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Vulnerable GPU Memory Management:
Towards Recovering Raw Data from GPU
Abstract: According to previous reports, information
could be leaked from GPU memory; however, the se-
curity implications of such a threat were mostly over-
looked, because only limited information could be in-
directly extracted through side-channel attacks. In this
paper, we propose a novel algorithm for recovering raw
data directly from the GPU memory residues of many
popular applications such as Google Chrome and Adobe
PDF reader. Our algorithm enables harvesting highly
sensitive information including credit card numbers and
email contents from GPU memory residues. Evaluation
results also indicate that nearly all GPU-accelerated ap-
plications are vulnerable to such attacks, and adver-
saries can launch attacks without requiring any special
privileges both on traditional multi-user operating sys-
tems, and emerging cloud computing scenarios.
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1 Introduction
Modern graphics processing units (GPUs) have already
been utilized in a broad spectrum of application do-
mains, from graphic processing to bioinformatics and
from matrix manipulation to neural networks, which
however has inevitably introduced new security prob-
lems. Specifically, to circumvent memory bandwidth
bottlenecks, discrete GPUs are normally equipped with
dedicated high-speed memory systems that are man-
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aged and used exclusively by those GPUs; those mem-
ory systems are independent of the main memory sys-
tems controlled by CPUs. However, this heterogeneous
memory architecture introduces a memory isolation is-
sue: Memory isolation policies enforced by a CPU can-
not be applied to GPU memory automatically, and any
discrepancy between these two can lead to unwanted
information leakage.

This issue has already been reported by previous
works. Security implications and potential information
leakages from GPU memory were first discussed in
2012 [10]. Some recent studies have revealed several con-
crete attacks against GPU memory [14, 18, 20, 21, 24].
In particular, Lee et al. demonstrated that adversaries
could infer the websites visited by victims on a multiuser
system by using statistical analysis of pixel colors [20].

Threats from GPU memories were mostly over-
looked. As far as we know, no mainstream GPU vendor
released any patch to fix the problems discovered in pre-
vious studies. We believe that the fundamental reason
is that the existing attacks to GPU memories have very
limited impacts and consequences and thus are consid-
ered to be low-risk. For example, how data are exactly
organized in GPU memories is still unknown because
very little documentation is available, and existing at-
tacks rely on side-channel attacks to infer noncritical
information indirectly.

After a careful investigation to the problem, we ar-
gue that potential security risks caused by con-
temporary GPU memory architectures are un-
derestimated, and serious attacks may recover
highly sensitive information directly from GPU
memory residues by exploiting the GPU mem-
ory management vulnerability. To this end, we
studied how data are stored in GPU memories, propose
a novel algorithm for recovering fragments of original
images rendered by GPUs but left behind as memory
residues, and demonstrated direct sensitive information
recovery with several real-world applications including
Google Chrome and Adobe PDF Reader. Evaluation re-
sults showed that adversaries are indeed able to obtain
highly sensitive data , including images displayed on
screens, text samples from documents, and matrix data.
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Several critical challenges must be addressed to ex-
tract raw data from GPU memory residues directly.
First, identifying small image-like data chunks, ranging
from several kilobytes to several megabytes; such chunks
are usually taken from a memory space of several gi-
gabytes. Second, inferring images’ layouts (i.e., widths
and heights) is vital, otherwise recovered images may
be meaningless. Nevertheless, all types of meta informa-
tion about images are missing from GPUmemory, which
mostly contains quantities of raw data for all pixels min-
gled with other nonimage data. Our strategy to address
the first challenge entailed leveraging some unique pat-
terns of adjacent bytes for image pixels. For the second
challenge, we designed a novel algorithm based on a key
insight regarding image data: Adjacent rows within an
image are similar to each other, and when examined
in the frequency domain, such similarities exhibit some
cyclical patterns, with cycles usually equal to widths
(i.e., the length of each row). With our algorithm, the
memory layout of an image can be inferred and recov-
ered without any quality loss.

The techniques proposed in this paper proved that
GPU memory inference attacks are much more serious
than researchers had previously thought. First, cur-
rently, adversaries are able to recover raw images from
GPU memory residues and then extract much more sen-
sitive information directly from such raw data (e.g., the
email contents displayed in a browser that requested
a GPU to render web pages). By contrast, previously,
such adversaries can only perform side-channel attacks
over nondecoded data and infer less critical information
indirectly [20]. Second, adversaries can now attack a
large group of vulnerable applications with the GPU-
acceleration feature, because they are able to recover
raw images rendered by GPUs (because of acceleration),
whereas previously, their attacks could only infer insen-
sitive information indirectly through statistical analysis
of memory residues. In Section 5, four popular applica-
tions from different categories, namely Google Chrome
(browser), Adobe Reader (document processor), GIMP
(image processing) and Matlab (scientific computing),
are evaluated. The results show that all of those applica-
tions are vulnerable in the end, but previously published
attacks were only able to work partially on browsers (by
inferring the web sites visited by victims). Considering
that GPU acceleration is becoming increasingly popular
in mainstream applications, including even production
software like Microsoft Office and Libre Office, one can
expect that sensitive documents and data could be in-
creasingly shifted to GPUs for processing, resulting in
widespread accidents of information leakage. Finally,

(a) Address Bar

(b) Tab Caption

Fig. 1. Recovered image From GPU memory indicating the URL
of the displayed web page

with the techniques proposed in this paper, adversaries
are able to launch attacks not only against traditional
multiuser systems, but also against new and emerging
platforms such as cloud computing (discussed in Sec-
tion 5.3), which increases the victim population and
makes the attack more serious than before.

Contributions. We summarize our contributions
as follows:
– A study that reveals a critical vulnerability in the

GPU memory management mechanism. We found
that the GPU memory management strategy can
be exploited by malicious programs that cross the
memory isolation boundary to obtain raw memory
data belonging to other processes; this is highly
risky and leads to much more serious consequences
than researchers expected before.

– A novel methodology for recovering original images
from GPU memory residues. We propose a new ap-
proach that can automatically identify and recover
images from the GPU memory residues of legiti-
mate applications. Based on our insights on image
data and signal processing techniques, we designed
an algorithm that can determine image layouts and
extract images effectively. Unlike previous works on
GPU security problems, our approach is the first to
show that original images and sensitive information
can be recovered from GPU memory residues.

– In-depth evaluation. We evaluated our attacks
against popular applications with typical uses of
GPUs, including web browsing, document process-
ing, photo editing, and scientific computing. The re-
sults show that all of those applications are vulner-
able to such attacks. In addition to ordinary multi-
user systems, we further tested our approach on a
virtualized platform and noted successful results.

2 Background
In this section, we first provide a brief overview of a
GPU computing model, and then present a summary of
reported vulnerabilities in GPU memory management.
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2.1 GPU Computing Model

Functions of modern GPUs have already exceeded dis-
playing images. GPUs can now be used for diverse tasks,
such as video encoding and decoding, page rendering,
and other general-purpose computations. To effectively
accomplish these new tasks, GPUs’ internal architec-
tures and computing models have evolved rapidly. Cur-
rently, it is typical for a single GPU chip to have tens
or even hundreds of processing units (or cores) that
can work in parallel and provide a staggering level of
processing power. To concurrently satisfy the memory
demands of numerous cores, a discrete GPU normally
includes a dedicated memory space that is used and
managed exclusively by the GPU and is independent
from the main system memory (controlled by the CPU).
Therefore, before the GPU can actually start to work,
relevant data must be copied from the main memory
to the GPU memory, after which computations can be
executed in GPU memory; finally, results can be copied
back from the GPU memory to the main memory.

