
Proceedings on Privacy Enhancing Technologies ; 2017 (3):4–20

Dominik Schürmann*, Fabian Kabus, Gregor Hildermeier, and Lars Wolf

Wiretapping End-to-End Encrypted VoIP Calls:
Real-World Attacks on ZRTP
Abstract: Voice calls are still one of the most com-
mon use cases for smartphones. Often, sensitive personal
information but also confidential business information
is shared. End-to-end security is required to protect
against wiretapping of voice calls. For such real-time
communication, the ZRTP key-agreement protocol has
been proposed. By verbally comparing a small number
of on-screen characters or words, called Short Authenti-
cation Strings, the participants can be sure that no one
is wiretapping the call. Since 2011, ZRTP is an IETF
standard implemented in several VoIP clients.
In this paper, we analyzed attacks on real-world VoIP
systems, in particular those implementing the ZRTP
standard. We evaluate the protocol compliance, er-
ror handling, and user interfaces of the most common
ZRTP-capable VoIP clients. Our extensive analysis un-
covered a critical vulnerability that allows wiretapping
even though Short Authentication Strings are compared
correctly. We discuss shortcomings in the clients’ error
handling and design of security indicators potentially
leading to insecure connections.

Keywords: ZRTP, VoIP, SIP, key exchange

DOI 10.1515/popets-2017-0025
Received 2016-11-30; revised 2017-03-15; accepted 2017-03-16.

1 Introduction
Following Snowden’s global surveillance revelations
from 2013, public awareness of privacy and informa-
tion security has increased and driven the demand for
products aiming to protect their users. Thus, the de-
sign and implementation of end-to-end secure messag-
ing protocols received a lot of attention [9, 34]. In 2016,
these protocols have been adopted by mainstream mes-

*Corresponding Author: Dominik Schürmann:
TU Braunschweig, E-mail: schuermann@ibr.cs.tu-bs.de
Fabian Kabus: TU Braunschweig,
E-mail: kabus@ibr.cs.tu-bs.de
Gregor Hildermeier: TU Braunschweig,
E-mail: hilderme@ibr.cs.tu-bs.de
Lars Wolf: TU Braunschweig, E-mail: wolf@ibr.cs.tu-bs.de

saging apps, such as WhatsApp and Facebook Messen-
ger [10, 35]. As a result, mobile messaging, the most
popular smartphone feature, finally includes end-to-end
encryption for average users. Comparing their security
features with that of voice calls shows a major imbal-
ance. While making voice calls is the second most popu-
lar smartphone feature with 93% popularity [25], its se-
curity is often neglected. It is difficult to retrofit the tra-
ditional Public Switched Telephone Network with end-
to-end security, but it is feasible to protect users of mod-
ern Voice over IP (VoIP) apps.

To protect real-time communication channels, the
ZRTP key agreement protocol has been proposed. Based
on the Diffie-Hellmann (DH) key exchange, it has been
standardized in 2011 as RFC 6189 [37]. It can be imple-
mented independently of the actual signaling protocol,
however it is often used in conjunction with the Ses-
sion Initiation Protocol (SIP) [16]. Instead of relying on
a central Public Key Infrastructure (PKI), participants
have to compare a few digits or words, called Short Au-
thentication Strings (SASs). If done correctly, no one
should be able to actively wiretap the call, i.e., per-
form an unnoticed Man-in-the-Middle (MitM) attack.
The exchanged secrets are utilized to encrypt the stream
end-to-end, usually using the Secure Real-Time Trans-
port Protocol (SRTP).

Before its standardization, ZRTP has been formally
verified by Bresciani et al. [6]. The authors analyzed
the protocol with the “correctly verified SAS” assump-
tion. In 2007/2008, Gupta and Smatikov [14] as well as
Petraschek et al. [24] discuss practical attacks, in par-
ticular a flaw in the handling of ZRTP IDs (ZIDs). A
recent study by Shirvanian and Saxena with 128 online-
participants found that for a two-word SAS, an attacker
can stay undetected with about 30% probability [32]. In
2016, two theoretical attacks against ZRTP have been
published by Bhargavan et al. [3]. They discuss a ver-
sion downgrade attack as well as a downgrade from DH
to Preshared mode. To this day, no systematization of
attacks has been done. Also, protocol attacks have only
been discussed theoretically or applied to the abandoned
Zfone desktop software.

In this paper, we analyze attacks against modern
real-world ZRTP systems. It is known that an evil SIP
operator can conduct MitM attacks, which can only be

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 5

detected by SAS comparison. We demonstrate the sim-
plicity how to design a minimally invasive MitM attack
that re-routes calls and records conversations in real-
time. In the main part of our paper, we analyze at-
tacks against specific ZRTP clients. Here, we assume
that SASs are correctly compared by end users. We de-
fine a set of protocol test cases for verification of stan-
dard compliance as well as UI conformance tests. The
most common ZRTP clients on major platforms, such
as Android, iOS, Windows, and Linux, have been eval-
uated. Our findings include a critical vulnerability in
Linphone (CVE-2016-6271) allowing wiretapping even
though SASs have been compared correctly. We report
about an issue in Jitsi, were a normal call is misin-
terpreted as an attack, resulting in a security warning
that should have not been displayed. Furthermore, sev-
eral weaknesses in the clients’ user interfaces have been
uncovered. By adapting our test cases and best prac-
tices we provide guidance on how to properly implement
ZRTP.

After introducing ZRTP in Section 2, we explore the
possibility of wiretapping encrypted VoIP calls in Sec-
tion 3. Assuming the use of ZRTP and correct compari-
son of SASs, we provide protocol and non-protocol spe-
cific test cases in Section 4. Using these tests, we eval-
uate protocol compliance and usability of ZRTP clients
in Section 5. In Section 6, we propose best practices for
client developers on how to properly design a SAS veri-
fication UI. Previous studies and other related work are
discussed in Section 7. In Section 8, we discuss the im-
plications of our findings, before concluding the paper
in Section 9.

2 ZRTP Fundamentals
The ZRTP key agreement protocol has been standard-
ized in RFC 6189 [37] and uses SASs to detect MitM at-
tacks. This agreement is transported over a Real-Time
Transport Protocol (RTP) communication channel that
has previously been established by a signaling protocol,
such as SIP. The SASs are derived from the DH shared
secrets and displayed on end users’ displays. They need
to be compared verbally by reading them out loud and
verifying that the peer’s SAS matches with the dis-
played one. In case of a MitM attack, the participants
end up with different shared secrets and thus different
SAS. The SASs are very short, e.g., ‘bz4f’ (B32 encod-
ing) or ‘spearhead Yucatan’ (B256 encoding with PGP
Wordlist [18, 19]), while still providing enough security

Responder Initiator

F1 Hello(version, options, ZIDr)

F2 HelloACK

F3 Hello(version, options, ZIDi)

F4 HelloACK

F5 Commit(ZIDi, options, hash value)

F6 DHPart1(pvr, shared secret hashes)

F7 DHPart2(pvi, shared secret hashes)

F8 Confirm1(MAC, D/A/V/E flags, sig)

F9 Confirm2(MAC, D/A/V/E flags, sig)

F10 Conf2ACK

Fig. 1. ZRTP handshake in DH Mode between an Initiator (right)
and a Responder (left). The protocol consist of three phases: Dis-
covery and Version/Algorithm Negotiation (F1-F4), Key Agree-
ment (F5-F7), and Key Confirmation and Derivation (F8-F10).

due to the usage of a hash commitment [36]. This re-
stricts a MitM to only one attempt to guess the correct
key for generating the same SAS.

In this section, we provide an overview of ZRTP
following the notation of RFC 6189 [37]. We focus on
parts of the protocol relevant to our analysis in this
paper. A representative call flow can be seen in Fig-
ure 1. During the exchange, one party ends up as the
Initiator and the other as the Responder. The under-
lying transport layer protocol is most certainly UDP.
Because errors of 16 bit UDP checksums cannot be dis-
tinguished from active MitM attacks, all ZRTP packets
contain an additional Cyclic Redundancy Check (CRC)
to detect errors. Additionally, two exponential backoff
retransmission timers are utilized: one for Hello mes-
sages, the other for all messages sent after HelloAck.
After the ZRTP handshake is complete, the SASs and
keys for a SRTP session are derived and the SRTP ses-
sion is established. The SAS then has to be compared
verbally to ensure that no MitM was between the end-
points. If something goes wrong during the exchange an
Error message is sent with a specific error code encod-
ing what caused the handshake to fail. Following Fig-
ure 1, we will look into the three phases of the protocol,
namely Discovery and Version/Algorithm Negotiation
(F1-F4), Key Agreement (F5-F7), and finally Key Con-
firmation and Derivation (F8-F10).

