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Abstract: Searchable Encryption (SE) allows a user to
upload data to the cloud and to search it in a remote
fashion while preserving the privacy of both the data
and the queries. Recent research results describe attacks
on SE schemes using the access pattern, denoting the
ids of documents matching search queries, which most
SE schemes reveal during query processing. However SE
schemes usually leak more than just the access pattern,
and this extra leakage can lead to attacks (much) more
harmful than the ones using basic access pattern leakage
only. We remark that in the special case of Multi-User
Searchable Encryption (MUSE), where many users up-
load and search data in a cloud-based infrastructure,
a large number of existing solutions have a common
leakage in addition to the well-studied access pattern
leakage. We show that this seemingly small extra leak-
age allows a very simple yet powerful attack, and that
the privacy degree of the affected schemes have been
overestimated. We also show that this new vulnerabil-
ity affects existing software. Finally we formalize the
newly identified leakage profile and show how it relates
to previously defined ones.
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1 Introduction
Cloud computing allows companies and individuals to
outsource their data and computation. The benefits of
cloud services such as increased availability and flexibil-
ity come at a high cost in terms of new security and pri-
vacy challenges. In particular a user may not be willing
to let the Cloud Service Provider (CSP) access the con-
tent of her data, because the CSP could be controlled by
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an external attacker or could in some extreme cases be a
potential adversary itself. While traditional encryption
seems to be a solution to this problem, a straightforward
application of encryption would hinder most advantages
of cloud computing since the CSP would be unable to
perform some operations over encrypted data.

Searchable Encryption (SE) schemes allow a cloud
user to outsource some encrypted data and to further
delegate the search operations over this encrypted data
to the CSP. Starting with the seminal work of Song
et al. [29], SE has since been an active research topic
[7, 16, 17, 23] (for an extended state of the art see the
survey of Bösh et al. [5]).

In most SE schemes, a small amount of information
leakage is often tolerated in order to achieve some level
of efficiency. In particular it is commonly accepted that
schemes leak the access pattern, denoting the ids of files
that match a query, since doing so allows to search in
sub-linear time [9]. As a consequence a large number of
attacks on SE systems [6, 12, 15, 32] focus on access
pattern leakage in order to affect the largest possible
set of schemes. However each scheme tends to have its
own specific leakage, often including but not limited to
the access pattern. In this paper we show that in the
multi-user setting, the majority of the so-called Multi-
User SE (MUSE) schemes share a common information
leak, on top of access pattern leakage. We show that
this small extra leakage leads to a simple yet very seri-
ous privacy issue, exposing those schemes to an attack
that overrides all existing access-pattern-based attacks.
The cause of this situation seems to be the false be-
lief that leaking “slightly more” than the access pattern
can only enable attacks “slightly more powerful” than
access-pattern attacks; as pointed by Zhang et al. [32]:
“In truth, the ramifications of different types of leakage
are poorly understood”.

Contributions: Through formal discussions,
proof-of-concepts on real-world software and statisti-
cal experimentations, we show how the security of most
existing MUSE schemes has been widely overestimated
and that the solution to the security exposures pointed
in this paper would require radical changes to their
design. Our results also call for more efforts towards
a systematization of knowledge on leakage profiles in
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SE, and as a result we formally define the newly identi-
fied leakage profile and show how it relates to the ones
defined in the literature.

The rest of the paper is organized as follows: In
Section 2 we remind the classification of single-user SE
schemes by Cash et al. and existing attacks; In Section 3
we highlight a design flaw in many MUSE schemes that
exposes them to a simple but powerful leakage-abuse
attack; In Section 4 we present a new leakage profile
that helps analysing the security of MUSE schemes by
capturing the newly identified threat; Finally in Section
5 we give directions for future work and suggestions for
possible countermeasures.

