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Are you The One to Share?
Secret Transfer with Access Structure
Abstract: Sharing information to others is common
nowadays, but the question is with whom to share. To
address this problem, we propose the notion of secret
transfer with access structure (STAS). STAS is a two-
party computation protocol that enables the server to
transfer a secret to a client who satisfies the prescribed
access structure. In this paper, we focus on threshold
secret transfer (TST), which is STAS for threshold pol-
icy and can be made more expressive by using linear
secret sharing. TST enables a number of applications in-
cluding a simple construction of oblivious transfer (OT)
with threshold access control, and (a variant of) thresh-
old private set intersection (t-PSI), which are the first
of their kinds in the literature to the best of our knowl-
edge. The underlying primitive of STAS is a variant of
OT, which we call OT for a sparse array. We provide
two constructions which are inspired by state-of-the-art
PSI techniques including oblivious polynomial evalua-
tion (OPE) and garbled Bloom filter (GBF). The OPE-
based construction is secure in the malicious model,
while the GBF-based one is more efficient. We imple-
mented the latter one and showed its performance in
applications such as privacy-preserving matchmaking.
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1 Introduction
Many people are disseminating information every day,
ranging from short tweet to video. While sharing about
oneself is a trend, information can be personal or sen-
sitive. Deciding whom to share becomes an important
question, especially when the counter-party may make
abusive use of the information. For example, location-
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based services should only share information between
users who are in proximity, or dating apps in which users
may only want to share information based on (mutual)
interests of the profiled attributes. Since users may not
want to reveal their whereabouts or their attributes, the
criteria of whom to share may be sensitive as well. More-
over, expecting an exact match may be a bit idealistic,
e.g., it may be difficult to find someone via dating apps
who matches every single desired attributes.

Deciding whom to share may involve comparison of
two sets of elements. Also, computing the intersection of
two sets is useful in various scenarios, e.g., two Facebook
users may check who are their common friends before
accepting befriend request; two companies want to find
the number of common customers before launching a
joint promotion; or apps like tworlds which share pho-
tos to a random stranger across the globe simply based
on the supplied hashtags. A straightforward approach
requires two parties to reveal their sets and then com-
pute the result locally. However, the sets might contain
valuable information that should not be disclosed for
economic reasons or the sets are too sensitive to reveal.
Revealing only the intersection or only its size, while
protecting the confidentiality of elements which are not
in the intersection, is an important task.

Private set intersection (PSI) can solve the above
problem. It involves two parties: a client and a server,
each holding a private set C and S respectively. PSI al-
lows the client to learn the intersection C ∩ S of their
sets, while the server usually learns nothing. If both par-
ties need to learn C ∩ S, they can switch roles and en-
gage in a second PSI instance. A variant called PSI car-
dinality (PSI-CA) only reveals the cardinality |C ∩ S|
(e.g., [19]). State-of-the-art PSI protocols are very effi-
cient (e.g., [17, 41, 42]). PSI has found numerous ap-
plications, e.g., bot-net detection [37], proximity test-
ing [38], biometric pattern matching [46], etc. Sec. 8
will describe more PSI-related applications.

1.1 PSI with Access Structure

This paper considers a general PSI which only reveals
the sets when the intersection satisfies a certain struc-
ture. A notable example is threshold PSI (t-PSI), which
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only reveals the intersection set C ∩ S when the size
of the intersection |C ∩ S| is larger than a pre-agreed
threshold t. When t = 0, t-PSI is equivalent to PSI;
when t = |C|, t-PSI is equivalent to PSI-CA. We con-
sider t-PSI as a natural and useful extension to PSI.

Designing an efficient t-PSI protocol (without re-
sorting to generic secure multiparty computation) is not
an easy task, as observed by Pinkas et al. [42]. By us-
ing the garbled circuit approach, one can add subse-
quent computation in a privacy-preserving manner [27].
Specifically, they consider an auditing policy that pre-
vents revealing the intersection if its size exceeds some
threshold. We could think of the resulting protocol as a
complement of t-PSI defined in this paper. Their exper-
imental results (the Sort-Compare-Shuffle protocol, but
not the Bitwise-AND protocol which is only practical
for a small universe) show that such additional compu-
tation does not incur measurable performance over their
plain PSI. Anyhow, the complexity of garbled circuit
based t-PSI like protocol is O(n logn) to the best of our
knowledge. On the contrary, one of our constructions
achieves linear complexity (at the cost of leaking the
size of the intersection). Experiments [17] showed that
garbled circuit based PSI protocols can be slower than
customized protocols. Moreover, all their constructions
are only secure in the semi-honest model, while one of
ours is secure in the malicious model.

Constructing t-PSI based on other techniques with
better efficiency is non-trivial. To the best of our knowl-
edge, the literature has no such protocol, not to say ac-
cess structure more general than threshold policy, e.g.,
weighted threshold, in which different elements carry
different weights counting towards the final threshold.

Apart from the technical challenge, we think that t-
PSI is a useful primitive that deserves investigation. The
threshold version of existing cryptosystems, e.g., signa-
ture [45], encryption [15], password-based authenticated
key exchange [35, 43], etc. have found various applica-
tions. We foresee the same will hold for t-PSI.

1.2 Technical Overview of Our Results

We propose the notion of secret transfer with access
structure (STAS). STAS transfers a secret only to those
who satisfy the access structure prescribed by the se-
cret owner, with the aim of revealing as little informa-
tion about the access structure as possible. STAS is a
generalization of threshold PSI. To see, the secret is the
intersection of two private sets. The access structure is

a threshold policy on the two sets, i.e., the intersection
set is only revealed if its size is larger than a threshold.

We focus on threshold secret transfer (TST), as a
special instance of STAS. TST allows a server to trans-
fer a secret κ to a client if and only if their respective
sets have more than t common elements. We formulate
the security definitions for this new primitive, and pro-
vide two constructions based on either oblivious poly-
nomial evaluation (OPE) [19], or a variant of garbled
Bloom filter (GBF) [17]. OPE and GBF have been used
to build state-of-art (vanilla) PSI protocols. For build-
ing TST, we introduce oblivious transfer for a sparse
array (OTSA), in which the selection strings are from a
large domain. This helps us to achieve fine-grained ac-
cess control in private matching. Typical OT only works
on an array indexed by polynomially many numbers.

We first show how to build t-PSI-CA, a variant of
t-PSI, which allows the client to learn the size of the
intersection |C ∩S|. This suffices for some scenarios and
can also serve as a feature (see Sec. 8). We propose two
solutions that remove such leakage in the full version.

With TST, t-PSI-CA is readily achievable. The
server and the client engage in a TST with their re-
spective sets. The client will obtain a secret κ only if
there are more than t overlapping elements. Conceptu-
ally κ plays the role of a “proof token” to show that the
client indeed holds a set containing at least t common
elements. We stress that which elements belong to the
set remains hidden at this point. To transfer the set,
the server appends κ to every element in its set S, and
executes another PSI with the client using this new set.

Our construction blueprint is readily extensible to
other access structures by replacing the polynomial-
based threshold secret sharing with other schemes. For
example, we can obtain secret transfer for weighted
threshold and weighted t-PSI-CA. We also discuss how
to construct STAS by replacing threshold secret shar-
ing with linear secret sharing (LSSS) (see Def. 1), which
supports more expressive access control policy. Figure 1
summarizes the roadmap of our constructions.

Our primary focus is to propose efficient protocols
which are in the semi-honest (or honest-but-curious)
model, in which the adversary follows the protocol ex-
actly as specified, but may try to learn as much as pos-
sible about the input of the other party. Semi-honest
constructions are often more efficient than their fully
secure counterparts. Nevertheless, we also propose one
construction that is secure in the malicious model.

We summarize our main contributions as follows:
1. We formally define oblivious transfer for a sparse

array (OTSA), and provide two constructions by
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integrating existing techniques for private set-
intersection in a novel manner. The first construc-
tion is conceptually simple and we show how to ex-
tend it to be secure in the malicious model. The
second one is more efficient with linear computation
and communication cost in the size of the array.

2. We formalize a new cryptographic primitive called
secret transfer with access structure (STAS). A no-
table special case of STAS is threshold secret trans-
fer (TST). We provide a construction of STAS from
OTSA and secret sharing. We also elaborate the ap-
plications of this new primitive.

3. We (for the first time) formalized the notion of
threshold private set-intersection (t-PSI) and its
weaker variant t-PSI-CA. We provide an efficient
generic transform from TST and PSI to t-PSI-CA in
the semi-honest model. Both the definition and con-
struction can be easily extended to a more expres-
sive access structure by replacing TST with STAS.

4. We proposed two ways to achieve t-PSI.
5. We implement the second OTSA construction and

evaluate its performance. The result shows that it is
practical for array size expected by our applications.

The rest of the paper is organized as follows. The next
section discusses primitives related to TST including
PSI. Sec. 3 introduces notations and important building
blocks of our protocol. In Sec. 4, we introduce OTSA,
which may be of independent interests. We then define
TST and construct TST from OTSA in Sec. 5. Sec. 6
presents our generic construction of t-PSI-CA. We pro-
vide evaluation results in Sec. 7. Finally, we conclude
with further applications and future work. Table 1 lists
the acronyms of the major primitives.

OTSA + threshold secret sharing −→ TST

OTSA + LSSS −→ STAS

TST + PSI −→ t-PSI-CA

STAS + PSI −→ PSI with Access Structure

Fig. 1. Roadmap of Our Constructions

OPPRF oblivious permuted pseudorandom function
OTSA oblivious transfer for a sparse array
TST threshold secret transfer
(ST)2 strong threshold secret transfer
STAS secret transfer with access structure
t-PSI threshold private set-intersection
t-PSI-CA threshold private set-intersection cardinality

OPE oblivious polynomial evaluation
OPRF oblivious pseudorandom function
OT oblivious transfer
BF Bloom filter
GBF garbled Bloom filter
LSSS linear secret sharing scheme
PSI private set-intersection
PSI-CA private set-intersection cardinality

Table 1. List of major acronyms: the upper table contains notions
we introduced; the lower one list those existing in the literature.

2 Related Work

2.1 Private Set Intersections

The first rigorous treatment for PSI was done by Freed-
man et al. [19], who proposed a protocol based on obliv-
ious polynomial evaluation (OPE). The key idea is that
the client uses additive homomorphic encryption to en-
crypt the coefficients of a polynomial p(x) whose roots
are the elements in the set. The server obliviously eval-
uates the polynomial rp(x) + x for each element si ∈ S.
The client can then decrypt the evaluation results from
the server and compare those with its own set. Using
similar technique, Kissner and Song [31] proposed multi-
party PSI protocol. PSI protocols in the malicious model
using this technique are also proposed [13, 22, 24].

