DE GRUYTER OPEN

Proceedings on Privacy Enhancing Technologies ; 2017 (4):5-22

Diogo Barradas*, Nuno Santos, and Luis Rodrigues

DeltaShaper: Enabling Unobservable
Censorship-resistant TCP Tunneling over
Videoconferencing Streams

Abstract: This paper studies the possibility of using the en-
crypted video channel of widely used videoconferencing ap-
plications, such as Skype, as a carrier for unobservable covert
TCP/IP communications. We propose and evaluate different
alternatives to encode information in the video stream in order
to increase available throughput while preserving the packet-
level characteristics of the video stream. We have built a
censorship-resistant system, named DeltaShaper, which offers
a data-link interface and supports TCP/IP applications that tol-
erate low throughput / high latency links. Our results show that
it is possible to run standard protocols such as FTP, SMTP, or
HTTP over Skype video streams.

Keywords: Censorship Circumvention, Traffic Analysis,
Traffic Encapsulation, Video Stream Synthesis

DOI 10.1515/popets-2017-0037
Received 2017-02-28; revised 2017-06-01; accepted 2017-06-02.

1 Introduction

Over the last years, a number of authors have developed
censorship-resistant systems which aim to provide access to
blocked information over the Internet [17, 21, 25]. A com-
mon approach to achieve this goal is to stealthily funnel covert
data over protocols that are unlikely to be blocked by a cen-
sor, such as Skype. Skype traffic is encrypted, which prevents
a state-level censor that controls the network from inspecting
the content of packets and look for the presence of covert data.

Our work builds on previous related work, in particular
on FreeWave [17], while aiming at addressing its main limi-
tations. FreeWave allows users to encode covert data into the
acoustic signals of VoIP connections over Skype. A significant

*Corresponding Author: Diogo Barradas: INESC-ID,

Instituto Superior Técnico, Universidade de Lisboa,

E-mail: diogo.barradas @tecnico.ulisboa.pt

Nuno Santos: INESC-ID, Instituto Superior Técnico, Universidade de
Lisboa, E-mail: nuno.santos @inesc-id.pt

Luis Rodrigues: INESC-ID, Instituto Superior Técnico, Universidade de
Lisboa, E-mail: ler@tecnico.ulisboa.pt

strength of FreeWave is that the transmission of covert data can
be performed as full-duplex TCP/IP streams. Unfortunately,
FreeWave was found to be vulnerable to traffic analysis tech-
niques [12]. In particular, FreeWave’s modified Skype streams
exhibit certain patterns that can be detected by a censor that
can tap on the network (e.g., changes in packet size distribu-
tions). By comparing such patterns against those of regular
Skype calls, a censor can identify suspicious Skype streams
with high probability and proceed with dropping down such
connections, identifying and prosecuting endpoints based on
their IPs, or carry out other censorship measures. FreeWave
was designed without defense mechanisms that can thwart
such attacks. Given that most electronic communication over
the Internet can be controlled today by governments and/or
by a few corporations [3, 9, 18], the lack of such mechanisms
renders FreeWave connections observable.

To mitigate attacks, more recent
censorship-resistant systems attempt to ensure that the result-
ing traffic remains unobservable. In other words, the traffic
embedding covert data must not display individuating patterns

traffic analysis

that enable a censor to distinguish it from regular traffic us-
ing state-of-the-art traffic analysis techniques. An effective
technique that has proven effective at achieving unobserv-
ability is to modulate covert data over carrier video streams.
Notably, Facet [22] enables clients to secretly watch censored
videos over a Variable Bit Rate (VBR) video stream. At the
server side, Facet embeds covert video frames into a small
region of the video frame area of a videoconferencing Skype
call, effectively allowing a client to watch blocked videos.
CovertCast [24] is another relevant system that uses video
streaming as message carrier. CovertCast enables the content
of blocked websites to be transmitted via modulated images
of live-streaming feeds uploaded to YouTube. The main lim-
itation of both Facet and CovertCast, however, is that they
do not support the transmission of covert TCP/IP streams. In
these systems, the format of covert messages are restricted to
certain data types, namely videos (in Facet) or web content (in
CovertCast). Operations as simple as sending an email are not
possible under these systems. In particular, CovertCast does
not support bidirectional communication, which means that
neither interactive web browsing nor a simple chat message
exchange are supported under this system. Thus, although