2 Existing Leakage-abuse attacks
in Searchable Encryption

2.1 Leakage Profiles in Searchable
Encryption

In a typical Searchable Encryption (SE) scenario a user
encrypts her data before uploading it to the CSP. The
user can further search over her outsourced data by
sending an encrypted query to the CSP. The CSP ap-
plies the received query on the encrypted data and sends
back the corresponding response. Either this response is
in plaintext, or the user may need to decrypt it to ob-
tain the result of her search. In this paper we restrict
our study to keyword search, where search queries aim
at testing the presence of a keyword w in a sequence
W = (W [1],W [2], . . . ) of keywords called index.

In their seminal paper, Curtmola et al. [9] initiate
an approach for the security analysis of SE schemes that
consists in the use of leakage profiles. Let a history of
a protocol be an acceptable input to the functionality
implemented by the protocol; a leakage profile is a func-
tion taking as input a history of a protocol and which
output characterizes the information an adversary can
learn by taking part in the execution of the scheme.

Definition 1. A protocol is said to have a leakage pro-
file L (or to be secure w.r.t leakage profile L) if there
exists an efficient algorithm called simulator and noted
Sim which on input L(H) with H a history of the proto-
col, outputs a view Sim(L(H)) that is indistinguishable
from the view of an adversary in a real execution of the
protocol with input H.

For SE protocols, the history consists of the in-
dexes W1,W2, . . . that were uploaded and the queries
w1, w2, . . . that were sent. The practical consequence of
proving that a scheme has a leakage profile L is the
guarantee that the adversary cannot compute anything
that cannot be computed from L(H).

The main statement of Curtmola et al. [9] is that a
SE scheme cannot be trivially insecure if it does not re-
veal more than the access pattern of queries, that is the
ids of indices matching a query, and the search pattern
that is the information of whether two queries are the
same or not. These two notions of access pattern and
search pattern have since been frequently used in order
to describe the leakage of SE schemes.

2.2 The Existing Leakage Profile
Classification

Cash et al. [6, Section 2.1] remark that a large number
of papers follow the method of Curtmola et al. [9] as
they resort to leakage profiles for the security analysis
of SE schemes. Cash et al. [6] generalize this approach by
suggesting a classification of most existing SE schemes
based on their leakage profile. To this end they define
four profiles named from L1, that reveals the least in-
formation, to L4 that reveals the most information. We
remind the definitions of the L1 to L3 profiles, and omit
L4 as it reveals too much information to be useful for
our study.

The L1 leakage profile or query-revealed occur-
rence pattern regroups SE schemes whereby the CSP
sees the access pattern of each search query (the occur-
rence pattern of a keyword denotes the indices where
this keyword occurs in the dataset). Let {Wi} be the set
of uploaded indices and (w1, w2, . . . , wQ) the Q queries
received by the CSP, the information contained in the
L1 profile can be represented as:

{i | w1 ∈Wi}, {i | w2 ∈Wi}, ..., {i | wQ ∈Wi}

The L2 profile or fully-revealed occurrence pattern
corresponds to schemes where the CSP can see the oc-
currence patterns directly from the uploaded data, be-
fore having received any query. This justifies the nam-
ing of the profile as “fully-revealed” instead of “query-
revealed” as in L1. Let {w1, w2, . . . , wn} be the set of
all keywords in the uploaded data, the information con-
tained in the L2 profile can be represented as:

{i | w1 ∈Wi}, {i | w2 ∈Wi}, ..., {i | wn ∈Wi}
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Note that the information revealed by the L1 profile
gets closer to the information revealed by the L2 profile
as the number of received queries grows.

Finally, schemes within the L3 profile or fully-
revealed occurrence pattern with keyword order reveal
the position of keywords in the plaintext index in addi-
tion to their co-occurrence. For example, the CSP can
see if the third keyword of Wi is the same as the fifth
keyword of Wj . Let {w1, w2, . . . , wn} be the set of all
keywords as in L2, the information contained in the L3
profile can be represented as:

