
Proceedings on Privacy Enhancing Technologies ; 2017 (2):95–112

Vasilios Mavroudis*,
Shuang Hao, Yanick Fratantonio, Federico Maggi, Christopher Kruegel, and Giovanni Vigna

On the Privacy and Security of the
Ultrasound Ecosystem
Abstract: Nowadays users often possess a variety of elec-
tronic devices for communication and entertainment. In
particular, smartphones are playing an increasingly central
role in users’ lives: Users carry them everywhere they go
and often use them to control other devices. This trend pro-
vides incentives for the industry to tackle new challenges,
such as cross-device authentication, and to develop new
monetization schemes. A new technology based on ultra-
sounds has recently emerged to meet these demands. Ul-
trasound technology has a number of desirable features: it
is easy to deploy, flexible, and inaudible by humans. This
technology is already utilized in a number of different real-
world applications, such as device pairing, proximity detec-
tion, and cross-device tracking.
This paper examines the different facets of ultrasound-
based technology. Initially, we discuss how it is already used
in the real world, and subsequently examine this emerging
technology from the privacy and security perspectives. In
particular, we first observe that the lack of OS features
results in violations of the principle of least privilege: an
app that wants to use this technology currently needs to
require full access to the device microphone. We then anal-
yse real-world Android apps and find that tracking tech-
niques based on ultrasounds suffer from a number of vul-
nerabilities and are susceptible to various attacks. For ex-
ample, we show that ultrasound cross-device tracking de-
ployments can be abused to perform stealthy deanonymiza-
tion attacks (e.g., to unmask users who browse the Internet
through anonymity networks such as Tor), to inject fake
or spoofed audio beacons, and to leak a user’s private in-
formation.
Based on our findings, we introduce several defense mech-
anisms. We first propose and implement immediately de-
ployable defenses that empower practitioners, researchers,
and everyday users to protect their privacy. In particular,
we introduce a browser extension and an Android permis-
sion that enable the user to selectively suppress frequencies
falling within the ultrasonic spectrum. We then argue for
the standardization of ultrasound beacons, and we envision
a flexible OS-level API that addresses both the effortless de-
ployment of ultrasound-enabled applications, and the pre-
vention of existing privacy and security problems.

Keywords: Ultrasounds, Deanonymization,
Privacy Violation, Cross-device Linking.

DOI 10.1515/popets-2017-0018
Received 2016-08-31; revised 2016-11-30; accepted 2016-12-01.

1 Introduction
Modern users have been increasingly relying on multi-
ple devices and frequently switch between them in their
daily lives: Browsing the Internet from computers, playing
mobile games on tablets, or watching shows on televi-
sions. A recent survey has shown that a single user carries
2.9 electronic devices on average [44]. Among the others,
smartphones play a prominent role since users carry them
everywhere they go, and they are often used to control
other devices. The trend of engaging with multiple digital
platforms brought to the demand for new technologies to
efficiently link multiple devices of a user.

To meet this demand, a novel set of technologies based
on ultrasounds have recently emerged. These technologies
leverage the ultrasonic frequency range to transmit infor-
mation in the form of inaudible sound beacons to identify
and link two (or more) devices belonging to the same
users. The ultrasounds are inaudible to humans, and they
can be emitted and captured by regular speakers and mi-
crophones, needing no extra requirement for deployment.
The benefits of ultrasounds make the technologies gain in-
creasing popularity. For example, the Google Cast app [3]
uses ultrasounds to pair the user’s mobile device to her
Google Chromecast, without requiring the devices to have

*Corresponding Author: Vasilios Mavroudis: University
College London, E-mail: v.mavroudis@cs.ucl.ac.uk
Shuang Hao: UC Santa Barbara, E-mail: shuanghao@cs.ucsb.edu
Yanick Fratantonio: UC Santa Barbara, E-mail: yan-
ick@cs.ucsb.edu
Federico Maggi: Politecnico di Milano, E-mail: fed-
erico.maggi@polimi.it
Christopher Kruegel: UC Santa Barbara, E-mail:
chris@cs.ucsb.edu
Giovanni Vigna: UC Santa Barbara, E-mail: vigna@cs.ucsb.edu

On the Privacy and Security of the Ultrasound Ecosystem 96

POST /V2/register HTTP/1.1

HOST: app.silverpush.co

Content-Length: 605

isp=comcast&lon=-77.0544012&lat=38.9046093&lan=en&osv=5.1&appv=1.0.3.12&mk=motorola&time=1453335684308

&mac=34%3Abb%3A26%3Aff%3A90%3A7b&appn=History+GK+in+Hindi&ct=Wifi%2FWifiMax&os=android&phn=2024569876&res=888px+X+540px&imei=

359300051224119&ua=Mozilla%2F5.0+%28Linux%3B+Android+5.1%3B+XT1023+Build%2FLPC23.13-34.8%3B+wv%29+AppleWebKit%2F537.36+%28KH

TML%2C+like+Gecko%29+Version%2F4.0+Chrome%2F46.0.2490.76+Mobile+Safari%2F537.36%0A%0ADalvik%2F2.1.0+%28Linux%3B+U%3B+Android+

5.1%3B+XT1023+Build%2FLPC23.13-34.8%29&mo=XT1023&co=us&pkg=com.gktalk.history&aid=926b0b3f5a1d710d&acc=_ultrasoundxdt%40gmail.com

Send over HTTP (not HTTPS)

Location

MAC address Google account ID

Phone number

Fig. 1. An example of an insecure, non-standardized implementation of the ultrasound-enabled applications. HTTP POST request sent by
an ultrasound-enabled app that we found on the Google Play Store, violating the user’s privacy and security practices: (1) The framework
surreptitiously collects the user’s private information, including the Google account ID, phone number, geolocation, the device MAC address,
and other information; (2) The data is sent insecurely over HTTP (instead of HTTPS).

access to the same wireless network. The ultrasound-based
techniques are also widely used to track the in-store posi-
tion and behavior of the customers to serve relevant ads;
this approach is used by a number of companies, such
as Lisnr [30], ShopKick [39], and CopSonic [18]. Another
important application is cross-device tracking, used in the
context of advertisement: in this case, ultrasound beacons
are embedded into websites or TV ads and they get picked
up by advertisement SDKs embedded in smartphone apps.
This technique allows the ad company to identify the differ-
ent devices of an audience and subsequently push targeted
ads. Such advertising techniques are at the core of the busi-
ness model of several recently established companies, such
as SilverPush [42], Signal360 [40], and Audible Magic [14].
Even though these companies are relatively recent, they al-
ready received several million dollars of funding, and some
of these technologies have already been adopted by many
Android apps (available at the Play Store, and installed
by millions of users [15] [20]), for example to increase user
engagement in large sport events [10].

This paper explores the security and privacy impli-
cations of these technologies. First, we point out that all
these technologies clearly violate the principle of least priv-
ilege. In fact, while these technologies would only require
access to the ultrasound spectrum, they are forced to ask
for full microphone access. Moreover, many design choices
can lead to devastating violations of the users’ privacy.
To make things worse, ad companies are not only using
these emerging technologies, but they are combining them
with existing tracking techniques. Just to give an example,
Figure 1 shows an HTTP POST request that we captured
from an ultrasound-enabled app currently hosted on the
Play Store, History GK [6]. Figure 1 shows that the frame-
work surreptitiously collects a substantial amount of the

user’s private information, including the Google account
ID, phone number, geolocation, and the device MAC ad-
dress, and, in addition, it transfers the data insecurely over
HTTP (instead of using HTTPS).

In addition to the privacy issues raised in a recent work-
shop hosted by the Federal Trade Commission (FTC) [23],
our work also uncovers a variety of security shortcomings
in the ultrasound-based technology, and identifies the pos-
sibility to carry on stealthy attacks. In particular, we show
that third parties can launch attacks based on inaudible
beacons: (1) deanonymization attacks, to unmask users
of anonymity networks (such as Tor or virtual private
networks) and provide a new way to connive at surveil-
lance; (2) beacon injection attacks, to pollute the results
of advertising algorithms; and (3) information leakage at-
tacks, to infer other users’ on-line activities and interests,
sabotaging the users’ privacy.

These attacks exploit inherent vulnerabilities of cur-
rent deployments of the ultrasound-based technology, and
can thus be leveraged to launch stealthy attacks against un-
suspecting users, even if they did not install any malicious
app. Consequently, these attacks can affect a much larger
number of users when compared to traditional malware
(e.g., malicious eavesdropping apps), which has to both
evade the detection of automatic analysis systems and lure
the user into installing the malicious app.

To mitigate the risks posed to users, in this paper we
further propose and develop several security enhancements.
First, we propose a browser extension to allow a user to
selectively suppress all ultrasound frequencies. We also de-
veloped an analogous solution for the Android framework:
we developed a new permission that allows for fine-grained
control in providing app access to the ultrasound spec-

On the Privacy and Security of the Ultrasound Ecosystem 97

trum. The user is thus empowered with an opt-out option
through a system-level mechanism.