Different sets of APIs exist to facilitate the use
of GPUs and attached memory resources, including
OpenGL, CUDA and OpenCL. OpenGL encapsulates
low-level GPU operations so that applications can ren-
der graphics without directly touching GPU memories.
By contrast, OpenCL (an open framework supported by
most GPUs including Nvidia and AMD.) and CUDA
(exclusively supported by Nvidia) provide low-level in-
terfaces that enable users to directly manipulate GPU
memories in almost the same manner as system mem-
ories (e.g., allocating and freeing memory objects). All
of the exploits presented in this paper were engineered
and evaluated with OpenCL and CUDA.

2.2 GPU in Virtualized Environment

Previously, GPUs were not virtualized and could not
be used by virtual machines (VMs), but new techniques
now have enabled VMs to obtain full access to GPU
resources. Specifically, with the help of new I/O virtu-
alization schemes, applications running on cloud com-
puting platforms are now able to use powerful GPUs on
the physical machine [6]. The GPU virtualization tech-
nique is called GPU Passthrough; in this technique, one
GPU is assigned to a single VM instance that uses it in
the same manner as a directly attached GPU card [21].
Although this scheme differs slightly from the sharing
of other resources like network and hard disks, it has
the least overhead and can reach bare-metal GPU per-

formance. However, as discussed in Section 5.3, it also
engenders potential problems of GPU memory residues,
because the data left in the GPU memory by one VM
could be accessed and analyzed by another VM.

2.3 Vulnerabilities in GPUs

GPUs were originally designed to provide high-speed
computation power, but the designers gave insufficient
consideration to data security, and as computing mod-
els and application scenarios evolve, the underlying se-
curity implications change accordingly, leading to new
vulnerabilities. One prominent example is GPU mem-
ory management. Being independent of the main sys-
tem memory, the GPU memory is managed by the GPU
itself and thus may violate some security policies nor-
mally enforced by the OS and the CPU. For example,
it is guaranteed that any newly allocated space in the
main memory must be cleared to zero to avoid infor-
mation leakage, but such policies are not enforced by
the GPU, because a previous study demonstrated that
newly allocated GPU memory without application-level
initialization returns nonzero values[10].

Some studies have been published on the security
implications of the architectures and features of modern
GPUs. For example, Lee et al. [20] found that: although
they could not decode or recover original images from
GPU memories, they were able to infer the sites visited
by victims, by linking a targeted memory trunk with
the most similar one in a labeled training set. Neverthe-
less, this attack is limited by some restrictions. First,
it cannot recover raw images from GPU memories and
must rely on side-channel information. Second, it re-
quires attackers to build profiles beforehand and thus is
only applicable to limited scenarios of matching a target
with an entry from a known dataset.

In this work, we report a major advance in this field.
By analyzing and leveraging the common memory lay-
out of GPU objects (i.e., images), we developed new
techniques for recovering raw images from GPU mem-
ory residues. With our techniques, highly sensitive in-
formation can be directly extracted and harvested by
adversaries. The present paper explains how to obtain
data that previously published techniques were not able
to obtain, including usernames, credentials, credit card
numbers, and other sensitive information shown on web.
Because an increasing number of mainstream applica-
tions are using GPU acceleration on workstations and
cloud servers, hitherto unforeseen attacks on GPUmem-
ory could become widespread and dangerous.
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3 Adversary Model
We assume that an adversary has successfully acquired
the permission to access the GPU and run programs
under a nonprivileged account on the target machine,
and that his/her goal is to recover meaningful informa-
tion from the GPU memory residues of other victim
users (e.g., who share the same hardware but with dif-
ferent accounts). Several common scenarios satisfy the
preceding assumptions. For example, in a school com-
puting lab, each user might have a nonprivileged ac-
count on every computer. Suppose a victim had just
used one lab computer to view some personal PDF doc-
uments (with GPU acceleration); another malicious user
can dump the GPU memory and recover whatever infor-
mation had been retained in the GPU memory. Shared
computers are also common in companies. Consider a
dedicated computer only used to view and process clas-
sified documents; a user with a low level of authoriza-
tion might be able to recover sensitive information left
in the GPU memory by a user with a high level of au-
thorization who had just viewed secret documents on
that shared computer.

For the scenario of cloud computing, we assume that
adversaries have rented a VM with GPU support, and
that their goal is to obtain private information from
other cloud users (i.e., owners of other VMs on the same
machine) through the GPU memory. Such settings are
also common currently. For example, companies may
use cloud servers with GPU acceleration to tag people
in photos uploaded by their customers, convert docu-
ment formats, or even perform scientific computations.
Moreover, adversaries can obtain a VM on the same host
machine, dump the GPU memory, and recover raw data
such as photos, documents, and experimental data.

4 Attack: Image Recovery
In this section, we propose a method for recovering
graphical data from GPU memory residues. We first
present techniques regarding how to identify image-like
tiles from GPU memories. Subsequently, we describe
how to reconstruct images from tiles with imprecise
boundaries. Finally, we demonstrate how to rearrange
recovered images in the correct order.

4.1 Tile Extraction

The first step of the attack is to identify possible data
blocks that are very likely to be parts of meaningful
images, but this turns out to be a non-trivial task for
two reasons. First, images’ meta data are often stripped
away when the images are loaded into GPU memories;
thus, many relevant details about image objects are
missing, and there is no simple means of locating the
metadata or determining the dimensions of the images.
Second GPU memories also hold considerable amounts
of nonimage data, because modern GPUs are frequently
used for nongraphical computations such as encryption
and matrix calculation, which makes the problem even
more complex and difficult. To address these challenges,
we leverage several distinctive features of image data
and have improved the prime-probe method proposed
in the previous study [20]. More details are elaborated
below.
Memory initialization. In this step, a differential
analysis is executed over a piece of GPU memory to
recognize regions that have been changed by victim ap-
plications. When started, the malicious application at-
tempts to overwrite every byte of the GPU memory it
can access with a predefined constant value, say 0xff;
subsequently it focuses on all regions with non-0xff val-
ues, because only those regions may contain changes
made by victim applications.
Data block extraction. After the memory is initial-
ized, the malicious application then runs in the back-
ground and queries the amount of free GPU memory
space periodically. If the size of the available GPU mem-
ory sharply increases, a victim application may have just
released a chunk of GPU memory, and the malicious
application makes a copy of the GPU memory using
GPGPU APIs (e.g., clEnqueueReadBuffer in OpenCL).
The probability of adversaries spotting sensitive infor-
mation from the captured GPU memory is high because
the GPU itself does not erase memory data before re-
leased memory space gets reallocated.

One may think that image regions can be extracted
easily from GPU memory dumps by removing all the
0xff bytes. However, such a simple approach does not
work effectively, because 0xff is also used as a valid pixel
value as well as an alpha component. Removing all 0xff
values naively would destroy original image data struc-
tures and break images into small pieces.

The observation that eliminating 0xff bytes would
destroy data motivated us to develop a technique for
stitching small image memory blocks together based on
their relationships. Our strategy is to divide memory
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dumps into blocks of a fixed size, and then merge the
ones that are consecutive in memory space and are likely
to be pixels. The block size must be determined first.
The size should be smaller than an image; otherwise,
two or more images would appear in the same block
and be regarded as one image. The block size must not
be too small; otherwise, any big white chunk (in which
all bytes were 0xff trunk) in an image would break the
image down. After numerous experiments, we chose 4 K
as the block size that works well in most cases. There-
fore, we split the memory into 4-K blocks and filter out
the blocks that are filled with all 0xff because they
are probably not used after initialization. We also re-
move the blocks that are all 0x00 because they are clean
blocks zeroed out by developers or the OS. The remain-
ing blocks are concatenated into a bigger block if
they are consecutive in memory space, and we call it a
tile. After this step, data blocks left behind by victim
processes are extracted.