Another tool for constructing PSI is oblivious pseu-
dorandom function (OPRF) [18, 23, 28]. The server
sends to the client fk(si) for all si ∈ S, where f(·) is
a pseudorandom function and k is a random secret key.
The client and the server then engage in an OPRF pro-
tocol such that the client learns fk(ci) for each ci ∈ C
while the server learns nothing. PSI protocols based on
OPRF achieve linear time and space complexities.

Recently, Dong et al. [17] introduced new techniques
for PSI. The core component is a variant of Bloom Fil-
ter, which they called garbled Bloom filter (GBF), to be
described in the next section. With oblivious transfer
(OT), they constructed very efficient PSI protocols in
both the semi-honest and malicious models. Inspired by
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their work, we construct PSI with access structure with
linear complexity in the semi-honest model.

Researchers have considered variants of PSI. PSI-
CA reveals only the size (cardinality) of intersection
but not the set itself [2, 19, 26, 31]. Camenisch and Za-
verucha [10] and De Cristofaro et al. [11, 12] considered
authorized PSI which requires a trusted party to autho-
rize the input sets by signing on them. Ateniese et al. [3]
and D’Arco et al. [14] proposed size-hiding PSI which
hides the size of the input sets. Outsourcing the com-
putation of PSI to an oblivious cloud is considered by
Abadi et al. [1] and Kerschbaum [30].

Fuzzy variants of PSI are studied in the literature
as well. Freedman et al. [19] considered fuzzy PSI where
an element is considered to be in another set if this set
contains a “similar” element. Kissner and Song [31] con-
sidered threshold set union and its variants in a multi-
user setting: all n players learn which elements appear
more than t times in the union (which is a multiset) of
their private input sets. Both notions are different from
t-PSI.

2.2 Fuzzy Vault

A fuzzy vault [29] allows a server to “lock” a small se-
cret κ using a set S, such that a client holding another
set C can recover κ efficiently if C is similar to S. It
looks like TST, but we highlight the differences here.

We first briefly recall the existing construction [29]:
the elements in set S are encoded as distinct x-
coordinates. The server selects a random polynomial p(·)
that encodes κ (say p(0) = κ), and evaluates p(·) on
these coordinates. To hide κ, the server adds a number
of random “noisy” points that do not lie on p(·), and
publishes the set of both real and noisy points in clear
as the vault.

If the client holds a set C that substantially over-
laps with S, it can identify enough common elements via
x-coordinates to reconstruct (the polynomial and) κ. If
the intersection is not large enough, the client is un-
able to identify enough “correct” x-coordinates to per-
form polynomial interpolation. However, an adversary
can still try to reconstruct κ via trial-and-error. The
success probability of this attack is non-negligible un-
less an exponential number of noisy points are added.

In TST, we aim at imposing a sharp distinction
between “over threshold” and “below threshold”. The
client only knows |C ∩S| if it is less than the threshold,
but not exactly which elements in C lie in the intersec-
tion. This is not easily achievable by fuzzy vault.

2.3 Attribute-Based Encryption

Attribute-based encryption (ABE) allows sharing of en-
crypted content to people according to some prescribed
access control policy. Anyone in possession of attributes
satisfying the access policy can use their secret keys for
decryption. Early ABE schemes reveal the access pol-
icy of ciphertexts to everyone, which might be sensitive.
Anonymous ABE [33, 39] is then proposed.

One might attempt to implement STAS by encrypt-
ing the secret value using anonymous ABE. Yet, ABE
requires a trusted authority to set up the whole system
and issue secret keys to participants according to their
attributes. Such requirement somewhat trivializes the
two-party computation since both parties need to trust
the authority not to reveal the attributes to others.

Furthermore, the anonymity and/or functionality
offered by practical anonymous ABE schemes nowadays
are not ideal. For example, the size of public key and
ciphertext in the first anonymous ABE scheme [39] are
both linear in the size of the attribute domain U , and
it only supports limited form of policies. The scheme
of Lai et al. [33] supports linear secret sharing scheme
(LSSS) (see Def. 1) based policy, yet they sacrifice
anonymity to some extent. Each attribute is a category-
value (e.g. Title: Professor, Department: CS) pair in
their construction. The LSSS matrix is defined over the
categories which is public. Only the attribute values are
anonymized. That is to say, a policy “(Title: Professor)
AND (Department: CS)” is anonymized as “(Title: ∗)
AND (Department: ∗)”. In contrast, such an access pol-
icy is anonymized as “A AND B” in our STAS construc-
tion where A and B are predicates. To conclude, existing
anonymous ABE is not a good fit.

3 Preliminary

3.1 Notations

For a bit-string x, |x| denotes its length. The ith bit of x
is x[i] and x[i, j] denotes x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|.
For a finite set S, |S| denotes its size and s

$←− S de-
notes picking an element uniformly at random from S.
For i ∈ N, [1, i] = {1, . . . , i}. We write {si}n as a short-
hand for the set S = {s1, . . . , sn} of n elements. We drop
the subscript n if it is clear from context. The security
parameter is λ ∈ N and its unary representation is 1λ.

Algorithms are probabilistic polynomial time (PPT)
unless otherwise stated. By y ← A(x1, . . . ;R), we run
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algorithm A on input x1, . . . using randomness R, and
assign the output to y. For brevity we may omit R.

A probability ensemble indexed by I is a sequence
of random variables indexed by a countable index set I,
namely, X = {Xi}i∈I where Xi is a random vari-
able. Two distribution ensembles X = {Xn} and Y =
{Yn} are computationally indistinguishable, denoted by
X

c≡ Y , if for every PPT algorithm D, there exists a
negligible function negl(·) such that for every n ∈ N,

|Pr[D(Xn, 1n) = 1]− Pr[D(Yn, 1n) = 1]| ≤ negl(n).

3.2 Secret Sharing

Threshold secret sharing is a fundamental cryptographic
primitive and it could be considered as the most ba-
sic tool for threshold cryptography. It allows a dealer
to split a secret κ into n shares, such that κ can
be recovered efficiently with any subset of t or more
shares. Any subset of size less than t reveals no infor-
mation about the secret value. Shamir secret-sharing
scheme [44], which is based on polynomial interpola-
tion, is such a (t, n)-secret sharing scheme. We denote
SecretSharing(t,n)(κ) and Reconstruct(t,n)({κi}n′) as its
sharing algorithm and reconstruction algorithm.

When t = n, an efficient (n, n)-secret sharing scheme
can be obtained from ⊕ (XOR) operations.It works by
picking random |κ|-bit strings κ1, κ2, . . . , κn−1 as the
first n − 1 shares. The last share is given by κn =(⊕n−1

i=1 κi

)
⊕ κ. We will use this scheme extensively.

3.3 Linear Secret-Sharing Schemes

We can extend threshold secret sharing scheme to sup-
port more general access structure. Let {κ1, . . . , κn} be a
set of secret shares. A collection A ⊆ 2{κ1,...,κn} is mono-
tone when ∀B,C: if B ∈ A and B ⊆ C then C ∈ A. An
access structure [4] (resp. monotonic access structure) is
a collection (resp. monotone collection) A of non-empty
subsets of {κ1, . . . , κn}, i.e., A ⊆ 2{κ1,...,κn} \ {∅}. We
use SecretSharingA(κ) and ReconstructA({κi}n′) to de-
note the sharing algorithm and reconstruction algorithm
in a secret sharing scheme implementing access struc-
ture A. Any monotone access structure can be realized
by a linear secret sharing scheme defined below [4].

Definition 1 (Linear Secret-sharing Schemes (LSSS)).
A secret sharing scheme Π is called linear over Zp if
1. The shares of each party form a vector over Zp.

2. There exists a share-generating matrix M for Π.
The matrix M has ` rows and n columns. For a col-
umn vector v = (κ, r2, . . . , rn), where κ ∈ Zp is the
secret to be shared and r2, . . . , rn ∈ Zp are randomly
chosen, then Mv is a vector of ` shares of the se-
cret κ according to Π. The share (Mv)x, the x-th row
of Mv, belongs to party ρ(x), i.e., ρ maps {1, . . . , `}
to each party.

Any LSSS defined as above enjoys the linear reconstruc-
tion property as follows. Suppose that Π is an LSSS for
access structure A. Let S ∈ A be an authorized set,
and I ⊆ {1, . . . , `} be defined as I = {i : ρ(i) ∈ S}. There
exist constants {wi ∈ Zp}i∈I satisfying

∑
i∈I wiMi =

(1, 0, . . . , 0), so that if {λi} are valid shares of any se-
cret κ according to Π,

∑
i∈I wiλi = κ. Furthermore,

these constants {wi} can be found in time polynomial
in the size of the share-generating matrix M . For any
unauthorized set, no such constants exist. The LSSS is
denoted by (M,ρ), and its size is the number of rows
of M .

Access structures can also be represented by mono-
tonic boolean formulas. The techniques of transforming
any monotonic boolean formula to LSSS are well known
in the literature [4]. One can also convert the boolean
formula into an access tree. An access tree of ` nodes
results in an LSSS matrix of ` rows. Readers can refer
to [34, appendix] for the conversion algorithm.

3.4 Oblivious Transfer

Oblivious transfer (OT) is another basic cryptographic
building block. It allows the receiver to get only part
of the sender input, while the sender remains oblivi-
ous about what the receiver obtains. Formally, in an
OTm` protocol, the sender inputs m pairs `-bit strings
(xi,0, xi,1) (1 ≤ i ≤ m) and the receiver inputs an m-
bit selection string b = (b1, . . . , bm). At the end of the
protocol, the sender learns nothing about b, while the
receiver only gets xi,bi

for 1 ≤ i ≤ m. OT protocols in
the random oracle model can be very efficient.

The above formulation only allows the receiver to
choose 1-out-of-2 according to each bit in the selection
string. In k-out-of-n OT, the receiver only gets k of n
strings from the sender by specifying a set of distinct
indexes (in the range [1, n] instead of {0, 1}) of size k.

We use the notion (which slightly abuses the one de-
fined above) OT|Is∩Ir|

Is
for oblivious transfer for a sparse

array (OTSA). Note that the superscript is a number
while the subscript is a set, thus differentiates OTSA
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from OTm` . Roughly speaking, OT|Is∩Ir|
Is

can be consid-
ered as an |Is ∩ Ir|-out-of-|Is| OT. The meaning behind
such superscript and subscript will be more clear after
we explain the meaning of Is and Ir in Sec. 4.1.