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 6

2.1 Discovery and Version/Algorithm
Negotiation (F1-F4)

Both endpoints begin the exchange by sending a Hello
message ensuring the peer also supports ZRTP. The
endpoint is identified by a unique randomly generated
96 bit ZID. Hello includes the supported ZRTP version,
which is used for the version negotiation: The high-
est version supported by both parties is used. At the
time of this writing the ZRTP version is 1.10. The Hello
message also includes supported hash and cipher algo-
rithms, as well as authentication tag, key agreement and
SAS types. The chosen key agreement type then is the
fastest both parties have in common. For the remaining
parameters, the Initiator may choose one mutually sup-
ported type. Received Hello messages are acknowledged
by subsequent HelloACK messages.

2.2 Key Agreement (F5-F7)

After both Hello messages have been received, a Commit
message begins the key agreement. The Commit mes-
sage is sent by the Initiator containing her ZID as ZIDi.
It is now possible to either proceed in Diffie-Hellmann
mode (DH mode) or with existing cached shared secrets
in Preshared mode.

2.2.1 DH Mode

In DH mode, the endpoints carry out a straightforward
DH key exchange to derive a shared DH secret using
the DHPart1 and DHPart1 messages (cf. Figure 1). To
extend the DH in a way to protect against brute force
attacks, the Initiator first commits to a public value
pvi by including hvi = hash(pvi), where SHA-256 is
used for hash() by default, in the Commit message. The
Responder answers directly with her public key pvr .
Only after receiving pvr , the Initiator sends her public
key pvi she has committed to in the Commit message.
This hash commitment provides a protection against
pre-computation of hash collisions during the DH ex-
change [36]. Thus, an attacker can only guess with a
chance of one out of 65536 when using a 16 bit SAS [37].
Finally, the DH secret is derived using the Initiator’s or
Responder’s own secret key svi / svr :

DHResult = pvrsvi mod p = pvisvr mod p

If both sides send a Commit at the same time, there
are rules to break the tie: If one Commit is for DH mode

and the other for Preshared mode, the DH mode wins.
Otherwise, the one with the larger hvi value wins. The
party with the winning Commit becomes the Initiator,
the peer becomes the Responder.

2.2.2 Preshared Mode

In Preshared mode, the endpoints can skip the DH if
they have shared secrets rs1 / rs2 from a previous ses-
sion. Subsequent shared secrets are derived from the
previous one that gives this mode similar properties like
in DH mode, such as forward secrecy: If an attacker
gains access to this secret, previous calls still can not be
decrypted as old key material is immediately destroyed
after use.

Shared secrets rs1 / rs2 are held in a long-term
cache and associated with a ZID. An additional boolean
flag is stored to indicate if the SAS has already been
compared and verified. It is important to note that en-
tries are not associated to the SIP address, only to the
ZID. Furthermore, there is no mapping between ZIDs
and SIP addresses in the ZRTP protocol. One can use
many devices each with their own ZID but configured
for the same SIP address. There can even be many
SIP addresses configured using the same ZID. The RFC
proposes to allow labeling of ZIDs to indicate the de-
vices they are associated to, such as “Alice on her office
phone”.

Identifiers for the cached shared secrets are trans-
mitted in the DHPart messages. By the Responder they
are calculated as:

rs1IDr = MAC (rs1, ‘Responder’)
rs2IDr = MAC (rs2, ‘Responder’)

rs1IDi, rs2IDi on the Initiator’s side are calculated anal-
ogously using ‘Initiator’ as the second argument for
the MAC . If a shared secret is not available, a random
value is used instead. This hides from an eavesdropper
that shared secrets are actually available.

2.3 Key Confirmation and Derivation
(F8-F10)

First, a hash is calculated over the previous messages:

total_hash = hash(HelloResponder ‖ Commit
‖DHPart1 ‖DHPart2)

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 7

Both parties then continue to calculate s0 that de-
pendents on the Key Agreement Type. In the following
a simplified version of the protocol is presented1.

2.3.1 DH Mode

For DH mode:

s0 = hash(counter ‖DHResult ‖ ‘ZRTP-HMAC-KDF’
‖ ZIDi ‖ ZIDr ‖ total_hash)

where counter = 1.

2.3.2 Preshared Mode

For Preshared mode, prior to sending the Commit mes-
sage the Initiator calculated:

preshared_key = hash(len(rs1) ‖ rs1)

where len() denotes the length in octets. Finally, both
participants proceed to calculate s0 :

KDF_Context = ZIDi ‖ ZIDr ‖ total_hash

s0 = KDF(preshared_key, ‘ZRTP PSK’,
KDF_Context,negotiated hash length)

where the Key Derivation Function is defined as:

KDF(KI , Label, Context, L) =
HMAC (KI , i ‖ Label ‖ 0x00 ‖ Context ‖ L)

2.3.3 Updating Shared Secret Cache

The cache is updated with a new derived rs1:

rs1 = KDF(s0 , ‘retained secret’, KDF_Context, 256)

2.3.4 SAS and SRTP Key Derivation

s0 has been derived regardless of the utilized mode. The
following calculations are identical for both modes:

ZRTPSess = KDF(s0, ‘ZRTP Session Key’,
KDF_Context, hash_len)

1 In contrast to RFC 6189 [37], we exclude pbxsecret and
auxsecret in our calculations and omit the values s1 , s2 , s3 ,
which are usually part of the s0 calculation.

where hash_len is the negotiated hash algorithm length.
The SAS is calculated by:

sashash = KDF(s0, ‘SAS’, KDF_Context, 256)

where the leftmost 16 bit or 20 bit of the sashash are
used for B32 or B256 encoding of the SAS respectively.

Finally, srtpkey, srtpsalt, mackey, and zrtpkey are
calculated. The srtpkey and srtpsalt are used to encrypt
the SRTP traffic, mackey is used by ZRTP as the key for
subsequent HMAC calculations and Confirm messages
are encrypted with the zrtpkey:

srtpkeyi = KDF(s0, ‘Initiator SRTP master key’,
KDF_Context, aes_length)

srtpsalti = KDF(s0, ‘Initiator SRTP master salt’,
KDF_Context, 112)

mackeyi = KDF(s0, ‘Initiator HMAC key’,
KDF_Context, hash_len)

zrtpkeyi = KDF(s0, ‘Initiator ZRTP key’,
KDF_Context, aes_length)

where aes_length is the negotiated AES key length. The
Responder keys are calculated analogously. Successful
generation of keys is then confirmed via the Confirm
messages, which signal that the SRTP session may now
start.

2.3.5 PBX Enrollment

To support PBX (essentially a telephone system) in
large companies, the ZRTP standard includes a PBX
enrollment procedure. This feature is a critical compo-
nent because it officially supports MitMs. The enroll-
ment can be initiated by setting the PBX Enrollment
flag (E) in the Confirm message. The client should pro-
vide a UI to let the user decide if she wants to allow
this PBX for future communications. For this, a secret
is calculated:

pbxsecret = KDF(ZRTPSess, ‘Trusted MiTM key’,
ZIDi ‖ ZIDr , 256)

If a PBX has been accepted, pbxsecret is cached and the
MitM flag (M) can be set in future Hello messages allow-
ing the PBX forwarding of SAS via a special SASRelay
message.