{(i, l) : Wi[l] = w1}, . . . , {(i, l) : Wi[l] = wn}

2.2.1 Prior Knowledge and Existing Leakage Abuse
Attacks

Cash et al. [6, Section 2.1] remark that defining the
leakage profile of a scheme “does not clarify what an
attacker can learn from the information that is leaked”.
Consequently, they present practical attacks against the
different leakage profiles in order to give an idea of how
much privacy can be expected from each profile. The
information leaked by the profiles is not sufficient for
the CSP to recover any data or queries; However in any
practical situation, the CSP will be able to obtain some
information in a way that is independent from what is
leaked by the scheme. For instance the CSP might know
that the hosted data is mainly English text, or that
the files are financial reports, etc. Cash et al. call this
external information prior knowledge. The attacks they
present, called leakage-abuse attacks, show the extent
to which privacy can be violated when a given leakage
profile is combined with a given prior knowledge.

We now quickly recall the main existing leakage-
abuse attacks. An attack named “count attack” target-
ing the L1 profile is presented in [6]. The prior knowl-
edge required by the count attack consists in the proba-
bility of co-occurrence of keywords (for instance “New”
is very likely to occur if “York” is present) as well as the
number of indices containing each keyword. With this
information, the count attack allows the CSP to recover
the content of some queries. The authors show that the
count attack outperforms the similar “IKK attack” pre-
sented by Islam et al. [15]. Cash et al. also present a
simple attack against the L3 profile requiring that the
CSP knows the plaintext of a small number of docu-
ments. Since L3 reveals the order of keywords and their
occurrence patterns, the CSP is able for each keyword
in a known document to see where this keyword occurs

in other documents. Active attacks, for instance where
the adversary can plant arbitrary documents in the sys-
tem, were also presented by Cash et al. [6, Section 5.2]
and by Zhang et al. [32], but we only consider passive
attacks in this paper.

A recent paper by Grubbs et al. [12] present many
ways of attacking a software framework named Mylar
[24] whose building blocks include a SE protocol by
Popa and Zeldovich [25]. Among the attacks presented
in [12], many of them only leverage implementation or
design issues of Mylar and are not related to the under-
lying cryptographic protocols [12, Section 6], or require
an active attacker [12, Section 8]. The few attacks that
fall in the scope of the present paper [12, Section 7] only
make a basic use of simple access pattern leakage and
can be related to previous attacks against L1 profile. We
also note that the leakage abuse attacks in [12] either
leverage specific properties of the application under at-
tack and cannot be extended to cover any application
using the underlying SE scheme, or target application
that do not even use any SE scheme (“MDaisy” and
“MeteorShop” applications).

3 Leakage-Abuse Attacks against
MUSE

Recent papers on leakage-abuse attacks [6, 12, 15, 21,
22, 32] show that the threat caused by prior knowledge
is becoming a matter of concern in single-user SE. This
threat is even more serious in the multi-user setting
where the dataset is owned and accessed by a number of
users and users do not trust other users except the ones
they explicitly authorize to search their data. In this
section we show that a large number of MUSE schemes
share a common design flaw which, combined with the
specificity of the multi-user setting, creates a very seri-
ous vulnerability that has been neglected so far.

3.1 Multi-User Searchable Encryption

A MUSE system involves a set R = {ri} of users called
readers and a set S = {sj} of users called writers. Each
writer sj uploads an encrypted version Cj of her in-
dex Wj to the CSP (for simplicity, we assume that each
writer stores a single index). Each writer can authorize
an arbitrary set of readers to search her index; the au-
thorizations are represented by an authorization graph
whereby vertices are the readers and writers and an edge
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between a reader ri and a writer sj represents the fact
that ri has been authorized to search the index of sj .
The history of a MUSE protocol is slightly different from
the one of a single-user SE protocol: it consists of the
index of each writer, the queries which consist of pairs
(w, r) where w is the queried keyword and r is the query-
ing reader, and of the authorization graph represented
by a function Auth which on input a reader outputs the
ids of the indices this reader was allowed to search.

MUSE is a recent but active research topic [3, 4,
11, 14, 24, 25, 27, 30, 31, 33]. We note however that
despite the obvious risk that the CSP obtains some prior
knowledge in a MUSE system through colluding users,
only few schemes on MUSE [24, 25, 27] consider this
risk in their security model.