Finally, we argue for the standardization of the ultra-
sound beacons format, and we envision a new OS-level API
(similar with the Bluetooth low energy beacons [4] [5] [2]
in Android) that implements in a single, trusted place
the functionality to detect and decode beacons. This API
would be implemented by a privileged process (like a sys-
tem process on Android). The existence of such API would
provide several important benefits: an app that wants to
implement ultrasound-based mechanisms only needs to
require access to this API, and it does not require any-
more access to the device’s microphone. Thus, the user’s
sensitive data is not exposed to third-party apps in the
first place. Another advantage of such API is that it would
act as a central place to better and more easily detect and
monitor abuses based on ultrasounds.

In summary, our paper makes the following contributions:
– We perform the first detailed study to examine the se-

curity and privacy implications of emerging ultrasound-
based technologies.

– We point our attention to a clear violation of the
principle of least privilege and we introduce and
demonstrate a series of attacks that can be performed
against ultrasound-enabled systems. These attacks
include user deanonymization, beacon injection, and
information leakage.

– We design a set of countermeasures, such as a new
browser extension and a new Android permission
that creates a system-enforced opt-out mechanism for
privacy-concerned users.

– We argue and propose that the format of ultrasound
beacons should be standardized, which would allow
the implementation of an OS-level API to make these
emerging technologies secure by design.

We will open-source the attack prototypes and the coun-
termeasures that we have proposed and implemented.

2 Key Concepts
This section discusses some key concepts and techniques
commonly used in the advertising industry to track users
and monetize the collected information.

User Profiling. Behavioural targeting is a common prac-
tice in the advertisement industry, where the user’s past
activity is leveraged to build a personalized profile. This
profile, along with other demographic data (e.g., gender,

location), is then used by ad networks to serve targeted
advertisements. For instance, they are often used in real-
time bidding (RTB), which enables ad buyers to compete
on a per-impression basis, and adjust their bids depending
on the specific characteristics of an individual user (e.g.,
jewellery ads could have different prices depending on the
user’s gender) [34]. RTB is becoming the industry standard
when buying and selling ads, and a recent study shows
that more than 80 percent of North-American advertisers
have switched to RTB when buying ad impressions since
2011 [51]. However, this fine-grained data collection comes
also with severe security implications, and even though
the data are not directly provided to the ad buyers, it has
been shown that information leakage [34][17][16] is very
hard to prevent.

Device Pairing. Device pairing enables the establish-
ment of a link between two devices. Such links can be used
for data transmission (e.g., bluetooth pairings), or simply
to prove device proximity (e.g., Google Chromecast). A
pairing can be performed in a number of ways, including
Bluetooth (e.g., headset pairing), ultrasounds (e.g., Google
Chromecast), and simple PIN re-entry.

uBeacons. Ultrasound beacons (uBeacons, in short) are
high-frequency audio tags that can be emitted and cap-
tured by most commercial speakers and microphones, and
are not audible by humans. These beacons encode a small
sequence of characters and symbols, which in most cases
serve as an identifier used to fetch content from an exter-
nal server or to pair two devices together. Currently, there
is no standard or specification, and hence each company
designs its own beacon encoding formats and protocols.
As a result, there are multiple incompatible frameworks,
providing varying levels of security.

From a technical perspective, an ultrasound beacon
has a duration of only few seconds, usually around 5. How-
ever, the exact method of encoding the information varies
greatly depending on the requirements of the application
(e.g., range requirements, information volume). In the
great majority of cases, the spectrum between 18,000Hz
and 20,000Hz is divided in smaller chunks, and each one
corresponds to a symbol or character. For instance, for an
application using a chunk size of 75Hz, an amplitude of
18,000Hz could correspond to ‘A’, while 18,075 to ‘B’. The
spectrum plot of such a beacon can be seen in Figure 2.
The beacon emitter then plays each high-frequency tone
for a predetermined amount of time, with one second being
the most common setting. Moreover, beacons are usually
built following a number of error-prevention rules. For ex-
ample, two rules often seen are: (1) each beacon must start
with a specific pre-defined character, and (2) subsequent

On the Privacy and Security of the Ultrasound Ecosystem 98

A
H

L

s U

18000Hz 20000Hz19000Hz

-69dB

-60dB

-48dB

-36dB

-27dB

Fig. 2. Spectrum plot of beacon encoding five characters.

characters must not be the same. For the decoding of a
beacon, frameworks usually apply a fast Fourier transform
and Goertzel’s algorithm to each incoming signal. This al-
lows them to distinguish the individual frequencies and to
then retrieve the original characters/symbols. Once a valid
beacon is found, the identifier is extracted and submitted
to the company’s backend.

Ultrasound Tracking Framework. Ultrasound tracking
frameworks are software components released by tracking
service providers. These frameworks enable their clients
(e.g., an Android app) to perform user/device tracking
based on (ultrasound) beacons. Such a framework is usu-
ally provided as an Android library to be incorporated
in the app owned by the client. This library provides
proprietary methods for supporting all uBeacon-related
operations such as discovery, parsing, and validation. The
exact realization of uBeacons and the operations differ be-
tween the frameworks, and the only common requirement
is the need for access to the device’s microphone. The next
section discusses several examples of these frameworks and
their particular use cases.

3 Ecosystem Overview
In this section, we present the ultrasound techniques imple-
mented in actual products, and we discuss their technical
details and capabilities. We organize the discussion by
grouping these techniques in two sections, depending on
what their objective is: proximity tracking techniques, and
cross-device tracking techniques.

3.1 Proximity Tracking

Proximity tracking is an emerging approach of determining
the location of a user, and has numerous applications in
device pairing and proximity marketing. More specifically,
for implementing device pairing, a device A may use a
uBeacon to broadcast a random PIN to nearby devices,
and trigger a pairing once a device B submits the correct
PIN back (usually through the Internet). On the other
hand, proximity marketing is used for serving location-
specific content and tracking in-store user behaviour. It
is used in various places (e.g., casinos, museums, retail,
airports) and is based on small distance transmission tech-
nologies such as Wifi, bluetooth, or ultrasounds. While
the exact implementation varies, the main idea is that the
user installs the company’s application on her mobile de-
vice and receives, for example, notifications and discounts
for products. Proximity marketing techniques relying on
ultrasounds recently gained a tremendous traction in the
last few years, since an increasing number of companies is
developing supporting frameworks [3, 14, 18, 30, 40, 47].

Google Cast. Google Cast [3] is a popular app developed
by Google, and it reportedly utilizes ultrasound beacons to
facilitate device pairing between mobile devices and Google
Chromecast [26]. Chromecast is a digital media player that,
among others, enables mobile devices to stream content on
a television or on an audio system. In this case, ultrasound
beacons are used to prove physical proximity to Google
Chromecast, as they do not penetrate through walls. The
pairing process takes place in four steps: Initially, Google
Chromecast broadcasts a Wifi beacon that makes itself
visible to all nearby mobile devices running the Google
Cast app (note that the devices do not need to be con-
nected to the same Wifi to receive such Wifi beacons).
Subsequently, the user sends a pairing request through the
app, and Chromecast responds with a uBeacon carrying
a 4-digit code. Then the Google Cast app gains access to
the device’s microphone, captures the uBeacon, and au-
thenticates to Chromecast by using the 4-digit code as the
password [26]. It should be noted that the pairing process

On the Privacy and Security of the Ultrasound Ecosystem 99

is always initiated by the user, and an alternative manual
pairing method is also supported.

Lisnr framework. The Lisnr framework [30] is another
ultrasound framework aimed towards proximity marketing
and location-specific content. This framework has been
incorporated in various applications already. For instance,
an American football team uses the framework in its of-
ficial app (with hundreds of thousands downloads [7]) to
deliver content to fans in its home stadium [41]. Another
such app is “Made in America Festival” Android App [1]
(also available for iPhone), whose core objective is to act as
a real-time information stream for the audience of a music
festival. In both cases, ultrasounds were chosen since they
make use of the existing audio infrastructure and require
no additional equipment.

From a technical perspective, the Lisnr framework
implements all the necessary methods to capture uBea-
cons, and fetches location-specific content from the service
provider. Upon execution, the apps run on the background
and periodically access the device’s microphone to listen
for uBeacons. This is because the user is not expected to
keep the app active for the whole duration of the events
(e.g., games, concerts). Once a uBeacon is captured, the
framework parses it, and extracts its content. If the con-
tent is a message, it will get displayed on the device screen,
while if it is an identifier, then an online server is reached
to fetch the resource the identifier corresponds to. This is
due to the nature of uBeacons, which is prone to trans-
mission errors and cannot reliably transfer large volumes
of data. For users that decide that they do not want to
receive constant notifications, some applications provide
an option to deactivate the default listening behaviour.
However, this is an application-specific feature, and is not
mandated by the Lisnr framework.