This method may still accidentally damage some
valid pixels, since 0xff may also be a valid pixel, but
this does not cause considerable problems, because it
is equivalent to removing large chunks of white space
in an image; the cropped image is still meaningful, just
like removing white margins of a PDF file retains the
meaningful text. By contrast, removing nonwhite pixels
may destroy excessive amounts of information and make
images difficult to recognize. This is exactly the reason
why we chose 0xff (i.e., white color) as the canary.

The structure of the graphical data inside the tile
is unknown at this point. As mentioned, GPU chip ven-
dors do not provide any documentation about how they
map a logical address to its physical address space. How-
ever, it seems reasonable to assume that application
developers do not arbitrarily distort image layouts in
logical address spaces under their control. Furthermore,
although a GPU may conduct extensive optimization
of its underlying data storage architecture (e.g., mem-
ory compression [3]), we found that such hardware opti-
mization techniques are all transparent to upper layers,
suggesting that regardless of how data are re-ordered,
compressed, and encoded by GPU hardware, data seen
by GPU applications retain their original formats.
Data blocks pruning. The blocks obtained in the
previous step still require further pruning - any blocks
used to hold nongraphical data are not considered in
the present procedure. The distinctive structure of im-
age data facilitates the identification of graphical blocks.
For an image, each pixel is represented by a 4-byte word,
or four 8-bit channels. The four channels correspond to

the colors Red (R), Green (G), Blue (B), and Alpha
component (A) value of the pixel separately. The alpha
component value indicates the level of transparency of
the pixel. By surveying numerous images, we found this
value to be either 0x00 or 0xff , and if either of those
values can be detected, we can infer that the pixel is
either nontransparent or the channel is unused. Hence,
we can judge if the data block is graphical by examining
its alpha channel values.

For a graphical data block, we also must determine
the order of channels to guide the subsequent recon-
struction steps. In theory, developers can choose any
order, but they usually use the first or last byte of the
4-byte word as the alpha channel and sequentially align
RGB values, because the pixel format is usually either
RGBA or ARGB. To determine which format is used,
we compute the percentage of 0xff or 0x00 stored in
each byte position of each 4-byte word (p), and compare
it against a threshold (th). If p > th for the last byte,
the image format is considered as RGBA. If p > th for
the first byte, the image format is considered as ARGB.
Otherwise, the block is discarded. In the evaluation, th
is set to 20%.

Occasionally, developers may not use a standard for-
mat to represent a pixel, and we did encounter one such
case, which is introduced in Section 5.

The final task of data pruning is to remove the
heading and trailing elements filled with values of 0x00
or 0xff and to retain the values in the middle (This
does not mean that the boundary is now precisely deter-
mined). Ideally, a tile contains one and only one image;
this was proved to the dominant case by our pilot exper-
iments. However, we did observe a small portion of tiles
containing parts from two or more images, because the
locations of the included images in the memory space
are too close.

4.2 Image Layout Inference: Problem

After a tile has been extracted, the next step is to infer
the layout information associated with the embedded
image. Assume that the tile occupies N 4-byte words
in memory and the image occupies a sequence of W 4-
byte words (W ≤ N). The image could reside in any
subarea of the tile. We denote the number of 4-byte
words ahead of the image as s and the number after
as e and N = s + W + e. We must identify s and e

to retrieve the subarea. Since an image is represented
with a two-dimensional matrix, we must also identify
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the number of rows (n) and columns (m, which equals
W/n) to recover the original image.

(a) Normal Image (b) Signal-less TV

Fig. 2. Normal Image and Random Image

In general, the size of an image ranges from sev-
eral kilobytes to several megabytes. It is infeasible to
enumerate all the combinations of s, e and n and then
let the attacker decide which combination can recover
the original images. However, an image (especially a
sensitive one) is quite different from other artificially
generated data: Strong similarities exist between
consecutive rows and consecutive columns (Fig-
ure 2a). Another favorable condition is that although an
image could be compressed when stored on a hard disk
or transmitted through the network, it is decompressed
and usually loaded into a matrix structure into the GPU
memory and the similarities are preserved. Transparent
memory acceleration techniques may not break the sim-
ilarities because the hardware guarantees that the upper
layer application does not observe any distortion caused
by performance optimization. We leverage this key in-
sight to infer n or m and henceforth s and e (the details
are described in Section.4.3). Our approach, however, is
not designed to recover randomly generated images that
resemble television screens with no signals (Figure 2b)
or an image filled with identical pixels. These types of
images usually do not contain sensitive information and
are disregarded by the proposed exploit.

4.3 Image Layout Inference: Approach

When processed by a GPU, an image is usually stored
in a two-dimensional matrix (denoted by a), and the
value of a pixel can be read from a[i, j], where i and j

denote the ith row and jth column in the image matrix,
respectively. However, a tile is just a sequential data
block represented by a one-dimensional vector (denoted
f) where a[i, j] = f [s + i ×m + j]. Our goal is to infer
the correct s and m values that satisfy this equation. As
stated in Section 4.2, the consecutive rows of an image
are similar (a[i, :] is similar to a[i+1, :], for 0 ≤ i ≤ n−2),

and we leverage this constraint to determin the correct
s and m.

An appropriate metric is still required for quanti-
fying the similarities between rows. By examining dif-
ferent metrics, we found that the most useful metric
is the amplitude spectrum in the frequency domain of
the image matrix. If m is correctly inferred, the distri-
bution of element values in each row should be similar,
leading to strong periodicity of row values. In the subse-
quent paragraphs, we introduce an algorithm that first
infers m and then derives s based on m. Our approach
is demonstrated on four types of tiles, arranged in or-
der of increasing processing difficulty. For each type, we
remove one constraint from the previous type and the
final type reflects the tiles extracted from genuine GPU
memory dumps. Finally, we solve the number of redun-
dant 4-byte words before and behind the image (s and
e). Throughout this section, we use the tiles shown in
Figure 3 as examples to demonstrate our approach.
Tile type I. We start from an easy case where the
similarity can be trivially quantified. Assume that there
are no trailing and leading redundant pixels and that
all rows are identical (s = 0, e = 0 and ∀i1, i2 ∈
[0, n−1], a[i1, :] = a[i2, :]). Figure 3f illustrates this type
of tile, in which one row filled with distinct pixels (Fig-
ure 3e) is duplicated three times. In this case, f is turned
into a periodic function where f [x] = f [x + m],∀x ∈
[0, (n− 1)×m− 1] and m is the interval. Here, we lever-
age the spectrum produced by an FFT (fast fourier
transform) algorithm to capture this interval. Fourier
transforms can decompose a signal from the time do-
main into the frequency domain and are widely used
in various applications including signal processing and
image processing[4, 5].

Let the amplitude spectrum of f produced by the
FFT be F (pixels are gray-scaled before FFT). We stud-
ied F and found that the interval between two nonzero
components equals n, the number of rows. Therefore,
in this case, the image can be easily recovered, and the
proof for this observation is demonstrated as follows:

F for this tile is illustrated in Figure 3b, and Fig-
ure 3e shows the spectrum of only a row F0(k). F (kn) =
F0(k) for k = 0, 1, 2, ..., (m− 1) and F (kn)s are nonzero
(we call them main components), whereas the the am-
plitudes for other components are zero, according to
the properties of periodical signals. Hence, the interval
between two neighboring main components equals the
number of rows (n) of the image matrix. The width m

can be computed through N/n, and the image is then
recovered by reshaping the tile with those parameters.
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Fig. 3. Images used to illustrate three types of images. (a) Spectrum of a row picked from an image (illustrated in (e)). (b) Spectrum
of an image with identical rows (f). (c) Spectrum of an image (g) that complies with our assumption that consecutive rows are similar.
(d) Spectrum of an image with trailing or leading white pixels (h, i). (j) Image recovered without considering the leading pixels. (k)
Perfectly reshaped image.

