legend:

Original blocks

(a) Original page states before secure deletion

Active blocks

A1
A2
A3
A4
A5
A6
A7
A8

B1
B2
B3
B4
B5
B6
B7
B8

C1
C2
C3
C4
C5
C6
C7
C8

A3
A7
B1
B2
B4
B5
B6
B8

C1
C2
C4
C5
C6
C8

3 erasures 14 migrations

Fig. 3. Erasure-based secure deletion. The deletion cost includes
3 erasures and 14 migrations.

Fig. 3 provides a concrete example of the erasure-
based scheme. There are three blocks in the example,
each of which contains 8 pages. Fig. 3(a) shows the page
states before initiating the deletion process. As can be
seen, there are 10 invalid pages and 14 valid pages in
total. Since the only way to delete an invalid page is to
erase the block containing it, all the three blocks in Fig.
3(a), as they all contain invalid pages, have to be erased.
As a result, all the valid pages in the three blocks have to
be migrated to the other free pages before initiating the
erasure operations. Fig. 3(b) shows the page states after
applying the erasure-based secure deletion. As can be
seen, all the valid pages were migrated to active blocks
and the three original blocks were erased. The secure
deletion cost of this process is 3 erasure operations plus
14 page migrations in total.

In comparison, Fig. 4 shows the same example but
with a cryptography-based deletion scheme similar to
the one proposed in [9]. In this example, all the pages
are stored in encrypted form. As shown in Fig. 4(a), a
total number of 8 keys (K1 through K8) are used and
they are stored in a single page in the key block. One
key is shared by 3 pages on the same row. For exam-
ple, A1, B1, and C1 share the same key K1. Since the
only way to securely delete an invalid page is to destroy
the corresponding key, all 8 keys have to be destroyed.
Hence, all the 14 valid pages need be migrated. Mean-
while, to destroy the keys, it is necessary to erase the
key block and then write the new keys (K1′ through
K8′) back to the key block, as shown in Fig. 4(b). This
process does not require erasure to any data block, but

Original blocks

(b) Page states after cryptography-based secure deletion

Active blocks

Free page Valid page Invalid page
Legend:

Original blocks

(a) Original page states before secure deletion

Active blocks

<A1,K1>
<A2,K2>
<A3,K3>
<A4,K4>
<A5,K5>
<A6,K6>
<A7,K7>
<A8,K8>

<B1,K1>
<B2,K2>
<B3,K3>
<B4,K4>
<B5,K5>
<B6,K6>
<B7,K7>
<B8,K8>

<C1,K1>
<C2,K2>
<C3,K3>
<C4,K4>
<C5,K5>
<C6,K6>
<C7,K7>
<C8,K8>

A3
A7
B1
B2
B4
B5
B6
B8

C1
C2
C4
C5
C6
C8

<A1,K1>
<A2,K2>
<A3,K3>
<A4,K4>
<A5,K5>
<A6,K6>
<A7,K7>
<A8,K8>

<B1,K1>
<B2,K2>
<B3,K3>
<B4,K4>
<B5,K5>
<B6,K6>
<B7,K7>
<B8,K8>

<C1,K1>
<C2,K2>
<C3,K3>
<C4,K4>
<C5,K5>
<C6,K6>
<C7,K7>
<C8,K8>

Keyless page

14 migrations

K1~K8

Key block

Keys

K1’~K8’

Key block

1 erasure + 1 migration

Fig. 4. Cryptography-based secure deletion. A data page with its
key deleted is called keyless. The deletion cost includes 1 erasure
and 15 migrations.

still needs 1 erasure to the key block plus 1 migration of
the key page and 14 migrations of the valid data pages.

As can be observed, under the constraint of deleting
all the invalid pages in the SSD, these two approaches
do not provide any flexibility in choosing a block to
erase or choosing a key to delete. In the erasure-based
approach, all the blocks that contain one or more invalid
pages have to be erased. Similarly, in the cryptography-
based approach, all the keys that are used to encrypt
one or more invalid page have to be deleted. However, if
these two approaches are both applied, it is theoretically
possible to select a more cost-efficient way to securely
delete an invalid page. Such flexibility is illustrated in
Fig. 5, which applies different secure deletion methods
to the invalid pages shown in Fig. 4(a). As can be seen,
block A is erased since it contains a majority of invalid
pages. On the other hand, the invalid pages in blocks B

and C can be deleted by destroying keys K3 and K7.
These operations together delete all the invalid pages,
while the overhead is to migrate only two valid pages
A3 and A7. All the other valid pages remain untouched.
Taking the cost of key block erasure and migration into
account, the total deletion cost in this example is 2 block
erasures and 3 page migrations.

A side-by-side comparison of the costs of the three
secure deletion approaches is listed in Table 1. As can
be seen, the integrated method outperforms the erasure-
based method by incurring both fewer erasures and
fewer migrations. When compared to the cryptography-
based method, the integrated method requires one more
erasure but largely reduces the number of migrations
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Table 1. Secure deletion cost comparison

Method Erasure Migration
Erasure-based 3 14

Cryptography-based 1 15
Integrated 2 3

from 15 to 3. Clearly the benefit of low deletion cost is
brought by the flexibility of the integrated method in
selecting the more cost-effective deletion approach.