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 8

Alice SIP Server Bob

INVITE B@example.com
From: A@example.com

MitM Client

200 OK
From: A@example.com

INVITE B@example.com
From: A@example.com

INVITE mitm@localhost
From: A@example.com

INVITE B@example.com
From: A@example.com
modified:
INVITE mitm@localhost
From: A@example.com

200 OK
From: A@example.com

200 OK
From: A@example.com

INVITE B@example.com
From: mitm@localhost
header added:
mitm: A@example.com

INVITE B@example.com
From: mitm@localhost
mitm: A@example.com
modified:
INVITE B@example.com
From: A@example.com

200 OK
From: A@example.com

200 OK
From: A@example.com

Valid Session!
connect &

record

200 OK
From: A@example.com

1 4

58

9
27 3 6

9
10

Valid Session!
Bob
B@example…

ZRTP SAS:
bz4f

Alice
A@example…

ZRTP SAS:
utd9

Fig. 2. Flow of minimally invasive wiretapping: The SIP server re-routes INVITE messages to a MitM client connecting the multimedia
streams and records the conversation of Alice and Bob. Between the MitM client and the SIP server a ‘mitm’ header is introduced to
pass-through the original ‘From’ header. As expected, the displayed SASs are different.

3 Wiretapping VoIP Calls
We motivate the importance of end-to-end encryption
and authentication support in VoIP clients by showing
the simplicity of wiretapping calls by an evil operator,
i.e., someone having access to the central components
of the VoIP network. Our implementation is designed
to be as non-invasive as possible regarding to the orig-
inal SIP flow between the caller Alice and callee Bob.
In this section, we do not attempt to break or circum-
vent ZRTP. Instead we demonstrate the feasibility of
wiretapping VoIP calls if SASs are not compared.

3.1 Design

To keep the interference and modifications to a min-
imum, we decided to implement the MitM by hooking
into the SIP flow. An attack possibility is given by mod-
ifying incoming messages to forward calls to a record-
ing MitM client. This leads to a tunnel through the
MitM instead of a direct connection between Alice and
Bob. The modification takes care that the header of the
messages always contains the originally called SIP ad-
dress(es) to cover up the attack. A special MitM SIP
client accepts any incoming call automatically, starts a
second call to the original callee Bob, and connects the
incoming data stream from Alice with the new outgo-
ing stream to Bob. Now, everything works according to
the protocol but with a MitM recording the multime-

dia stream, i.e., the conversation. Following Figure 2,
wiretapping works along these steps:
1. Alice initiates a call to Bob.
2. The server manipulates the INVITE message

such that it is forwarded to the MitM client at
‘mitm@localhost’. The information that the message
should have been forwarded to Bob is not lost dur-
ing the modification, because the ‘To’ header has
not been changed.

3. The MitM client initiates, before accepting the in-
coming call, a second call to Bob. A new ‘mitm’
header is added to the outgoing call containing the
original ‘From’ address from the incoming one.

4. The server manipulates the INVITE message from
the MitM client such that it looks like it came from
Alice.

5. Bob acknowledges the INVITE message.
6. This acknowledgment is forwarded as normal to the

MitM client, because the MitM is the original caller.
7. The MitM client automatically accepts Alice’s call.
8. This acceptance is forwarded as normal to Alice,

because she is the caller.
9. Now, two valid connections have been established.

Optionally securing these with ZRTP would now
lead to divergent SASs.

10. The MitM client connects both multimedia channels
and records everything.

We extended Kamailio [20] with the described MitM ca-
pabilities. Our patch forwards calls to a MitM client us-
ing PJSIP [26] and ZRTP4PJ [8]. Messages are modified

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 9

based on their type, e.g., INVITE, BYE, or OK. Mul-
timedia streams are connected together using PJSIP’s
conference bridge framework. The whole call is recorded
using PJSIP’s recorder class. Our implementation has
been published as open source software2.

3.2 Summary

Our MitM implementation for the SIP allows wiretap-
ping of VoIP calls. We were able to verify the correctness
of our implementation by initiating calls between our ac-
counts ‘A@example.com’ and ‘B@example.com’. While
the clients of Alice and Bob still show the expected SIP
addresses, the calls were recorded by our MitM. These
attacks can only be protected by end-to-end authenti-
cation methods. Enabling ZRTP allows to detect the
attacker because the SAS displayed on Alice’s client is
unequal to Bob’s SAS, e.g., “bz4f” vs. “utd9”.

4 Attacking ZRTP Clients
After motivating the importance of ZRTP by showing
how MitM attacks stay undetected without it, we now
focus on the security of ZRTP-capable VoIP clients. As-
suming more cautious participants, who actually com-
pare SASs by voice, an attacker may choose to employ
specific attacks tailored towards the usability and cor-
rectness of specific software. It is important to note that
we will not analyze the possibility of forging spoken
SASs, which has already been done in several user stud-
ies [23, 31, 32]. Instead, we analyze specific issues of
common ZRTP-capable VoIP clients.

4.1 Attack Methodology

We differentiate between two types of MitM attacks de-
pending of the power of an evil operator : In the non-
impersonating MitM attack (cf. Figure 3a), the attacker
is a node on the route between Alice and Bob. While
multiple SIP servers can be involved, only one server on
the route needs to be behave maliciously for the whole
call to be wiretapped. The attacker can read and mod-
ify forwarded ZRTP messages, as well as inject her own.
The encrypted parts are opaque to the attacker, as she
does not have the encryption key.

2 https://gitlab.ibr.cs.tu-bs.de/groups/zrtp

Alice MitM Bob

(a) Non-impersonating MitM: The attacker is a node in between
and can forward as well as inject packets.

Alice Fake Bob MitM Fake Alice Bob

(b) Active MitM: The attacker maintains two separate calls to
Alice and Bob and connects the streams.

Fig. 3. Types of MitM attacks

In contrast, if the attacker is an active MitM
(cf. Figure 3b) she maintains two separate calls to Al-
ice and Bob, impersonating the peers. In Section 3, this
powerful MitM attacker has been implemented to be
able to freely modify multimedia streams. ZRTP aims
to detect these types of attacks by having the partici-
pants compare SASs by voice.

4.2 Protocol Test Cases

In the following, we provide functional test cases. These
either follow the protocol specification to test basic im-
plementation requirements or explicitly violate parts of
RFC 6189 [37]. An app passes a test if it behaves ac-
cording to the expected results defined per test. For a
brief overview, our test cases are also summarized in
Table 1.

[zrtpCall] Basic Call Functionality: Two calls
are made: One should be secured using DH mode, the
other using Preshared mode (if supported). To initiate
DH mode, the first call uses a new random ZID. This
simulates the scenario that either the participants never
spoke before over ZRTP-secured VoIP or that one par-
ticipant uses a new device or client (no shared secrets
in cache). In malicious scenarios, an active MitM im-
personating one SIP addresses can force a new ZID to
bypass Preshared mode and fallback to DH mode.
Test: Conduct two consecutive ZRTP-protected calls.
Expected Results: The calls should succeed as expected.

[verDown] Version Downgrade (Non-Imper-
sonating MitM): As analyzed by Bhargavan et al. the
version negotiation in ZRTP is not protected against
downgrade attacks [3]. In this test, an old version num-
ber is announced instead of the current version of 1.10.

https://gitlab.ibr.cs.tu-bs.de/groups/zrtp

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 10

Table 1. Overview of protocol and non-protocol test cases

Protocol Tests

Test Expected Result

[zrtpCall] Basic calls in DH and Preshared mode Successful calls
[verDown] Version downgrade to ‘1.0’ Abort key agreement
[weakDH] DH public key set to ‘1’ Abort key agreement
[invSS] Invalid shared secret in ZID cache Inform user and re-execute SAS comparison
[invCom] Invalid commit hvi Abort key agreement
[sharedMitM] Third person who shares secrets with victims acts as a MitM ZID labeling / Association between SIP and ZID
[pbxEnroll] Enrollment for PBX with Confirm message Proper UI or abort key agreement if unsupported

Non-Protocol Tests

Expected Result

[statusInd] Security indicators distinguishing the provided security levels with icon and text
[confSAS] Confirmation dialog with button to confirm SAS
[termError] On protocol error, terminate the connection automatically
[secDef] Provide secure defaults for VoIP providers

Previous versions are susceptible to an attack described
by Gupta and Shmatikov [14], thus we expect that cur-
rent implementations only provide 1.10.
Test: The version number inside the Hello message is
set to ‘1.0’.
Expected Results: The ZRTP key agreement must be
aborted. The standard specifies that a received Hello
message must be ignored if an unsupported version
number is received.