Tile type II. A general property of images encountered
in this study is that all rows are not always identical.
Therefore, we assume that neighboring rows are sim-
ilar but not always identical. We assume tiles of this
type have no redundant leading pixels and no redun-
dant trailing pixels. We determined that again the FFT
can be used to infer the number of rows and columns of
the image matrix.

As an example, we assume that the tile looks like
that in Figure 3g, and the amplitude spectrum F of the
tile vector f is illustrated in Figure 3c. The main com-
ponents of F (k) occur when k = 0, n, 2n, ..., (m− 1)×n,
which is the same as the spectrum of tile type I. How-
ever, because of the differences between two neighbor-
ing rows, the main components disperse and the ampli-
tudes of the nonmain components are greater than zero
now. Nevertheless, they are much lower than those of
the main components; thus, the main components can
be easily identified. We explain the scenario as follows:

We introduce n virtual images v1, ..., vn, all of which
have the same layout as the original image. In particu-
lar, vi is constructed by replicating the ith row of a for
n times; thus, ∀i, x ∈ [0, n − 1], vi(x, :) = a[i, :]. Let the
amplitude of vi for the kth element be Vi(k); obviously,
it equals Fi( k

n ), according to the previous analysis, if
k is a multiple of n. For a sample tile shown in Fig-
ure 3g, the value of an element can be represented by
f(i× n+ j) and also by Fi(k) through inverse FFT, as
shown in Equation 1.

f(i× n+ j) = vi(x, j) = 1
N

N−1∑
k=0

W
−k(xm+j)
N Vi(k)

= 1
N

N−1∑
k=0

W
−k(xm+j)
N Fi(

k

n
) = 1

N

m−1∑
k=0

W−knj
N Fi(k)

(1)

where WN is the twiddle factor.
Equation 1 suggests that f consists of subcompo-

nents, and the frequency of each sub-component is a
multiple of n. Based on our observation that the con-
secutive rows vary slightly, the differences between Fi(k)
and Fi+1(k) should also be small, and the combined
F (k) should be high when k is a multiple of n. For other
values of k, the combined F (k) is still low, which makes
the main components stand out at 0, n, 2n, ..., (m−1)×n.
Similarly, the interval between two main components is
calculated to derive the values of n and then m.
Tile type III. Next, we consider a tile with a block
of pixels ahead of and another block of pixels trailing
the original image object; the value of each element in
the blocks is zero. As stated in the theorem of DFT [4],
the amplitude spectrum does not change when the orig-
inal signal is circularly shifted. Accordingly the leading
block ahead of the image, if any, can be shifted to its end
without affecting the spectrum. Figure 3h illustrates an
image with both leading and trailing blocks, and Fig-
ure 3i illustrates an image with only a trailing block;
moreover, their spectra are the same (Figure 3d). We
also assume that the trailing block is filled with zeros to
avoid the effect of the disturbance of nonzero padding
on the original spectrum under this simplified condition.
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Fig. 4. Spectrum of F (k) generated from tile type III

In signal processing, padding zero values to the end
of the signal can enhance the resolution of the spec-
trum. Specifically, the number of points used to observe
the spectrum increases. In this case, after the FFT, the
interval between two consecutive main components is no
longer equal to the height (n) of the original image. For
instance, the main components are located at kn′ in Fig-
ure 3d instead of kn in Figure 3c, although the sizes of
these two images are the same. However, theoretically,
the number of the main components is not changed,
which can be used to infer the width (m) of the im-
age. Nevertheless, this approach is not robust when the
main components are not prominent (e.g., the spectrum
of the component at (m−1)∗n′ is close to the neighbor-
ing components in Figure 3d).We solve this problem
through another round of FFT over F (k) and se-
lect the main component with the highest spec-
trum from the result, denoted as FF (k). This ap-
proach works because the main components occur every
n′ points, which suggests that the frequency occurrence
is m. Figure 4 illustrates the spectrum of Figure 3d.
Clearly, the component with the maximum amplitude
is located at m after low frequency components have
been filtered out by an HPF (high pass filter). Even
though the main components at km (k > 1) also show
much higher amplitudes than the neighboring compo-
nents do, their amplitudes are lower than the amplitude
of the component at m. This can be explained from the
nature of images: the similarity between a pair of in-
terleaved rows should be relatively high but still lower
than that between a pair of consecutive rows. After m
is computed, n can be derived by dividing N by m. The
derived n might be inaccurate since the tile in this case
contains more elements than the image object, which
must be adjusted in the subsequent padding removal
step.

Prior to picking out the main components from
FF (k), we remove the low-frequency components first
(achieved using HPF). The low-frequency components
could have high spectrum amplitudes (e.g., when the

frequency is 0, their values are higher than the value at
m), because neighboring pixels are all similar, which re-
sults in numerous low-frequency components. We use a
threshold here to prune the low-frequency components.
An excessively high threshold (more than m) would di-
rectly filter out the right answer, whereas an excessively
low threshold would result in the selection of a wrong
main component. We set it to the first frequency point
with an amplitude below the mean value, because ex-
perience has shown low-frequency components decrease
very rapidly. Their values tend to decrease below the
mean value within some points, whereas the value of the
first main component is much higher than the mean.
Nonzero Paddings. We assume that the padding dig-
its before and after the image are all 0 in the previous
simplified case, but that does not hold for all tiles ex-
tracted from real-world GPU dumps. Each digit could
be filled by any value. The spectrum changes when the
digits exhibit different periodicity lengthes and when
the tile is sufficiently long. The chances of a spectrum
change, however, are low, given that the quantity of
meaningful pixels is usually considerably higher than
that of the paddings. Therefore, the approach for tile
type III can be applied to calculatem for this case (both
leading and trailing paddings are nonzero) without any
modification.
Padding removal. Finally, we propose strategies for
computing s and removing the leading block. If the lead-
ing block is not removed, the recovered image cannot be
correctly aligned; an example is shown in Figure 3j. We
elaborate how to derive s for reshaping an image (Fig-
ure 3k) in the following paragraphs.

The present computation is derived from the
premise that consecutive columns can be expected to be
similar. Assume that the elements of a tile are placed
sequentially into a matrix after m is correctly inferred
(Figure 3j). To transform this matrix into the original
image matrix, each row of the matrix should be shifted
left for s mod m elements if s elements are posited
ahead. We aim to calculate s mod m and remove those
paddings.

The first and the last columns of the tile matrix
should be quite similar, because they are in fact the
(m− s)th and the (m− s− 1)th columns in the original
image. On the other hand, the sth and (s− 1)th column
of the tile matrix should be quite different, because they
are in fact the first and last columns (or boundaries) in
the original image, respectively.