3.5 Additive Homomorphic Encryption

We will also use a CPA-secure additive homomorphic
encryption scheme. One well known example is Paillier
cryptosystem [40]. It supports addition, and multipli-
cation by a constant, without private key sk: (1) given
two ciphertexts Encpk(m0) and Encpk(m1), there is an
efficient operation computing Encpk(m0 +m1); (2) given
one ciphertext Encpk(m) and a constant c, there is an
efficient operation computing Encpk(c·m). A corollary of
these two properties is: given encryptions of the coeffi-
cients a0, . . . , ak of a polynomial p(x), and a plaintext s,
it is possible to compute an encryption of p(s).

3.6 Oblivious (Permuted) PRF

An oblivious pseudorandom function [18] is a two-party
protocol between a server S and a client C for securely
computing a pseudorandom function fk(·) under key k
known by S only, while the input x is known by only C.
The client learns fk(x) while the server learns nothing
after their interaction. In this work, we consider the con-
struction given by Jarecki and Liu [28]. It is secure un-
der parallel composition [28] and our second construc-
tion relies on this special property. This protocol uses
Camenisch-Shoup version [9] of Paillier encryption [40]
(Encpk(·),Decsk(·)), which is additive homomorphic, to
compute Dodis-Yampolskiy PRF [16] fk(x) = g

1
k+x . We

sketch the main procedures as follows:
1. The server sends Encpks

(k) to the client.
2. The client chooses a random number rc, com-

putes Encpks
(rc(k + x)) by the homomorphic

property, and then replies with (c1, c2) =
(Encpks

(rc(k + x)),Encpkc
(rc)).

3. The server decrypts c1 and computes its in-
verse 1

rc(k+x) . It also chooses a random number rs
and uses the homomorphic property to compute
s1 = c2

1
rc(k+x) · Encpkc

(−rs). Then it replies with
(s1, s2) = (Encpkc

( 1
k+x − rs), g

rs).
4. The client decrypts s1 to get 1

k+x−rs, and computes
the final output as g

1
k+x = g

1
k+x−rs · s2.

The parallel version of this OPRF can be easily ob-
tained by replacing rc, rs, (c1, c2), and (s1, s2) with

{r(i)
c }|C|, {r

(i)
s }|C|, {(c

(i)
1 , c

(i)
2 )}|C|, and {(s(i)

1 , s
(i)
2 )}|C|

respectively in Steps 2 to 4. Also note that if the server
applies a random permutation Π on {(s(i)

1 , s
(i)
2 )}|S|, the

client will still get the same set
{
g1/(k+xi)}

|C|, but it

does not know which g
1

k+xi corresponds to which xi. We
denote such parallel OPRF with extra permutation as
oblivious permuted pseudorandom function (OPPRF).

3.7 (Garbled) Bloom Filters

An (m,n, k,H)-Bloom filter [5] is a compact array of m
bits that represents a set S of at most n elements for
efficient set membership testing. It consists of a set of k
independent hash functions H = (h1, . . . , hk) where hi
uniformly maps elements to index numbers in [1,m].

All bits in the array are initialized to 0. To insert
an element x ∈ S, x is hashed by the k hash functions
to get k index numbers. The bits at all these indexes in
the array are set to 1, regardless of its original value.
To check if an item y is in S, y is hashed by the k hash
functions to get k indexes. If any of the bits at these
indexes is 0, we conclude that y is certainly not in S.
Otherwise, y is probably in S. So, it never yields a false
negative, but there is a small fraction of false positives.
The upper bound of the false positive probability [6] is:

ε = pk
(

1 +O(kp
√

lnm−k ln p
m )

)
where p = 1−(1− 1

m )kn.

If we set the false positive rate to be less than a
threshold ε0, it can be shown that the length of the bit
array size m should be at least m ≥ n log2 e · log2 1/ε0,
where e is the base of the natural logarithm. Equality is
achieved when the number of hash functions k = (m/n)·
ln 2 = log2 1/ε0. The rest of the paper will stick with
these optimal values when we use (garbled) Bloom filter.
Specifically, we set the false positive probability to ε =
2−λ where λ is the security parameter. As a result, m =
λn log2 ε and k = λ in all cases. We represent a Bloom
filter with optimal parameters as an (n,H, λ)-BF.

An (m,n, k,H, λ)-garbled Bloom filter [17] is a vari-
ant of Bloom filter that enables efficient PSI. Roughly
speaking, a garbled Bloom filter uses an array of λ-bit
strings instead of an array of bits in a normal Bloom
filter. Initially all m strings in the garbled Bloom filter
are set to NULL. To insert an element x ∈ {0, 1}λ, x
is first split into k shares by XOR-based (k, k)-secret
sharing. The ith share is placed at location hi(x). If the
location hi(x) is already occupied due to previous in-
sertion, we reuse the string at that location, and adjust
the value of subsequent shares accordingly, subject to
the constraint that

⊕k
i=1 GBF [hi(x)] = x. Such adjust-
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ment is always possible unless all locations {hi(x)}1≤i≤k
are all occupied, which corresponds to a false positive.
The probability of this happening can be negligible if the
parameters are set properly. After inserting all elements
in S to GBF, the undefined slots are filled with random
strings. To check if an item y is in S, y is hashed by the k
hash functions, and the strings in those locations are re-
trieved. If y can be reconstructed from these shares, we
conclude that y is surely in S. For brevity, GBF with
optimal parameters will be denoted by (n,H, λ)-GBF.

3.8 Zero-knowledge Proof of Knowledge

Zero-knowledge proof system, introduced by Gold-
wasser et al. [21], enables a prover to convince a veri-
fier that some statement is true, without conveying any
other information apart from such mere fact since the
verifier can simulate the communication transcript. We
use ZKPoK{a|φ(a)} to denote a zero-knowledge proof
of knowledge of value a that satisfies a publicly com-
putable relation φ, where a can be extracted when given
the trapdoor for the common reference string.

4 OT for a Sparse Array
We propose oblivious transfer for a sparse array (OTSA)
as a building block for secret transfer with access struc-
ture (STAS). We first provide a formal definition for
OTSA and then sketch the main design idea before pre-
senting two concrete constructions.

Although in an abstract level, the two constructions
both make use of the idea of PSI with data transfer, we
believe the first OPE-based construction is conceptually
simpler and easier to understand than the second GBF-
based one for readers who do not have prior knowledge
in recent advances of PSI, in particular, (garbled) Bloom
filter. Moreover, at the end of this section, we will elab-
orate how to extend this construction to accommodate
malicious adversaries. As a consequence, the OPE-based
one is worth mentioning, even though its computation
complexity is quite high (quadratic in the number of el-
ements). The second construction achieves linear com-
plexity using recent technique, i.e., combining GBF and
OT. In Sec. 7, we implement the second (more practical)
construction and evaluate its performance.

4.1 Definitions

OTSA is a new variant of the original OT concept. The
sender holds an array of ns elements {ei}1≤i≤ns

(from a
certain domain), which are associated with ns distinct
indices Is = {s1, . . . , sns}, where each sj for 1 ≤ j ≤ ns
is an element from the domain D, not necessarily [1, ns].
The receiver specifies a set of indices Ir = {r1, . . . , rnr},
not necessarily a subset of Is, and asks for retrieving
the associated elements. We assume the domain D is
large, i.e., ns � |D| and nr � |D|, so not every in-
dex rj ∈ Ir specified by the receiver indeed has an el-
ement from the sender associated with it. Our OTSA
satisfies the following properties:
– Correctness: The receiver retrieves E′ =
{e′j}1≤j≤nr

, where e′j = ej if sj ∈ Is ∩ Ir, or e′j
is an element randomly picked from a pre-defined
domain if sj /∈ Is ∩ Ir.

– Receiver privacy: The sender learns nothing
about Ir.

– Sender array privacy: The receiver learns noth-
ing about ej ’s whose index sj /∈ Is ∩ Ir.

– Sender indices privacy: The receiver learns noth-
ing about Is except |Is ∩ Ir|.

Distinction from Normal OT. Normal OT typically
represents the sender indices by [1, ns]. A possible way to
use OT to realize the functionality we want to achieve
is to require the sender to publish a 1-to-1 mapping
between [1, ns] and {s1, . . . , sns}, but this breaks the
sender indices privacy. Another way is to use normal OT
in which the sender holds |D| elements. This will incur
O(|D|) communication complexity. Ideally, we shoot for
O(max(nr, ns)). We remark that our primitive implies
the normal OT since one can simply set Is = [1, ns].
More on Correctness Requirement. For OTSA to
be useful, the receiver should have the ability to differ-
entiate a correct data element from a random string.
In case the application (e.g., in TST) may not make it
apparent, it can be achieved by asking the sender to ap-
pend a special symbol to ei for recognition, or publish
{H(ei)} where H(·) is a one-way hash function.
On Sender Indices Privacy. When a correct data
element is distinguishable from a random string, the re-
ceiver can learn the cardinality of the intersection, i.e.,
|Is∩ Ir|, according to the functionality requirement. We
stress that OTSA itself does not leak such information.
Even if the cardinality is revealed from auxiliary infor-
mation like {H(ei)}, the receiver will not know what
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exactly the intersection set Is ∩ Ir is. This level of pri-
vacy suffices for our applications in Sec. 8.

4.2 Security

Using the language of secure two-party computation, we
define OTSA as the following functionality:

Definition 2 (Oblivious Transfer for a Sparse Array).
OTSA is a two-party computation protocol that imple-
ments the following functionality

f(x, y) = (⊥, E′)

where the input of server x = (E, Is) consists of two
sets of the same size ns, one being the (multi-)set of
data elements E = {e1, . . . , ens}, another being the index
set Is = {s1, . . . , sns} of the server. The receiver input
y = Ir is a set of indices of size nr. The output of the
receiver E′ is a subset of E, such that ej ∈ E′ if and
only if its index sj ∈ Is ∩ Ir.

We assume that the size of index sets, namely ns and nr,
are publicly known by both parties.

We say that a protocol π is an OTSA if it se-
curely implements the above function f . As discussed
in Sec. 3.4, we denote such a protocol by OT|Is∩Ir|

Ir
.