[weakDH] Weak DH (Non-Impersonating
MitM): This simulates a non-impersonating MitM at-
tack, where the endpoints operate in DH mode. In this
attack, a weak DH is enforced by using a DHPart (cf.
Section 2) with a public value of 1. Since in finite field
DH the result is calculated as DHResult = pvrsvi on
the Initiators side and DHResult = pvisvi on the Re-
sponders side, a received public value of 1 always leads
to DHResult = 1. This effectively breaks encryption, as
the encryption key is now known by the attacker. For
ECDH, a public value of 1 also must not be accepted as
defined in the standard.
Test: The public key of all DHPart messages (sent and
received) is set to ‘1’.
Expected Results: The ZRTP key agreement must be
aborted upon receipt of a DHPart with a public value
of 1. This means that at least an indicator should dis-
play the insecure connection, even better, the connec-
tion should be terminated (cf. [termError]).

[invSS] Invalid Shared Secret (Active MitM):
Invalid shared secrets rs1 / rs2 are used in the follow-
ing scenarios: 1) The client cache got corrupted and the
shared secret is now invalid or deleted. 2) A shared se-

cret has been established previously and the endpoints
operate in Preshared mode. Then, a MitM imperson-
ates one endpoint and tries to establish a connection
with a wrong shared secret. The ZRTP authors consider
this to be a more critical event in comparison to a call
made with a new ZID (cf. [zrtpCall]). Thus, according
to RFC 6189 [37], a cache mismatch must result in a
security dialog explicitly stating that the SAS needs to
be compared again indicating a higher risk of a MitM
attack.
Test: The shared secret in the ZID cache is replaced
with repeated ‘0xDEADBEEF’.
Expected Results: The user must be notified via a se-
curity dialog and the SAS comparison needs to be exe-
cuted again.

[invCom] Invalid Commit (Active MitM):
This simulates an active MitM attack, where the end-
points operate in DH mode. In case of a commit clash,
that is both parties tried to commit, the higher hvi wins.
hvi most certainly does not match the corresponding
public key. This means the participant sending the com-
mit is impersonated by a MitM who does not want to
commit to a public key. This would allow him to receive
the other public key and repeatedly generate a public
key so that it results in a SAS collision. This is feasi-
ble since the SAS consists of 16 bit for a B256 SAS and
20 bit for a B32 SAS. Then Alice and Bob would end
up with the same SAS, even though a MitM attack has
been executed. It is essential to verify that the revealed
public key actually corresponds to the Commit.
Test: In the Commit the hvi is set to repeated
‘0xFFFFFFFF’.

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 11

Expected Results: The ZRTP key agreement must be
aborted when receiving such a commit.

[sharedMitM] Shared MitM (Active MitM):
A third person Eve conducts a normal ZRTP-protected
call with Alice and one with Bob at different times.
All participants verify the SASs. Now, Alice as well as
Bob have shared secrets associated to Eve’s ZID in their
cache. Eve can now act as an active MitM by announc-
ing her own ZID instead of forwarding that of Alice and
Bob. Because ZIDs are not associated to a participant’s
SIP address, this attack stays undetected. The RFC pro-
poses to implement labeling of ZIDs (cf. Section 2). This
would allow the detection of such attacks if the partici-
pants compare the SIP address with the displayed ZID
label. It is important to note that SAS verification does
not imply that someone trusts a conversation partner,
e.g., Trump does not necessarily trust Clinton, but they
will likely want to verify their SASs. Thus, it is valid
to assume that users will establish shared secrets with
persons outside their social community.
Test: An attacker conducts normal calls with Alice and
Bob. Then she acts as a MitM and modifies the key
agreement by sending her own ZID instead of forward-
ing Bob’s and Alice’s ZID.
Expected Results: Either a) ZID labeling is implemented,
b) Preshared mode is not supported, or c) non-standard
association between SIP address and ZIDs is available.

[pbxEnroll] PBX Enrollment: This test verifies
that the client either provides an appropriate user inter-
face for accepting PBX when Confirm is received with
the E flag or that the PBX enrollment is not supported.
In case this feature is unsupported, the client must not
handle Hello with the M flag and SASRelay messages in
any way.
Test: 1) Confirm with the E flag is sent to the client. 2)
Hello with the M flag is sent. 3) SASRelay is sent.
Expected Results: Abort ZRTP key agreement if not sup-
ported or show proper UI for PBX enrollment.

4.3 Non-Protocol Test Cases

Besides verifying that ZRTP clients are compliant with
RFC 6189 [37], we evaluated an additional set of require-
ments not specified in the RFC. These tests focus on us-
ability, error handling, and defaults. A general proposal
how to implement security indicators, SAS verification,
and error handling is given in our ‘Best Practices’ in
Section 6.

[statusInd] Clear Status Indicators: If a client
supports different levels of security, these should be

communicated via indicators to the user. According
to “Rethinking Connection Security Indicators” [12], a
clear status indicator should be a combination of an icon
and corresponding text. As presented in their study, not
all participants understood the presented icons in their
intended way. Furthermore, displaying only icons means
that visually impaired users, such as red-green or total
color-blind individuals, must rely on the icon’s shape.
Thus, the used icons and texts must be clearly distin-
guishable from each other to separate the security levels.
Expected Results: Security indicators distinguishing the
provided security levels with icon and text.

[confSAS] Explicit Confirmation of SAS: To
encourage the user to perform the SAS comparison, we
expect a dialog that explicitly asks for confirmation of
the shared SAS. It should explain the process with at
least a way to confirm the SAS with a button.
Expected Results: Confirmation dialog with button to
confirm SAS.

[termError] Terminate on Protocol Error: In
case of a ZRTP protocol failure, such as [weakDH] or
[invCom], the call should not fallback to an insecure
connection. It can be assumed that either the server is
trying to intercept the connection or that the partici-
pant’s client is severely broken. It has been shown that
users prefer functionality over security and will use an
insecure fallback mode if provided. For example, studies
analyzing the effectiveness of SSL warnings showed that
non-experts clicked through warnings with probability
over 30% to be able to still access the website [1, 33]. In
our scenario, we suspect that users will not terminate a
call manually and instead continue a conversation. Also,
when talking on the phone, users usually do not pay at-
tention to the on-screen state and will miss the insecure
fallback indicator. Thus, the connection should be ter-
minated automatically.
Expected Results: On protocol error, terminate the con-
nection automatically.

[secDef] Secure Defaults: For better usability of
the client’s security features, secure defaults should be
provided. If the client is targeted at a specific service,
this can easily be done by enabling all security features
by default. If a client supports different SIP providers, a
setup procedure should allow the selection of the service
and then enable security features accordingly.
Expected Results: Provide secure defaults for VoIP
providers.

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 12

Table 2. Evaluation results for the most common ZRTP-capable VoIP clients using our protocol and non-protocol tests (ascending
alphabetical order by name).

Application OS Version Library Protocol Tests Non-Protocol Tests

[zr
tpC

all
]

[ve
rD
ow
n]

[w
ea
kD
H]

[in
vS
S]

[in
vC
om
]

[sh
are
dM
itM

]

[pb
xE
nro
ll]

[st
atu
sIn
d]

[co
nfS
AS
]

[te
rm
Er
ror
]

[se
cD
ef]

Acrobits Softphone iOS 5.8.1 - – # # #
CSipSimple Android 1.02.03 ZRTP4PJ # # – G# #

Jitsi Win, Lin, MacOS 2.9.0 ZRTP4J G# # – #
Linphone Android Android 3.1.1 bzrtp # #a # – # # #

Signal Android 3.15.2 - – –b –b – #
Signal iOS 2.6.4 - – –b –b – # G#

 = pass, G# = partially, # = fail, – = not supported
a CVE-2016-6271
b Signal is a cacheless implementation. It does not support Preshared mode.

5 Evaluation
For our evaluation, we selected common ZRTP-capable
VoIP clients. Our selection criteria was as follows:
1. We must be able to execute our test cases:

– If the client supports federated SIP and does
not operate in a closed network, we can test
it by conducting a call to a special Jitsi client
that has been modified to execute our test cases
against the calling client.

– If the client is operating in a closed net-
work, we need to implement our test cases di-
rectly into this client. Thus, the client’s source
code must be available.