We utilize the preceding findings to design the fol-
lowing algorithm for inferring s. First, a distance array
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Algorithm 1 ImageRecover
Input: f ; . f is the tile
F1 ← abs(fft(f));
F2 ← abs(fft(F1));
Fm ← mean(F2);
F2 ← F2/Fm . Normalization
cutFreq ← locateF irstSmallerThanOne(F2);
F2(0 : cutFreq − 1)← 0; . High Pass Filter
m← locateMax(F2);
if F2(m) < θ0 then

Throw(notEnoughLength)
end if
N ← length(f);
n← bN/mc;
a← reshape(f(0 : n ∗m− 1), n,m);

for i ∈ [0 : m− 1] do
dist[i]← distance(a(:, i), a(:, (i+m− 1)mod m))

end for
dist← dist/mean(dist); . Normalization
s← locateMax(dist);
s′ ← locateSecond(dist);
if dist(0) < θ1 && dist(s)/dist(s′) > θ2 then

n← b(N − s)/mc;
a← reshape(f(s : s+ n ∗m− 1), n,m);

end if
Output: a;

dist is established, where the ith element stores the dis-
tance between the ith and the (i − 1)th columns (∀i ∈
[1,m− 1]) of tile matrix, and dist[0] stores the distance
between the last and the first columns. The distance be-
tween two columns is calculated by counting the number
of element pairs of which the differences are greater than
a predefined threshold θ3. If dist[0]/mean(dist) < θ1 and
max(dist)/second(dist) > θ2 (θ1 and θ2 are two thresh-
olds), there exist s leading elements, and s is set to be
the index of the maximum element in dist. If the first
check using θ1 is satisfied, the first and last columns are
reasonably similar and should be located in the middle
of the original image. If the check with θ2 is satisfied,
a column pair in the middle of the matrix somewhere
has a distinctively low similarity and should be the real
image boundary. Subsequently, we remove the first s ele-
ments from the tile and reshape the tile to a matrix with
width m and height (N−s)/m. Figure 3k illustrates the
final image.

Notably, we do not attempt to infer the positions
of trailing blocks and remove them, because the trailing
blocks only introduce additional lines below the image

when displayed. Similarly, when s > m, our algorithm
removes s mod m elements and leaves additional lines
above the image. These additional lines would not pro-
hibit an adversary from recognizing the texts and ob-
jects.
Algorithm and parameters. The whole algorithm,
including the tasks of preprocessing, identifying the
numbers of rows and columns, and removing the lead-
ing block, is presented in Algorithm 1. We determined
that if the input tile f is not long enough, the main
components may be overwhelmed by other components.
Therefore, we define a parameter θ0 and set it to 1.5 in
our evaluation. This can be used to warn attackers when
the main component is not high enough. When the first
main component is less than the threshold, the tile in-
ferred is likely to be incorrect and is marked with the la-
bel “potential false-positive” before it is sent out to the
attacker. In this study, because preliminary tests pro-
vided empirical evidence regarding acceptable parame-
ter values, the other three thresholds namely, θ1, θ2 and
θ3 were set to 2, 1.2, and 5, respectively.

5 Evaluation
We evaluated our image recovery attack against four
popular desktop applications that use GPUs to accel-
erate image or text rendering. Remarkably, our attack
succeeded against various applications. We could also
recover sensitive and private information such as users’
profile images and email contents. We elaborate the set-
tings and results as follows.

5.1 Evaluation Environment and
Performance

We conducted the evaluation on AMD and Nvidia plat-
forms. The specifications of testing environments are de-
scribed in Table 1. The malicious application we devel-
oped applies OpenCL APIs to operate GPU memories,
and Matlab was to recover images. We demonstrated the
effectiveness of our attack against four popular applica-
tions on Ubuntu: Google Chrome, Adobe PDF Reader,
GIMP and Matlab. All applications other than MAT-
LAB were run on an AMD platform, because OpenCL is
natively supported. Matlab was evaluated on the Nvidia
platform because it requires CUDA support to operate
the GPU, which is only available on Nvidia platforms. A
third-party toolkit named opencl-tool-box that enables
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Virtualized Platform AMD Platform Nvidia Platform
GPU Sapphire R7 250X HD 6350 (CEDAR) GTX 750 (Maxwell GM107)
Video Memory 1GB 512MB 1GB
GPU Driver Version fglrx 15.200 fglrx 15.200 340.29
OS Version Ubuntu 14.04 LTS (Both guest and host) Ubuntu 14.04 LTS Ubuntu 14.04 LTS
CPU Intel Xeon E3-1225 v2 Intel Xeon E3-1225 v2 Intel Core 2 Duo E8400
Main Memory 24GB 24GB 4GB

Table 1. Platforms used for evaluation.

Matlab developers to use GPU resources on AMD plat-
forms; however, this tool only supports OpenCL, and it
is not incorporated into Matlab’s official release and has
not been updated since January 2013 [8]. Therefore, we
did not test Matlab on the AMD platform.

Our attack against the applications follows a con-
sistent routine: The malicious application we built ini-
tializes the GPU memory and then monitors the usage
of GPU memory. Subsequently, the victim application
is launched followed by simulating a series of user op-
erations, such as viewing a web page or viewing a PDF
document. Next, the victim application is closed and
the malicious application is reactivated because of the
sudden increase of available memory. The GPU mem-
ory is instantly dumped and analyzed by the malicious
application for image recovery. Finally, the malicious ap-
plication saves the restored images into either RGBA or
ARGB format; the malicious application decides on an
output format during the step of data blocks pruning.

The overhead of each attack is bounded to the spec-
ifications of the platform, but it is in general unnotice-
able. We ran our malicious application against each vic-
tim application five times and calculated the average
time consumed in different steps. It took 75 to 95 ms
for memory initialization and 110 to 130 ms for data
block extraction and pruning on the AMD platform.
The Nvidia platform incurred notably higher overhead.
On Nvidia, the malicious application required 350 ms
for memory initialization and 550 ms for data block ex-
traction and pruning. We speculate that the greatest
increases in overhead were due to the larger memory of
the Nvidia platform. The overhead for layout inference
is bounded to the size of the tile (the time complexity
of Algorithm 1 is O(n logn) where n is the tile size).
The largest tile we encountered was 15MB and could
be processed in 13ms. Moreover, the highest number
of tiles for a memory dump was no greater than 625
for all experiments. The overhead of this step in most
cases would not exceed a second. This attack is capable
of scanning even the largest GPU in several seconds,
which would hardly be expected to raise the suspicion
of a user. The highest CPU usage we observed during
the inference phase was 45%.

5.2 Single-Machine Accuracy Assessment

Scale Typical Successfully Recovered but
Ratio Size Recovered not in Samples
1 1024*768 29 18
0.5 512*384 29 8
0.25 256*192 29 7
0.125 128*96 29 13
0.0625 64*48 29 28

Table 2. Accuracy test for the self-developed application.

Before testing the exploit against real-world appli-
cations, we evaluated the accuracy of our approach in
reconstructing original images. Accordingly, we devel-
oped a toy application whose sole task is to load im-
ages into GPU memories. In particular, the application
reads JPG files from disk, decodes them into bitmap
format, stores them in GPU memory, and then exits
without zeroing out the used memory region. The mali-
cious application then attempts to reconstruct the orig-
inal images from the uninitialized memory. We did not
use other commercial or open-source applications be-
cause they could have split the images into pieces and
rendered them in parallel.

The first set of test images consisted of 29 sam-
ple images from the INRIA Holidays dataset, which are
widely used for evaluating computer vision algorithms
[7, 17]. We began by evaluating the accuracy of recover-
ing original sample images. Next, we zoomed out those
images to different sizes and assess the impact of im-
age size on our approach. Finally, we applied different
types of transformations to the sample images to under-
stand the limitations of our approach (i.e., which factors
would impede the success of the malicious image recon-
struction efforts).