[®) ov-ne-np |



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams —— 6

these systems can effectively achieve unobservability, the lack
of support for covert TCP/IP streams can considerably impair
their coverage, i.e. the content, services and protocols they can
access in the Internet.

Our goal is to devise a system that can provide both un-
observability and a higher degree of coverage than that offered
by previous video streaming protocol tunneling systems. With
that aim, this paper presents the design, implementation, and
evaluation of DeltaShaper, a new censorship resistance system
that enables unobservable TCP/IP tunneling over videocon-
ferencing Skype streams. In DeltaShaper, the covert TCP/IP
packets are encoded and embedded into the video stream trans-
mitted by Skype between the communication endpoints. Sim-
ilarly to FreeWave, DeltaShaper is meant for scenarios where
a user linked to a censoring ISP wishes to establish a covert
TCP/IP connection with a remote computer located outside the
censoring region. After installing both Skype and DeltaShaper
clients, the user can set up a Skype videoconferencing call to
a proxy computer and open a DeltaShaper TCP tunnel over
that call. The proxy must be configured to run Skype and
DeltaShaper clients, be located outside the censoring region,
and be maintained by some trusted third party (e.g., a fam-
ily member or friend). Once the tunnel has been established,
the user can run unmodified networked applications such as
a mail client, a web browser, or a file transfer agent to access
the services of a remote computer over the tunnel. DeltaShaper
ensures that the covert TCP/IP packets are encoded in such a
way that the resulting Skype streams remain unobservable.

The key challenge overcome by DeltaShaper is: how to
encode covert TPC/IP packets into Skype video frames such
that unobservability is preserved while delivering enough
channel bandwidth for TCP to work. If we adopt an aggres-
sive scheme and encode as much payload data per frame as we
can (e.g., encode bits of TCP/IP packets in each pixel of the
carrier fames), the bandwidth available on the covert channel
is high, but the resulting packet stream will differ substantially
from regular Skype calls. Moreover, we must be careful not
only about the number of pixels that can be changed, but also
about the pixel area dedicated to the encoding of payload, the
modified pixels color, and the rate at which new payload can be
encoded into the video frames. However, these restrictions will
cause the amount of covert channel bandwidth to drop. Avail-
able bandwidth will be further dwarfed by Skype’s lossy com-
pression algorithm which introduces errors in payload encod-
ing. As a result, we must increase the amount of pixels which
encode payload units and introduce redundancy. It is also nec-
essary to take into account additional TCP/IP meta-data that
needs to be encoded into the frames in order to synchronize
both tunnel endpoints. All these issues concur to reducing the
channel bandwidth to a point where transmissions would take
an unacceptable amount of time.

In DeltaShaper, we address this challenge by devising an
encoding technique that is robust to noise and that can be
dynamically tuned to adapt to the underlying network condi-
tions (e.g., bandwidth and packet loss). We propose and eval-
uate different alternatives to encode information in Skype’s
video-streams, in order to maximize the available through-
put while preserving the characteristics of unmodified streams.
We have implemented a prototype of our system that offers a
data-link interface and that can support applications which run
over TCP/IP. Our results show that it is possible to achieve
a throughput of 2.56 Kbps with no significant impact on the
stream, which allows to run TCP/IP applications that can tol-
erate low throughput / high latency links, such as FTP, SMTP,
Web clients or chat clients.

2 Related Work

Numerous practical solutions have been proposed over the last
years to address the problem of Internet censorship [8, 20].