4 Deletion Cost Minimization
Problem

In this section, the deletion cost minimization prob-
lem is defined, modeled, and solved. First of all, the
storage structure to accommodate the proposed Erasu-
Crypto framework is provided. Then, the secure deletion
problem is formalized as an integer linear programming
(ILP) problem. A greedy heuristic is given as a straight-
forward solution to the problem. After that, we prove
that the deletion cost minimization problem can be re-
duced to the maximum-edge biclique finding problem in
a bipartite graph. Existing well-developed heuristics can
be utilized to provide a nearly-optimal solution.

4.1 Proposed SSD Organization
Same as the crypto-based secure deletion methods [9],
ErasuCrypto requires extra storage for the keys. Specif-
ically, blocks in SSD are classified into two types: the
majority are data blocks while the rest are key blocks, as
shown in Fig. 6. The data blocks in each SSD element
are partitioned into chunks. Assuming each chunk con-
tains n data blocks2 and each block contains m pages,

2 The last chunk in an element may have < n blocks if the total
number of data blocks in an element is not divisible by n.
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a chunk can be represented as a m × n matrix. Each
column in the matrix represents a block, and each row
in the matrix is named as a group, which consists of
the ith pages of all the blocks in a chunk. Under this
structure, a chunk can be considered as either “n blocks
each containing m pages” or “m groups each containing
n pages”.

As shown in Fig. 6, all the pages in a group share
one single encryption key, and a total of m different
keys are required for each chunk. One benefit of such a
structural organization is that there is no need to record
the key location of any data block since it is always fixed
and can be easily computed based on the corresponding
group index. Furthermore, keys are stored densely in the
dedicated key blocks. Assuming a page size of 4KiB and
a key size of 128 bits, a total of 256 keys can be stored
in a key page. If each block contains m = 64 pages, each
key page can hold all the keys of up to 4 chunks, and
each key block can hold all the keys of up to 256 chunks.
This implies that the storage overhead of key blocks is
only 1/256n, which is completely negligible.

4.2 ILP Formulation of Deletion Cost
Minimization

Since the chunks in the proposed SSD organization are
non-overlapping, the secure deletion procedure of the
entire SSD can be decomposed as a collection of the
secure deletion procedures of all the chunks. In other
words, invalid pages in the SSD can be deleted if and
only if the invalid pages in each chunk are wiped out,
while the overall deletion cost is minimized if and only
if the deletion cost of each chunk is minimized. We de-
fine the deletion cost minimization problem of a single
chunk as the problem of finding an optimal secure dele-
tion solution for a chunk that satisfies the two design
goals defined in Section 3.2.



ErasuCrypto: A Light-weight Secure Data Deletion Scheme for Solid State Drives 138

Here we formulate the deletion cost minimization
problem in the language of integer linear programming
(ILP). For each chunk, a two-dimensional page state ma-
trix State[m][n] is used to represent the states of all the
pages in the chunk. For example, State[i][j] (1 ≤ i ≤
m, 1 ≤ j ≤ n) is the state of the ith page in the jth

block. Each page has three possible states:
– State[i][j] = 1 ⇐⇒ the page is an invalid page that

should be securely deleted.
– State[i][j] = 0 ⇐⇒ the page is a valid page that

should still be accessible after secure deletion.
– State[i][j] = −1 ⇐⇒ the page is a free page that

contains no data. No constraint is imposed on free
pages.

A secure deletion solution consists of the selection of the
block(s) to be erased and/or the key(s) to be deleted.
To record the block erasure solution, a binary vector
Dblock[n] is used. Dblock[j] = 1(1 ≤ j ≤ n) if and only if
block j is selected to be erased. Similarly, binary vector
Dgroup[m] is used to record the key deletion choices.
Dgroup[i] = 1(1 ≤ i ≤ m) if and only if the key of group
i is selected to be deleted. In the rest of the paper, a
solution is called feasible if it satisfies the first design
goal, that is, deleting all the invalid pages in the given
state matrix, and infeasible otherwise.

The first design goal requests every invalid page be-
ing securely deleted, which can be modeled as follows:
– ∀ i, j (1 ≤ i ≤ m, 1 ≤ j ≤ n):

Dgroup[i] + Dblock[j] ≥ State[i][j] (1)

In inequality (1), if State[i][j] equals 1, at least one of
Dgroup[i] and Dblock[j] should be 1. In other words, a
feasible solution should select either the ith row or the
jth column or both of them to delete the invalid page
State[i][j]. On the other hand, if State[i][j] is 0 or −1,
which means the page is either valid or free, any values
of Dgroup[i] and Dblock[j] will satisfy the inequality.

The second design goal is to minimize the secure
deletion cost, which can be modeled as follows:
– ∀ i, j (1 ≤ i ≤ m, 1 ≤ j ≤ n):

# Mgr =
m∑

i=1

n∑
j=1

(State[i][j] = 0

∧ Dgroup[i] + Dblock[j] > 0)

(2)

# Era =
n∑

j=1
Dblock[j] (3)

Goal: minimize (# Mgr + k ×# Era) (4)

In Equations (2)–(4), # Mgr stands for the number of
valid pages to be migrated while # Era is the number

of erasures to be performed. The goal is to minimize
the overall detection cost, and k is an integer factor
representing the ratio of the cost of one erasure over the
cost of one migration. The factor can be configured by
the user.