Table 2 presents the test results for the first two
evaluation tasks. Specifically, all of the original images
were successfully recovered. When the size ratio of the
image was scaled down from 1 to 0.0625 (the size was
reduced to 64*48, the icon size), the result was not
changed. All images were successfully restored, signify-
ing that our approach is robust against images of vari-
ous sizes. Notably, we also occasionally recovered images
that had not been loaded by our application. We sus-
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pect these images were rendered by applications running
simultaneously with our application.

Noise σ 1 5 10 20 30 40
Recovered # 29 29 28 26 25 23

Table 3. Successfully recovered images under different noise set-
tings.

Next, we tested the capability of our approach in
dealing with less meaningful images. Adding noise is
a common means of obscuring the meaningful pieces
within images. We applied Gaussian noise to the sam-
ple images and examined whether they could still be
restored. We added Gaussian random number falling
within the range of N(0, σ) (σ is the noise standard de-
viation and the larger σ is, the more noise obstructs
the signal) to each pixel of the original images before
loading them into the GPU memory. Table 3 shows the
number of successfully recovered images under different
settings of σ.

As suggested by the results, our algorithm can re-
cover images even when high values of Gaussian noise
were applied as interference. When the noise standard
deviation σ was increased to 40, the interfered images
were barely recognizable to humans, but the malicious
application still had a successful recovery rate of 79.3%.
Figure 11a and Figure 11b show the the original im-
age and a corresponding Gaussian-noise-distorted image
with σ = 40. Both images could be correctly restored
from memory dumps.

We also assessed the impact of other image transfor-
mations, including brightness and contrast adjustments.
We increased and reduced the brightness and contrast of
the 29 images by 80% separately, and the resulting im-
ages were unrecognizable. Figure 11c and Figure 11d de-
pict the images after the brightness levels were adjusted.
Remarkably, all such images were restored by our ap-
proach with a 100% success rate. This result strongly
supports the robustness of our approach.

5.3 Virtualized Environment Experiments

Our accuracy study clearly shows that the GPU man-
agement system is vulnerable in a multiuser com-
puter in a controlled environment. One must consider
whether such a vulnerability also exists in a virtual-
ized environment where multiple VMs share GPU re-
sources in a time duplex manner. Therefore, we rented a
passthrough-capable GPU, namely a Sapphire R7 250X,

to set up a virtualized test bed. We did not run our
test on a commercial cloud, such as Amazon EC2, to
avoid breaching the privacy of other cloud users. The
GPU of the AMD platform was temporarily replaced
by the rented card to support GPU passthrough. We
used QEMU 2.4.50 as the hypervisor to the host virtual
machine.

Our evaluation routine was as follows: The at-
tacker’s VM was started first to initialize the GPU mem-
ory and then shut down. Next, the victim turned on his
VM, used our self-developed toy program to load the 29
images to the GPU memory and then shut down. Fi-
nally, the attacker started his VM to extract the GPU
memory and recover images. One restriction of the vir-
tualized environment is that the two VMs cannot run
simultaneously, because of the dedicated assignment of
GPU resources to the VM. However, its impact on a
real-world attack can be reduced if the adversary can
profile the running time of the victim’s VM ahead. An-
other restriction is that during the VM switching pro-
cess, the physical machine cannot be restarted, lest the
GPU and its memory be reset. To maximize the usage
of machines, physical machines are rarely shutdown or
restarted by cloud providers and the impact is therefore
limited.

Our evaluation results revealed that, among the 29
images, 25 were completely recovered while 2 were com-
pletely missing and the remaining 2 images were recov-
ered partially. The accuracy was lower than that in the
single-machine context. We believe this was because the
time gap between the termination of the victim app
and the residues extraction was increased. When the
attacker has a process running in parallel to the vic-
tim’s, she can monitor the GPU memory usage and ex-
tract the residues immediately after the victim applica-
tion terminates. By contrast, in a virtualized context,
the attacker can only extract the residues at least after
a VM switching process, which engenders considerable
noise that may pollute the memory. However, the ra-
tio of recovered images was still noteworthy, indicating
that the threat to the virtualized environment cannot
be neglected.

Next, we describe several concrete cases to demon-
strate the impact of our attack.

5.4 Case 1: Google Chrome

Currently, increasing numbers of web applications
are deployed to process users’ personal information.
Browser vendors design various mechanisms to protect



Proceedings on Privacy Enhancing Technologies ; 2017 (2):68–73

users’ data, such as private browsing. Such mechanisms
are aimed at defending against malicious web pages
or extensions planted by attackers but are powerless
against adversaries capable of stealing information from
GPU memories. The problem is exacerbated in up-to-
date browsers wherein GPU-acceleration is intensively
used. We present Google Chrome as an example to
demonstrate the seriousness of this problem. Gmail is
used to demonstrate what types of content can be re-
covered by our attack. In addition, we describe auto-
mated information extraction techniques against mem-
ory dumps from different web sites to assess the impact
of the attack.
Recovered contents from Gmail. In this attack, we
assumed the victim user logged into her Gmail account
and the email titles were displayed. We ran an analy-
sis routine against the GPU residues and recovered 113
images from the GPU memory dump, among which the
largest had 512K pixels, the smallest had 926 pixels, and
the average size of the images was 23.74 KB (PNG for-
mat). The images were manually classified based upon
their visual positions in the page. The details of the
leaked images are described as follows:

Fig. 5. Browser tab showing Gmail.

• Tab: A browser tab for Google Chrome displays the
favicon and the title specified by the web page. It can
show which website is being visited by the user. More-
over, a Gmail page reveals much more information than
just the name of a website. As shown in Figure 5, the
email address and number of unread emails are also dis-
played in the tab. Leaking email address is of course un-
desirable for the victim because this can be exploited to
send targeted phishing emails or for harvesting user’s so-
cial profiles by querying popular social networking sites.
In addition, this problem is not unique to Gmail, and
equal or greater amounts of information could be dis-
closed from the tabs of other sites. For instance, Ama-
zon displays the name of the product the user is viewing
and YouTube displays the name of the video the user is
watching.

Although our initial exploration indicates that crit-
ical information could be leaked, the extent of the in-
ferred result should be interpreted with reservations.
Google Chrome limits the number of characters dis-
played on a tab. The tab is squeezed when many tabs are
opened (it begins to resize when more than 7 tabs are

opened on a 14-inch laptop screen with a set resolution
of 1600x1200). This design results in partial revelation
of the title of a web site: for example, the Gmail tab
displays only the first 14 characters of the user name
(under the same screen setting); therefore, a long user
name is not fully recovered. However, numerous users
choose short user names [1] and knowing 14 characters
is still a major breakthrough if the adversary plans a
brute-force crack.

Fig. 6. Address bar of Gmail.

• Address bar: An image containing the address bar was
also recovered by our program and is shown in Figure 6.
Notably, the image does not show the whole region of
the address bar or even the full URL. Chrome attempts
to render the address with the GPU when the “Auto-
Complete” is turned on and the user is typing. The re-
covered image reflects the characters that have been in-
put. Although not fully displayed, this partial image can
still indicate that the user is using Gmail. When the user
is not typing in the address bar, a different type of im-
age is generated, and an example is shown in Figure 1a.
By collecting the leaked information from such images
(and tab images), an adversary can partially reconstruct
a targeted user’s browsing history, which clearly violates
user privacy. Previous research by Lee et al. [20] pro-
filed 1000 website homepages and attempted to identify
which sites had been visited. Our attack advances the
field because potentially any site visited can be inferred
without prior profiling and it is also resilient to content
changes on the websites.