4.3 Construction Idea

Our two constructions borrow ideas from the PSI liter-
ature. One is based on oblivious polynomial evaluation
(OPE); the other one is based on a variant of garbled
Bloom filter. It has been observed that the PSI protocol
from OPE can actually allow the transfer of auxiliary
information. Hence, we exploit this storage capacity to
store the data elements for our OTSA. Corresponding,
we make the same observation for the GBF-based PSI.
We note that while both PSI protocols share the same
property, their construction ideas are quite different.

4.4 OPE-based OT|Is∩Ir|
Ir

Now we describe our first construction, which is based
on oblivious polynomial evaluation, in Figure 2.

The correctness of this construction is straightfor-
ward: if si ∈ Ir ∩ Is, then rp(si) + ei = ei, meaning that
the receiver successfully received one element; otherwise
rp(si) + ei will be a random string containing no use-

Protocol: OPE-based OT|Is∩Ir|
Ir

Input: The receiver input is an index set Ir =
{r1, . . . , rnr}. The sender input is an index set
Is = {s1, . . . , sns} and a data set E = {e1, . . . , ens}.
1. The receiver chooses a key pair (pk, sk) for a

CPA-secure additive homomorphic encryption
scheme (Encpk,Decsk), and publishes pk.

2. The receiver computes the coefficients of the
polynomial p(x) =

∑nr

i=0 aix
i of degree nr with

elements in the selection strings set Ir as roots.
3. The receiver encrypts each of the (nr+1) coeffi-

cients by the additive homomorphic encryption
scheme and gives the sender the resulting set of
ciphertexts, {Encpk(ai)}.

4. For each index si ∈ Is, the sender:
(a) Uses the homomorphic property to evalu-

ate the encrypted polynomial at si, namely
computes Encpk(p(si)).

(b) Chooses a random value r and computes
Encpk(rp(si) + ei).

5. The sender sends a random permutation of
these ns ciphertexts to the receiver.

6. The receiver decrypts all ns ciphertexts re-
ceived, picks up the set of valid elements.

Fig. 2. Protocol: OPE-based OT|Is∩Ir|
Ir

ful information about ei. More formally, we assert the
security of the above protocol in the following theorem:

Theorem 1. If (KeyGen,Enc,Dec) is a CPA-secure ho-
momorphic public key encryption scheme, whose plain-
text space is super polynomial in the security parameter;
the protocol in Fig. 2 securely implements the function f
in Definition 2 (Sec. 4) in the semi-honest model.

Proof. We consider two corruption cases.

Simulating the view of the sender using Sims.
This case is easy, since the view of the sender only
contains pk and {Encpk(ai)}. Sims can generate the
first one using the KeyGen algorithm, while the second
one can be simulated by encryption of zeros due to
the CPA-security of the encryption scheme. Assume
for contradiction, there exists a distinguisher D for the
simulated view and the real view. One can build a distin-
guisher D′ breaking the CPA-security of the encryption
scheme (KeyGen,Enc,Dec). In the CPA-security game,
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D′ is given a public key pk. D′ submits two vectors
of plaintexts m0,m1 where m0 is coefficients of zero-
polynomials as constructed in the simulated view, and
m1 is the coefficients of polynomials as in the real execu-
tion. D′ receives a vector of ciphertext c corresponding
to encryptions ofm0 orm1, and directly forwards (pk, c)
to D. Finally D′ outputs what D outputs. It is easy to
see that the advantages of D and D′ are the same.

Simulating the view of the receiver using Simr.
It is easy to simulate this view because the receiver
only sees either encryptions of random elements in the
message space, or encryptions of a subset of server
elements E′. In more details, Simr is given as input
Ir = {r1, . . . , rnr} and E′. It invokes a copy of the (semi-
honest) receiver internally using Ir as input, while play-
ing the role of the honest sender. Simr first gets the
public key pk from the receiver, and a vector of cipher-
texts encrypting the coefficients of a polynomial con-
structed from Ir. Simr outputs the simulated view as a
permutation of the following set of ciphertexts: (1) for
|E′| of them, each encrypts ej ∈ E′, (2) for the rest
|Is| − |E′| of them, just encrypts random messages. We
claim that the simulated view and the real view are sta-
tistically close. The only potential difference is that in
the simulated view, the receiver sees |Is| − |E′| random
messages while in the real view, it sees encryptions of
rp(si) + ei for si ∈ Is \ Ir, ei ∈ E \E′, where r is a fresh
random element for each i. Due to the fresh random-
ness r and the requirement that the message space is
super-polynomial in the security parameter, these two
distributions are thus statistically close.

4.5 Extending to the Malicious Model

One may expect that techniques in constructing mali-
cious model PSI protocols [19, 22, 24] can be adapted
for our setting to construct a malicious model OT|Is∩Ir|

Ir
.

Although this is true for simulating the case against a
malicious client, we encounter some immediate difficul-
ties when simulating in the face of a malicious server.

Recall that the major technique [19, 24] is to deran-
domizing computation for elements in the intersection.
To make sure the server follows the protocol execution,
the server needs to compute encryptions of rp(si) + r̂,
where r̂ is chosen at random, and the randomness in
the encryption algorithm is derived deterministically
from H(r̂). (Specifically, H(·) can be a PRF [24] or
may be modelled as a random oracle in some security
proof [19]). After decryption, the client receives a set

{r̂}, and then for each r̂ repeats the encryption process
for every element ci in the client set. Because computa-
tion can be repeated at the client side deterministically,
the server does not have the freedom to cheat. If we
adapt it for our setting, it will violate sender indices
privacy because Ir ∩ Is is revealed in trial encryption.
Similar obstacle appears when using techniques from a
recent work of Hazay [22].

To solve this problem, we turn to the common refer-
ence string (CRS) model and use zero-knowledge proofs
systems. We require a CRS containing a public key p̃k
of a CPA-secure public key encryption scheme, whose
distribution is the same as if it is generated through
K̃eyGen algorithm, but no party knows the correspond-
ing secret key s̃k. At the beginning, the sender en-
crypts its index-data pair (si, ei) under this public key
p̃k and sends a permutation of such pairs to the re-
ceiver. The receiver and the sender continue the original
protocol execution except that when the sender returns
ci = Encpk(rp(si)+ei), it also prepares a zero-knowledge
proof proving the knowledge of r, si, ei such that ci can
be computed from Encpk(r),Encpk(si),Encpk(ei), and
the encrypted polynomial {Encpk(ai)}. The same proof
also shows that si, ei are the plaintext of some cipher-
text under public key p̃k sent previously. Figure 3 de-
scries our protocol in detail.

Theorem 2. If (KeyGen,Enc,Dec) is a CPA-secure ho-
momorphic public key encryption scheme, whose plain-
text space is super polynomial in the security parame-
ter, and (K̃eyGen, Ẽnc, D̃ec) is a CPA-secure encryption
scheme, the protocol in Fig. 3 securely implements the
function f in Def. 2 (Sec. 4) in the malicious model.

Appendix D gives the proof of Theorem 2.

4.6 GBF∗-based OT|Is∩Ir|
Ir

Our second construction is based on a variant of garbled
Bloom filter (GBF), which we call it secret embedding
GBF∗. An (n,H, λ)-secret embedding GBF∗X,I stores a
secret set X based on another index set I of the same
size n. In the original GBF, each element xj ∈ X is first
split into k = λ shares, these shares are then placed
at locations h1(xj), . . . , hk(xj). While in our GBF∗X,I ,
specifically, the boxed line in BuildGBF∗ (Algorithm 1)
in Appendix B, each xj ∈ X is split and placed at loca-
tions defined by h1(ij), . . . , hk(ij), where ij ∈ I. Namely,
the set I “indexes” the locations to place X.
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Protocol: OPE-based OT|Is∩Ir|
Ir

in the malicious model
Input: The receiver input is an index set Ir = {r1, . . . , rnr}. The sender input is an index set Is = {s1, . . . , sns}
and a data set E = {e1, . . . , ens}.
Common reference string: a public key p̃k of a CPA-secure public-key encryption scheme (Ẽnc, D̃ec).
1. The sender commits to its input Is and E by computing {(s̃i, ẽi)} = {(Enc

p̃k
(si),Enc

p̃k
(ei))}, and sends

a permutation of these pairs to the receiver.
2. The receiver chooses a key pair (pk, sk) for a CPA-secure additive homomorphic encryption scheme

(Encpk,Decsk), and publishes pk.
3. The receiver computes the coefficients of the polynomial p(x) =

∑nr

i=0 aix
i of degree nr with roots being

elements in the selection strings set Ir.
4. The receiver encrypts each of the (nr + 1) coefficients by Encpk and gives the sender the resulting set of

ciphertexts, {âi = Encpk(ai)}, and the following zero-knowledge proof of knowledge:

ZKPoK1{(ai, rai)| ∀i, âi = Encpk(ai; rai) ∧ p(·) 6≡ 0}.

5. If ZKPoK1 does not pass, the sender aborts. Otherwise, for each index si ∈ Is, the sender:
(a) Uses the homomorphic property to evaluate the encrypted polynomial at si, i.e., Encpk(p(si)).
(b) Chooses a random value r and computes ci = Encpk(rp(si) + ei).
(c) Prepares the following zero-knowledge proof of knowledge:

ZKPoK2{(r, si, ei)|(ŝi, êi) = (Encpk(si),Encpk(ei)) ∧ (s̃i, ẽi) = (Enc
p̃k

(si),Enc
p̃k

(ei))

∧ r̂ = Encpk(r) ∧ ci = r̂ · (
nr∑
j=0

âj ŝj
j) + êi}.

6. The sender sends a random permutation of these ns ciphertexts together with the ZKPoK2 to the receiver.
7. The receiver verifies the proofs. If all the proofs pass then it decrypts all ns ciphertexts received, and

picks up the set of valid elements. Otherwise it aborts.

Fig. 3. Protocol: OPE-based OT|Is∩Ir|
Ir

in the malicious model

When we query GBF∗X,I using some element i′ ∈ I
in QueryGBF∗, GBF∗X,I returns the corresponding el-
ement x′. If i′ /∈ I, it returns a uniformly random
string. The GBF∗Intersection algorithm takes as input
a GBF ∗X,I and a BFI′ , then outputs GBF ∗

X̃,I∩I′ .
The BuildGBF∗, QueryGBF∗, and GBF∗Intersection

algorithms of GBF∗ as well as the related theorems are
listed in Appendix B. Figure 4 details the procedure of
our second OT|Is∩Ir|

Ir
construction. In the second step,

the set Ir of the receiver is transformed into a pseudo-
random set I ′r. We implement this transformation us-
ing an OPPRF protocol (Sec. 3.6) instead of a normal
OPRF because we need to hide the one-to-one corre-
spondence between rj and r′j from the receiver. Any
secure OPPRF suffices, so our design is modular.