2. The client should be relevant:
– The client should be actively used, i.e., with

a user base of at least 100,000 installations.
– The implementation should be under active

development, i.e., new versions have been re-
leased in 2016.

ZRTP + SIP: While ZRTP can be deployed indepen-
dently of the signaling protocol, RFC 6189 [37] mainly
focuses on its usage with SIP. The developer collec-
tive Guardian Project provides the Open Secure Tele-
phony Network (OSTN) specification, a de-facto stan-
dard to deploy secure federated VoIP services based on
SIP [13]. Using their testbed, we analyzed the following
SIP clients:
Acrobits Softphone Closed source but standard-

conform SIP client with ZRTP extension for iOS.
Recommended on the OSTN website.

CSipSimple Free Software for Android with an active
user base of over 1M users. Several proprietary forks
have been released on Google Play.

Jitsi Open Source software for desktop operating sys-
tems that is actively developed with at least one
new git tag per month.

Linphone Free Software for Android with an active
user base of over 100,000 users.

We excluded clients that are no longer available, such
as Zfone (abandoned since 2011-01-29), Qutecom (aban-
doned since 2015-03), and SFLPhone (successor app
named Ring no longer uses ZRTP). We excluded Pri-
vateWave because we were not able to execute our test
cases due to its operation in a closed network and be-
cause no source code is available. Silent Phone has been
excluded because it operates in a closed network and
we were not able to compile its source code3, which is
available on GitHub.

ZRTP + XMPP: Besides SIP, ZRTP can also be
integrated with the Extensible Messaging and Presence
Protocol (XMPP). XMPP has been extended by Jingle
in XEP-166/XEP-167 [29, 30] to support media sessions
between peers, primarily used for voice communication.
For end-to-end security, ZRTP has been standardized as
an extension in XEP-0262 [27]. To the best of the au-
thors’ knowledge, only Jitsi supports ZRTP over Jingle.
Other XMPP clients, such as Empathy and Pidgin, do
not support XEP-0262.

3 https://github.com/SilentCircle/silent-phone-android/
issues/11

https://github.com/SilentCircle/silent-phone-android/issues/11
https://github.com/SilentCircle/silent-phone-android/issues/11

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 13

(a) [zrtpCall] in DH
mode

(b) [zrtpCall] in
Preshared mode with
ZID label

(c) Warning message
for [invSS]

Fig. 4. Acrobits Softphone: Dialog containing instructions, SAS
verification, and ZID label

(a) no security (b) full ZRTP (c) One ZRTP-
protected and one
unprotected stream

Fig. 5. Acrobits Softphone: States of security indicators

ZRTP + HTTP: Due to design objectives, such as
high asynchronicity in mobile scenarios, Open Whisper
Systems decided to design their own minimal signaling
protocol with a RESTful HTTP API [21]. This has been
deployed in conjunction with ZRTP in their messaging
and VoIP app Signal. While Signal does not support
federation, we were able to implement our test cases
based on their source code for Android and iOS and
thus selected it for our evaluation:
Signal Free Software for Android and iOS with an ac-

tive user base of over 1M users.

Our results are summarized in Table 2. In the following
we discuss them in detail for each app individually.

5.1 Acrobits Softphone

As shown in Figure 4, Acrobits Softphone behaved per-
fectly in all protocol tests. It is the only implementation
that implemented the labeling of ZIDs and thus pro-
vides protection against [sharedMitM]. For [verDown],
[weakDH], [invSS], and [invCom] the key agreement was
aborted falling back to non-ZRTP. Unfortunately, the
connection was not terminated ([termError]). It lacks
a proper wizard to setup an account with the OSTN,
thus users are required to configure a secure server con-
nection by themselves ([secDef]). What negatively stood
out in our analysis is the use of security indicators. As
shown in Figure 5, there is no icon for insecure connec-
tions making it difficult to assess the current security

(a) SAS verification UI shown
for [zrtpCall] in DH mode, no
warning for [invSS]

(b) Security indicator for [zrtp-
Call] in Preshared mode

(c) Security indicator for non-
ZRTP connections

Fig. 6. CSipSimple: UI of interesting test cases

for an end user. Furthermore, we were able to establish
connections where two indicators were displayed: Unfor-
tunately, it was not clear for us what these meant just by
looking at them. Acrobit’s support explained that the
icon labeled with ‘CLEAR’ indicates an insecure video
stream besides the ZRTP-protected voice channel.

5.2 CSipSimple

No serious protocol issues have been encountered when
testing for [verDown], [weakDH], and [invCom]. As ex-
pected for [confSAS], a SAS confirmation dialog is
shown (cf. Figure 6a). No warning message is shown
for [invSS], thus this test does not pass. Also, there
is no way to label ZIDs, thus [sharedMitM] cannot be
detected. Regarding [statusInd]: Detailed security in-
formation is displayed (cf. Figure 6b): The underly-
ing network layer (TLS), ZRTP verification status, the
SAS, the block cipher algorithm (AES 128), and the
key agreement type (finite field DH with 3072 bit mod-
ular exponentiation group). Users with a security back-
ground will be well informed, but other users will prob-
ably mistake the small lock icon in the insecure fallback
for guaranteed confidentiality (cf. Figure 6c). As seen
in Figure 6c, CSipSimple does not terminate the call on
errors but falls back to non-ZRTP ([termError]). This
behavior can easily go unnoticed by users, especially be-
cause the different statuses are not differentiated by icon
or color.

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 14

(a) Security warning shown
for [zrtpCall] that should
only be shown for [invSS].

(b) Security indicator for [zrt-
pCall] in Preshared mode after
SAS confirmation

(c) Security indicator for non-
ZRTP connections

Fig. 7. Jitsi: UI of interesting test cases

5.3 Jitsi

No protocol issues have been encountered when testing
for [verDown], [weakDH], [invSS], and [invCom]. ZID la-
beling is not implemented, thus [sharedMitM] cannot be
detected. Two strong visual cues are used to convey the
security status (cf. Figure 7b/7c): an closed or opened
lock ([statusInd]). Additionally, the states between ver-
ified and unverified SAS are differentiated by green and
yellow. The corresponding text says “zrtp Connected”
for ZRTP connections or “Connected” for other con-
nections. While this can still be improved as described
in Section 6, Jitsi provides the best representation for
end users compared to other analyzed SIP-based clients.
The warning message for [invSS] is a little bit mislead-
ing, but the client still responds correctly (cf. Figure 7a).
However this warning is also shown for [zrtpCall] after
two other calls have been made. We analyzed this prob-
lem in detail and fixed the issue: Instead of generating
a completely new ZID entry in-memory, the last read
entry from the ZID cache was used for a call with a new
participant. This happened because a variable was not
resetted properly. As seen in Figure 7c, Jitsi does not
terminate the call on errors but falls back to non-ZRTP
([termError]).

5.4 Linphone Android

[verDown] and [weakDH] succeeded as expected. [invSS]
did not pass as no warning message is shown here. ZID
labeling is not implemented, thus [sharedMitM] cannot
be detected. The test case [invCom] ended fatal: We
uncovered a critical security vulnerability that gives an
attacker full control over the displayed SAS. We im-
plemented a fully working exploit using a patched Jitsi

(a) SAS verification UI shown
for [zrtpCall] in DH mode

(b) Succeeded SAS attack

(c) Security indicator for [zrtp-
Call]

(d) Security indicator for non-
ZRTP connections

Fig. 8. Linphone: UI of interesting test cases

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 500000 1x106 1.5x106 2x106

number of tries

16 bits (B256)
20 bits (B32)

Fig. 9. Linphone: Probability of hitting a targeted SAS when
exploiting CVE-2016-6271

client that simulates a MitM. There are two variants
to this attack, when taking the perspective of an active
MitM:

a) Only one client is vulnerable: The SAS of the
other client is random and the attacker forces the newly
generated SAS to collide with the already established
SAS. If b is the number of bits in the SAS, finding a
collision after k trials is a Bernoulli experiment and the
probability is 1− (2b−1

2b)k, where b is the number of bits
(cf. Figure 9).

b) Both clients are vulnerable: The search for
an SAS collision becomes a lot easier. The attacker is
not required to collide with one certain SAS, but any
SAS that can be forced on the other side suffices. Note
however, that this is not a birthday attack. In theory,
the attacker could hit a SAS twice on one side with-
out reaching a collision between both sides. There is no
limit to when a collision is inevitable, as there is when
performing a birthday attack.