3.2 Common Weakness for Many MUSE
Schemes

A large number of MUSE schemes [3, 4, 11, 14, 24, 25,
30, 31, 33] share a common algorithmic structure re-
garding the application of queries on encrypted indices.
In this structure, which we call iterative testing, an en-
crypted index denoted as Ci is built by encrypting each
keyword of Wi separately. Further below we call an en-
crypted keyword a hash. The order of the hashes in Ci

does not need to be related to the keywords in Wi, and
as a result Ci can be described as follows:

Ci ← ReOrder(Enc(w)∀w ∈Wi)

where Enc is the keyword encryption function of the
iterative-testing-based MUSE protocol and ReOrder is
some reordering algorithm, typically a lexicographical
ordering. A query is then applied on Ci by applying the
query against each hash separately. This implementa-
tion of keyword search is intuitive and efficient, but it
lets the CSP discover a significant amount of informa-
tion: Not only the scheme leaks the ids of matching in-
dices (the access pattern); but for each matching index,
the scheme also reveals which hash the query matched.
This leakage can be represented as:

{(i, l) : i ∈ Auth(r) ∧ Ci[l] matches w}
for each query (w, r)

This leakage looks like a query-revealed version of
the L3 leakage profile, with the difference that the re-
vealed information is the position of the matching hash
in the encrypted index Ci and not the position of the
searched keyword in the index Wi. Now these two po-
sitions do not need to be correlated in iterative testing,

and in most schemes the order of the hashes in an en-
crypted index is arbitrary. For this reason, it is com-
monly assumed that revealing the exact location of the
matching hash gives no useful information to the CSP,
and that such a leakage is equivalent to simply leaking
the access pattern, i.e. to a L1 profile. This assumption
is explicit in Cash et al [6]; it is also implicit in works
that study iterative-based MUSE schemes while only
mentioning “access pattern” attacks [4, 12, 25].

C1 C2 C3 C4

r1 r2 r3

Fig. 1. An illustration of the leakage caused by the iterative test-
ing structure.

For each encrypted query q observed by the adver-
sary:

Let C be a new equivalence class containing q;
For each hash Ci[l] matching q:
If Ci[l] is already in a class C0:

Add all members of C to C0;
Set C ← C0;

Otherwise (not in any existing class):
Add the hash to C;

Initialize the ouput value as an empty set;
For each (x,w) in the prior knowledge, with x a query
or hash and w a keyword:

Let C be the class of x (possibly containing only x);
Add (C, w) to the output set

Fig. 2. An example of attack algorithm leveraging the leakage
caused by iterative testing

The leakage caused by iterative testing introduces
a simple yet very serious vulnerability that would not
be present in a scheme revealing no more than the ac-
cess pattern. This vulnerability, illustrated in Figure 1,
comes from the fact that hashes from different indices
matching the same query, and conversely queries from
different users matching the same hash, can only cor-
respond to the same keyword. More precisely when the
CSP observes a query matching a set of hashes, or a
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hash matching a set of queries, it can create an equiva-
lence class representing the fact that these objects (both
queries and hashes) all represent the same keyword.
Equivalence classes can be merged when they intersect,
resulting in equivalence relations even between hashes
that are very “far” from each other in the authorization
graph. Finally by learning the keyword corresponding to
a single hash or query the CSP immediately obtains the
content of all hashes and queries identified as “equiv-
alent” to the hash or query that was revealed. Figure
2 presents the attack in a more formal way. Note that
one could easily extract more information on the data
and queries than what this attack does, but we prefer
presenting a simple algorithm for the sake of clarity.

The prior knowledge required for our attack, men-
tioned in Figure 2, consists in hash-keyword and query-
keyword pairs representing the information that “this
hash (resp. query) corresponds to this plaintext key-
word”. We believe that the CSP can easily obtain some
prior knowledge of this nature in the multi-user setting
whereby some users can collude with the CSP. Indeed
in such a setting the CSP has access to:
– the plaintext keywords corresponding to the hashes

in the encrypted indices of colluding writers;
– the plaintext keywords corresponding to queries

sent by colluding readers.