Decoy routing: Decoy routing systems [16, 19, 35] are based
upon special routers deployed within ISPs outside the cen-
sor’s sphere of influence. In this scheme, clients issue HTTPS
steganographically marked requests to an overt destination
whose path crosses a decoy router. Decoy routers recognize
such a mark (which reveals a client’s true desired destination)
and divert traffic to blocked destinations. Recently, Bocovich
and Goldberg [1] have proposed a decoy routing system which
imitates the traffic patterns of the chosen overt website. Unfor-
tunately, ISPs still have little incentive to deploy censorship
circumvention mechanisms like the one presented.

Protocol randomization: A different class of systems helping
in circumvention aims to obfuscate covert traffic so that it can-
not be linked to the underlying application layer protocol [34].
An instance of this approach consists in protocol randomiza-
tion, where traffic is manipulated to make it seem random and
fool a censor’s protocol blacklist. Obfsproxy [4] and Scram-
bleSuit [33] respectively encrypt and randomize Tor’s [5] net-
work traffic features. Yet, entropy tests have been successfully
used for distinguishing regular TLS traffic from Obfsproxy en-
crypted traffic [29]. Moreover, by transforming network traffic
into some unknown protocol, this approach fails to evade a
censor that performs protocol whitelisting.

Protocol imitation: Another obfuscation strategy is proto-
col imitation, which aims at mimicking popular protocols al-
lowed across a censor’s network. For instance, StegoTorus [31]
steganographically conceals chops of Tor traffic on the mes-
sages of a cover protocol, while SkypeMorph [25] and Cen-
sorSpoofer [30] mimic the statistical properties of video and



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams == 7

VoIP calls, respectively. In its turn, Format-Transforming En-
cryption (FTE) [6] can be used to foil regex-based DPI systems
by producing ciphertexts that match the content definition of
some allowed protocol. Unfortunately, due to the difficulties
of mimicking all aspects of a protocol, the former systems
are vulnerable to several attacks [15] while FTE can be de-
tected through the use of entropy tests [29]. Marionette [7]
employs automata composition to control fine-grained aspects
of mimicry. Still, candidates for imitation may be proprietary
software, demanding its reverse engineering in order to build
a model for imitation. Not only is this a tedious effort, but it
must be repeated for each software release.

Protocol tunneling: To avoid the pitfalls of protocol mimicry,
another category of censorship circumvention systems directly
tunnels covert data through a protocol’s application layer. In
SWEET [36], covert traffic is relayed through encrypted or
steganography-protected email messages that are temporarily
staged on standard mail servers. CloudTransport [2] adopts a
similar principle, but uses public cloud storage services for
covert message forwarding. SWEET is limited by the unusual
email utilization patterns it generates while CloudTransport
is prone to denial of service and traffic analysis. meek [11]
leverages domain fronting to tunnel traffic over HTTPS con-
nections to allowed hosts, while establishing a covert con-
nection to a prohibited host. However, it does not attempt to
match the traffic patterns which would emerge when visiting
an overt destination. As a result, machine learning techniques
applied on traffic classification are able to identify traffic gen-
erated by meek’s implementation over Tor [29]. Castle [14]
and Rook [28] provide an alternative approach to exchange
covert messages over Real-Time Strategy (RTS) games. Most
of these systems, however, are either vulnerable to traffic anal-
ysis attacks or provide insufficient covert channel bandwidth.

Tunneling over audio streaming: A recent tunneling ap-
proach leverages existing audio streaming protocols to enable
communication between two parties engaged in circumven-
tion. FreeWave [17] leverages VoIP connections to tunnel cen-
sored Internet traffic. However, it is vulnerable to passive at-
tacks since the packet length distribution of the traffic contain-
ing covert messages is nothing similar to that of a recogniz-
able language. Furthermore, a censor can disable FreeWave by
launching active attacks which prevent endpoint synchroniza-
tion [12]. SkypeLine [21] works under a stronger threat model
than FreeWave by assuming that the censor can eavesdrop on
the contents of any ongoing VoIP call. SkypeLine modulates
the background noise found in VoIP connections in order to
transmit covert data, being robust both to steganalysis and at-
tacks that make use of traffic analysis techniques. However,
SkypeLine achieves a very low covert channel throughput.