Note that this model simplifies the optimization
goal by excluding the erasure and migration overhead of
the key blocks. However, this will not affect the quality
of the solution because such overhead is not only negli-
gible compared to the costs incurred by the data blocks
but almost invariant regardless of the secure deletion
solution. As analyzed in Section 4.1, each key block can
store the keys of up to 256 chunks. As long as any of
these keys need to be deleted, the key block has to be
erased and replaced with updated keys. In other words,
due to the high key storage density, it is almost guar-
anteed that each key block will be erased and updated.
On the other hand, the number of key blocks is only
1/256n of the number of data blocks when chunk size
is n. Therefore, excluding such constant and negligible
overhead from the optimization goal will not affect the
quality of the solutions.

4.3 Greedy Heuristic

A straightforward greedy heuristic to minimize the dele-
tion cost is shown in Algorithm 1. The idea is to itera-
tively select the block/group with the highest percent-
age of invalid pages, and erase/delete the block/key ac-
cordingly. During each iteration, a score is calculated
for each group and block that contains invalid page, as
shown in lines 5 and 8. Note that the erasure weight k

is included in the denominator of Bscore but not Gscore,
in order to prioritize groups over blocks when they have
the same percentage of invalid pages. After selecting
a group/block with the highest score, all the counters
will be updated accordingly in lines 13 to 21. Then the
states of all the pages in the selected group/block will
be set to −1 (line 22), to indicate the row/column be-
ing “deleted”. The procedure terminates only when all
the invalid pages are covered, as shown in line 3. This
guarantees that the obtained solution is feasible.

Regarding the complexity of the greedy algorithm,
the initialization part requires scanning the entire
State[i][j] matrix and hence has a complexity of O(mn).
During each iteration of the while loop, scores of all the
groups and blocks are calculated, resulting a complexity
of O(m + n). When updating the counters, each page in
the block/group will be checked, which has a complex-
ity of O(max(m, n)). Since each iteration guarantees the
deletion of either a row or a column, there will be at



ErasuCrypto: A Light-weight Secure Data Deletion Scheme for Solid State Drives 139

Algorithm 1: Greedy heuristic
input : State[m][n] – Chunk state matrix

Binvalid[n] – Block invalid-page counts
Bvalid[n] – Block valid-page counts
Ginvalid[m] – Group invalid-page counts
Gvalid[m] – Group valid-page counts
Invalid – Total invalid-page counts
k – Erasure weight

output: A feasible solution given by Dblock[n]
and Dgroup[m]

1 begin
2 Scan State[m][n] and initialize Binvalid,

Bvalid, Ginvalid, Gvalid, and Invalid;
3 while Invalid>0 do
4 for i← 1 to m has Ginvalid[i] > 0 do

5 Gscore[i]← Ginvalid[i]
Ginvalid[i] + Gvalid[i]

6 end
7 for i← 1 to n has Binvalid[i] > 0 do

8 Bscore[i]← Binvalid[i]
Binvalid[i] + Bvalid[i] + k

9 end
10 Select the group/block S with the highest

Gscore/Bscore to delete;
11 Set the S entry in Dblock[n]/Dgroup[m]

to 1;
12 for every State[i][j] in group/page S do
13 if State[i][j] = 1 then
14 Invalid−−;
15 Ginvalid[i]−−;
16 Binvalid[j]−−;
17 end
18 if State[i][j] = 0 then
19 Gvalid[i]−−;
20 Bvalid[j]−−;
21 end
22 State[i][j]← −1;
23 end
24 end
25 end

most m + n iterations. Therefore, the while loop has a
complexity of O((m + n)2). Overall, the complexity of
obtaining a feasible deletion solution for a given chunk is
O((m+n)2). Since m is a constant for a given SSD while
the number of chunks in a SSD is proportional to 1/n,
the overall complexity of obtaining a feasible deletion
solution for the entire SSD is O((m + n)2/n) = O(n).
This indicates that the complexity of the greedy algo-
rithm is linearly proportional to n.

4.4 Graph-based Heuristic

While the greedy heuristic ensures a feasible solution, it
does not effectively bound the secure deletion cost. In
this part, we will present a better solution by proving
that the deletion cost minimization problem can be re-
duced to a maximum-edge biclique finding problem and
hence can be solved with well-designed heuristics.

4.4.1 Maximum Edge Biclique Problem Formulation

Lemma 4.1. Minimization goal (4) is equivalent to the
following maximization goal (7):
– ∀ i, j (1 ≤ i ≤ m, 1 ≤ j ≤ n):

# Mgr =
m∑

i=1

n∑
j=1

(Statei,j = 0

∧ Dgroupi + Dblockj = 0)

(5)

# Era =
n∑

j=1
(1−Dblockj) (6)

Goal: maximize # Mgr + k × # Era (7)

Proof. Mgr in Definition (5) is the number of valid
pages that do not need to be migrated during secure
deletion, while Era in Definition (6) is the number of
blocks that do not need to be erased. Therefore we have:

Goal (4) + Goal (7)
= (#Mgr + k ×#Era) + (#Mgr + k ×#Era)
= (#Mgr + #Mgr) + k × (#Era + #Era)

=
m∑

i=1

n∑
j=1

(Statei,j = 0) + k × n

(8)

As can be seen, the sum of #Mgr and #Mgr is
the total number of valid pages, while the sum of #Era

and #Era is n. Since both sums are constant, the sum of
Goal (4) and (7) is also constant. Therefore, minimizing
Goal (4) is equivalent to maximizing Goal (7).