Theorem 3. The protocol in Fig. 4 securely imple-
ments the function f in Sec. 4 in the semi-honest model.

Proof. The proof mostly follows the proof of [17, Theo-
rem 7], which we highlight the differences here. The sim-
ulator needs to randomly generate a set of indices Ĩ of
size |Is ∩ Ir|, and uses it as the additional input to con-
struct GBF ∗π

Ẽ,Ĩ
. This is computationally indistinguish-

able from GBF ∗
Ẽ,I′

r∩I′
s

by the security of PRF. Thus, by
Theorem 9 in Appendix B, it is also indistinguishable
from GBF ∗π

Ẽ,I′
s∩I′

r

.

5 (Threshold) Secret Transfer
We now discuss how to make use of OTSA to construct
secret transfer with access structure (STAS). For illus-
tration, we first define STAS with a simple threshold
access structure. We call it threshold secret transfer
(TST). Next we demonstrate how to easily extend TST
to support general access structure, namely STAS.
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Protocol: GBF∗ based OT|Is∩Ir|
Ir

Input: The receiver input is an index set Ir =
{r1, . . . , rnr}, the sender input is an index set Is =
{s1, . . . , sns} and a data set E = {e1, . . . , ens}.
1. The sender chooses a random key kPRF for

Dodis-Yampolskiy PRF fkPRF(·).
2. The receiver and the sender engage in an OP-

PRF protocol using Ir and kPRF as input re-
spectively, such that the sender learns noth-
ing while the receiver obtains I ′r = {r′j} where
r′j = fkPRF(rj), ∀j. The sender also converts its
own private set Is into I ′s in a similar manner.

3. The receiver generates an (n,H, λ)-BFI′
r
that

encodes its private set I ′r, the sender invokes
Algorithm 1 to generate an (n,H, λ)-GBF ∗E,I′

s
.

4. The receiver uses BFI′
r
as the selection strings

and acts as the receiver in an OTmλ protocol.
5. The sender sends m pairs of λ-bit strings

(xi,0, xi,1)(1 ≤ i ≤ m) in OTmλ , where xi,0 is a
uniformly random string and xi,1 is GBF ∗E,I′

s
[i].

For 1 ≤ i ≤ m, if BFI′
r
[i] is 0, then the receiver

receives a random string; if BFI′
r
[i] is 1 it re-

ceives GBF ∗E,I′
s
[i]. The result obtained by the

receiver is denoted by GBF ∗π
Ẽ,I′

s∩I′
r

.
6. The receiver queries GBF ∗πE,I′

s∩I′
r
using its own

set I ′r, and picks up the valid elements set {Ẽ}.

Fig. 4. Protocol: GBF∗-based OT|Is∩Ir|
Ir

5.1 Definition

Definition 3 (Threshold secret transfer (TST)). TST
is a two-party computation protocol that implements f :

f(x, y) =

{
(⊥, κ and |C ∩ S|) if |C ∩ S| ≥ t
(⊥, |C ∩ S|) otherwise

where (κ, S) and C are the inputs of server and client.

This definition always leaks the intersection size to the
client. It is due to the technical difficulty of simulating
to the client without this knowledge, which we will dis-
cuss in more details later. For the sake of completeness,
we give the stronger definition called strong threshold
secret transfer ((ST)2) in Appendix C, and provide two
candidate (ST)2 constructions in the full version.

5.2 TST Construction from OT|Is∩Ir|
Ir

The basic idea behind the construction is to split κ into
{κi} using a (t, |S|)-secret sharing scheme. The server
and the client then engage in an OT|Is∩Ir|

Ir
protocol with

the server acting as the sender using secret input set K
and indexing set S, and the client acting as the receiver
using C as the input set. By the security of OT|Is∩Ir|

Ir
,

the client receives only a subset of secret shares of κ
corresponding to elements in |C ∩ S|. The security of
TST naturally follows from that of (t, |S|)-secret shar-
ing. Figure 5 describes our construction in detail.

Protocol: TST from OT|Is∩Ir|
Ir

Input: (Client) C = {ci}nc / (Server) S = {si}ns , κ.
1. The server computes the set of shares K =
{κi}

$←− SecretSharing(t,ns)(κ).
2. The server acts as the sender with input x =

(K,S) and the client acts as the receiver with
input C in an OT|Is∩Ir|

Ir
protocol.

3. Let K̃ be the set of the secret shares col-
lected by the client. If |K̃| ≥ t, outputs κ =
Reconstruct(t,ns)(K̃) and |K̃|; |K̃| otherwise.

Fig. 5. TST Construction from OT|Is∩Ir|
Ir

Theorem 4. If the underlying secret sharing scheme
and the OT|Is∩Ir|

Ir
protocols are secure, then the protocol

defined in Fig. 5 securely evaluates the TST functional-
ity in the semi-honest model.

Proof. If OT|Is∩Ir|
Ir

is secure, the simulators for both
sides exist. We can use them as subroutines to construct
the simulator for the whole protocol.

Server: We construct a simulator SimS , when given
the private input and output of the server, simulates its
view ViewS of a real protocol execution. ViewS contains
the input set S, the secret value κ, the random coins,
and the view of OT|Is∩Ir|

Ir
. The simulator SimS selects

random coins rs uniformly random, and also computes
K′ = {κ′i}

$←− SecretSharing(t,ns)(κ). Then SimS invokes
the simulator for OT|Is∩Ir|

Ir
to obtain SimOT

sx ((K′, S),⊥).
Finally, SimS outputs (S,K′, rs,SimOT

sx ((K′, S),⊥)) as
the simulated view. Because K′ is generated in the
same way as in the real protocol, it follows that
SimOT

sx ((K′, S),⊥) c≡ SimOT
sx ((K,S),⊥). Thus by the se-
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curity of OT|Is∩Ir|
Ir

, the simulated view should be indis-
tinguishable from ViewS .

Client: We construct SimC which simulates ViewC
of a real protocol execution when given the private input
and output of the client. ViewC contains the input set C,
the random coins, and the view of OT|Is∩Ir|

Ir
.

– If |C ∩ S| ≥ t, the simulator SimC is given
C, κ, |K| = |C ∩ S| as input. SimC picks coins rc

uniformly random, and also computes K′
$←−

SecretSharing(t,ns)(κ). SimC then selects a ran-
dom subset K̃′ ⊆ K′ of size |K| uniformly at
random. Then SimC invokes the simulator for
OT|Is∩Ir|

Ir
to obtain SimOT

rx (C, (K̃′, |K|)). SimC out-
puts (C, rc,SimOT

rx (C, (K̃′, |K|))) as the simulated
view. Since K′ and K̃′ are generated in the
same way as K and K̃ in the real protocol,
SimOT

rx (C, (K̃′, |K|)) is identically distributed as
SimOT

rx (C, (K̃, |K|)). By the security of OT|Is∩Ir|
Ir

,
the simulated view is indistinguishable from ViewC .

– If |C∩S| < t, SimC is given only C and |K| = |C∩S|.
This time SimC selects a random κ′, and computes
K′′

$←− SecretSharing(t,ns)(κ′). SimC then selects a
subset K̃′′ ⊆ K′′ of size |K| < t uniformly at ran-
dom. SimC outputs (C, rc,SimOT

rx (C, (K̃′′, |K|))) as
the simulated view. To see that the above simulation
works well, notice that by the security of the (t, ns)-
secret sharing scheme, both K̃′′ generated by SimC

and K̃ received in the real protocol execution leak
no information about the original value κ′ and κ re-
spectively. Thus K̃′′ and K̃ are computationally in-
distinguishable. Therefore SimOT

rx (C, (K̃′′, |K|)) sim-
ulates the view of OT|Is∩Ir|

Ir
perfectly.

In both cases, the view of the client can be simulated.
With the simulation for the server, we conclude that the
protocol in Fig. 5 is secure in the semi-honest model.

5.3 Extending to the Malicious Model

Note that the above proof only asserts that the construc-
tion in Figure 5 is secure in the semi-honest model. Here
we sketch how to obtain TST in the malicious model us-
ing the construction presented in Figure 3 (in the com-
mon reference string model) as an example. Firstly, we
would need to have the sender commits to the secret
value κ at the beginning of the protocol together with
OT|Is∩Ir|

Ir
input (K,S). Moreover, the sender has to pre-

pare a zero-knowledge proof showing that K is indeed
the result of secret sharing κ. By doing so, we are as-

sured that a malicious server cannot place invalid secret
shares K̂ without being caught.

5.4 Transferring Multiple Secrets

Our exposition only considers transferring the secret
shares of a single secret. Yet, it is possible to store mul-
tiple shares of the same secret in the same slot for sup-
porting weighted TST. One step further, it is also pos-
sible to store multiple shares of different secrets in the
same slots. However, since the capacity of each slot is
limited. One may need to resort to a hybrid approach,
such that the TST stores symmetric keys which can in
turn decrypt the ciphertexts of multiple shares.

5.5 Extending to General Access Structure

The threshold access structure of TST directly comes
from the underlying threshold secret sharing scheme
(SecretSharing(t,ns),Reconstruct(t,n)). By replacing it
with another scheme with different access structure
(SecretSharingA,ReconstructA), the TST construction
readily transforms into STAS with access structure. The
proof strategy remains mostly unchanged. In particular,
linear secret sharing (LSSS) [4] (see Def. 1) fits with
our design well. We do not need the usual mapping ρ
from attributes to row number of the matrix, since our
OTSA supports a sparse array with indices from a large
domain.

Recall that in LSSS, the share generating matrixM
is public. The secret value κ is embedded in a col-
umn vector v = (κ, r2, . . . , rn), and party ρ(x) gets the
share (Mv)x. In STAS, the server also needs to pub-
lish M . Moreover, it explicitly appends an index x to
each share (Mv)x, so that the client knows how to calcu-
late constants {wi ∈ Zp}i∈|Is∩Ir| according to M in the
reconstruction phase. Exposing M in clear reveals some
information about the access structure, e.g., the shape
of the corresponding access tree. However, we would like
to stress that by the security property (sender indices
privacy) of the underlying OTSA, the client does not
know the correspondence between the elements in its
secret set C and the leaf nodes of the access tree.