Shopkick. Another real-world deployment of proximity
marketing using ultrasounds is the shopping application
Shopkick [39] (available on Google Play Store). Shopkick
aims to provide incentives to its users to visit and purchase
products from specific stores and brands. To realise this,
the app is listening for ultrasound beacons (i.e., walk-in
tones) emitted by speakers installed in businesses and
stores cooperating with Shopkick [38]. When a user visits
such a store, the app gets notified and reward points are
credited to the user’s account. These points can be later
spent by the user to receive discounts or products at a
reduced price.

To realise this functionality, Shopkick has developed
its own framework and implementation of uBeacons. In
particular, Shopkick uBeacons contain a unique identifier
of the store and the exact in-store location. When the app

captures such a beacon, it extracts the encapsulated iden-
tifiers, and submits them to the Shopkick servers, along
with the user information. Then, the company’s backend
verifies the validity of the “walk-in” (see Section 5.2), and
credits the user with the points. In contrast to the majority
of the other implementations, the user must manually trig-
ger the app to gain access to the microphone and listen for
uBeacons. This is possible in this particular case because
the user is strongly incentivized to use the app, but would
result in very low usage rates in scenarios where the user
is not directly rewarded.

3.2 Cross-device Tracking

Various cross-device tracking (XDT) techniques are cur-
rently employed by many major advertisement networks
to track users across different devices. These techniques
offer various degrees of precision, depending on the appli-
cation and the available resources. For instance, when few
resources are available, probabilistic XDT techniques are
usually applied, which, in most cases, involve fingerprinting
and have mediocre accuracy. On the other hand, determin-
istic XDT techniques achieve much higher accuracy, but
are often cumbersome. For example, the most common
deterministic technique requires the user to sign in the
account of the advertiser’s service from all the devices that
the user owns.

Despite falling into the deterministic category, ultra-
sound cross-device tracking (uXDT) does not suffer from
the applicability problems that other deterministic tech-
niques come with. uXDT is the most sophisticated use
of uBeacons found in products currently available on the
market. Figure 3 illustrates the entities participating in the
ultrasound-based mobile advertising ecosystem and their
interactions. At first, the advertising client sets up a new
advertising campaign and provides the ads to the uXDT
provider (¶). The advertising client is a company or indi-
vidual that is interested in promoting services or products
(e.g., a supermarket chain), while the uXDT provider is a
company that provides the infrastructure for user-tracking.
Subsequently, the uXDT provider generates a unique
inaudible beacon b and associates it with the client’s cam-
paign (·). Once the beacon is generated, the uXDT service
provider forwards it along with the client’s ads to the con-
tent provider (¸), which produces content that the user is
interested in, and can take many different forms (e.g., TV
station, news website). Note that, for efficiency, the same
beacon can be pushed to multiple content providers.

Next, the user uses one of her devices (e.g., a lap-
top) to request a resource that is returned by the content

On the Privacy and Security of the Ultrasound Ecosystem 100

provider along with the beacon b (¹). Once the resource
is rendered by the user’s browser, the beacon b is emitted,
and it is then captured by the uXDT-enabled device (e.g.,
a smartphone) owned by the user (º). In the next stage,
the uXDT framework embedded in the uXDT-enabled
device reports the beacon b to the backend of the uXDT
service provider. At this point, the advertisement frame-
work is able to show the user an ad that is targeted to
the user’s interests (»). During the last steps, the uXDT
device displays those ads that match exactly the interests
of the user (¼), attracts the user to the advertising client’s
store, and eventually converts it to a purchase (½).

As said, uXDT is the most advanced use of uBeacons
we have seen so far, as it requires both sophisticated infras-
tructure (e.g., profiling algorithms processing millions of
submissions) and a network of publishers who incorporate
beacons in their ads/content. Hence, very few companies
are able to provide uXDT services. In addition to this,
since the current form of uXDT techniques are controver-
sial (e.g., [24][15]), companies are very secretive and very
rarely publicly advertise that they are using the technology
or share their APIs and SDKs.

SilverPush uXDT framework. Here we examine one
of the most widespread uXDT frameworks, developed by
SilverPush, which as of April 2015 was tracking more than
18 million devices [15]. Since the framework and its spec-
ifications were never made public, we reversed-engineered
the History GK application [6], which is one of the apps
incorporating the SilverPush uXDT framework.

The framework comprises of two modules: the beacon
detection module and the data reporting module. The bea-
con detection module listens for ultrasound beacons with
duration of 2 seconds, every 20 seconds. Any captured
uBeacon is then decoded to a string of characters and its
integrity is verified. To increase the efficiency of this mod-
ule, the app is added to the boot sequence of the device,
so that it can actively listen through the microphone for
beacons (in the background), even when the application
has not been “manually” started by the user. Once a valid
beacon is captured, the data reporting module creates an
event report and submits it to the company’s backend
using an unencrypted HTTP request. This report contains
the Android ID of the device and the received uBeacon. If
no Internet connection is available at the time, the event
is stored and reported later. The data reporting module is
also responsible for registering new devices in the uXDT
ecosystem. This process takes place when the app is exe-
cuted for the first time: the framework extracts a wealth
of identifiers including the user’s phone number, longitude
and latitude, the IMEI of the device, the Android ID, and

the Google account ID (email address), and reports them
to the company’s backend (Figure 1). These information
are used to (1) build and maintain the user profile, (2)
display targeted ads, and (3) as parameters for real-time
bidding auctions (e.g., targeting users in a specific city).
The other “actor” of the uXDT ecosystem, the advertising
client, can then choose to cross-target these users and
display follow-up ads on all their devices. It is noteworthy
that, from our analysis, the only way to opt-out of uXDT
is to completely remove the app. Moreover, the user is not
notified that this framework is installed and actively used,
and so she is not aware that the microphone is repeatedly
activated to scan for uBeacons.

To better understand the market penetration of the
specific framework, we conducted a broad search and, in
combination with other sources (e.g., [20]), identified a
few dozen applications using it. The download counts for
the most popular of these ranged from several hundreds
thousands to few millions (e.g., [9]). However, in subse-
quent searches we noticed that the number of applications
incorporating the specific framework reduced. This likely
happened for two reasons: due to the community backslash
forcing developers to remove the framework [15, 23, 36, 37],
and due to Silverpush reportedly withdrawing its product
from the US market.

4 Privacy & Security Considerations
This section describes a few high-level considerations that
affect the security and privacy of the ultrasound ecosystem.
We postpone the discussion of actual vulnerabilities and
attacks to the next section.

One main concern that we identified is that any app
that wants to employ ultrasound-based mechanisms needs
to require full access to the device’s microphone. This is
an obvious violation of the least privilege principle, as the
app has also access to all audible frequencies. We note
that this is the case not because the developers of the
ultrasound frameworks were not cautious, but because
there is currently no safe way to implement this. In fact,
current versions of the Android framework do not expose
any mechanism that allows fine-grained control over the
device’s microphone.

This aspect has several negative repercussions. A ma-
licious developer could claim access to the microphone for
ultrasound-pairing purposes, and then use it to spy on the
user (e.g., to record the audio). On the other hand, develop-
ers of benign apps are also negatively affected: developers
who want to use ultrasound-based technologies risk to

On the Privacy and Security of the Ultrasound Ecosystem 101

Fig. 3. Interaction between the entities of the mobile advertising ecosystem during a typical cross-device tracking scenario.

be perceived as “potentially malicious” by the users. For
this reason, users would hesitate to install apps requiring
unconstrained access to the device’s microphone. To make
things worse, there are wide discrepancies between the
practices followed by companies when it comes to inform-
ing the users and providing opt-out options. For instance,
in some cases (e.g., SilverPush) no notice or opt-out option
is given to the user (apart from the mandatory microphone
permission request).

There are also several practicality concerns related to
this technology. Currently, each app featuring ultrasound-
based capabilities performs a periodic polling on the de-
vice’s microphone. These attempts at decoding uBeacons
heavily strain the battery, and they prevent other apps
from using the microphone. For instance, during our ex-
periment, the official Android camera crashed several
times when another app was listening for uBeacons in the
background (e.g., SilverPush framework). To make things
worse, a device running two or more ultrasound-enabled
apps suffers from even heavier battery drainage, and the
ultrasound frameworks race each other for access to the
microphone, making it essentially unusable.

We believe that all these factors hurt the ultrasound
ecosystem and that they significantly limit the diffusion
and impact these emerging technologies can have.

5 Vulnerabilities & Attacks
This section introduces a number of attacks against one
or more actors of the ultrasound ecosystem. These attacks
exploit vulnerabilities inherent to ultrasound beacons that
are not just simple, easily fixable implementation bugs.
The attacks, summarized in Table 1, are relevant in the
scenario where a user has an ultrasound-enabled app in-
stalled on her device and the ultrasound frameworks (and
the other parties in the ecosystem) provide the functional-
ities they advertise.