Assuming that the solution is feasible and there is no
free page in the chunk (the impact of free pages will
be discussed later), a page which is not covered by any
selected row or column is guaranteed to be valid. As a
result, the term State[i][j] = 0 can be omitted from the
expression of Mgr. The maximization goal (7) can be
rephrased as maximizing the product of two factors: the
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Fig. 7. (a) The original page state matrix. (b) The augmented page state matrix when k = 1. (c) The augmented page state bipar-
tite graph. Edges correspond to 0s in the augmented page state matrix. Vertices and edges that form the maximum-edge biclique are
respectively marked with bold outlines and solid lines.

unselected groups plus a constant k, and the unselected
blocks, as shown in the following steps:

Goal (7)
= # Mgr + k ×# Era

=
m∑

i=1

n∑
j=1

(Dgroup[i] = 0 ∧ Dblock[j] = 0)

+ k ×
n∑

j=1
(1−Dblock[j])

=
m∑

i=1
(Dgroup[i] = 0)×

n∑
j=1

(Dblock[j] = 0)

+ k ×
n∑

j=1
(Dblock[j] = 0)

= (
m∑

i=1
(Dgroup[i] = 0) + k)×

n∑
j=1

(Dblock[j] = 0)

(9)

Equation (9) motivates us to transform the ma-
trix to a bipartite graph3 and find its maximum-edge
biclique4. Specifically, for each chunk, an augmented
page state matrix can be constructed by appending k

rows with all valid pages, called shadow groups, to the
original state matrix State[m][n]. An example is shown
in Fig. 7. The original state matrix shown in Fig. 7
(a) is the same as the example used in Section 3.3. In
this case, k = 1 and an extra group G′

1 is appended to
the original matrix to build the augmented page state
matrix, as presented in Fig. 7 (b).

3 A bipartite graph is a graph whose vertices can be divided
into two disjointed sets U and V , and each edge in the graph
connects a vertex in U to a vertex in V .
4 A biclique is a complete bipartite graph with an edge con-
necting any vertex in U to any vertex in V . A maximum-edge
biclique of a bipartite graph is its subgraph which is a biclique
and has the maximum number of edges.

Based on the augmented page state matrix, a bipar-
tite graph named augmented page state bipartite graph
can be built. The two sets of vertices respectively repre-
sent all the blocks (columns) and all the groups (rows)
in the matrix, including the shadow groups. As shown
in Fig. 7 (c), there is an edge Eij between group node
i and block node j if and only if State[i][j] in the aug-
mented page state matrix is valid. The maximum-edge
biclique of this bipartite graph is represented by bold
circles and solid lines in Fig. 7 (c).

With the bipartite graph representation, the prob-
lem of finding the optimal deletion solution can be re-
duced to the problem of finding the maximum-edge bi-
clique. This will be proved by showing the feasibility
and the efficiency of the solution.

Theorem 4.2. Given any biclique in the augmented
page state bipartite graph, a feasible secure deletion so-
lution is to erase/delete all the blocks/groups that are
not included in biclique.

Proof. If the solution is infeasible, there must be an
invalid page P [i][j] left undeleted. Since the solution
erases/deletes all the blocks/groups not included in the
biclique, both the block vertex B[i] and group vertex
G[j] of P should be included in the biclique. However,
this is impossible since a biclique is a complete bipar-
tite graph and there must be an edge connecting B[i]
and G[j]. As mentioned before, an edge in the aug-
mented page state bipartite graph indicates that the
corresponding page P is valid, which contradicts the
assumption. Therefore, the assumption of the solution
being infeasible is false.

Theorem 4.3. Assume there is no free page in the
chunk. Given a feasible solution, the not-erased blocks
and the not-deleted groups constitute a biclique in the
augmented page state bipartite graph.
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Proof. If the graph containing the not-erased blocks and
the not-deleted groups is not a biclique, there must be
two vertices B[i] and G[j] in the graph that are not
connected. If so, the corresponding page P [i][j] must be
invalid and has not been securely deleted, which contra-
dicts the given assumption.

Theorem 4.2 proves the sufficient condition that any
biclique in the augmented page state bipartite graph
derives a feasible solution to the secure deletion prob-
lem, while Theorem 4.3 proves the necessary condition
that a feasible solution is always derived from a biclique
in the graph. Therefore, when there is no free page in
the chunk, the optimal secure deletion solution is guar-
anteed to be among all the solutions derived from the
bicliques. In the next step, we will show that the op-
timal solution can be derived from the maximum-edge
biclique of the augmented page state bipartite graph.

Lemma 4.4. A maximum-edge biclique in the aug-
mented page state bipartite graph must include all the
shadow group vertices.

Proof. Assume a shadow group vertex G′
i is not included

in the maximum-edge biclique. Since there is an edge be-
tween any block vertex and G′

i, adding G′
i to the current

maximum-edge biclique will generate a bigger biclique
with more edges, which contradicts the definition of
maximum-edge biclique. Therefore the maximum-edge
biclique must include all the shadow group vertices.

Theorem 4.5. Given the maximum-edge biclique of an
augmented page state bipartite graph, erasing/deleting
all the blocks/groups that are not in the biclique guar-
antees a feasible and optimal solution that minimizes the
secure deletion cost.