5.6 Discussion on Intersection Size

From a theoretical point of view, knowing both C and
|C ∩ S| allows one to infer some information about S,
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especially when |C| ≈ |C ∩S|. For instance, if |C| = 100
and the client learns that |C ∩ S| = 70, it can conclude
that many elements in C are also in S. Moreover, if the
client can interact with the server multiple times, it can
change C by one element each time and monitor how
|C ∩S| changes accordingly, which eventually lead to S.

From a practical standpoint, such leakage is accept-
able because the aforementioned probing attack can be
mitigated by limiting the number of interactions. More-
over, in the next section we will see an immediate ap-
plication of TST (resp. STAS), i.e., a generic t-PSI-CA
(resp. PSI with access structure) construction from TST
(resp. STAS). The fact that TST always leaks the car-
dinality of intersection hinders us from obtaining t-PSI.
Nevertheless, we believe t-PSI-CA is still a useful primi-
tive and it is the first of its kind in the literature. Finally,
we remark that, when the cardinality of the intersection
is not exceeding the threshold, t-PSI-CA is the same as
PSI-CA; otherwise t-PSI-CA works as a normal PSI.

6 Threshold-PSI-CA Protocol

6.1 Definitions

Definition 4 (Threshold Private Set-Intersection). t-
PSI is a two-party computation protocol that implements
the following functionality

f(S,C) =

{
(⊥, C ∩ S) if |C ∩ S| ≥ t
(⊥,⊥) otherwise

where the server input is S and the client input is C.

Definition 5 (t-PSI-Cardinality). t-PSI-CA is a two-
party computation protocol that implements the follow-
ing functionality

f(S,C) =

{
(⊥, C ∩ S) if |C ∩ S| ≥ t
(⊥, |C ∩ S|) otherwise

where the server input is S and the client input is C.

We assume t is known by the client beforehand.

6.2 Generic t-PSI-CA from TST

With all the building blocks at hand, we are now ready
to build t-PSI(-CA) in a simple manner. The client and
the server first engage in a TST protocol, such that the
client learns κ if |C∩S| ≥ t; then they engage in a normal

Protocol: t-PSI-CA
Input: (Client) C = {ci}nc / (Server) S = {si}ns .
1. The server randomly picks κ from {0, 1}λ.
2. The client and the server engage in a secure

TST protocol πTST with the server input being
(κ, S) and the client input being C.

3. The server computes Sκ = {si||κ}ns .
4. If the client obtains κ from πTST, it computes

Cκ = {ci||κ}nc . Otherwise it randomly samples
κ′, and computes Cκ as {ci||κ′}nc .

5. The client and the server engage in a secure
PSI protocol πPSI with the server input being
Sκ and the client input being Cκ.

Fig. 6. Protocol: t-PSI-CA

PSI protocol, in which the server and the client uses
Sκ = {si||κ}ns and Cκ = {ci||κ}nc as input respectively.
In case |C ∩ S| < t, the client chooses a random κ′

uniformly at random and use Cκ = {ci||κ′}nc instead.
The correctness of the above idea is straightforward.
What we need to prove is its security. To this end, we
first formally describe the above construction in Fig. 6.

Theorem 5. Let πTST be a secure two-party computa-
tion protocol that securely implements the function f in
Sec. 5 in the semi-honest model. Let πPSI be a secure PSI
protocol in the semi-honest model. Then the protocol in
Fig. 6 securely evaluates the t-PSI-CA functionality.

Proof. If πTST and πPSI are secure, there exist simulators
for the participants in both protocols. We can use them
as subroutines to construct our simulators.

Server: The view of a real protocol execu-
tion contains the input set S, the random coins,
the view of πTST, the view of πPSI (ViewS =
(S, rs,Viewπ

TST

svr ,Viewπ
PSI

svr )). Given S, the simulator SimS

picks coins rs uniformly at random, chooses κ uni-
formly at random from {0, 1}λ, computes Sκ =
{si||κ}ns . SimS then invokes the simulator for the
underlying protocols to obtain SimπTST

svr ((κ, S),⊥) and
SimπPSI

svr (Sκ,⊥). SimS outputs (S, rs,SimπTST

svr ((κ, S),⊥),
SimπPSI

svr (Sκ,⊥)) as the simulated view. Because κ is
identically distributed as in the real execution, so
will Sκ. Thus by the security of πTST and πPSI,
SimπTST

svr ((κ, S),⊥),SimπPSI

svr (Sκ,⊥) are computationally
indistinguishable from Viewπ

TST

svr ,Viewπ
PSI

svr .
Client: The view of a real protocol execu-

tion contains the input set C, the random coins,
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the view of πTST, the view of πPSI (ViewC =
(C, rc,Viewπ

TST

clt ,Viewπ
PSI

clt )).
– If |C ∩ S| ≥ t, the simulator SimC is given C

and C ∩ S as input. SimC selects κ′ from {0, 1}λ

and coins rc uniformly at random, and computes
Cκ

′ and Cκ
′ ∩ Sκ′ accordingly. SimC invokes the

simulator for πPSI and πTST to obtain respec-
tively the simulated views SimπPSI

clt (Cκ′
, Cκ

′ ∩ Sκ′)
and SimπTST

clt (C, (κ′, |C ∩ S|)). SimC then outputs
C, rc,SimπPSI

clt (Cκ′
, Cκ

′∩Sκ′) and SimπTST

clt (C, (κ′, |C∩
S|)) as the simulated view. Because κ′ is identi-
cally distributed as κ (which is selected uniformly
at random by the server in the real protocol),
SimπPSI

clt (Cκ′
, Cκ

′ ∩Sκ′), and SimπTST

clt (C, (κ′, |C ∩S|))
are identically distributed as SimπPSI

clt (Cκ, Cκ ∩ Sκ)
and SimπTST

clt (C, (κ, |C ∩ S|)). By the security of πPSI

and πTST, the simulated view is computationally in-
distinguishable from the real one.

– If |C ∩ S| < t, SimC is the same as above except re-
placing SimπPSI

clt (Cκ′
, Cκ

′ ∩ Sκ′) with SimπPSI

clt (Cκ′
,⊥)

and SimπTST

clt (C, (κ′, |C∩S|)) with SimπTST

clt (C, |C∩S|).

In every case, the view can be simulated. Thus the pro-
tocol in Fig. 6 is secure in the semi-honest model.

6.3 PSI with Access Structure

Sec. 5.5 shows how to construct STAS by replacing
threshold secret sharing in TST with a linear secret
sharing scheme. Following the same vein, we obtain
PSI with expressive access structure easily by replacing
threshold secret sharing in t-PSI-CA with linear secret
sharing. The largely repetitive construction is omitted.

7 Evaluation
Both the computational cost and communication cost of
GBF∗ are linear in n = |Is|, while the OPE-based one is
quadratic. We thus only implemented1 the GBF∗-based
OT|Is∩Ir|

Ir
in C, and evaluated its performance. The ma-

jor modification we did is adding OPPRF before GBF
related operations. We use existing Paillier encryption
implementation2 for OPPRF. We consider |Ir| = n here.

1 We modify the GBF source code from Dong at https://
personal.cis.strath.ac.uk/changyu.dong/PSI/PSI.html
2 http://acsc.cs.utexas.edu/libpaillier

The experiment is conducted on a virtual ma-
chine running Ubuntu 12.04 LTS, allotted 2GB memory
and 2 CPUs. Both the client and the server program are
run on this virtual machine. The host machine is run-
ning Windows 8.1, with 2 Intel(R) Core(TM) i5-4590
3.30GHz CPUs, and 8GB RAM. We only implemented
a single thread version but we remark that both OP-
PRF and GBF∗ are easily parallelizable. We expect the
resulting OT|Is∩Ir|

Ir
retains such property.

The major bottleneck of our GBF∗-based OT|Is∩Ir|
Ir

is Paillier encryption, decryption, and computing
Encpk(c ·m) in OPPRF. For a naïve implementation of
OPPRF with n elements, the client needs to encrypt n
elements in its set X, together with n random num-
ber rc. The server also needs to encrypt n random ele-
ments rs. However, these values do not depend on the
input of the other party, so both the client and the server
can precompute these values before starting the whole
protocol. Our implementation exploits this observation.
When a more efficient OPPRF is available, the efficiency
of our protocol will be improved correspondingly.

We first fix the key length for Paillier encryption to
be 1024-bit, and the security of GBF∗ to 80-bit, per
NIST suggestion3 that factorization-based cryptogra-
phy with 1024-bit key length has 80-bit security. We
vary the set size n to be 64, 128, 256, 512, 1024, 2048, and
measure the execution time of GBF∗-based OT|Is∩Ir|

Ir

construction. We follow the approach of [17] to use ran-
domly generated sets to conduct evaluation. For a higher
level of security, we fix Paillier key length to 3072-bit and
the security of GBF∗ to 128-bit. The result is shown in
Table 2 and Figure 7, where all the reported execution
times are the average running time of 5 independent exe-
cutions. We can see that the computation time increases
linearly with the set size. When the access structure is
simple, e.g., the set size is < 20, OT|Is∩Ir|

Ir
terminates

around half a second at 80-bit security. At 128-bit secu-
rity, the protocol finishes in a few seconds.

8 Further Applications

8.1 Private Matchmaking

In dating apps, users are mostly strangers to each other.
They may not want to reveal their (potentially sensitive)

3 http://csrc.nist.gov/publications/nistpubs/800-57/sp800-
57_part1_rev3_general.pdf

https://personal.cis.strath.ac.uk/changyu.dong/PSI/PSI.html
https://personal.cis.strath.ac.uk/changyu.dong/PSI/PSI.html
http://acsc.cs.utexas.edu/libpaillier
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
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Set size 80-bit security (ms) 128-bit security (ms)

64 1769.30 24811.71

128 3385.99 49184.89

256 6582.20 96890.47

512 13080.66 199575.18

1024 25737.88 400866.31

2048 51649.81 778964.15

Table 2. Execution time under various set sizes and security levels
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Fig. 7. Execution time (a) 80-bit security / (b) 128-bit security

attributes to any other users. On the other hand, two
users are willing to share information when a “match”
is found, i.e., when they share a lot of attributes in
common. TST, or STAS, supports privacy-preserving
matchmaking in a straightforward manner.

In more details, the attribute set is treated as input
to TST or STAS. User Alice chooses a random secret
value κ such that another user Bob can learn κ only if
his attribute set overlaps with that of Alice to a certain

degree specified by Alice. (In case of STAS, the attribute
set of Bob must satisfy the policy specified by Alice.)
Such a secret value serves as an access control token for
further interaction between Alice and Bob.