Beacon Traps. We now define the concept of beacon
traps. A beacon trap is a technique that an attacker can
use to inject a uBeacon so that it is captured by the user’s
ultrasound-enabled device. A naïve way to do this is to play
the uBeacon while the user is in physical proximity. How-
ever, relying on physical proximity is not always practical.
To overcome the limitation, an attacker can use a small
snippet of code that, when loaded in a browser, would
automatically reproduce one or more attacker-chosen ul-
trasound beacons. For this technique to be effective, the
adversary needs to attach the snippet to a resource that is
accessed by the user. For example, an attacker could set up
an innocuous-looking web page that, once visited, would
play an audio beacon in the background. An attacker could
also use existing XSS vulnerabilities present in a benign
website to redirect the user to an attacker-controlled web
page. Alternatively, an attacker could inject beacon-playing

On the Privacy and Security of the Ultrasound Ecosystem 102

Attack Goal Attacker capabilities

Deanonymization Retrieve identifying information
(e.g., the true IP address), especially
targeting users from anonymity networks

� Set up an ad campaign with a ultrasound service provider
� Lure victims to beacon trap
� Access to PII collected by the ultrasound service provider

Beacon injection Pollute the user’s
profile maintained by the service provider

� Set up an ad campaign with a ultrasound service provider, or
� Obtain valid beacons from existing campaigns
� Stay in physical proximity or lure victims to beacon trap

Information leakage Obtain/infer
information about the users’ interest

� Stay in physical proximity or lure victims to beacon trap

Table 1. Summary of the attacks that can be launched by exploiting an ultrasound tracking deployment.

JavaScript (or HTML) in the users’ traffic by mounting a
man-in-the-middle attacks or by setting up a (malicious)
Tor exit node [32, 48]. As a last example, an attacker could
also send the user an audio message that stealthily embeds
a uBeacon—when the message is played, the audio beacon
is captured by the ultrasound-enabled device, which would
then handle it as every other valid beacon (e.g., a uXDT
app would report the beacon back to the uXDT backend).

5.1 Deanonymization Attack

The first attack we discuss is the deanonymization attack.
This attack allows an adversary to deanonymize one or
more users of an anonymity network or system (e.g., Tor,
VPN). For example, this attack could allow a journalist to
uncover the identity of a whistle-blower who uses Tor to
send and share highly confidential documents. To perform
the attack, the journalist would just need to convince (by
social engineering or any other means) the whistle-blower
to visit a hidden service (hosted on an .onion domain).
At this point, the whistle-blower launches the latest ver-
sion of the Tor browser and visits the hidden service.
However, unbeknownst to the whistle-blower, the journal-
ist has set up the hidden service page so that it emits
inaudible beacons (i.e., a beacon trap). These beacons
get captured by the ultrasound-enabled app running on
the non-anonymized victim’s device, which then forwards
them to service provider’s server. When these steps are
completed, the attacker is able to establish a link between
the victim’s anonymized device (i.e., Tor browser) and the
non-anonymized one (i.e., smartphone). Next we provide
a more systematic explanation of the attack steps and sev-
eral attack scenarios. Finally, we discuss a proof of concept
attack we conducted to validate the feasibility of our attack.

Attack Steps. Figure 4 shows the stages of the attack and
how different entities interact with the ultrasound frame-

work. In the first step, the adversary A creates a new cam-
paign with an ultrasound tracking provider and captures
the inaudible beacon b associated with it (¶). Then, A
creates a beacon trap that emits b (·). An example of a
beacon trap can be seen in Figure 4 where the adversary in-
corporates the trap in a hidden service to target a Tor user.
Subsequently, A lures the anonymous user to visit the trap
(¸). This step may involve social engineering or it may sim-
ply be that the trap uses a resource that the user is visiting
often (i.e., a watering-hole attack). Alternatively, if the ad-
versary is a Tor exit node operator, this step is practically
omitted, since A can then inject the source code of the
trap on the requested web pages without any need to inter-
act with the user. The process of becoming a Tor exit node
is very similar with that of a normal relay, and does not re-
quire many resources or a long reputation-building period.

In the next step, the victim uses her anonymous de-
vice to load the resource (¹). Once this happens, the
beacon trap is triggered and the anonymous device starts
to periodically emit b from its speakers (º). Due to the
high frequencies used by inaudible beacons, the user is
completely oblivious to the fact that ultrasounds are being
emitted and hence does not realize that a deanonymization
attack is being carried out. Simultaneously, the ultrasound-
enabled device owned by the user (e.g., a smartphone) is
actively listening for uBeacons. Once it detects one, it
captures the signal and transforms it into a string of char-
acters. After running some integrity and validity checks on
the string, the framework reports it (along with a number
of unique user/device identifiers) to the provider’s server,
where it gets stored (»).

Finally, A obtains the unique identifiers of the user
who reported b (¼). There are many possible ways for A
to do this. For instance, A can exploit the privacy leaks
that RTB systems suffer from (Section 2). Alternatively,
in the case, of intelligence agencies (a realistic assumption
for attacks against Tor, VPN), they can request the data

On the Privacy and Security of the Ultrasound Ecosystem 103

Fig. 4. Operational steps of the deanonymization attack against a
user of an anonymization network.

through a subpoena or a court order. Once the provider
responds with the information, the real identity of the user
can be trivially uncovered by the adversary. For instance,
uXDT frameworks often use the international mobile equip-
ment identity (IMEI) number as unique device an identifier.
However, the IMEI can be easily attributed to a real per-
son by the telecommunication operators [11, 12]. Moreover,
uXDT service providers often store multiple unique identi-
fiers, which make it even easier for A to infer the identity
of the user (e.g., the Google account name).

Proof of Concept. To practically validate our proposed
attack and evaluate its effectiveness, we conducted a proof
of concept attack against a Tor user. The scenario of our
PoC matches the stages illustrated in Figure 4 and closely
resembles the modus operandi of an attacker in the real
world. The attack was launched against a Tor user, who
was a member of our team and consented to take part in
the deanonymization experiment and to install a uXDT
framework on her smartphone. For the purpose of the PoC,
the ultrasound-enabled device is an Android Nexus 6 smart-
phone, running the application History GK [6] (available
on Google Play Store), which incorporated the SilverPush
uXDT framework.

For the PoC, we developed a malicious service that
automates the majority of the steps conducted by the ad-
versary A. In accordance with the stages in Figure 4, the
malicious service takes as input a unique beacon code b
(¶), and generates a web page that features some dummy
content and a JavaScript snippet emitting b (·). The
malicious web page is then made available through a Tor
hidden service and the .onion address gets published (¸).

The Tor user then loaded the malicious hidden service
from a laptop using the latest version of the Tor browser
(6.0.1), configured with the default settings (¹). Once fully

Fig. 5. Screenshot of the proof-of-concept web page upon a
successful Tor deanonymization. The proof-of-concept attack can
extract the user’s location, ISP, phone number, Google account ID,
and other sensitive information, even though the user is browsing
through the Tor browser. (Note that for review anonymity, the details
shown in the example do not identify the authors in any way.)

loaded, the malicious web page started to periodically emit
the uBeacon b from the speakers of the laptop. Instantly,
the ultrasound-enabled Android device (which was located
on the same desk) detects it (º) and reports the beacon ID
along with some unique identifiers to the backend server
of the ultrasound service provider (»). Originally, these
requests were directed to the company’s IP addresses, how-
ever, by setting up a proxy server, we were able to intercept
and analyse them.

At the final stage, A extracts from the service
provider’s servers the user information associated with
b (¼). This can be done in many ways (e.g., RTB leakage,
subpoena). However, since we didn’t want our experiments
to interfere with production systems serving real clients,
we simply extract the data from the intercepted requests.
This allowed us to accurately and safely conduct numer-
ous experiments. Upon the retrieval of this information,
the identity of the anonymous user has been fully uncov-
ered. Figure 5 contains a visual representation of all the
user information that an attacker can extract with a Tor
deanonymization attack against SilverPush users.

Discussion. The impact of the deanonymization attack is
substantial as it relies on minimal assumptions, which are
compatible with the threat models of the great majority of
anonymity networks (e.g., Tor) [21]. Moreover, the major-
ity of the ultrasound-enabled apps are vulnerable to this
attack as most of the existing frameworks report the uBea-
cons captured (often along with user data) to an online
server operated by the service provider. Hence, we be-
lieve that the deanonymization attack poses an immediate

On the Privacy and Security of the Ultrasound Ecosystem 104

threat for the users of anonymity networks and services,
and it is critical that mitigation measures are deployed
soon by the network operators and service providers.

5.2 uBeacon Injection

In the uBeacon injection attack the adversary exploits
the lack of authentication in uBeacons to interfere with
the uXDT and the proximity marketing mechanisms. For
example, imagine an attacker equipped with a simple
beacon-emitting device (e.g., a smartphone) walking into
Starbucks at peak hour. As a result, all customers with
an ultrasound-enabled app installed on their devices will
be receiving the uBeacons and unknowingly forward them
to the backend server of the service provider (e.g., Sil-
verPush in cases of uXDT, Lisnr in cases of proximity
tracking), thus polluting their user profiles and influencing
the content served to them.
Attack Steps. As seen in Figure 6, the adversary A
initially needs to acquire one or more valid beacons. To
do this, A sets up an advertising campaign with an ultra-
sound service provider and captures the beacon associated
with it (¶). Alternatively, A may simply record the beacon
associated with a campaign run by another company. The
adversary then starts replaying the beacon to one or more
ultrasound-enabled devices belonging to different users
(·). This step of the attack can be realized in many ways,
depending on the goals of the adversary. For instance, A
can either replay the beacon using a mobile device, build
a beacon trap and lure users into it, or even employ a
computer or mobile device botnet.