Proof. On the block vertex side of the biclique, the to-
tal number of vertices is

∑n
j=1(Dblock[j] = 0) since

all the not-erased blocks are included in the biclique.
On the group vertex side of the biclique, the total
number of vertices is

∑m
i=1(Dgroup[i] = 0) + k since

all the not-deleted groups are included and all the
shadow groups are included according to Lemma 4.4.
Furthermore, since a biclique is a complete bipartite
graph, the total number of edges in it is the product
of the numbers of the two sets of vertices, which is
(
∑m

i=1(Dgroup[i] = 0)+k)×
∑n

j=1(Dblock[j] = 0). This
is the same as Equation (9), the rephrased representa-
tion of Goal (7). According to Lemma 4.1, maximizing
Goal (7) is equivalent to minimizing Goal (4). Therefore,
the optimal secure deletion solution can be derived from

the maximum-edge biclique of the augmented page state
bipartite graph.

4.4.2 Biclique Finding Heuristic

According to Theorem 4.5, a feasible and min-cost
secure deletion solution can be obtained by finding
the maximum-edge biclique in the corresponding aug-
mented page state bipartite graph. According to [25],
finding the maximum-edge biclique in a given bipar-
tite graph is an NP problem. Therefore, we utilize
the heuristic proposed in [26] to get near-optimal so-
lutions. The work approximates the maximum-edge bi-
clique problem as a rank-one non-negative factoriza-
tion problem named R1Nd(G). It also proves that find-
ing the stationary points of R1Nd(G) can localize bi-
clique in the bipartite graph. Therefore, nonlinear opti-
mization can be used to find good stationary points of
R1Nd(G), which correspond to bicliques with large num-
ber of edges. Based on this observation, a biclique find-
ing heuristic with the complexity of O(E) (E is the num-
ber of edges in the bipartite graph) is proposed in [26].
When applied to the proposed secure deletion problem,
the sum of all the edges in all the bipartite graphs is ap-
proximately the total number of valid pages in the SSD.
Therefore, the overall complexity is a constant indepen-
dent of the group size n, implying that this heuristic is
less complex than the greedy heuristic in Section 4.3.

4.4.3 Impact of Free Pages

The proofs shown in Section 4.4.1 assume the absence
of free pages in a chunk. In this part, we analyze the
impact of free pages. Fundamentally, blocks in the SSD
can be categorized into the following three types based
on the existence of free pages in them:
– No free page. Most of in-use blocks have no free

page but only valid and/or invalid pages in them.
– Free page only. All the free blocks in the SSD

have only free pages.
– Mixture. The block under written, called active

block, has a mixture of free pages and valid/invalid
pages. Due to the sequential programming property
of Flash memory, there is one and only one active
block in each SSD plane.

Since the first case has already been analyzed before,
here we only discuss the second and the third cases.
First, a block containing only free pages can be com-
pletely omitted from secure deletion since it on one hand
has no invalid data to delete, and on the other hand has
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Fig. 8. (a) An augmented page state matrix with free pages. (b)
The maximum-edge biclique is marked with solid lines. However,
the solution is not optimal since deleting key G2 is unnecessary.

no valid page to be migrated. These blocks can be ex-
cluded from the corresponding page state matrix. The
matrix will have < n columns, but the quality of the
solution will not be affected.

On the other hand, when a chunk contains a block
of the third category, the solution obtained from the
maximum-edge biclique may not deliver the minimum
secure deletion cost. A concrete example is shown in Fig.
8. Fig. 8 (a) shows a 3× 3 augmented page state matrix
wherein one shadow group is appended (i.e., k = 1).
The corresponding bipartite graph is shown in Fig. 8
(b), wherein the vertices and edges of the maximum-
edge biclique are marked with solid lines. According to
Theorem 4.5, the min-cost deletion solution is to erase
B1 and delete keys of G2 and G3 since they are not
included in the biclique. However, deleting G2 is unnec-
essary since the invalid page located at row 2 column 1
is already handled by erasing B1. In fact, the min-cost
deletion solution is to erase B1 and delete G3.

The fundamental reason for this non-optimality is
that when a block contains free pages, Theorem 4.3 is
not longer true. If there is no edge connecting block ver-
tex B[i] and group vertex G[j] in the augmented page
state bipartite graph, the corresponding page P [i][j]
may not be invalid but be free instead. Therefore it is
not guaranteed that the optimal solution is among the
ones derived from bicliques.

However, the impact of such non-optimality is neg-
ligible given the existence of at most one mixture block
in each SSD plane. As a result, in each place there will
be at most one chunk that contains a mixture block
who may affect the optimality of its security deletion
solution. For a standard configuration of a plane with
8192 blocks and a group size of 8, optimal solutions
can still be obtained for over 99.9% of the chunks. On
the other hand, for the only exceptional chunk with the
mixture block, feasibility of the solution obtained with
maximum-edge biclique finding is still guaranteed since
Theorem 4.2 still holds even with the existence of mix-
ture blocks.
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5 ErasuCrypto Framework
Figure 9 presents an overview of the various components
in the proposed ErasuCrypto framework. The SSD con-
troller is extended to incorporate ErasuCrypto. This im-
plies that the secure data deletion process is transpar-
ent to the user. However, an interface is provided for
the user to manually trigger a secure deletion process
on demand. Furthermore, the deletion process consists
of the following three steps:
– Pre-processing. In the first step of secure deletion,

the FTL is accessed to obtain page state informa-
tion. Then the heuristics described in Section 4 are
used to analyze each chunk and select the block(s)
to erase and the group key(s) to delete.