(a) (b)

(c) (d)

Fig. 7. Part of Gmail inbox.
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www.gmail.com www.youtube.com www.yahoo.com www.facebook.com www.twitter.com
Characters 2388 9184 690 6183 2110
Words 416 453 215 826 481
Faces 0 24 8 8 16

Table 4. Leakage from different websites

• Page body: Most of the images recovered can be at-
tributed to the page body. Figure 7 shows one segment
of Gmail inbox contents; the senders and the initial
characters of the emails are displayed, which are ob-
viously sensitive information belonging to the user. Be-
cause current web applications are designed to inten-
sively deal with personal information, the threat could
be more substantial if the malicious program is able to
run on the victim’s machine for a long time and restore
images from different web pages. Among these recov-
ered images, we also found seemingly meaningless tex-
tures such as the border of an object box. We suspect
that they were peeled from the original objects because
of the browser’s splitting algorithm. They can be com-
bined with their counterparts through a puzzle-solving
algorithm.
Automated information extraction. All the images
were manually examined for this Gmail case but the
practice of manual examination is not scalable, partic-
ularly when numerous users are monitored or the tabs
of Chrome are frequently closed and opened. We in-
tended to reduce the attacker’s workload by sending
only sensitive images for analysis. In particular, auto-
matically selecting sensitive images is quite challeng-
ing; it requires extensive knowledge of the user’s back-
ground and the application’s context. A more practical
goal could be identifying the images that include texts
and faces, which are already meaningful in common sce-
narios; that tasks can be automated.

We thus used Adobe PDF professional OCR mod-
ule to find texts (the images must be converted into
PDF first) and developed a Matlab program using a
widely used computer vision system toolbox to recog-
nize faces. Only the images containing either texts or
faces are passed to the next step (i.e., analyzed by the
attacker). We evaluated this tool on Gmail images and
reduced the number of images of interest to 31 (out of
113 images in total) and all the images associated with
tab, address bar, and inbox were identified. The over-
head incurred in this process was also small, only cost-
ing several seconds in OCR and face recognition. We
assumed that the modules would run on the attacker’s
server, but they could run on the victim’s machines as
well. For the latter setting, only the detected images

are transmitted, which significantly reduces the network
overhead and makes the attack even stealthier.

(a) (b)

Fig. 8. List of attended universities and schools identified from a
user’s Facebook page.

Despite our attack against Gmail revealing that
sensitive information could be successfully revealed,
whether the issue is universal has yet to be clarified.
Hence, we attempted to answer this question by evalu-
ating our algorithm on four other highly popular web-
sites: YouTube, Yahoo, Facebook and Twitter. Because
no metric is available to quantify the sensitive data
leaked, we measured the number of words and faces rec-
ognized from the images. As shown in Table 4, approx-
imately hundreds of words and tens of faces could be
identified for each web site. Although not all texts and
faces were sensitive (e.g., we found that most of them
were related to advertisements), the chances of leakage
were still high. In particular, the social networking sites
such as Facebook and Twitter tend to leak dangerously
large amounts of useful information. Tweets and Face-
book posts were discovered among the recovered images.
Figure 8 shows a tile exhibiting a Facebook user’s ed-
ucational experience (sensitive personal information is
mosaicked). Furthermore, we attempted to evaluate our
attack against e-banking. The results revealed the ac-
count balance, credit card account number, and
transaction details.
Discussion. Finally, we explored why segments were
extracted rather than the whole web page. According to
the design document [2], Chrome breaks each page into
small tiles and allocates GPU resources for some of them
based on their predefined priorities [9]. However, not all
image segments were preserved in GPU memories when
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dumped by our attack program. In the real world, there
are GPU memory restrictions that limit the number of
tiles residing in the GPU and the memory manager is
allowed to evict tiles from GPU memories. Therefore,
not all segments can be recovered.

In addition to tests on Chrome, we tested our attack
on Firefox, which is also under threat. Specifically, it
was confirmed that Firefox also leaves residues in GPU
memories [20]. We tested our attack on Gmail viewed
through Firefox. Firefox was observed to not produce
residue images related to the address bar and tab cap-
tion, but more severely, it was observed to yield
a relatively complete block showing the page
body. When Firefox viewed Gmail, it left a large image
containing the sender, title and part of the email con-
tents. Such leaked information is definitely also valuable
to attackers.

5.5 Case 2: Adobe Reader

Adobe Reader uses GPUs to accelerate the rendering
process of PDF documents. We considered the texts
and graphs of a PDF as sensitive and tested whether
they could be extracted by exploiting the residues of
the application. We used a PDF of a research paper as
an example, and the content recovered is described as
follows.
Recovered content from the PDF. Results showed
that both graphs and texts were rendered in the GPU.
Similar to the Chrome case, segments of figures and
texts were recovered. Notably, the segments did not only
belong to the page shown in the foreground, but some
of them also did belong to the pages rendered in the
background.
• Fragments of figures:We identified that some of the re-
covered images were actually fragments of a given figure.
We did not attempt to combine the fragments to recover
the original figure; nevertheless certain algorithms may
be able to achieve this goal through various strategies,
such as by taking advantage of the similarities among
the edges of neighboring fragments.

(a) A normal line of text

(b) A line of text with noise

Fig. 9. Two typical images recovered from residues of Adobe
Reader.

• Lines of text: We discovered that Adobe Reader sep-
arates text regions into long stripes. Figure 9a shows a
normal line of text in its recovered state (some letters
are incomplete) and Figure 9b shows one line of text
with noise above and below. Although not fully recov-
ered, the texts from the images can be easily read by an
attacker. When excessive images are extracted from the
GPU, the adversary can use OCR and natural language
processing techniques to reduce the number of images
requiring manual analysis.

5.6 Case 3: GIMP

This section presents the evaluation of a popular image
processing software on Unix platforms, GIMP. Under its
default configuration, GIMP does not rely on the GPU
to render images. However, when the image is large, the
user is recommended to turn on the GPU acceleration,
which can be achieved by linking to a graphics library
named GEGL when GIMP is started. A user can simply
pass "GEGL_USE_OPENCL=yes" when launching GIMP.
Our attack was tested under this setting. Specifically,
we opened an image file, applied some different image
filters (e.g., edge-laplace) for each run, and then closed
the image file.
Recovered content from GIMP figures. Our eval-
uations indicated that the type of filter determines the
outcome of the attack. For some filters, no information
could be revealed from the image either before or after
having applied the filters. By contrast, for other filters,
the recovered images were actually close to the whole
original images that were passed to GIMP, without any
fragmentation.

(a) Before (b) After

Fig. 10. Images recovered from leakage with stripes before and
after compression.

We also restored images with vertical stripes ob-
scuring the original images (Figure 10a). This case was
probably caused by the implementation of GEGL, which
does not adopt a standard image format (RGBA and
ARGB). Because such stripes could affect the step of
information inference, we removed them with a “com-
pressing” process: The width of the recovered image was
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shrunk to 25%, and a pixel in the new image was com-
bined from 4 consecutive pixels arranged horizontally.
The image derived from Figure 10a is shown in Fig-
ure 10b.

This case suggests that even if a developer does not
use the standard RGBA or ARGB format, the sensi-
tive information in the recovered images can still be ex-
tracted by tweaking the attack. The pseudo-periodicity
still holds despite the loss of the color map information,
which results in output images with correct alignment
but inaccurate color. However, most the images can be
recognized with techniques such as text recognition.