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 15

(a) Only DH mode is sup-
ported for [zrtpCall].

(b) Call termination on
[invCom]

(c) Call termination on
[weakDH]

Fig. 10. Signal on Android: UI of interesting test cases

As we simulate a MitM without actually having two
targets, our attack tackles variant a), the more challeng-
ing case. In Figure 8b, Linphone was exploited to display
a SAS of 4 matching digits. Imagine the SAS being a
4-letter word (like ‘fake’ or ‘okay’), then the SAS blends
in with the message and can alter its meaning. We
responsibly disclosed this vulnerability on 07/05/2016
to Belledonne Communications and got CVE-2016-6271
assigned.

The UI for SAS verification is implemented prop-
erly as seen in Figure 8a. A small indicator in the top
right displays the security status (cf. Figure 8c). Unfor-
tunately, the insecure fallback mode is very difficult to
detect, as seen in Figure 8d. Instead of a check mark, a
‘X’ is displayed inside the lock placed in the top right
corner. We consider this as insufficient for [statusInd] to
pass. More clearer icons combined with texts and strong
colors displayed in a focus area are required.

5.5 Signal Android

No protocol issues have been encountered when testing
for [weakDH] and [invCom]. Figure 10a shows Signal’s
call screen without errors. Notice that in the [weakDH]
case in Figure 10b the call is ended directly while in the
[invCom] case in Figure 10c the error message “Hand-
shake failed!” is displayed on screen before ending the
call. Signal ignores the version field, because it uses a
closed network, where Signal clients can only communi-
cate among each other. Thus, even when set to ‘NOPE’,

(a) [zrtpCall] (b) Unsuccessfull call termina-
tion for [weakDH], [invCom]

Fig. 11. Signal on iOS: UI of interesting test cases

nothing happens ([verDown]). Because Signal is a cache-
less implementation [37], the [invSS] and [sharedMitM]
tests are ignored.

In Signal, no security indicators are displayed ([sta-
tusInd]). We interpret this positively, because only
ZRTP calls are supported in its closed network and
thus no indicators to differentiate between secure and
non-secure calls are required. Due to the fact that the
verification status of communication partners cannot be
stored for future calls, Signal does not pass [confSAS].

5.6 Signal iOS

Signal on iOS behaves similar to the Android implemen-
tation. A simple [zrtpCall] is shown in Figure 11a. Its
behaviour only differs for [termError]: While the An-
droid client successfully terminates the connection, the
iOS client hangs at the screen indicating that the key
agreement is still in progress, as shown in Figure 11b.

6 Best Practices
As shown in our analysis in Section 5, most apps com-
ply with the protocol, but greatly differ regarding their
SAS verification UI and use of security indicators. Other
publications focusing on voice forgability of SAS found
that users often did not detect forged voices or dismiss
security warnings [23, 31, 32]. To improve the user ex-

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 16

Table 3. Our proposal for security indicators and actions corre-
sponding to specific ZRTP states. For federated SIP clients we
propose Base Configuration. A configuration for High-Sensitive
Communication is proposed for scenarios with higher security
requirements. Our extension adds an additional error state in SIP-
ZID Binding.

ZRTP State Indicator Action

Base Configuration

SAS Verified Secure -
SAS Unverified Not Secure SAS Verification
No ZRTP Not Secure -
Errors, e.g., [invCom] - Terminate
Error: [invSS] Not Secure SAS Verification+Warn

High-Sensitive Communication

SAS Unverified Not Secure -
No ZRTP Not Secure -

SIP-ZID Binding

Error: Mismatch Not Secure SAS Verification+Warn

perience, better convey the current security status, and
assist end users’ decision making during the SAS ver-
ification, we propose a set of improvements for ZRTP
clients. These improvements are based on results from
other publications and justified individually.

The following design criteria are primarily written
for ZRTP client developers. The SIP-ZID binding and
SAS SENTENCE encoding could be published as an
IETF Internet Draft if accepted by the community.

Sentences for SAS Verification: We propose a
SENTENCE encoding [2] that uses the leftmost 50-
90 bit from sashash to deterministically generate sen-
tences as depicted in Figure 12. It has been shown that
deviations in sentences are more easily detected [7]. This
also protects against forged SAS as synthesized sen-
tences can be better distinguished from human-spoken
sentences [22]. While single words are spoken separately,
the tone of words as part of the sentence depend on each
other. Single words can easily be synthesized into voice
samples for a specific victim and then stored in a lookup
table for the actual attack (size: 256 + 256). In compar-
ison, the cost to synthesize all possible sentences is too
high (250 to 290 depending on the algorithm).

SAS Verification UI: The comparison of SAS
should be provided in a way that provides clear guidance
for users and does not habituate users to always accept
SAS. Thus, our card-like design in Figure 12 provides
guidelines and buttons that are tinted with a neutral

Fig. 12. Our proposed SAS verification UI for high-sensitive com-
munication. The security indicator is chosen in accordance with
Table 3. Instead of four characters (B32) or two words (B256),
we propose the usage of sentences generated from the SAS hash.
The buttons are design in a neutral way to prevent priming the
end user for a specific choice.

color to prevent users from automatically clicking ‘ac-
cept’. In our future work, this UI definitely needs to be
evaluated in larger user study.

Security Indicators: For apps providing ZRTP
alongside insecure communication, non-ambiguous se-
curity indicators should be implemented. As depicted
in Table 3, we propose the usage of 3 different indi-
cators based on the recommendations by Porter Felt et
al. [12] and adapted for ZRTP. For federated SIP clients
we propose the usage of grey ‘Not Secure’ indicators for
non-ZRTP calls that happen quite often. For clients con-
figured for High-Sensitive Communication, these should
be replaced with red indicators in addition to a warning
icon (cf. Table 3).

Terminate on Error: ZRTP errors should lead to
call termination (in contrast to insecure fallback as in
Acrobits Softphone, CSipSimple, Jitsi, and Linphone).
Error messages should be displayed in full screen for a
short time to be recognized, not inside the call screen
(like in Signal).

Warning Message for [invSS]: Together with the
red security indicator in Table 3, we propose the follow-
ing warning message for [invSS] in red: “The security
phrase of alice@example.com changed. To verify that no

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 17

one is wiretapping the conversation, compare the new
security phrase with alice@example.com.”

Shared Secret Cache: We propose to implement
a cache for shared secrets and not just use DH mode
for every connection. End users should be annoyed very
rarely by SAS verification to not get habituated to click-
ing ‘accept’.

6.1 Extension: SIP-ZID Binding

As discussed in Section 2, RFC 6189 [37] proposes to let
the user write a label for each encountered ZID to de-
scribe its usage, such as “Alice on her office phone”. This
has been implemented in Acrobits Softphone and pro-
tects against [sharedMitM] attacks. Without redesign-
ing the whole protocol, we propose to use SIP addresses
as ZID labels without requiring user input. In this way
the [sharedMitM] attack can be detected automatically.

Because the same ZID can be used for many SIP
accounts, a mismatch can happen. Then, the following
warning message should be shown: “Your participant
uses a new address. To secure this call compare the se-
curity phrase again.” After the SAS is verified again, the
new SIP address should be added to this ZID. Thus, our
extension requires that the client-side cache allows to a
save a set of labels (SIP addresses) associated to each
ZID. Conclusively, the extension provides a way to pin
SIP addresses to specific ZIDs.