Once the beacon is picked up by the ultrasound-
enabled mobile device, the ultrasound framework performs
a number of validity checks on it. Since the replayed beacon
remains unaltered and no authentication mechanisms are
in place, the validity checks always succeed. Subsequently,
the mobile device processes the uBeacon, and reports its
identifier (and a number of unique identifiers extracted
from the device) to the company’s backend server (¸).
Upon reception, the ultrasound service provider stores the
data and analyzes the uBeacon to determine with which
ad campaign it is associated. Then, the ultrasound service
provider updates the user’s profile by considering the lat-
est user interests and activities (¹). This means that each
beacon injected by the adversary makes the user’s profile
less accurate. More specifically, the profile is polluted by
A, to include an activity or interest that is potentially un-
related to the user. The adversary can also seek to increase
influence on the user’s profile, by running multiple rounds
of the attack and injecting multiple beacons.

Fig. 6. Operational steps of the beacon injection attack to pollute
users’ profiles.

Proof of concept. Beacon injection attacks have already
been observed in the wild. For instance, users of the shop-
ping application Shopkick [39] (available on Google Play
Store), soon after the deployment of the system, started up-
loading archives with walk-in tones that other users could
replay from their computer speakers to get the reward
points. Apart from this, we also designed our own proof
of concept, to demonstrate the potential impact of this
attack. We chose to simulate a scenario where we launch
a phishing attack against a single user owning a device
with a uXDT framework. As with the deanonymization
attack, no production systems were affected during the
experiments. Additionally, for the purposes of the PoC,
we developed an Android application that captures and
replays inaudible beacons.

In the first stage of the attack, the adversary A creates
a new campaign featuring interstitial ads (i.e., full-page
ads), and uploads the banners specifically tailored to the
victim. Using our Android application, A is able to cap-
ture the inaudible beacon of the campaign (¶). A then
moves to another room where she is in proximity of the
targeted user and uses our application to replay the beacon
multiple times, with an interval of 15 seconds (·). Simul-
taneously, the uXDT framework running within an app
on the target’s device picks up the emitted beacons and
reports each one of them to the backend (¸). The backend
then updates (i.e., pollutes) the user’s profile based on the
beacons injected by the adversary (¹).

At this point, the beacon injection attack has been
completed. However, we take some extra steps to better
illustrate the potential real-world impact, without influ-
encing the recommendation systems of any commercial
deployments. To achieve this, we redirected the beacon
reports sent by the user’s device to our own backend. Our
backend is a simulation of a full recommendation system
(such as the one that ad companies would use), and we

On the Privacy and Security of the Ultrasound Ecosystem 105

programmed it to push an ad if a user reports a beacon
more than twice within an hour. In other words, if the
user watches the same ultrasound-carrying ad more than
twice in an hour, then the same ad will appear on the
user’s uXDT device. As a result, when the app embedding
the uXDT framework queries the backend for new ads,
our algorithm goes through the polluted user’s profile and
finds that the beacon corresponding to A’s campaign has
been reported more than two times. At this point, the ad
that is selected (and that would be eventually displayed
on the app) is the adversary’s malicious ad.
Discussion. The impact of the beacon injection attack
depends on a number of factors. The first factor is the way
in which the service provider utilizes the user’s profiles.
If the beacons act as a trigger for their corresponding ad
to be shown, the adversary can influence which exact ads
will be shown to the ultrasound-enabled device, and even
start a new campaign and push malicious content (e.g.,
targeted malvertising campaigns [31][43], profile pollution
attacks [33][49]). On the other hand, if the user’s profile
is used only as an information source to determine the
general interests of the user, the impact is less severe. How-
ever, the adversary can still pollute the profile to include
interests that the user would find offensive (e.g., adult
content, religious affiliations).

The two other factors that determine the impact of
the attack are the capabilities and the goals of the adver-
sary. So far, we only discussed realizations of the attack
where the adversary targets a single user. However, A may
also be able to interfere with a campaign launched by a
competitor. In this case, the impact can be severe if the
attacker has the means to inject the beacon to a very large
number of devices. This can be achieved by employing a
large botnet, or by injecting JavaScript as a Tor exit node
(as discussed in Section 5.1). By doing this, the adversary
could manipulate an uXDT service provider into showing
the ad to unrelated users and thus reduce the conversion
rate and waste part of the campaign budget. Another
instance where a large-scale injection attack could have a
detrimental effect is TV analytics. In TV analytics, inaudi-
ble beacons are often used to track user engagement and
behavior. An adversary could easily replay the beacons
corresponding to a specific TV program to a large number
of ultrasound-enabled devices and influence the results.

We believe that the exact implementation of the ad
serving mechanism determines the potential impact too.
For example, currently, some companies allow the advertis-
ing client to set a frequency cap on clicks and impressions
of the ad. This could mitigate some unsophisticated ver-
sions of the attack, but they would be hardly effective
against adversaries who use a botnet.

The implementation of authentication mechanisms
would help prevent uBeacon injection attacks. However,
uBeacons carry a very limited volume of information, and
suffer from a moderate rate of transmission errors [19].
These would result in a high occurrence of invalid beacons,
thus decreasing the efficiency of the technology. Hence,
the implementation of authentication mechanisms in ul-
trasound tracking systems comes with multiple challenges
and is far from straightforward. Instead, Shopkick tries
to address these attacks using contextual information to
detect abnormal walk-ins (e.g., the location reported by
GPS is different from the location of the store), but with
limited success.

5.3 Information Leakage

In this attack, the adversary exploits the lack of authenti-
cation information and the capability of injecting beacons
to breach the privacy of a victim user. For instance, an
employer could acquire a wealth of private information
on the personal interests and activities of the employees.
To do this, the employer could eavesdrop beacons emitted
from the computer speakers of a specific employee, and
then replay them to the employee’s uXDT-enabled smart-
phone. Subsequently, the uXDT framework will report
these beacons to the ultrasound service provider and fetch
ads related to the interests of the victim user, thus partially
exposing the victim’s profile. Additionally, depending on
the realization of the attack, this can also trigger the estab-
lishment of a link between the victim’s and the adversary’s
devices, which entails that beacons captured by one of the
devices will influence the ads shown to the other.
Attack Steps. Depending on the capabilities of the ad-
versary, the attack can be carried out in either a passive
or active fashion.

The passive version (Figure 7a) of the attack is an
evolution of the homonymous attack introduced by Castel-
luccia et al. [16]. In this scenario, it is assumed that the
user operates in two or more environments with different
behavioral requirements. As a result, there is clear sepa-
ration of the activities the user is carrying out in each of
these environments. An example of such a setting would
be a user who handles two computers, one at home and
one at work. The adversary A is assumed to be located in
one of the environments (e.g., at work) and is in physical
proximity with the user.

On the first step of the attack, the victim uses a
computer to browse the Internet while being in physical
proximity with A. During this browsing session, a number
of targeted ads with inaudible beacons are displayed on

On the Privacy and Security of the Ultrasound Ecosystem 106

(a) Passive information leakage attack (b) Active information leakage attack

Fig. 7. Operational steps of the information leakage attacks.

the user’s screen (¶). These targeted ads are related to
the activities and the interests of the user in general, and
not only those observed in the current environment (i.e.,
job). Simultaneously, A is handling a uXDT device, which
detects the beacons emitted by the user’s ads, and reports
them to the uXDT provider’s backend (·). As the adver-
sary A captures and submits the beacons intended for the
user, she slowly builds her own profile to match that of
the user. Once enough beacons are collected, the two pro-
files are very similar and the attack reaches its final stage.
From this point on, A starts to get served ads related to
the interests of the user (¸). A then uses the techniques
described in [16, 17] to remove any noise, and build a
quite accurate interests profile for the user. To do this, A
first applies a number of filters which remove irrelevant
ads (e.g., contextual, location-based) and then rebuilds the
user’s profile by attributing each of the remaining ads to
one broad category (e.g., car rental, travel).

The active version of this attack exploits the de-
vice linking that XDT techniques perform. More specif-
ically, the adversary uses a beacon-emitting device to in-
ject/replay beacons to the victim’s uXDT-enabled device,
while reporting the same beacons along with meta-data
(e.g., location, gender), matching those of the victim to the
ultrasound service provider’s backend. After a number of
beacons have been reported, a pairing between the device
of the adversary and the victim will be triggered with high
probability. From now on, the attacker and the victim’s
devices will be linked, and thus will start receiving related
advertising content. It should be noted that the details of

the linking depend on the specific design of the ultrasound
service provider’s profiling system.