A nice observation here is that, the asymmetry in
the roles of the client and the server in our protocol
may actually be useful in the context of private match-
making. For example, a business model of paying user
(client) and free user (server) may be employed since the
client will know if there is a match and hence has the
choice to contact the other party (server) upon receipt
of the secret κ (which can be the profile picture).

Moreover, even if the threshold is not reached, the
users may know to what extent they are similar, which
can be a useful feature allowing the users to adjust their
expected similarity level for future matching.

It is also possible to store the shares of multiple se-
crets corresponding to different policies through a single
invocation of our protocol. For example, a requester who
satisfies only the gender criteria can get an ((1, 1) share
of) pseudonym with a (1, 2) share of a real name. When
another criteria is satisfied, the corresponding slot will
contain only the other (1, 2) share of the real name. This
gives great flexibility for matchmaking apps.

Our current non-optimized construction of TST
shows reasonable performance. A dating site eHarmony
uses a questionnaire consisting of 258 questions requir-
ing 18 hours from each user for building a detailed pro-
file4. We expect around 200 attributes suffice since some
of the questions are for consistency check. Figure 7a
shows that matching (without reconstructing the secret)
by our TST construction finishes in just a few seconds.

8.2 Oblivious Transfer with Access Control

OT with access control (OTAC) is introduced by Ca-
menisch et al. [8]. Their construction supports conjunc-
tive policy and is based on a specific construction which
covers the credential and the encryption mechanisms.

Our TST enables for the first time OT with thresh-
old access control, in a modular manner. The initial
setup and execution of our approach are similar to those
considered by Camenisch et al. [8]. The server encrypts
each data item pi by a homomorphic encryption into ei
under the server public key. The server publishes all
these ciphertexts. The client can use private informa-

4 https://en.wikipedia.org/wiki/EHarmony

https://en.wikipedia.org/wiki/EHarmony
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tion retrieval (PIR) technique to get ei of interest, re-
randomizes it by a factor r, and sends it to the server.

Now, the decryption result of this ciphertext is
treated as the secret κ of the TST protocol, to be trans-
ferred to the client. If the attributes of the client satisfy
the threshold policy, r · pi will be transferred.

We need some zero-knowledge proofs, in particular,
to prove that the re-randomized ciphertext is originated
from the server. This can be done by proving that it is
a ciphertext signed by the server which is then random-
ized by a factor of r, without revealing the signature
or r. Also, we need to add the proof for showing that the
credential of the client is certifying the attributes which
are used as the selection strings in TST. Remarkably,
one can plugin any credential scheme and encryption
scheme supporting the corresponding zero-knowledge
proofs efficiently, which are abundant. We think that
it is a conceptually simpler and possibly more efficient
approach, yet we enjoy more expressive policy.

At the application level, this class of primitive can
find applications in pay-per-download music repository,
pay-per-retrieval DNA database, etc. For example, a
specific solution based on PIR instead of OT with an in-
tegrated payment system has been proposed with these
kinds of e-commerce applications in mind [25].

8.3 Publish/Subscribe System

As our protocol is for matching in general, it can also
find applications in other scenarios where the transfer
of material is based on matching of interests, and the
interest may be sensitive to disclose. One example is
privacy-preserving content-based publish/subscribe sys-
tem [36]. For matching interest while preserving its
privacy, existing work resorts to computation over en-
crypted data [36], or uses attribute-based mechanism
for specifying interest as the encryption policy [47].

Our solution can act as a handy tool in a peer-to-
peer setting, where there is no authority to setup the
attribute-based cryptosystem. Moreover, all our con-
structions avoid relatively heavyweight pairing opera-
tions that are common in attribute-based systems.

8.4 Existing PSI(-CA) Applications

TST serves as a better alternative in typical applications
utilizing PSI. For example, PSI has been used to enforce
fog of war in real-time online games [7]: a player can only
see the details of the map as determined by the other

player, only if the player has a unit of army nearby.
Existing schemes rely on the game logic to determine
this nearby condition. TST/STAS allows cryptographic
revelation of the fog of war under more flexible criteria,
e.g., different units with different visibility.

Consider another example of joint promotion by two
companies which share some common customers. They
should protect the customer lists before confirming that
cooperation is beneficial (say, knowing the number of
common customers is over a threshold). PSI-CA can
be a solution. However, not all customers are equal, a
company may assign different weights according to pur-
chase history, etc. In general, STAS provides a flexible
yet privacy-preserving solution: a company can specify
the policy for matching, with the policy kept private.

Applications like location-based services and bio-
metric pattern matching, etc., benefit from our new
primitive as we allow more fine-grained control over
“proximity” and “similarity”, which is not easily sup-
ported by traditional PSI-based solutions.

9 Conclusion and Future Work
We formulate the notion of secret transfer with access
structure (STAS), and propose two constructions based
on oblivious polynomial evaluation and a new variant
of garbled Bloom filter respectively. The first scheme
is secure in the malicious model, while the second one
is more efficient. We then show how to use STAS to
construct private set-intersection with access structure,
which is the first of its kind to the best of our knowledge.
Further applications of STAS are also discussed.

This work leaves a number of open problems: im-
proving efficiency of our malicious model construction,
considering stronger models such as universal compos-
ability, and constructing t-PSI which does not leak the
size of intersection, without resorting to obfuscation. We
hope to see our work enables more new applications.
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Appendix A Secure 2PC
We use the simulation-based security definition for two-
party computation (2PC). More details can be referred
to [20]. A 2PC protocol π computes a function that
maps a pair of inputs to a pair of outputs f : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗×{0, 1}∗, where f = (f1, f2). For every
pair of inputs x, y ∈ {0, 1}∗, the output-pair is a ran-
dom variable (f1(x, y), f2(x, y)). The first party obtains
f1(x, y) and the second party obtains f2(x, y).

A.1 The Semi-Honest Setting

We first consider static semi-honest adversaries, which
can control one of the two parties and assumed to follow
the protocol specification exactly. However, it may try
to learn more information about the other party’s input.

In the semi-honest model, a protocol π is secure if
whatever can be computed by a party in the protocol
can be obtained from its input and output only. This
is formalized by the simulation paradigm. We require a
party’s view in a protocol execution to be simulatable
given only its input and output. The view of the party i
during an execution of π on input (x, y) is denoted by
Viewπi (x, y) = (w, ri,mi

1, . . . ,m
i
t), where w ∈ (x, y) is the

input of i, ri is i’s internal random coin tosses, and mi
j

denotes the jth message that it received.

Definition 6 (Semi-honest Model). Protocol π is said
to securely compute a deterministic function f = (f1, f2)
in the presence of static semi-honest adversaries if there
exists PPT algorithms Sim1,Sim2 such that

{Sim1(x, f1(x, y))}x,y
c≡ {Viewπ1 (x, y)}x,y,

{Sim2(y, f2(x, y))}x,y
c≡ {Viewπ2 (x, y)}x,y.

A.2 The Malicious Setting

The adversary might deviate from the protocol execu-
tion arbitrarily even at the risk of being caught cheating.
The standard way of defining security in such a mali-
cious model is to formalize an ideal process that involves
a trusted third party who computes the protocol result
directly. A protocol is said to be secure if any adver-
sary in the real protocol execution can be simulated by
a simulator in the ideal model. More formally:

In an ideal execution, the two parties submit their
inputs to the trusted party who will compute the desired
output and send the outputs back. An honest party just

directs its true input for the computation to the trusted
party, while a malicious party may replace its input
with any other value of the same length. As in most of
the literature, we do not consider fairness, which means
the malicious party can send an abort symbol ⊥ to in-
struct the trusted party not to deliver the output to the
honest party. Let f = (f1, f2) be a deterministic func-
tion, and Ai be a PPT adversary that corrupts party
i ∈ {1, 2}, the ideal execution of f on inputs (x, y) and
auxiliary input z to A, denoted by Idealf,Ai(z)(x, y), is
defined as the output pair of the honest party and Ai.

In the real model, the honest party follows the in-
structions of the protocol π to interact with Ai, who on
the other hand may follow any polynomial-time strat-
egy. Let f,Ai to be the same as defined above and let π
be a 2PC protocol for computing f . Then, the real ex-
ecution of π on inputs (x, y), auxiliary input z to Ai,
denoted by Realπ,Ai(z)(x, y), is defined as the output
vector of the honest party and the adversary Ai.

Security. Security is defined by requiring that ad-
versaries (often called simulator in this context) are able
to simulate the protocol execution in the real world.

Definition 7 (Malicious Model). With the definitions
above, protocol π is said to securely compute f with abort
in the presence of malicious adversaries if for every
PPT adversary Ai in the real model, there exist a PPT
adversary Simi in the ideal model, where for i ∈ {1, 2}

{Idealf,Simi
(x, y)} c≡ {Realπ,Ai

(x, y)}.

Appendix B GBF∗ Algorithms
This section gives the details and analyze our GBF∗

which is (BuildGBF∗,QueryGBF∗,GBF∗Intersection).
The false positive of GBF∗ means when querying
GBF∗X,I with some index i′ /∈ I, QueryGBF∗() (Al-
gorithm 2) returns some element x ∈ X. It is easy to
see that our BuildGBF∗() (Algorithm 1) fails only when
emptySlot remains unchanged before line 22. Following
existing analysis [17], we have:

Theorem 6. Algorithm 1 fails with probability negl(λ).

Theorem 7. The false positive probability is negl(λ).

The underlying idea of our GBF∗Intersection (Algo-
rithm 3) is very similar to the GBFIntersection algo-
rithm [17]. Thus Algorithm 3 inherits the corresponding
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Algorithm 1 BuildGBF∗(n,H, λ)
Input: A secret set X, an indexing set I, n, λ, and λ

uniform hash functions H = {h1, . . . , hλ}
Output: An (n,H, λ)-GBF ∗X,I

1: procedure
2: Set m = λn log2 e

3: GBF ∗X,I = new m-element array of λ-bit strings
4: for j ← 1,m do
5: GBF ∗X,I [j] = NULL
6: end for
7: for each xj ∈ X do
8: emptySlot = −1, finShare = xj
9: for `← 1, λ do

10: index = h`(ij)
11: if GBF ∗X,I [index] == NULL then
12: if emptySlot== −1 then
13: emptySlot = index

14: else
15: GBF ∗X,I [index] $←− {0, 1}λ

16: finShare=finShare⊕GBF ∗X,I [index]
17: end if
18: else
19: finShare=finShare ⊕ GBF ∗X,I [index]
20: end if
21: end for
22: GBF ∗X,I [emptySlot] = finShare
23: end for
24: for j ← 1,m do
25: if GBF ∗X,I [j] == NULL then

26: GBF ∗X,I [j]
$←− {0, 1}λ

27: end if
28: end for
29: return GBF ∗X,I
30: end procedure

theorems for GBFIntersection algorithm. We omit the
proofs for the sake of simplicity.