The only other input to the attack is the (perfectly le-
gitimate) queries received by the CSP. The attack will
then reveal the plaintext of some queries and hashes that
can be very far, in the sense of the authorization graph,
from the indices concerned by the prior knowledge. Said
differently, the CSP obtains information colluding users
did not have access to.

The simplicity and efficiency of this attack must
be compared with the complexity of attacks that only
exploit the basic access pattern leakage, i.e. attacks
against L1 or L2 profiles: The IKK attack [15] uses Sim-
ulated Annealing and, according to Cash et al. [6], “does
not perform well even when just a small fraction of doc-
uments are unknown to the attacker” ; The count at-
tack [6] improves over the IKK attack but remains quite
complicated. Finally Grubbs et al. [12] do not provide
evaluation results of the attacks they present but these
results should not exceed the efficiency reached by the
other existing attacks. As we show in Section 4, the at-
tack we present outperforms all of these attacks by a
large margin.

As a consequence, for SE schemes that are vulner-
able to the attack presented in this paper, there is no
more interest to study attacks based on access pattern

leakage: these attacks are overridden due to the effi-
ciency and simplicity of our new attack. Unfortunately,
a large number of MUSE schemes [3, 4, 11, 14, 24, 25,
30, 31, 33] are in this situation since they do use the
iterative testing structure and the adversary can easily
obtain the required prior knowledge in the multi-user
setting. In the next section we discuss the impact of
this new attack on an existing MUSE scheme named
MK (Multi-Key searchable encryption) as well as on an
existing software framework named Mylar.

3.3 Application of the attack against MK
and Mylar

Popa and Zeldovich were the first to address the situ-
ation whereby the CSP is colluding with some users in
[25]: They aim at designing a MUSE scheme in which
a user cannot obtain information on a document if she
was not granted access to it, even in the case where she
colludes with the CSP. To this end, Popa and Zeldovich
present a scheme that is based upon the work of Bao
et al. [4] but brings a major modification: While in the
scheme of Bao et al. all indices are re-encrypted from
the key of their corresponding writer to a master key
owned by a Trusted Third Party (TTP), Popa and Zel-
dovich suggest to leave each index encrypted under the
key of its owner and to instead re-encrypt each query
into one different token per index to search. The result-
ing scheme, named Multi-Key Search or MK for short,
provides more privacy against a colluding user than the
scheme of Bao et al. because each index is encrypted
under a different key.

Grubbs et al. [12] show that the definition of secu-
rity of [25] is flawed by presenting an obviously insecure
scheme that satisfies the definition. Additionally in the
paper describing Mylar [24], the authors acknowledge
that [25] does not protect against access pattern attacks.
However none of these works manage to give a proper
measure of how insecure the MK scheme is because they
do not mention any attack like the one we present.

Indeed the MK scheme, despite its focus on user-
collusion resistance, implements the iterative testing
structure. This can be easily seen in the description of
the scheme [25, Section 6]: in order to search an index,
the algorithm MK.Match is iterated over each hash in
the encrypted index and returns “True” if and only if
the hash matches the query.

We now show how this weakness of the MK scheme
allows to very efficiently break the privacy of the Mylar
software framework that is based on MK. Mylar [24],
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described as “a platform for building web applications
which protects data confidentiality against attackers with
full access to servers”, uses the MK scheme to enable
shared encrypted cloud-hosted data. It received a large
attention both from the academia [13, 18–20, 28] and
the industry1.

A large number of security issues of Mylar have been
very recently presented by Grubbs et al. [12] but very
few of them are related to the underlying MK scheme;
one could then hope that a better implementation of
the framework could result in a quite secure solution,
without having to change the cryptographic protocol
used for MUSE operations. This would be a serious mis-
take, as we show that exploiting the weakness of the MK
scheme suffices to break privacy in Mylar.