7 Related Work
ZRTP has been verified formally by Bresciani et al. [4–
6]. It was shown that it is a secure key agreement pro-
tocol under the Dolev-Yao model. For their verifica-
tion, the authors assume the SAS comparison to be able
to detect MitM attacks. They have not analyzed voice
forgery and similiar attacks. Gupta and Smatikov dis-
covered a flaw in one of the previous versions of ZRTP
before its standardization [14]: ZIDs were not authen-
ticated early enough in the protocol exchange. Because
they are used to look up shared secrets from the cache,
an attacker could spoof a known ZID to conduct a MitM
attack. Petraschek et al. analyze theoretical and prac-
tical attacks against ZRTP [24]. On the one hand, they
focus on bypassing the SAS comparison by tampering
with the audio signal once a MitM has been established.
On the other hand, practical attacks are discussed, sim-
ilar to ours. They show how to get into the media path

for a MitM attack and analyze the behaviour of the—
now abandoned—ZRTP client Zfone. They recognize
that if an attacker uses a new ZID and spoofs the SIP
address of the target, it is easily dismissed by inattentive
users that this new session now longer uses shared se-
crets from the cache and instead should be verified again
to detect the attacker. Recently, two theoretical attacks
have been published by Bhargavan et al. [3]. They dis-
cuss a version downgrade attack as well as a downgrade
from DH to preshared mode. To this day, uncovered at-
tacks have not been systematized or applied for testing
modern ZRTP clients.

Petraschek’s attacks on SAS could be combined
with recent work showing the feasibility of crowdsourc-
ing voice imitation [23]. Similarly, imitating the voice of
a participant to forge the SAS has been researched by
Shirvanian et al. [31]. Two approaches were investigated:
the short voice reordering attack takes prerecorded SAS
strings of the target and uses them to forge the SAS, the
short voice morphing attack generates arbitrary strings
in the victim’s voice given just a few minutes of eaves-
dropped sentences. The effectiveness is demonstrated by
testing against manual detection as well as automatic
detection. In the user study with 30 participants, about
50% of morphing attacks and 80% of reordering attacks
were undetected. In a subsequent study with 128 online-
participants, they found that for a two-word SAS, an
attacker succeeds with about 30% probability [32]. This
is due to human errors, such as failed speaker identifi-
cation or wrong checksum comparison. While we do not
provide an overview over the large amount of research in
the area of voice synthesis, newer results, such as Deep-
Mind’s WaveNet [22], can drastically decrease the de-
tectability of these attacks. All discussed results show
the feasibility of replacing spoken voice with imitated
recordings. In their SoK paper, Unger et al. compare
the verification via SAS with others trust establishment
approaches [34]. In particular, they classify SAS as not
being inattentive user resistant because users are often
required to manually end the call on failed verification.

Mechanisms to mitigate MitM attacks other than
SAS that do not require the parties’ active participa-
tion have also been proposed by Hlavacs et al. [15]. The
first one assumes that Alice and Bob do not know each
other (and therefore the attacker is not likely to know
Bob either and can not predict that Alice is going to
call Bob in the future), a situation in which the confi-
dentiality is most threatened by attacks on SAS. Bob
is obliged to send Alice the solution of computational
puzzle within a small timeframe (10 seconds for exam-
ple) that involves: A period of validity, Bob’s URI, a

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 18

temporary public key that is used to create a VPN. An
improvement by associating ZIDs to SIP addresses is
proposed by Petraschek et al. to protect against pre-
viously discussed voice forgery attacks [17]. A different
idea has been investigated by Schürmann et al. by utiliz-
ing audio fingerprinting to replace the manual compar-
ison of SAS [28]. This enables the use of devices with-
out displays and hands-free equipment. However, to the
best of the authors knowledge, no research specifically
investigated implementation aspects in which security
might go wrong in regard to ZRTP. This includes er-
rors and UI weaknesses in real-world clients that secure
their communications with ZRTP.

A lot of non-ZRTP-specific research exists related
to the verification of public keys via fingerprints and
hash commitments. In a 1000-participant large usabil-
ity study, Dechand et al. evaluate fingerprint representa-
tions [7]. They recommend a sentence-based encoding,
which achieves the highest attack detection rate and
best usability perception. A hash commitment proto-
col with up to 10 peers is proposed by Farb et al. in
SafeSlinger [11]. Their implementation includes inter-
esting new UI concepts for verifying SAS by displaying
radio buttons with three possible SAS choices where
only one has been generated from the shared secret.

8 Ethics and Follow-Up
We hope that our findings contribute to the security of
the VoIP ecosystem by having an impact on protocol
designers, developers, and subsequently the end users.

We provide a MitM implementation to show wire-
tapping of unprotected VoIP calls. Our intention is not
to harm end users, but to demonstrate the simplicity of
interception software.

The security vulnerability CVE-2016-6271 in Lin-
phone has been responsibly disclosed on 07/05/2016
to Belledonne Communications and fixed in Linphone
3.2.04. We directly fixed the issue that a MitM warn-
ing is shown in Jitsi for normal calls due to erroneously
reading the last entry from the ZID cache5. CSipSimple
and Linphone did not implement a warning dialog for
[invSS]. While RFC 6189 [37] requires this, it is not a fa-
tal protocol error and its usefulness is limited. No tested

4 https://github.com/BelledonneCommunications/bzrtp/
commit/bbb1e6e2f467ee4bd7b9a8c800e4f07343d7d99b
5 https://github.com/wernerd/ZRTP4J/pull/6
https://github.com/jitsi/jitsi/issues/303

client except Acrobits Softphone is protected against
[sharedMitM]. RFC 6189 proposes ZID labeling to pro-
vide users a way to detect this attack. We suspect that
the adoption of ZID labeling is hindered by its UI com-
plexity. Here, we want to encourage a broader discussion
how to prevent this attack automatically, e.g., by SIP-
ZID binding.

We encountered different status indicators, which
were not optimal and easily dismissed. Developers
should follow our best practices and use indicators from
Table 3. To prevent accidental insecure usage, clients
should terminate on errors and provide secure defaults
for SIP accounts. We hope that our proposed best prac-
tices encourages a discussion about usability and UI el-
ements in the ZRTP developer community.

9 Conclusion
In this paper, we analyzed how VoIP calls can be wire-
tapped despite end-to-end protection by the ZRTP key
exchange protocol. We motivated the importance of
ZRTP by showing that active MitM attacks are easy to
deploy for operators of VoIP infrastructure. As the main
part of our research, we evaluated six of the most used
open-source ZRTP clients available. We found one crit-
ical vulnerability (CVE-2016-6271) where Linphone on
Android does not follow the standard and implements
no verification of the hash commitments. This vulnera-
bility allows successful wiretapping, even when compar-
ing SASs. In Jitsi, a normal call was misinterpreted as
an attack resulting in a false security warning. We also
found that most implementations fall back to insecure
non-ZRTP connections on ZRTP errors, which is hard
to see for end users, who do not observe their screen
when calling. This is made worse by bad UI practices,
where security indicators are difficult to differentiate or
not placed in central UI areas. Finally, we proposed best
practices on how to overcome the deficiencies related to
the way ZRTP has been integrated in VoIP user inter-
faces.

https://github.com/BelledonneCommunications/bzrtp/commit/bbb1e6e2f467ee4bd7b9a8c800e4f07343d7d99b
https://github.com/BelledonneCommunications/bzrtp/commit/bbb1e6e2f467ee4bd7b9a8c800e4f07343d7d99b
https://github.com/wernerd/ZRTP4J/pull/6
https://github.com/jitsi/jitsi/issues/303

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 19

References
[1] Devdatta Akhawe and Adrienne Porter Felt. Alice in warn-

ingland: A large-scale field study of browser security warning
effectiveness. In Presented as part of the 22nd USENIX Se-
curity Symposium (USENIX Security 13), pages 257–272,
Washington, D.C., 2013. USENIX.

[2] akwizgran. basic-english. https://github.com/akwizgran/
basic-english. (Accessed: 10/2016).

[3] K. Bhargavan, C. Brzuska, C. Fournet, M. Green,
M. Kohlweiss, and S. Zanella-Béguelin. Downgrade resilience
in key-exchange protocols. In IEEE Symposium on Security
and Privacy (SP), pages 506–525, May 2016.

[4] R. Bresciani and A. Butterfield. A formal security proof for
the ZRTP protocol. In International Conference for Internet
Technology and Secured Transactions (ICITST), pages 1–6,
Nov 2009.

[5] Riccardo Bresciani. The ZRTP protocol analysis on the
diffie-hellman mode. Computer Science Department Techni-
cal Report TCD-CS-2009-13, Trinity College Dublin, 2009.

[6] Riccardo Bresciani and Andrew Butterfield. ProVerif analysis
of the ZRTP protocol. International Journal for Infonomics
(IJI), 3(3), 2010.