Theorem 8. For GBF ∗
S̃,I∩I′ produced by Algorithm 3.

Let a` be the event that GBF ∗
S̃,I∩I′ [h`(ij)] equals the `th

share of sj , 1 ≤ ` ≤ k; then (i) ∀ij ∈ I ∩I ′ : Pr[a1∧ . . .∧
a`] = 1 (ii) ∀ij /∈ I ∩ I ′ : Pr[a1 ∧ . . . ∧ ak] is negl(k).

Theorem 9. Given sets I, I ′ and their intersection
I ∩ I ′, let S̃ ⊆ S be a set such that sj ∈ S̃ if and only
if ij ∈ I ∩ I ′. Let GBF ∗S̃,I∩I′ be the output of the Algo-
rithm 3 from GBF ∗S,I and BFI′ , let GBF ∗′

S̃,I∩I′ be an-
other GBF∗ produced by Algorithm 1 using S̃ and I∩I ′,
then GBF ∗

S̃,I∩I′

c≡ GBF ∗′
S̃,I∩I′ .

Algorithm 2 QueryGBF∗(GBF ∗X,I , i′, k,H)

Input: An (n,H, λ)-secret embedding garbled Bloom
filter GBF ∗X,I , λ,H = {h1, . . . , hλ}

Output: An element x ∈ X if i′ ∈ I, a random string
otherwise

1: procedure
2: x̃ = {0}λ

3: for `← 1, λ do
4: index = h`(i′)
5: x̃ = x̃⊕GBF ∗X,I [index]
6: end for
7: return x̃

8: end procedure

Algorithm 3 GBF∗Intersection(GBF ∗X,I , BFI′)

Input: An (n,H, λ)-secret embedding garbled Bloom
filter GBF ∗X,I , an (n,H, λ)-Bloom filter BFI′

Output: (n,H, λ)-GBF ∗
X̃,I∩I′

1: procedure
2: Set m = λn log2 e

3: GBF ∗
X̃,I∩I′ = new m-element array of λ-bit

strings
4: for j ← 1,m do
5: if BFI′ [j] == 1 then
6: GBF ∗

X̃,I∩I′ [j] = GBF ∗X,I [j]
7: else
8: GBF ∗

X̃,I∩I′ [j]
$←− {0, 1}λ

9: end if
10: end for
11: return GBF ∗

X̃,I∩I′

12: end procedure

Appendix C (ST)2

The TST (and STAS) construction in Sec. 5 always leaks
the intersection size to the client. The main reason is
that the reconstruction algorithm of plain secret sharing
scheme typically assumes that the inputs are all “correct
shares”. We are thus forced to release information about
the correct shares to let the client identify them. Such
ability in turn implicitly leaks the intersection size.

To fix this gap, we formalize a stronger notion called
strong threshold secret transfer ((ST)2). By replacing
TST with (ST)2, we obtain t-PSI instead of t-PSI-CA.

Definition 8 (Strong threshold secret transfer ((ST)2)).
(ST)2 is a two-party computation protocol that imple-
ments the following functionality:
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f ′(x, y) =

{
(⊥, κ) if |C ∩ S| ≥ t
(⊥,⊥) otherwise

where x = (κ, S) is from server, y = C is from client.

In (ST)2, the server remains oblivious about the client’s
input set, but the client only learns if |C ∩S| ≥ t or not.

Here we use function secret sharing (equivalent to
indistinguishability obfuscation, iO) [32] to construct
(ST)2. Another (ST)2 construction based on anony-
mous ciphertext-policy attribute-based encryption can
be found in the full version [48].

Definition 9 (Function secret sharing [32]). Let F =
{F : 2Pn → {0, 1}∗} be a class of functions. A function
secret sharing scheme for F consists of a setup procedure
Setup and a reconstruction procedure Reconstruct that
satisfy the following requirements:
1. Setup(1λ, F ) gets as input a function F ∈ F , and

distributes a share for each party. For i ∈ [n], we
use Π(F, i) to denote the random variable that cor-
responds to the share of party Pi. Furthermore, for
X ⊆ Pn, we denote by Π(F,X) the random variable
that corresponds to the set of shares of parties in X.

2. Completeness: Reconstruct(1λ,Π(F,X)) gets as
input the shares of some subset X of parties, and
outputs F (X). More precisely,

Pr[Reconstruct(1λ,Π(F,X)) = F (X)] = 1,

where the probability is over the internal random-
ness of the scheme and of Reconstruct.

3. Indistinguishability of the function: For every
PPT algorithm D, every equal size F0, F1 ∈ F and
X ⊆ 2Pn such that F0(X ′) = F1(X ′) for all X ′ ⊆ X,
there exists a negligible function negl(·) such that

|Pr[D(1λ,Π(Fb, X))]− 1/2| ≤ negl(λ),

where the probability is over the internal random-
ness of the scheme, the internal randomness of D
and b← {0, 1} chosen uniformly at random.

We define a function F ′ that additionally verifies the
correctness of input shares. Intuitively, only when the
“correct shares” constitute a qualified set according to
the prescribed access structure, the secret κ is revealed
(i.e., F ′(X ′) = κ iff. X ′ contains some qualified set).
Due to the indistinguishability of function secret shar-
ing, the actual number of “correct shares” is not leaked
to the client. The details of the construction are listed in
Figure 8. The straightforward security proof is omitted.

Protocol: (ST)2 from OT|Is∩Ir|
Ir

and iO
Input: (Client) C = {ci}nc , (Server) S = {si}ns , κ.
1. The server runs Setup(1λ, F ′) algorithm to ob-

tain a set of share Π(F, i) for i ∈ [ns].
2. The server and the client engage in an OT|Is∩Ir|

Ir

protocol. The server acts as the sender with in-
put x = ({Π(F, i)}ns , S). The client acts as the
receiver with input C.

3. The client tries to recover κ by running
Reconstruct on the shares from the last step.

Fig. 8. (ST)2 Construction from OT|Is∩Ir|
Ir

and iO

Theorem 10. If iO exists and the OT|Is∩Ir|
Ir

protocol
is secure, the protocol in Fig. 8 securely evaluates the
(ST)2 functionality in the semi-honest model.

Appendix D Proof of Theorem 2
Proof. We separately consider corrupt sender and re-
ceiver. Our proof consists of sequences of games tran-
siting from a real protocol execution to an idealized
execution in which the simulator can only obtain infor-
mation about the honest party’s input from an ideal
functionality. We show that each transition is indistin-
guishable by the security of the underlying primitives.

Corrupt receiver. We need to prevent a malicious
receiver from learning extra information about the
sender’s input. A non-zero degree k polynomial has at
most k − 1 roots. Intuitively, by extracting its coeffi-
cients from ZKPoK1, the simulator is able to hand the
actual input of the adversary to the ideal functionality.

Game H0: This game is the real execution. The
simulator S0 plays the role of an honest sender with
input (Is, E).

Game H1: In this game, if S1 does not abort in
Step 5, it uses the extractor to extract A’s input poly-
nomial p(·) from ZKPoK1. S1 sets Ĩr = {ri : p(ri) = 0}
and completes Ĩr to size nr by adding distinct random
elements. S1 only keeps this set internally so that A
does not notice the difference between S1 and S0.

Game H2: This game is the same as Game H1,
except that S2 replaces ZKPoK2 with simulations. Any
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party distinguishing this game from the previous one
breaks the zero-knowledge property of the proof system.

Game H3: In this game, S3 encrypts dummy el-
ements “1” at the beginning. If there exists a distin-
guisher that can tell apart this game from the previous
one, we can build a distinguisher breaking the CPA-
security of (K̃eyGen, Ẽnc, D̃ec) similar to what we did in
the proof of Theorem 1. Now ZKPoK2 is “proving” false
statements.

Game H4: Now we make the final important transi-
tion. Instead of using the true inputs (Is, E) to compute
ci, S4 hands Ĩr to the ideal functionality, whose inputs
are (Is, E), and receives answer E′ = {ei}. Then S4
completes E′ by adding random element to size ns, and
encrypts each element ei ∈ E′ as ci. It is obvious that ci
are identically distributed in this game and the previous
game, so A cannot tell the difference.

Game H5: This is identical to Game H4 except
that S does not get the true input (Is, E) at the be-
ginning. It is a conceptual change since S4 does not
use (Is, E) at all in Game H4. S works exactly in the
idealized execution of the protocol, which completes our
argument.

Corrupt sender. We need to prevent A from learning
anything about the honest receiver’s input, and from
making the receiver output incorrect answer. The for-
mer one is from the security of encryption. The latter is
achieved by having A first commit its input, and later
prove in zero-knowledge that it follows the protocol.

Game H0: This game is the real execution. The
simulator S0 plays the role of an honest receiver with
input Ir.

Game H1: We now replace the public key in the
common reference string with (p̃k, s̃k)← K̃eyGen. When
S1 receives encrypted ciphertext (s̃i, ẽi), it decrypts
them using s̃k and records the result (si, ei). This
change is purely conceptual to A’s point of view.

Game H2: This game replaces ZKPoK1 with simu-
lations. Any party distinguishing this game fromGame
H1 breaks the zero-knowledgeness of the proof system.

Game H3: In this game, instead of computing the
encrypted polynomial according to input Ir, S3 just
prepares nr + 1 encryptions of zeros using fresh ran-

domness. Any distinguisher telling apart this game from
the previous one can be converted into a distinguisher
breaking the CPA-security of homomorphic encryption.
Notice that S3 gets to see all A’s input (Is, E) after de-
cryption at the end of the protocol. If these two sets are
not consistent with the records obtained by decrypting
(s̃i, ẽi), S3 aborts. The probability of S3 aborts should
be negligible by the soundness of ZKPoK2. If S3 does
not abort, it computes the output from Ir and (Is, E).

Game H4: We replace the final step of S3 with
the following: S4 hands (Is, E) to an ideal functionality,
whose input is Ir. This step is purely conceptual to A
by definition of an ideal functionality, so it should not
affect A’s protocol view or the output distribution.

Game H5: We make the final transition that S does
not know the input Ir at the beginning of the protocol.
It is a conceptual change because in Game H4, S4 does
not use Ir to compute anything at all. This game is
identical to an idealized execution of the protocol.