We only give the general idea and the practical re-
sults of our experiments here, but the source code of our
implementation and the instructions necessary to repro-
duce the attack are publicly available [2]. Our proof-
of-concept implementation targets EncChat, a “secure”
chat application that has been built using Mylar. In the
EncChat application, each message is considered as a
document and an index is created out of the words con-
tained in the message. This index is encrypted through
the MK scheme and uploaded to the CSP. A user re-
ceives an authorization for each chat room it is given
access to, and can search over all these chat rooms by
sending a single encrypted query thanks to the use of
the MK scheme. For each message searched, because of
the iterative testing structure, the CSP sees precisely
which hash matched the query. The CSP is then able to
identify equivalent hashes across different messages and
different chat rooms, as was illustrated in Figure 1. By
corrupting a user, the CSP gets access to every message
in every chat room this user had access to. Finally, by
combining these two sources of information, the CSP
can deduce the content of many messages and queries
using the algorithm of Figure 2. Users can be affected
even if they are very far from the corrupted user in the
authorization graph.

Figure 3 illustrates our attack scenario: two users
“good2” and “good3” are having a very sensitive con-

1 http://bgr.com/2014/03/27/mylar-website-encryption-
technology/
http://motherboard.vice.com/read/want-to-keep-data-private-
encrypt-it-before-it-even-reaches-a-server
http://www.ibm.com/developerworks/cloud/library/cl-always-
on-data-encryption-for-cloud-security
http://spectrum.ieee.org/computing/software/how-to-
compute-with-data-you-cant-see

bad good1 good2 good3

casual_chat casual_chat2 secret_conv

Fig. 3. The users and chat rooms in our attack scenario against
EncChat. The CSP by taking control of user “bad” is able to
recover keywords in the chat room “secret_conv”.

versation in chat room “secret_conv”. Only the two
of them have access to this chat room. At the same
time, “good2” is having another conversation with user
“good1”. This user is completely trustworthy and will
provide no prior knowledge at all to the CSP. However
user “good1” is in a chat room with a user named “bad”
which does reveal information to the CSP. By observing
the queries made by all users and by obtaining infor-
mation through user “bad”, the CSP is able to recover
keywords in the chat room “secret_conv” as is shown
in Figure 4. Note that we only present a small-scale sce-
nario here which purpose is to confirm that our attack
affects MK-based schemes like Mylar. The next section
presents quantitative results that allow to estimate the
amount of (in)security provided by any MUSE scheme
implementing iterative testing.

4 A new leakage profile for
MUSE

The vulnerability pointed out in this paper, albeit very
simple, has been neglected by a large number of works
focusing on the MUSE problem. We believe that one of
the reasons why this vulnerability has been neglected
before is the lack of systematization of the existing
knowledge on leakage profiles: In the absence of a com-
prehensive (enough) framework for understanding infor-
mation leakage in SE, one may try to resort to intuition
to evaluate the dangerousness of a given leakage pro-
file, and consider (by mistake) that the iterative-testing
structure should provide as much privacy as any SE
scheme known to “leak the access pattern”.

In that sense the approach initiated by Cash et al.
[6] consisting in categorizing leakage profiles is of major
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### REBUILT CONVERSATION ###
### CHATROOM: ’secret_conv’ ###
good3 (2016-08-29 18:28:53): [fonseca, data,

mossack, panama]
good3 (2016-08-29 18:28:54): [evasion, tax]

Fig. 4. The conversation “secret_conv” seen by user “good2” in
the EncChat application, compared to the output of our attack
program run by the CSP.

importance. Consequently, in this section we integrate
the threat this paper presents in the framework of [6].
We define a new leakage profile named keyword access
pattern or LKWAP that is computed by the algorithm in
Figure 5.

Input: A MUSE history
For each index Wi:
Pick a random permutation σi;

For each query (w, r):
Append {(i, l) : i ∈ Auth(r) ∧ Wi[σi(l)] = w} to
result;

Return result.