– Valid data migration. This step ensures the ac-
cessibility of the valid data. All the valid pages lo-
cated in the selected blocks or groups are migrated.
These pages are first encrypted with their new keys,
and then written to the active block in the corre-
sponding SSD plane. The FTL is updated to include
new page mapping information.

– Erasure & Key deletion. In this step, the dele-
tion engine interacts with the garbage collection en-
gine and the SSD to erase the selected blocks and
delete the selected keys.

As secure deletion is performed at the granularity of
chunks, theoretically the second and third steps can be
performed to all the chunks simultaneously since the op-
erations to different chunks are independent. However,
in real-world situation the maximum chunk processing
throughput is bounded by two factors. One is the I/O
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capacity of the SSD which typically allows one chunk
to be accessed at a time for each SSD element. The
second factor is the free space available in each SSD
element, which should be large enough to hold all the
valid pages that need to be migrated. Based on these
observations, the chunks in each element are processed
one by one so as to make maximum utilization of the
SSD access capacity while relaxing the stress on free
space. In this way, blocks erased as a result of the al-
ready processed chunks can be used to fulfill migration
needs of the to-be-processed chunks. Furthermore, when
the total number of free blocks drops below the thresh-
old, garbage collection is invoked to recycle the blocks
with a majority of invalid keyless pages.

The secure deletion processes of different chunks can
be further pipelined to improve the throughput. To be
more specific, the pre-processing step is done by the co-
processor in the SSD controller and requests no SSD
access. Therefore this step can be done in parallel with
the second and third steps that access the SSD. For ex-
ample, when chunk A is at the second or the third step,
the next chunk B can be pre-processed simultaneously.

Another design detail is the handling of key blocks.
The deletion of keys is an update process consisting of
first erasing the key block and then writing the new keys
back to the block. Since a key block holds keys of many
chunks, it is preferable to contiguously process all these
chunks and buffer their keys in the DRAM buffer of the
SSD controller, so as to accelerate key accesses during
the deletion process and avoid repetitive key block up-
dates. After processing all the chunks mapping to the
same key block, the key block is first erased and then
updated with the new keys. Note that the key blocks
will not become the bottleneck of SSD lifetime since
they are written and erased only once during each dele-
tion process, while data blocks are frequently written
and erased to serve regular SSD accesses.

6 Experimental Results

6.1 Methodology

We have extended the Microsoft SSD simulator SSD-
Model [27] to implement the proposed secure data dele-
tion method as well as the previous work. SSDModel is
built upon DiskSim 4.0 [28], an event-driven simulator.
The SSD under the test is 64GiB in size and contains
8 NAND-Flash elements. Each element has a dedicated
event queue, thus accesses to different elements are han-
dled independently. Each element consists of 4 planes,

Table 2. SSD access latency and energy consumption [29, 30]

Latency(ms) Energy(µJ)
Page migration 0.225 42.76
Block erasure 1.500 527.68

Table 3. Benchmark information

Function Duration Total Requests
hm Hardware monitoring 54hr 2,828,089
proj Project directories 85hr 4,943,216
rsrch Research projects 119hr 3,242,437
stg Web staging 76hr 4,377,032

each plane contains 8192 blocks, and each block is com-
posed of 64 pages whose size is 4KiB.

Regarding the chunk size, it affects both the mi-
gration cost and the SSD read/write response time.
While a smaller group size reduces the migration costs of
the proposed work and the cryptography-based secure
deletion, it increases the number of keys to read from
the SSD for read/write operations, thus degrading I/O
throughput. The study in [9] shows that when group
size is set to one, the read and write throughputs are
decreased by 23% and 19%, respectively. To balance reg-
ular SSD performance and migration cost during secure
deletion, we use a group size of 8 in our experiments.

The parameter k in the optimization goal (4) is
set to 7 to model the fact that the block erasure la-
tency is about 6.67 times of the migration latency, as
shown in Table 2. We select four real-world traces from
the Microsoft I/O trace sets [31]. Their characteristics
are summarized in Table 3. All of these traces are col-
lected from real-world working servers. Table 3 shows
that these traces display a relatively heavy server work-
load at about 14 requests per second, while the size
of each request is one page. The heavy workload not
only makes the performance of the storage system crit-
ical, but also generates a large number of invalid data.
For instance the benchmark stg, which is a web stag-
ing server, may have many temporary files and cookies
which, from user’s perspective, are already deleted. The
benchmark hm, which is a hardware monitoring server,
may contain many system failure reports which, from
system administrator’s perspective, are also deleted. To
protect user’s privacy, those invalid data should be per-
manently removed with secure deletion approaches.

In the simulator, a secure deletion request is imple-
mented as an event inserted to the event queue of each
SSD element. It is served by the SSD controller when
reaching the head of the queue. This allows us to extract
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the latency of the deletion procedure. Our studies inves-
tigate two different secure deletion triggering conditions:
– At-the-end: This is the user triggering secure dele-

tion at the end of each trace. When the trace reaches
to the point 5-hour before the finish point, a dele-
tion request is placed in the event queue of each
SSD element.

– In-the-middle: This is the user triggering secure
deletion in the middle of program execution. With-
out loss of generality, a deletion request is placed in
the event queue at the middle point of each trace.

The results of five secure deletion schemes are compared
in the section, including:
– The Erasure-based scheme which erases all the

blocks containing invalid pages.
– The Cryptography-based scheme which deletes

all the keys used by one or more invalid pages.
– The ErasuCrypto-Greedy scheme which uses the

greedy heuristic in Section 4.3 to select group keys
to delete and blocks to erase.