[7] Sergej Dechand, Dominik Schürmann, Karoline Busse,
Yasemin Acar, Sascha Fahl, and Matthew Smith. An Em-
pirical Study of Textual Key-Fingerprint Representations. In
25th USENIX Security Symposium (USENIX Security 16),
pages 193–208, Austin, TX, August 2016. USENIX.

[8] Werner Dittmann. ZRTP4PJ README. https://github.
com/wernerd/ZRTP4PJ/tree/develop, 2015. (Accessed:
10/2016).

[9] Electronic Frontier Foundation. Secure Messaging Scorecard.
https://www.eff.org/secure-messaging-scorecard, November
2014.

[10] Facebook. Messenger Secret Conversations. https:
//fbnewsroomus.files.wordpress.com/2016/07/secret_
conversations_whitepaper-1.pdf, July 2016.

[11] Michael Farb, Yue-Hsun Lin, Tiffany Hyun-Jin Kim,
Jonathan McCune, and Adrian Perrig. SafeSlinger: easy-
to-use and secure public-key exchange. In Proceedings of
the 19th annual international conference on Mobile comput-
ing & networking, pages 417–428. ACM, 2013.

[12] Adrienne Porter Felt, Robert W. Reeder, Alex Ainslie, Helen
Harris, Max Walker, Christopher Thompson, Mustafa Embre
Acer, Elisabeth Morant, and Sunny Consolvo. Rethinking
Connection Security Indicators. In Twelfth Symposium on
Usable Privacy and Security (SOUPS 2016), pages 1–14,
Denver, CO, June 2016. USENIX.

[13] Guardianproject. Open {Secure,Source,Standards} Tele-
phony Network (OSTN). https://dev.guardianproject.info/
projects/ostn/wiki/Wiki, April 2016.

[14] Prateek Gupta and Vitaly Shmatikov. Security Analysis of
Voice-over-IP Protocols. In 20th IEEE Computer Security
Foundations Symposium (CSF 2007), pages 49–63, Venice,
Italy, July 2007.

[15] Helmut Hlavacs, Wilfried Gansterer, Hannes Schabauer,
Joachim, Martin Petraschek, Thomas Hoeher, and Oliver
Jung. Enhancing ZRTP by using Computational Puzzles.
Journal of Universal Computer Science, 14(5), 2008.

[16] IETF. SIP Working Group. https://datatracker.ietf.org/wg/
sip/, July 2009.

[17] O. Jung, M. Petraschek, T. Hoeher, and I. Gojmerac. Using
sip identity to prevent man-in-the-middle attacks on zrtp. In
2008 1st IFIP Wireless Days, pages 1–5, November 2008.

[18] Patrick Juola. Isolated-Word Confusion Metrics and the
PGPfone Alphabet. In International Conference on New
Methods in Natural Language Processing, 1996.

[19] Patrick Juola. Whole-word phonetic distances and the PGP-
fone alphabet. In Fourth International Conference on Spoken
Language (ICSLP 96), volume 1, pages 98–101 vol.1, Octo-
ber 1996.

[20] Kamailio. Kamailio SIP-Server. https://www.kamailio.org.
(Accessed: 10/2016).

[21] Moxie Marlinspike. Creating a low-latency calling network.
https://whispersystems.org/blog/low-latency-switching/,
January 2013.

[22] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gener-
ative model for raw audio. arXiv preprint arXiv:1609.03499,
2016.

[23] Saurabh Panjwani and Achintya Prakash. Crowdsourcing
Attacks on Biometric Systems. In Symposium On Usable
Privacy and Security (SOUPS 2014), pages 257–269, Menlo
Park, CA, July 2014. USENIX.

[24] Martin Petraschek, Thomas Hoeher, Oliver Jung, Helmut
Hlavacs, and Wilfried Gansterer. Security and Usability
Aspects of Man-in-the-Middle Attacks on ZRTP. Journal of
Universal Computer Science, 14(5):673–692, 2008.

[25] Pew Research Center. The Smartphone Difference. http:
//www.pewinternet.org/2015/04/01/us-smartphone-use-in-
2015/, April 2015.

[26] PjProject. PjProject. http://pjsip.org/, 2015. (Accessed:
10/2016).

[27] Peter Saint-Andre. Use of ZRTP in Jingle RTP Sessions.
XEP-0262, June 2011.

[28] Dominik Schürmann and Stephan Sigg. Poster: Handsfree
ZRTP - A Novel Key Agreement for RTP, Protected by
Voice Commitments. In Symposium On Usable Privacy and
Security (SOUPS), July 2013.

[29] Joe Beda Peter Saint-Andre Robert McQueen Sean Egan
Scott Ludwig and Joe Hildebrand. Jingle. XEP-0166, May
2016.

[30] Peter Saint-Andre Sean Egan Robert McQueen Scott Lud-
wig and Diana Cionoiu. Jingle RTP Sessions. XEP-0167,
July 2016.

[31] Maliheh Shirvanian and Nitesh Saxena. Wiretapping via
Mimicry: Short Voice Imitation Man-in-the-Middle Attacks
on Crypto Phones. In Proc. of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS
14), pages 868–879, New York, NY, USA, 2014. ACM.

[32] Maliheh Shirvanian and Nitesh Saxena. On the security
and usability of crypto phones. In Proceedings of the 31st
Annual Computer Security Applications Conference, ACSAC
2015, pages 21–30, New York, NY, USA, 2015. ACM.

[33] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi,
Neha Atri, and Lorrie Faith Cranor. Crying wolf: An em-
pirical study of ssl warning effectiveness. In Proceed-
ings of the 18th Conference on USENIX Security Sympo-

https://github.com/akwizgran/basic-english
https://github.com/akwizgran/basic-english
https://github.com/wernerd/ZRTP4PJ/tree/develop
https://github.com/wernerd/ZRTP4PJ/tree/develop
https://www.eff.org/secure-messaging-scorecard
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://dev.guardianproject.info/projects/ostn/wiki/Wiki
https://dev.guardianproject.info/projects/ostn/wiki/Wiki
https://datatracker.ietf.org/wg/sip/
https://datatracker.ietf.org/wg/sip/
https://www.kamailio.org
https://whispersystems.org/blog/low-latency-switching/
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/
http://pjsip.org/

Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP 20

sium, SSYM’09, pages 399–416, Berkeley, CA, USA, 2009.
USENIX.

[34] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Gold-
berg, and M. Smith. SoK: Secure Messaging. In IEEE
Symposium on Security and Privacy, pages 232–249, May
2015.

[35] WhatsApp. WhatsApp Encryption Overview. https://www.
whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf,
April 2016.

[36] Wikipedia. Commitment scheme. http://en.wikipedia.org/
wiki/Commitment_scheme. (Accessed: 10/2016).

[37] P. Zimmermann, A. Johnston, and J. Callas. ZRTP: Media
Path Key Agreement for Unicast Secure RTP. RFC 6189
(Informational), April 2011.

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
http://en.wikipedia.org/wiki/Commitment_scheme
http://en.wikipedia.org/wiki/Commitment_scheme

	Wiretapping End-to-End Encrypted VoIP Calls: Real-World Attacks on ZRTP
	1 Introduction
	2 ZRTP Fundamentals
	2.1 Discovery and Version/Algorithm Negotiation (F1-F4)
	2.2 Key Agreement (F5-F7)
	2.2.1 DH Mode
	2.2.2 Preshared Mode

	2.3 Key Confirmation and Derivation (F8-F10)
	2.3.1 DH Mode
	2.3.2 Preshared Mode
	2.3.3 Updating Shared Secret Cache
	2.3.4 SAS and SRTP Key Derivation
	2.3.5 PBX Enrollment

	3 Wiretapping VoIP Calls
	3.1 Design
	3.2 Summary

	4 Attacking ZRTP Clients
	4.1 Attack Methodology
	4.2 Protocol Test Cases
	4.3 Non-Protocol Test Cases

	5 Evaluation
	5.1 Acrobits Softphone
	5.2 CSipSimple
	5.3 Jitsi
	5.4 Linphone Android
	5.5 Signal Android
	5.6 Signal iOS

	6 Best Practices
	6.1 Extension: SIP-ZID Binding

	7 Related Work
	8 Ethics and Follow-Up
	9 Conclusion