Fig. 5. Algorithm to compute LKWAP from a MUSE history

Where Auth(r) indicates the indices for which
reader r has authorization and σi is a randomly-chosen
permutation of Wi. In the rest of the section we show
that introducing the LKWAP profile is necessary at least
in the MUSE problem where the categories defined by
Cash et al. do not capture its dangerousness in a precise
enough manner We then show where the LKWAP profile

should be situated in the hierarchy defined by Cash et
al.

4.1 Difference between LKWAP and L1

First we confirm in the framework of Cash et al. [6] our
claim that LKWAP should not be considered as equiva-
lent to L1.

The attack presented in Figure 1 is an (partial)
index-recovery attack and is effective with a very small
amount of prior knowledge; it would then be difficult
to compare it with the count attack of Cash et al. [6]
which is a query-recovery attack and requires a large
amount of prior knowledge (at least 80% of the dataset
corpus must be known by the CSP). We then design
a query-recovery attack against LKWAP that we think
makes comparison between LKWAP and L1 easier. Our
attack is trivial: The CSP has some prior knowledge
in the form of tuples (w, (i, l)), each such tuple meaning
that the hash Ci[l] represents the keyword w. In our set-
ting an index is either entirely revealed to the CSP (all
of its hashes are in the prior knowledge) or not revealed
at all. As we already said, this kind of prior knowledge
is immediate in a MUSE system based on iterative test-
ing when some users collude with the CSP. The query
recovery process is as follow: If a query matches one of
the known hashes, the query is recovered; otherwise it
is not.

We evaluated this attack experimentally, following
a methodology that is as close as possible to the one of
Cash et al. [6]: the dataset used is a subset of 30,000
mails from the ENRON email dataset [1], indices are
built by taking all words in the corpus, removing stop
words, applying the porter stemming algorithm [26],
then selecting the 500 most common words obtained this
way as the index vocabulary. The source code necessary
to reproduce all experiments is publicly accessible [2].

Experimental results show a very good success rate
of the attack (red discs in Figure 6): for instance when
the amount of revealed indices represent only 1% of all
indices, the CSP is still able to recover about 65% of the
queries. However comparing these results with the one
of the count attack would not be fair, the prior knowl-
edge of the count attack being very different from the
one of our attack. We then design an attack against a L1
profile that uses the same prior knowledge as the one we
designed against a LKWAP profile. The attack against a
L1 profile consists in keeping track of the keywords that
have unique occurrence pattern among the revealed in-
dices: For instance, the CSP can remember that only the
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Fig. 6. Results of query recovery attack against keyword-access
pattern leakage, compared with attack against L1 leakage profile
in the same scenario.

keyword “dog” appears in W3 and W5 but not in W8.
Queries targeting such keywords are recovered; other
queries are not recovered. The performance of this at-
tack (blue squares in Figure 6) is much lower than the
corresponding attack against LKWAP, especially when
only a small fraction of the dataset is revealed to the
CSP.

This significant difference already shows how differ-
ent access-pattern leakage and keyword-access-pattern
leakage are. To this initial difference must be added the
fact that with a LKWAP profile, each new query may re-
veal the keyword corresponding to new hashes and thus
increase the amount of knowledge of the CSP, mak-
ing query recovery more efficient in return. This phe-
nomenon, almost non-existent in a L1 profile, is very
noticeable in the experiments presented in the next sec-
tion.

4.2 Situating LKWAP in the existing
hierarchy of leakage profiles

In this section we show that the LKWAP leakage profile
can be considered as the query-revealed variant of the
L3 profile, in the same way L1 is the query-revealed
variant of the L2 profile. We insist again on the fact
that, in a strict sense, a query-revealed variant of the
L3 profile is different from a LKWAP profile since the L3
profile reveal the position of keywords in an index while
the LKWAP profile reveals the position of hashes in an
encrypted index.