– The ErasuCrypto-Graph scheme which uses the
graph-based heuristic in Section 4.4 to select group
keys and blocks.

– The ErasuCrypto-ILP scheme which uses ILP to
solve the deletion cost minimization problem opti-
mally. The results of this scheme serve as the lower
bounds of secure deletion costs.

Neither the Erasure-based nor the Cryptography-
based scheme is based on any specific previous work.
Instead, they are implemented following the methods
introduced and discussed in Section 3.3. Another note-
worthy point is that the overhead of key block erasure
and key migration is included when counting the num-
bers of erasures and migrations.

6.2 Simulation Results

Since all the secure deletion schemes guarantee the dele-
tion of all the invalid data, only the secure deletion cost
and hence its latency and energy impacts will be pre-
sented and compared.

6.2.1 Secure Deletion Costs

The first set of experiments compares the secure deletion
costs of different schemes under the two deletion trigger-
ing conditions listed before. Theoretically, the erasure-
based scheme should have the highest deletion cost since
it needs to erase all the blocks that contain invalid pages
and migrate all the valid pages in those blocks. On

the other hand, the cryptography-based scheme only re-
quires the erasure of the key blocks, but needs to mi-
grate all the selected keys and all the valid data en-
crypted with the selected keys. As a result, it should dis-
play low erasure counts and large migration counts. The
three ErasuCrypto schemes are expected to incur dele-
tion costs lower than both the the erasure-based and the
cryptography-based schemes, while ErasuCrypto-Graph
is expected to outperform ErasuCrypto-Greedy.

Fig. 10 (a)–(c) show the results of different schemes
when triggering secure deletion at the end of each trace.
Fig. 10 (a) presents the overall secure deletion cost of
the SSD, calculated by summing up the deletion costs
of all the chunks. These results are consistent with the
theoretical analysis above. The erasure-based and the
cryptography-based schemes always have the highest
and the second highest deletion costs, respectively. Both
ErasuCrypto heuristics are able to reduce the deletion
costs close to the lower bounds given by ILP. This con-
firms that both the greedy and the graph-based heuris-
tics are very effective in generating near-optimal solu-
tions. What is more, the graph-based heuristic consis-
tently outperforms the greedy heuristic. In fact, it has
the exact same cost as the optimal, since the distribu-
tion of invalid data in real-world traces is not random
enough to let the graph-based heuristic reach to a non-
optimal point.

Since the secure deletion cost is jointly determined
by the erasure count and the migration cost, Figs. 10
(b) and 10 (c) respectively report these two values of the
different deletion schemes. Note that the erase and mi-
gration operations performed by garbage collection due
to lack of free space are not counted here but counted
in the next set of results. The erasure-based scheme en-
genders a larger number of erasures (> 30k) than all
the other schemes, which inevitably degrade SSD life-
time. The cryptography-based scheme only engenders
a few erasures (< 150) which are all performed to the
key blocks. The ErasuCrypto schemes have more era-
sures than the cryptography-based scheme, but the val-
ues are still order of magnitude less than those of the
erasure-based scheme.

In terms of the number of valid page migrations,
Fig. 10 (c) shows that both the erasure-based and the
cryptography-based schemes have significant migration
counts. The cryptography-based scheme outperforms
the erasure-based scheme in all the benchmarks except
for rsrch. Such variation is related to the distribution
of valid and invalid pages within each chunk. If the dis-
tribution of invalid pages in the columns is more bi-
ased than that in the rows, the migration counts of
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(c) Number of migrations for at-the-end case 

(e) Number of erasures for in-the-middle case 

(d) Secure deletion cost for in-the-middle case

(f) Number of migrations for in-the-middle case 

(a) Secure deletion cost for at-the-end case

(b) Number of erasures for at-the-end case
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Fig. 10. Comparison of different secure deletion schemes in terms of deletion cost, number of erasures, and number of migrations.

the cryptography-based scheme would be higher, and
vice versa. Fig. 10 (c) also shows that the ErasuCrypto
schemes consistently outperform both the erasure-based
and the cryptography-based schemes across all the
benchmarks. As expected, ErasuCrypto-Graph is closer
to the lower bound than ErasuCrypto-Greedy.

Fig. 10 (d)–(f) respectively show the overall dele-
tion cost, erasure count, and migration count when per-
forming secure deletion in the middle of each trace. The
trends in these graphs are consistent with those in Fig.
10 (a)–(c). One interesting observation is that for all the
benchmarks, the deletion costs are lower than those of
the at-the-end deletion case. This is probably because
the traces have fewer invalid pages to delete when the
execution is half-way through. While the exact deletion
cost may vary under different triggering conditions, Era-
suCrypto is always able to outperform the erasure-based
and the cryptography-based schemes and incur the low-
est deletion costs.

6.2.2 Impact on Regular Garbage Collection

In addition to the deletion cost evaluated above, a secure
deletion process may have non-trivial impact on regular
program execution. To evaluate such impact, we also ex-
tract the migration and erasure counts of the baseline,

which executes the traces without any secure deletion.
In the baseline, erasures are triggered only when the
percentage of free blocks is lower than a threshold (for
example < 5%) in the SSD. The garbage collector selects
blocks with a majority of invalid pages to erase, and mi-
grates valid pages in those blocks, if any. Since the secure
deletion process may vary the percentage of free blocks,
it will inevitably influence the number of garbage col-
lections and the number of migrations during garbage
collection. Fig. 11 reports those impacts by presenting
the number of erasures and migrations performed dur-
ing garbage collection. Again, both the at-the-end and
in-the-middle triggering conditions have been studied.