Tunneling over video streaming: Facet [22] enables tunnel-
ing censored videos through videocalls of applications such as
Skype. This system ensures unobservable covert data trans-
missions, by embedding the censored video in a portion of
each frame, filling the remaining space with a legitimate con-
versation video. This approach provides active attack resis-
tance by design, since any perturbation in the network will
cause exactly the same effect on a regular or covert video
transmission. When compared with FreeWave, Facet [22] pro-
vides greater resilience to both active and passive attacks. Un-
fortunately, Facet is only able to serve video content which
limits the applicability of the system to other types of com-
munication. CovertCast [24] leverages live-streaming feeds to
transmit the content of blocked websites to multiple clients
at once. CovertCast servers modulate censored data into im-
ages which are aggregated and transmitted through live video
feeds, resorting to platforms such as YouTube. Clients scrape
and demodulate the images served through the live stream, ex-
tracting the blocked web content. Although CovertCast data
modulation is resilient to traffic analysis, the system provides
only one-to-many communication channels.

3 Goals and Threat Model

Our main goal is to embed a TCP/IP covert data channel in

a regular Skype stream in a way that it cannot be tagged as

disallowed by an adversary. Instead of attempting to mimic the

Skype protocol, an exercise that may be vulnerable to active

attacks from the adversary, we aim at using Skype “as is” and

encode the information in the video stream, using Skype as a

blackbox. In particular, we are driven by four design goals:

1. Unblockability: The censor must not be able to block
the transmission of covert messages without significant
degradation of the Skype service for legitimate users.

2. Unobservability: We want to ensure that a censor will not
be able to distinguish regular Skype streams from those
that carry a covert channel.

3. Reasonable throughput: The performance of the covert
channel must allow for the execution of standard TCP/IP
applications which are able to tolerate low throughput /
high latency links.

4. Skype as a black-box: Our system must not require
changes to the application software running at the chan-
nel endpoints. Moreover, the videoconferencing software
should be used “as is”, without modifications to its binary.

Threat model: We assume the existence of applications that
use encrypted video-streams, such as Skype, that the adver-
sary is not willing to block. Therefore, the adversary will only



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams —— 8

Client
Application

Client Endpoint

Covert Frame'

Server
Application

Server Endpoint

S)

Virtual
Camera

Virtual Network
Interface

DeltaShaper
Encoder

DeltaShaper Upstream Pipeline

Covert

P
Packet Frame

Fig. 1. DeltaShaper architecture.

block or disrupt those streams if it can observe that the stream
is being used to convey some covert channel.

In order to detect covert channels, we assume that the
censor can resort to the tools that are typically available to a
state-level omniscient adversary, i.e., the censor is able to ob-
serve, store, interfere with, and analyze all the network flows
between the parties that are engaged in the communication.
However, we assume that the adversary is unable to control the
software installed on end-users’ computers. Thus, the commu-
nication endpoints where clients run are deemed trusted.

The adversary has the power to perform deep packet in-
spection but is computationally bounded, and cannot break the
underlying cryptographic primitives used to encrypt the packet
content. Also, we assume that the videoconferencing provider
(i.e., the Skype service provider) will not collude with the ad-
versary, for example by allowing the adversary to inspect ren-
dered video content at the communication endpoints. There-
fore, the adversary cannot detect the covert channel by observ-
ing directly the content of the stream. It may however perform
statistical analysis on the traffic patterns of each flow (in face
of different network conditions) and detect outliers. For that
purpose, the adversary will use state-of-the-art techniques to
classify the streams and to rank the similarity among differ-
ent flows. In our evaluation, we will also use these same tech-
niques to assess the unobservability of DeltaShaper.