Again we define two attacks and compare their ef-
ficiency. We compare the attack we described in Figure
2 with the attack against the L3 profile presented by
Cash et al. [6] in which any keyword present in a re-
vealed index is recovered in all the other indices. The
prior knowledge is of the same type as in the previous
section and the experimental methodology is the same
except that the size of the vocabulary is 5,000, in order
to stay close to the experiments of [6]. Because we need
to define an authorization graph for the attack against
LKWAP that takes place in the multi-user setting, we
consider 50 readers and give each of them access to 3,000
randomly-chosen index. Finally we reveal 20 indices out
of the 30,000 as in the “Enron-20” experiment of [6].

Fig. 7. Results of our attack for 10,000, 30,000 and 60,000 ob-
served queries, and results of the attack of [6] against L3 profiles
for comparison.

Figure 7 shows the cumulative distribution of key-
word recovery for the attack against LKWAP with
10,000, 30,000 and 60,000 observed queries, and for the
attack against L3. For instance we can see that with
60,000 observed queries, 90% of all indices have at least
10% of their keywords recovered and 50% of all indices
have at least 30% of their keywords recovered. The dam-
age on privacy caused by LKWAP gets closer to the dam-
age of a L3 profile as the number of observed queries
grows; this allows us to conclude that, in terms of dan-
gerousness, a LKWAP profile can be considered as query-
revealed version of a L3 profile. This experiment is also
the opportunity to stress again how different L1 and
LKWAP are: with such a small ratio of revealed indices
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(20/30, 000 = 0.07%), an attack against L1 profile would
produce close to no results as can be seen in Figure 6.

We thus suggest to add the LKWAP leakage profile
to the existing classification of Cash et al. [6], and to
consider it as a profile that can lead to serious threats in
some settings as MUSE. Doing so would help spreading
the idea that mentioning access-pattern attacks makes
no sense in a context where keyword-access-pattern at-
tacks are possible, and should help noticing the kind of
vulnerability we identify.

5 Countermeasures and Future
Work

An interesting question for future work would be the
presence of such vulnerability in single-user SE sys-
tems. Indeed even in state-of-the-art SE protocols as [8],
the CSP can observe the memory addresses at which
matches happen. However in a single-user setting the
phenomenon of user collusion is not present any more,
so an attack scenario where the adversary can exploit
this extra leakage remains to be found.

A more urgent matter concerns the design of a
MUSE system that is not affected by the vulnerabil-
ity presented in this paper. As of today the only ex-
isting MUSE scheme that does not follow the iterative-
testing structure seems to be the one of [27]. However
this scheme is for now too inefficient to be considered
practical: For instance the workload of a reader dur-
ing a query scales linearly with the total number of
indices being searched. While many papers are being
published describing possible attacks using the access
pattern, having an efficient protocol for the MUSE prob-
lem that reveals no more than the access pattern would
actually be a significant improvement.

To build a MUSE protocol that reveals no more
than the access pattern one must make sure than, in
the view of the CSP, all queries matching the same in-
dices are indistinguishable. Solutions could involve pri-
vate information retrieval as [27] or oblivious transfer,
but a scalable use of these protocols for MUSE remains
to be found; another option could be based on a con-
struction akin to cryptographic accumulators (see [10]
for a good overview of the topic) where the CSP has
no choice but to process an encrypted index as a single,
indivisible entity.

Finally as more and more attacks using access pat-
tern leakage are published, revealing the access pattern
could soon be considered as too insecure for a MUSE

system (or even a SE system) in practice. It would then
be interesting to study protocols with higher privacy
guarantees, with the possible cost of lack of efficiency
and decreased functionality.

6 Conclusion
Recent work on leakage-abuse attacks paved the way
for a better understanding of privacy in SE. Neverthe-
less, efforts are still needed before the various types of
leakage in SE are properly understood. In particular,
the growing popularity of access-pattern attacks must
not hide the fact that most schemes reveal more than
just the access pattern, and can thus be exposed to less
general but more powerful attacks. This caveat is even
stronger in the multi-user setting and our work shows
that the MUSE problem still lacks a solution that is ef-
ficient and that offers an acceptable level of privacy at
the same time. Our definition and study of the keyword-
access pattern leakage profile should improve the secu-
rity analysis of future MUSE schemes.
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