More formally, the active version of the information
leakage attack is depicted in Figure 7b and requires five
steps. Initially, the adversary A collects a large number
of beacons from various sources (¶); however, A does
not report any of them to the uXDT service provider’s
backend. Instead, A starts replaying those beacons to the
targeted user’s uXDT device (·). Simultaneously, both
the adversary and the user report these beacons to the
backend server (¸). As in the previous attacks, each re-
port contains some unique identifiers and the beacon ID.
Once a large number of beacons have been submitted,
the service provider links the profiles of the user and the
adversary with high probability. It should be noted that
the actual precision of the attack depends on the profile
matching method used by each company. However, accord-
ing to the literature, companies that utilize behavioural
profiling methods (using different tracking technologies)
tend to match identically behaving users with high proba-
bility [45, 50, 52].

This happens because the provider assumes that the
two devices belong to the same person (¹). At this point
the attack has been completed and the uXDT service
provider starts pushing the same ads in both devices. This
means that A is able to get an insight into the user’s
interests by studying the ads served on A’s own device.
Proof of concept. The PoC of this attack is a composi-
tion of the PoCs previously described, and, therefore, its
description is omitted.

On the Privacy and Security of the Ultrasound Ecosystem 107

Discussion. The impact of this attack is hard to quantify,
as a privacy invasion can have various implications rang-
ing from negligible to severe. Nonetheless, we believe that
privacy is strongly related with the rights of the individual,
and hence should never be jeopardized, regardless of the
consequences.

Moreover, as we mentioned in our introduction, each
inaudible beacon corresponds to a specific ad shown to the
user. A subtle assumption of the uXDT model is that the
inaudible beacons can be liberally made public (i.e., broad-
casted) because they do not carry sensitive information.
However, as shown in the previous work [16], targeted ads
(and by extension beacons) can be exploited by an eaves-
dropping adversary to infer the user interests and activities.

This information leakage exposes some fundamental
flaws in the uXDT technology, which enable an adver-
sary to acquire otherwise private information about the
user’s interests and activities. Unfortunately, the limited
bandwidth offered by inaudible beacons prevents the appli-
cation from being able to adopt any protection mechanism
at a lower level. Instead, solutions should be sought at the
application level (i.e., in the business logic).

5.4 Responsible Disclosure

We communicated our findings and concerns to SilverPush,
and they acknowledged the aforementioned security vul-
nerabilities. Subsequently, on a recent announcement [22],
SilverPush claimed that they have ceased all collabora-
tions with US developers. However, no information is
provided regarding developers from other countries. We
also contacted the Tor project to inform them about the
deanonymization attack.

6 System Enhancements
In this section, we discuss potential solutions to the secu-
rity and privacy issues identified earlier, and evaluate their
effectiveness and applicability. For instance, a straight-
forward way to prevent ultrasonic tracking would be a
jamming device emitting ambient ultrasonic noise. How-
ever, such a solution suffers from numerous drawbacks
(e.g., contributes to noise pollution, impractical to carry
at all times). Instead, we propose two immediately deploy-
able security mechanisms designed to mitigate the risks
for browser and smartphone users. Moreover, we propose
a design for a new OS-level API that would allow devel-
opers to implement ultrasound-based mechanism without

requiring full access to the microphone, thus honouring
the principle of least privilege.

6.1 Ultrasound-filtering Browser Extension

We developed an extension for the Google Chrome browser
that filters out all ultrasounds from the audio output of the
websites loaded by the user. Instead of simply detecting
beacons, the extension proactively prevents webpages from
emitting inaudible sounds, and thus completely thwarts
any unsolicited attempts of uXDT (unless the user opts
to allow ultrasounds from a specific tab). As a result, this
extension offers protection against the deanonymization
and information leakage attacks introduced in Section 5.

From a technical perspective, the extension mediates
all the audio outputs of the page and filters out the frequen-
cies that fall within the range used by inaudible beacons.
To do this, each time a new webpage is loaded, a JavaScript
snippet is inserted and executed in the page. The snippet
is using the Web Audio API, which is part of the HTML5
specification. This API represents the audio handling mod-
ules of the page as AudioNodes. An AudioNode can be
an audio source (e.g., an embedded YouTube video), an
audio destination (e.g., the speakers) or an audio process-
ing module (e.g., a low-pass filter). It also introduces the
concept of audio graphs, where different AudioNodes are
linked together to create a path from the audio source to
the audio destination. This path can be arbitrarily long
and may include multiple filters, which process the signal
before it reaches the destination node.

Our extension takes advantage of this AudioNode link-
ing capability in order to add a new filter between all the
audio sources of the page and the audio destination. More
specifically, upon execution, the snippet creates a high-shelf
filter AudioNode, and sets its base frequency to 18kHz and
its gain to -70db. As shown in Figure 8, the settings of
our extension can be customized to flexibly opt out from
specific advertising companies. As a result, the filter atten-
uates all the frequencies that are higher than 18kHz, while
it leaves the lower frequencies unaltered. Subsequently, the
snippet identifies all the audio sources of the page and mod-
ifies the audio graph so that their signal passes through the
high-shelf filter before it reaches the speakers. From this
point on, any audio played by the page is first sanitized
by the high-shelf filter and then forwarded to the system’s
speakers. This procedure happens in real-time and it has
minimum impact on audible frequencies of the spectrum.

Our extension completely filters out all ultrasonic fre-
quencies, and hence provides complete protection from
attacks in this spectrum since the emission of uBeacons

On the Privacy and Security of the Ultrasound Ecosystem 108

is completely blocked (we tested with real-world Android
apps that use SilverPush framework). It has only one tech-
nical limitation: due to some shortcomings of HTML5, it
cannot directly filter a few legacy/obsolete technologies,
such as Flash player. We believe that this limitation is
alleviated by using the other countermeasures introduced
in this section.

6.2 Android Ultrasound Permission

In this section, we describe a modification to the Android
OS to implement a mechanism analogous to the one de-
scribed in the previous section. In particular, we aim at
providing the functionality for the end users to selectively
filter the ultrasound frequencies of the signal acquired by
the smartphone microphone. In general, our idea is to sep-
arate permissions for listening to audible sound and sound
in the high-frequency (i.e., ultrasound) spectrum. This
separation forces the applications to explicitly declare that
they will capture sound in the inaudible spectrum, and it
makes the usage of mechanisms based on ultrasounds as
an opt-in feature.

We have modified the Android OS to extend the
existing permission, RECORD_AUDIO, so that an app that
needs to record audio from the microphone can now se-
lectively ask whether it also requires access to the high-
frequency spectrum of the signal (by requiring the new
RECORD_ULTRASOUND_AUDIO permission). Since the vast
majority of apps does not require access to the high-
frequency spectrum and can function normally even with-
out it, we believe that the mere asking for access of the
high-frequency spectrum could be used as a strong signal
for requiring more carefully vetting at the app store level.

The implementation of this new permission required
the modification of two parts. First, we needed to define
a new permission, which can be done by modifying a
configuration file.1 The second modification relates to the
AudioFlinger component. AudioFlinger is the main sound
server in Android: when an app wants to obtain a data
read from the microphone, the app communicates through
the Binder IPC mechanism to the AudioFlinger compo-
nent. This component, in turn, reads the stream data from
the kernel sound driver (e.g., ALSA, OSS, custom driver)
and makes the content accessible to the requesting app
(once again through the Binder IPC mechanism).

1 In AOSP, the file is at the following file path:
./base/core/res/AndroidManifest.xml

Our modification in the AudioFlinger component im-
plements the following logic. Consider an app that wants
to acquire data from the microphone. If this app has both
the RECORD_AUDIO and the RECORD_ULTRASOUND_AUDIO
permissions, then the stream is not modified. How-
ever, if the requesting app does not request the
RECORD_ULTRASOUND_AUDIO permission, our patched Au-
dioFlinger would filter out frequencies above a certain
threshold. The filter implemented by our current proto-
type is a standard low-pass filter that attenuates signals
with frequencies higher than the cutoff frequency.

Our current implementation filters sound in the time
domain, and it can thus operate in real-time and only
requires a few bytes of extra memory. Furthermore, our
patch is not invasive and is constituted by less than one
hundred lines of codes.

6.3 Standardization & uBeacon API

We believe that the mechanisms we proposed earlier in this
section would significantly increase the security and aware-
ness of the user. However, we acknowledge that these mech-
anisms have two main limitations. First, they might inter-
fere with benign use cases. Second, and more importantly,
they do not address one of the main issues associated to this
technology: an app that wants to implement ultrasound-
based mechanisms currently needs full access to the micro-
phone, thus leading to significant privacy concerns.

We argue for the standardization of the ultrasound
beacon format and we envision a new OS-level API that
implements in a single, trusted place to logic for detecting
and decoding uBeacons. The first step towards this goal
is to specify the format and structure of a uBeacon. Once
this process is completed, an API for handling uBeacons
can be implemented. In particular, such an API should
expose calls for: (1) uBeacon discovery and capturing, (2)
uBeacon decoding and integrity validation, and (3) uBea-
con generation and emission (targeted towards Android
embedded devices). We note that the developers of a simi-
lar technology, Bluetooth low energy beacons, are following
this direction. In fact, an API for Bluetooth low energy
beacons is already provided in Android to regulate the
bluetooth usage [2, 4, 5].