Figs. 11 (a) and 11 (c) show the erasure counts of the
baseline and the secure deletion schemes. Under either
deletion triggering condition, the erasure-based scheme
consistently has smaller erasure counts than the base-
line. This is because the secure deletion process engen-
ders a large number of erasures, as shown in Figs. 10
(b) and 10 (e), thus increasing the percentage of free
blocks in the SSD. Therefore, garbage collections are
rarely triggered after the deletion process. In contrast,
the cryptography-based scheme leads to much larger
erasure counts than the baseline since it triggers very
few erasures during secure deletion but needs to mi-
grate a lot of valid data to free blocks. As a result, the
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(a) Number of erasures performed by GC for at-the-end case

(b) Number of migrations performed by GC for at-the-end case

(c) Number of erasures performed by GC for in-the-middle case

(d) Number of migrations performed by GC for in-the-middle case
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Fig. 11. Impact of secure deletion on garbage collection in terms of number of erasures and migrations performed by garbage collector.

SSD has fewer free blocks, and garbage collections will
be triggered more frequently after and even during the
deletion process. Regarding the ErasuCrypto schemes,
since they integrate both the erasure-based and the
cryptography-based schemes, their erasure counts are
higher than those of erasure-based and the baseline, but
lower than those of cryptography-based.

Figs. 11 (b) and 11 (d) present the migration counts
of different schemes. The baseline garbage collection in-
curs no migration for all the benchmarks except for proj.
This confirms the effectiveness of garbage collection in
selecting blocks with a majority of invalid pages to erase
and recycle. The erasure-based scheme also has very
few migrations during garbage collection since it already
largely reduces the number of garbage collections. The
cryptography-based scheme, on the other hand, has the
largest amount of migrations. A detailed study shows
that these migrations are incurred during the deletion
process, when garbage collection is invoked to recycle
blocks to hold those migrated valid data. The Erasu-
Crypto schemes have migration counts slightly lower
than the cryptography-based scheme since they face
lower pressure on the number of free blocks.

Comparing the two deletion triggering conditions,
it can be observed that the in-the-middle condition en-
genders fewer block erasures and page migrations than
the at-the-end condition, consistently for all the secure
deletion schemes. This difference is due to two reasons.
First, at the middle point of the trace, there are fewer
invalid pages to delete, and the deletion process incurs
fewer migrations and consumes fewer free blocks. In fact,
all deletion schemes incur no or negligible amount of mi-
grations for benchmarks hm, rsrch, and stg. Second, the

erase operations performed during secure deletion cre-
ate more free blocks, which can be used to serve SSD
write requests during the second half of the trace. In
sum, performing the secure deletion in the middle of
the trace is more cost-effective, while performing dele-
tion at the end delivers higher privacy level. Overall, it
is still the user’s choice to determine when to trigger a
secure deletion process.

6.2.3 Latency and Energy Consumption

Fig. 12 compares the latencies and energy consumptions
of the secure deletion schemes, under the at-the-end and
in-the-middle triggering conditions, respectively. The la-
tency and energy values presented in Table 2 are used,
while the latency of the entire deletion process is the
time period between inserting the secure deletion re-
quests to the event queues and finishing serving the
deletion request.

As can be seen, the erasure-based scheme always
displays the highest latency and energy consumption,
while the cryptography-based scheme has the second
highest values. These data are consistent with the
erasure and migration counts shown in Fig. 10. The
two schemes perform the largest numbers of erasures
and migrations, thus incurring high latency and en-
ergy overhead. The ErasuCrypto schemes have simi-
lar latency and energy consumption values, which are
much lower than the erasure-based and cryptography-
based schemes. The differences between the three Era-
suCrypto schemes are too small to observe in the fig-
ure. Detailed examination shows that the graph-based
heuristic is closer to optimal than the greedy heuristic.
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(a) Program overall delay for at-the-end case

(b) Energy consumption for at-the-end case

(c) Program overall delay for in-the-middle case

(d) Energy consumption for in-the-middle case 
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Fig. 12. Overall delay (in seconds) and energy consumption (in joules) of secure deletion process.

7 Conclusion
This paper has presented ErasuCrypto, a low-overhead
and lifetime-friendly secure deletion framework for
SSDs. It enhances user’s privacy by securely deleting
invalid data with two different deletion methods: eras-
ing the blocks containing invalid data, or destroying the
keys used to encrypt invalid data. The papers shows that
exclusively applying either method incurs high deletion
cost, but the integration of the two methods brings
more flexibility which can be exploited to largely reduce
the deletion cost. The paper has mathematically mod-
eled the secure deletion cost minimization problem and
proven that this problem can be reduced to the problem
of finding maximum-edge biclique in a bipartite graph.
It has also presented two heuristics to solve the prob-
lem: a greedy heuristic and a graph-based heuristic. The
simulation results show that ErasuCrypto is able to re-
duce the secure deletion cost of erasure-based scheme
by 71% and the cost of cryptography-based scheme by
37%, while still guaranteeing the deletion of all the in-
valid data.
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