5.7 Case 4: Matlab

Matlab is widely used by academia and industry for sci-
entific computing. It also provides various libraries to
support image processing, and developers can capitalize
on the power of GPUs with a parallel computing tool-
box. We assumed that the developer loaded a picture
from hard disk drive and then converted it into a GPU-
compatible object named “gpuArray”. This image object
was passed to the GPU for processing, and Matlab was
closed when processing finished. Finally, the residues in
the GPU memory were dumped and analyzed.
Recovered content. The loaded picture had been split
by Matlab into fragments; therefore, the whole picture
could not be directly recovered. However, the size of
the fragments was still large enough to enable partial or
full restoration of the original image through rearrange-
ment. After the fragments had been combined together,
we found that the generated picture was flipped along
the diagonal of the original picture. This is because Mat-
lab stores a picture as a matrix in a column-by-column
manner, rather than a normal row-by-row fashion, thus
automatically transposing the image in memory. Conse-
quently our proposed algorithm can still be applied by
simply transposing the image matrix back.
Discussion. Matlab is a frequently used computing
tool, which is commonly used in many different fields.
Matlab along with its Parallel Computing Toolbox is of-
ten run by developers on a high-performance computer
with a powerful GPU. The high-performance computer
is often shared by different users in many cases, because
the computing resources are expensive and are wasted
when the computer is idle. Hence, an attacker has a
higher chance of obtaining the victim users’ images from
these types of computers.

6 Discussion

Limitations. We chose four applications of interest for
evaluation and demonstrated the efficacy of our attack.
We did not evaluate more applications because of the
considerable amounts of manual work involved in run-
ning victim applications under different settings and ex-
amining the results. However, we believe that our results
suffice to demonstrate the unneglectable security issue
underlying GPU memory management frameworks. The
information extraction process is not fully automated
yet. So far, we only applied text and face recognition
for images rendered by Chrome. We are investigating
more feasible mechanisms for this task. Although our
approach is fairly robust, if images are loaded into mem-
ory without extra processing by the victim applications,
then the parallel rendering techniques used by applica-
tions such as Chrome raise the difficulty of image recov-
ery. Stitching together image segments is feasible, and
we are in the process of exploring feasible algorithms
(e.g., a puzzle-solving algorithm). However, the leaked
information from the segments is already alarming.
Mitigation. Security-conscious users might propose a
mitigation approach that automatically clears the used
pages in global and private memory after the program
exits. This solution would mitigate the threats in theory,
but it would face grave obstacles to adoption. The per-
formance degradation of this solution is huge, as iden-
tified in previous studies [10, 14, 20]. In the follow-
ing paragraphs, we present two possible solutions which
prevent GPU memory leaks without much impact on
performance.
Manual clearing. Because complete and dynamic
residue cleaning requires considerable resources and en-
genders performance degradation, selective clearing is
a more practical solution. Given that the GPU struc-
ture cannot be completely redesigned in a short time,
developers should manually clear the memory before re-
leasing it. To maximize performance, they can devote
resources to clear memory regions containing user’s sen-
sitive data only. However, such a requirement is difficult
to be fulfilled by every developer, especially when the
applications maintained have colossal code bases (e.g.,
Chrome). Similar problems also exist in CPU struc-
tures and the issues regarding memory leaks from CPUs
have been sufficiently studied, with many approaches
being proposed. A developer could use a static ana-
lyzer to pinpoint a location in code where memory is
not freed [13, 16] or identify the leaks in the runtime
by monitoring the stacks or heaps [22, 28]. We hope
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the ideas in those studies could be leveraged to build
detectors against GPU leaks.
Image layout obfuscation. The above preceding does
not mitigate the problem completely. Even the best code
analyzer or developer cannot capture every code loca-
tion processing sensitive data. Alternatively, we suggest
that developers obfuscate the image layout in the GPU
memory. When an application delivers an image to a
GPU, it could intentionally store the pixels in some ir-
regular format instead of a sequential array. The obfus-
cation can be implemented in the complier or in the sys-
tem library managing GPU memories. The key assump-
tion of our scheme is that there should be high geomet-
rical correlation between consecutive columns and rows.
Apparently, the correlation is interrupted by layout ob-
fuscation. This scheme would introduce some overhead
inevitably, but compared with the scheme that involves
blindly filling zeros, the overhead should be smaller since
only images are subjected to this additional step. The
technique may weaken the performance of memory com-
pression, because the obfuscation breaks the local re-
dundancy of the image, which consequently deteriorates
the compression ratio.
Defense for virtual machine. To defend against at-
tackers on a virtualized platform, it is sufficient for the
hypervisor to clear the whole GPU memory space ev-
ery time the VM switches. The overhead in this case is
negligible, because 1) memory only needs to be cleaned
when a VM switching occurs, and 2) VM switching pro-
cess already consumes considerable time and the extra
overhead is thus not prominent. Therefore, we recom-
mend that all cloud service providers with GPU support
in their infrastructure should clean their GPU memories
during VM switching.

7 Related Works

GPU vulnerabilities. With the advancement of tech-
niques for GPU computing, different security issues also
emerge. Previous research has shown that the GPU
security measures are far from perfect [18, 24]. Lom-
bardi et al. conducted a comprehensive analysis regard-
ing GPU usage in cloud environments and revealed sev-
eral leakage problems. Pietro et al. discovered leakage
in a CUDA framework, and their evaluation indicated
that global memory, shared memory, and registers are
all vulnerable [14]. Moreover, Clémentine et al. pro-
posed an attack for acquiring leaked information from
other virtual machines [21]. Ladakis et al. [19] imple-

mented a stealthy keylogger using a GPU. The closest
work to our research was that Lee et al. [20] were able to
infer which website had been visited by a victim based
on the color distributions of GPU memories.
Memory forensics. Memory forensics have been stud-
ied for a long time as a strategy for helping the gov-
ernment and police forces to collect electronic evidences
from devices confiscated from criminals. In recent years,
advances have been made in recovering images from
main memory for forensic needs. Saltaformaggio et al.
proposed a method for reconstructing Android APP
GUI displays by reconstructing the GUI tree topology
and reconstructing the drawing operations [25]. They
also introduced a method for recovering photographic
evidence produced by a smartphone camera by using
the memory possessed by an intermediary service [26].
Recently, a method for reusing application’s logic to re-
cover images from computer memory [27] was proposed.
Image File Carving. Apart from leveraging program
logic, file carving can be used to extract images from
broken file systems [11, 12, 23]. The first step of file
carving is locating the file signatures and metadata, and
such information is not available in the GPU case. Fur-
thermore, Guo et al. proposed a method for recovering
jpeg files using their thumbnails [15] ,but our attack ob-
tains images for which no thumbnails exist.

Those works requiring foreknowledge of the image
for reconstruction (e.g., program logic, metadata, or
thumbnails) are unsuitable for the GPU case where no
such information can be found. By contrast, our algo-
rithm can automatically recover images and does not
rely on any foreknowledge of the target images.

8 Conclusion
In this paper, we prove that typical GPU memory man-
agement strategies are vulnerable, by proposing a novel
attack for recovering images from the residues of other
applications or other VMs in GPU memories. Our re-
covery technique was motivated by the observation that
strong correlations exist between the rows and columns
of an image. By evaluating highly popular applications,
we demonstrate the severity of the security problems of
GPU memory management. Sensitive information such
as credit card numbers and email titles can be read-
ily extracted, if it has been previously calculated by a
GPU. The severity of this security flaw has been un-
derestimated by previous researchers, and the security
threats must be mitigated.
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Appendix – Accuracy Assessment
Image Samples

(a) Original image. (b) Image with noise.

(c) Image with in-
creased brightness.

(d) Image with de-
creased brightness.

Fig. 11. Original image and the transformed versions.
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