From a technical perspective, this API would be im-
plemented by a privileged process (like a system process
on Android) and its existence would provide several im-
portant benefits. To begin with, an app that wants to
implement ultrasound-based mechanisms only needs to ac-
quire access to this API, and no full access to the device’s
microphone is needed anymore. Thus, the user’s sensitive

On the Privacy and Security of the Ultrasound Ecosystem 109

data are not exposed to third-party apps in the first place.
Additionally, app developers would not need to require a
security-sensitive permission (i.e., microphone access) to
make use of ultrasound-based technology, thus avoiding
being deemed as “potentially malicious” by the users. An-
other advantage of such API is that it would act as a central
place to detect and monitor ultrasound-based abuses.

However, in order to enforce the use of this API, the
ultrasound spectrum must be accessible only to privileged
components of the system. To achieve this, the system
module handling the microphone should filter out ultra-
sonic frequencies by default, and the user should be able
to grant access to the spectrum on a per-app basis. Our
ultrasound permission demonstrates that such filtering is
technically feasible.

As a result, since third-party apps would never get ac-
cess to any signal in the ultrasound spectrum (even when
requiring the microphone permission), it is impossible for
malicious websites (or other any other source) to make use
of non-standard custom beacons and to violate the user’s
privacy as it happens right now: in fact, even if a custom
beacon is encoded in an audio stream, the framework
API will not properly detect and decode such beacons.
Thus, forcing all third-party developers to make use of the
central API will provide the right incentive to implement
ultrasound-based mechanisms according to the standard.
Finally, such an API would improve the transparency of
the beacon capturing process, and ensure the user’s full
awareness on the information collected.

We acknowledge that the proposed API does not
prevent aggressive ad frameworks from performing cross-
device tracking. However, we note that the API itself could
be used as a central component for monitoring ultrasound-
related events and that privacy-conscious users can use
the defense mechanisms discussed earlier in this section to
completely block ultrasound usage.

7 Related & Future Work
This work is related to the abuse of audio as a physical
layer. To the best of our knowledge, we are the first to
focus specifically on the security and privacy aspects of
inaudible frequencies to link, for various purposes, different
devices. Indeed, previous researches have focused mainly
on the use of audio—both in the audible and inaudible
spectra—as a covert channel.

Acoustic covert channels. It has been known for at least
ten years that audible and inaudible audio can be used as a
carrier for digital data [28]. Nowadays there are even open-

source implementations of a software modem [29] and a
TCP/IP networking stack [13] based on ultrasonic frequen-
cies as a physical layer. Recently, after the highly debated
BadBIOS [25]—a malware prototype that, according to
news coverage, can communicate over an inaudible audio
covert channel—new research work has been published in
this area [27, 46]. A recent work examines how inaudible
audio can be used in mobile devices as a covert channel for
inter- and intra-device communication [19]. The authors
propose an optimized modulation scheme that minimizes
audible “clicks” due to the sudden change of frequency
that encode the alternating ones and zeros. Alongside,
they evaluate the feasibility of using the device’s vibrator
to encode bits as subtle vibrations that produce no sound
when the device is left on a flat surface. The authors also
measure the maximum achievable bit and error rate at
varying distances, and conclude by briefly listing a series
of countermeasures. Moreover, there are also modulation
techniques that can be used to create covert channels in
the audible spectrum. One such example is the Intrason-
ics [8] technology, which exploits the brain’s natural echo
filtering to encode data bits as inaudible echo sequences.

Audio channel access control. Petracca et al. [35]
focuses on audible audio on mobile devices as a commu-
nication channel that can be abused by an attacker when
the user is not listening, and concludes that their proposed
attacks are feasible because of the complete lack of access
control. More precisely, the authors analyze the feasibility
of creating a malicious app that uses the phone speaker,
for example, to produce commands that would be picked
up and blindly executed by an app that trusts the micro-
phone as an input for commands. The typical examples are
voice-activated procedures (e.g., “OK Google, play some
music” or “browse on evil.com”). In a similar vein, the
microphone can be abused by a malicious application to
eavesdrop sensitive communication (e.g., while a screen-
reading, text-to-speech application is “speaking” a user’s
confidential email). Along this line, the authors describe
and implement six attacks and propose an SE Linux ex-
tension to regulate the access to microphone and speakers.
Our long-term solution (i.e., a permission bit specifically
tailored for the ultrasonic spectrum) follows the same
principle, that is, ensuring that only apps that have the
requested permission can operate in the ultrasonic range.

Open Problems. Moreover, as the ecosystem is expand-
ing, it is important to develop efficient mechanisms to
keep track of the new applications participating in it, and
evaluate their security in a systematic way. Potential solu-
tions to this open and challenging problem could include
a combination of heuristics and static analysis techniques.

On the Privacy and Security of the Ultrasound Ecosystem 110

Moreover, another interesting area for future work is the
incorporation of lightweight cryptographic mechanisms in
uBeacons. Such an advancement could yield very interest-
ing results making some of the current applications more
secure, and enabling a whole new range of features.

8 Conclusion
This paper discusses the privacy and security concerns that
arise with the emerging of new technologies based on the
ultrasound. In particular, we first show that commodity
OS (e.g., Android) do not offer proper APIs to imple-
ment ultrasound-based mechanisms without violating the
principle of least privilege: any app using this technique
necessarily needs to require full access to the device’s mi-
crophone. We also perform the first security analysis of
ultrasound-based mechanisms, such as proximity market-
ing and advanced cross-device tracking techniques used
by aggressive advertising and analytics companies. We
determine the current schemes to be vulnerable to a se-
ries of attacks, including user deanonymization, beacon
injection, and information and privacy leakage. We also
show that when these emerging techniques are combined
with existing ones, the effects to the user’s privacy can be
devastating, especially since some of these uXDT services
do not provide an opt-out mechanism option for users.

We conclude our work by proposing a series of mech-
anisms and modifications to protect browsers and smart-
phones. We also argue for the standardization of the format
of ultrasound beacons and the introduction of a new OS-
level API that would act as a single, trusted component
to detect and decode ultrasound beacons. We hope this
work will raise awareness of this emerging trend in the
community. We released the prototypes and source code of
our countermeasures, so that users are aware of the threats
and can actively protect themselves.

Acknowledgements. We would like to thank the anony-
mous reviewers for their valuable feedback. We would
also like to thank Lara, our research assistant. Vasilios
Mavroudis was supported by H2020 PANORAMIX Grant
(ref. 653497). This material is also supported by NSF
under Award No. CNS-1408632, and by Secure Business
Austria. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the
author(s) and do not necessarily reflect the views of NSF
or Secure Business Austria.

References
[1] Made in America Festival 1.0.8 app on the Play Store. https:

//play.google.com/store/apps/details?id=com.lisnr.festival.
madeinamericaandroid, 2015.

[2] Bluetooth Low Energy API Level 18. https://developer.android.
com/guide/topics/connectivity/bluetooth-le.html, 2016.

[3] Google Cast 1.16.7 app on the Play Store. https://play.
google.com/store/apps/details?id=com.google.android.apps.
chromecast.app, 2016.

[4] Google Nearby Messages API. https://developers.google.com/
nearby/messages/android/get-beacon-messages, 2016.

[5] Google Proximity Beacon API. https://developers.google.com/
beacons/proximity/guides, 2016.

[6] History GK 5.0 app on the Play Store. https://play.google.com/
store/apps/details?id=com.gktalk.history, 2016.

[7] Indianapolis Colts Mobile 3.1.1 app on the Play Store. https:
//play.google.com/store/apps/details?id=com.yinzcam.nfl.colts,
2016.

[8] Intrasonics-Artificial Echo Modulation. http://www.intrasonics.
com/, 2016.

[9] McDo Philippines app on the Play Store. https://play.google.
com/store/apps/details?id=ph.mobext.mcdelivery, 2016.

[10] Signal360’s Use Cases. http://www.signal360.com/#results,
2016.

[11] 3GPP. 3rd generation partnership project, technical specification
of international mobile station equipment identities (imei).

[12] A. Andreadis and G. Giambene. The global system for mobile
communications. Protocols for High-Efficiency Wireless
Networks, pages 17–44, 2002.

[13] anfractuosity. Ultrasound Networking. 00003.
[14] Audible magic. https://www.audiblemagic.com/advertising/,

2016.
[15] C. Calabrese. Comments for November 2015 Workshop on

Cross-Device Tracking.
[16] C. Castelluccia, M.-A. Kaafar, and M.-D. Tran. Betrayed by your

ads! In Privacy Enhancing Technologies Symposium, pages 1–17.
Springer, 2012.

[17] T. Chen, I. Ullah, M. A. Kaafar, and R. Boreli. Information
leakage through mobile analytics services. In Proceedings of the
15th Workshop on Mobile Computing Systems and Applications,
page 15. ACM, 2014.

[18] Copsonic. http://www.copsonic.com/products.html#
webtostoretracker, 2016.

[19] L. Deshotels. Inaudible sound as a covert channel in mobile
devices. In Proc. 8th USENIX Conf. Offensive Technologies,
page 16.

[20] A. Detector. Silverpush android apps. https://public.
addonsdetector.com/silverpush-android-apps/, November 2015.

[21] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. Technical report, DTIC
Document, 2004.

[22] Forbes. Silverpush quits creeping world out,
ceases tracking tv habits via inaudible ’beacons’.
http://www.forbes.com/sites/thomasbrewster/2016/03/
21/silverpush-tv-mobile-ad-tracking-killed/, March 2016.

[23] Ftc public discussion on cross-device tracking.
https://www.ftc.gov/news-events/audio-video/video/cross-
device-tracking-part-1, November 2015.

https://play.google.com/store/apps/details?id=com.lisnr.festival.madeinamericaandroid
https://play.google.com/store/apps/details?id=com.lisnr.festival.madeinamericaandroid
https://play.google.com/store/apps/details?id=com.lisnr.festival.madeinamericaandroid
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
https://developers.google.com/nearby/messages/android/get-beacon-messages
https://developers.google.com/nearby/messages/android/get-beacon-messages
https://developers.google.com/beacons/proximity/guides
https://developers.google.com/beacons/proximity/guides
https://play.google.com/store/apps/details?id=com.gktalk.history
https://play.google.com/store/apps/details?id=com.gktalk.history
https://play.google.com/store/apps/details?id=com.yinzcam.nfl.colts
https://play.google.com/store/apps/details?id=com.yinzcam.nfl.colts
http://www.intrasonics.com/
http://www.intrasonics.com/
https://play.google.com/store/apps/details?id=ph.mobext.mcdelivery
https://play.google.com/store/apps/details?id=ph.mobext.mcdelivery
http://www.signal360.com/#results
https://www.audiblemagic.com/advertising/
http://www.copsonic.com/products.html#webtostoretracker
http://www.copsonic.com/products.html#webtostoretracker
https://public.addonsdetector.com/silverpush-android-apps/
https://public.addonsdetector.com/silverpush-android-apps/
http://www.forbes.com/sites/thomasbrewster/2016/03/21/silverpush-tv-mobile-ad-tracking-killed/
http://www.forbes.com/sites/thomasbrewster/2016/03/21/silverpush-tv-mobile-ad-tracking-killed/
https://www.ftc.gov/news-events/audio-video/video/cross-device-tracking-part-1
https://www.ftc.gov/news-events/audio-video/video/cross-device-tracking-part-1

On the Privacy and Security of the Ultrasound Ecosystem 111

[24] D. Goodin. Beware of ads that use inaudible sound to link your
phone, TV, tablet, and PC.

[25] D. Goodin. Meet “badBIOS,” the mysterious Mac and PC
malware that jumps airgaps. 00004.

[26] Google. Chromecast guest mode - guest mode faqs. https:
//support.google.com/chromecast/answer/6109297?hl=en,
August 2016.

[27] M. Hanspach and M. Goetz. On Covert Acoustical Mesh
Networks in Air. 8(11):758–767.

[28] Honda Electronics. Ultrasonic Aquatic Communication System.
[29] M. Kamal. minimodem - general-purpose software audio FSK

modem.
[30] Lisnr. http://lisnr.com/platform, 2016.
[31] Real-time bidding and malvertising: A case study.

https://blog.malwarebytes.org/cybercrime/2015/04/real-time-
bidding-and-malvertising-a-case-study/, April 2015.

[32] M. Marlinspike. New tricks for defeating ssl in practice.
[33] W. Meng, X. Xing, A. Sheth, U. Weinsberg, and W. Lee. Your

online interests: Pwned! a pollution attack against targeted
advertising. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 129–140.
ACM, 2014.

[34] L. Olejnik, C. Castelluccia, et al. Selling off privacy at auction.
2014.

[35] G. Petracca, Y. Sun, T. Jaeger, and A. Atamli. AuDroid:
Preventing Attacks on Audio Channels in Mobile Devices. In
Annual Computer Security Applications Conference. ACM Press.

[36] E. Ramirez. Transcript - Part 1. In FTC Cross-Device Tracking
Workshop.

[37] E. Ramirez. Transcript - Part 2. In FTC Cross-Device Tracking
Workshop.

[38] C. Roeding and A. Emigh. Method and system for
location-triggered rewards, July 16 2013. US Patent 8,489,112.

[39] Shopkick. https://www.shopkick.com/, June 2016.
[40] Signal360. http://www.signal360.com/#solution, 2016.
[41] A. Silverman. Colts to begin using lisnr technology to reach fans’

mobile devices at games, events. http://www.sportsbusinessdaily.
com/Daily/Issues/2016/07/19/Franchises/Colts.aspx, July
2016.

[42] Silverpush. https://www.silverpush.co/#!/audio, 2015.
[43] A. K. Sood and R. J. Enbody. Targeted cyberattacks: a superset

of advanced persistent threats. IEEE security & privacy,
(1):54–61, 2013.

[44] Sophos. Users weighed down by multiple gad-
gets and mobile devices, new sophos survey reveals.
https://www.sophos.com/en-us/press-office/press-
releases/2013/03/mobile-security-survey.aspx, March 2013.

[45] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering
techniques. Advances in artificial intelligence, 2009:4, 2009.

[46] V. Subramanian, S. Uluagac, H. Cam, and R. Beyah. Examining
the characteristics and implications of sensor side channels. In
Communications (ICC), 2013 IEEE International Conference on,
pages 2205–2210. IEEE.

[47] Tchirp. http://www.tchirp.com/#theTech, 2016.
[48] P. Winter, R. Köwer, M. Mulazzani, M. Huber, S. Schrittwieser,

S. Lindskog, and E. Weippl. Spoiled Onions: Exposing Malicious
Tor Exit Relays. In Privacy Enhancing Technologies Symposium.
Springer, 2014.

[49] X. Xing, W. Meng, D. Doozan, A. C. Snoeren, N. Feamster,
and W. Lee. Take this personally: Pollution attacks on

personalized services. In Proceedings of the 22nd USENIX
Security Symposium, 2013.

[50] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen.
How much can behavioral targeting help online advertising? In
Proceedings of the 18th international conference on World wide
web, pages 261–270. ACM, 2009.

[51] Y. Yuan, F. Wang, J. Li, and R. Qin. A survey on real time
bidding advertising. In Service Operations and Logistics, and
Informatics (SOLI), 2014 IEEE International Conference on,
pages 418–423. IEEE, 2014.

[52] W. Zhang, L. Chen, and J. Wang. Implicit look-alike modelling
in display ads: Transfer collaborative filtering to ctr estimation.
arXiv preprint arXiv:1601.02377, 2016.

https://support.google.com/chromecast/answer/6109297?hl=en
https://support.google.com/chromecast/answer/6109297?hl=en
http://lisnr.com/platform
https://blog.malwarebytes.org/cybercrime/2015/04/real-time-bidding-and-malvertising-a-case-study/
https://blog.malwarebytes.org/cybercrime/2015/04/real-time-bidding-and-malvertising-a-case-study/
https://www.shopkick.com/
http://www.signal360.com/#solution
http://www.sportsbusinessdaily.com/Daily/Issues/2016/07/19/Franchises/Colts.aspx
http://www.sportsbusinessdaily.com/Daily/Issues/2016/07/19/Franchises/Colts.aspx
https://www.silverpush.co/#!/audio
https://www.sophos.com/en-us/press-office/press-releases/2013/03/mobile-security-survey.aspx
https://www.sophos.com/en-us/press-office/press-releases/2013/03/mobile-security-survey.aspx
http://www.tchirp.com/#theTech

On the Privacy and Security of the Ultrasound Ecosystem 112

9 Appendix
In this appendix, we provide some additional screenshots
from the countermeasures introduced in Section 6.

Fig. 8. Details of the settings page of our beacon-filtering browser
extension.

OS-level

permission

control on

ultrasouinds

Fig. 9. Screenshot of the permission system to allow fine-grained con-
trol on the ultrasonic spectrum. An ultrasound-enabled application
needs explicit permission to access the ultrasounds over the audio
channel (which is a separate permission from the normal audio).

	On the Privacy and Security of theUltrasound Ecosystem
	1 Introduction
	2 Key Concepts
	3 Ecosystem Overview
	3.1 Proximity Tracking
	3.2 Cross-device Tracking

	4 Privacy & Security Considerations
	5 Vulnerabilities & Attacks
	5.1 Deanonymization Attack
	5.2 uBeacon Injection
	5.3 Information Leakage
	5.4 Responsible Disclosure

	6 System Enhancements
	6.1 Ultrasound-filtering Browser Extension
	6.2 Android Ultrasound Permission
	6.3 Standardization & uBeacon API

	7 Related & Future Work
	8 Conclusion
	9 Appendix