4 Design

Figure 1 illustrates the operation of our censorship-resistant
system, named DeltaShaper. On the sending side, the transmit-
ter receives the payload and encodes it in a video stream that
is fed to Skype using a virtual camera interface. Skype trans-
mits this video to the remote Skype instance and the received
stream is captured from the Skype video buffer. A decoder then
extracts the payload from the video stream and delivers it to the
application. The same procedure is applied at both endpoints
of a Skype call, thus, effectively, we support a bi-directional
channel in this way. To make the system as general as possi-
ble, the architecture exposes a data-link level protocol to the
upper layers, such that an IP packet can be accepted, encoded,
decoded, and delivered remotely using this technique. As a re-

¢

Censor

S)

Display
Framebuffer

Localhost
Interface

Payload
Decoder

Covert
Frame’

DeltaShaper Downstream Pipeline

P
Packet

sult, the system can support any TCP/IP application that can
tolerate low throughput / high latency links.

4.1 Design Challenges

Although the principles behind the development of
DeltaShaper are relatively simple, there are many design chal-
lenges that need to be addressed, namely:

1. Conflicting data encoding requirements: Intuitively, em-
bedding many covert message bits per frame is desirable in or-
der to achieve high throughput. Unfortunately, this may not be
possible. On the one hand, the video stream is re-encoded and
potentially compressed by Skype for transmission, using lossy
algorithms. One needs to ensure that the payload is encoded
with additional redundancy so that it can still be retrieved at
the receiver, regardless of the transformations performed by
Skype. On the other hand, an aggressive encoding scheme will
likely generate network streams that differ significantly from a
typical Skype call, making them prone to be detected by a cen-
sor. Hence, we require a video encoding scheme that can pro-
duce unobservable streams and offer acceptable performance
despite the video quality degradation induced by Skype.

2. Characterization of unobservable streams. The traffic
signature of a Skype call with an encoded covert channel
should be indistinguishable from a “normal” Skype call. The
challenge, however, is to define what a “normal” Skype call
is. We need to establish objective metrics that allow for the
identification of such streams through traffic analysis and to
generate covert traffic that retains a similar signature.

3. Adaptation to network conditions. The properties of a
“normal” Skype call may change depending on the network
conditions. As a result, DeltaShaper must be able to adapt its
data encoding algorithm according to such characteristics, oth-
erwise a censor could leverage them to compromise the unob-
servability of covert streams.

4. Synchronization of covert channel endpoints. A conse-
quence of network adaptation is that channel endpoints must
synchronize with each other to enable the receiver to interpret
the covert data according to the encoding scheme used by the
sender. However, such a mechanism must be resilient to active



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams —— 9

® .
dh

(a) Carrier Frame

(c) Covert Frame

Payload Payload
Header Block

Fig. 2. Blending payload into carrier frame.

attacks issued by the censor aimed to cause denial of service.
In the next sections, we address these challenges in detail.

4.2 Data Encoding and Decoding

In theory, provided that an RGB encoded pixel takes 24 bits
(8 bits per channel), one could encode 24 bits of covert data
in each pixel. Assuming we are dealing with a 640x480 frame
(VGA resolution), each frame could carry, at most, approxi-
mately 7 Mbits. Unfortunately, that maximum throughput can-
not be achieved in practice for several reasons.

Firstly, video processing may modify the frame pixels in
multiple ways: (R1) change the colors of each pixel, thus al-
tering the information being transferred, (R2) omit differences
among adjacent pixels, losing all information encoded in those
pixels, and (R3) omit differences among adjacent frames, los-
ing information in the portion of the frames that are omitted.
Secondly, it is necessary to preserve unobservability (R4). If
all pixels of an image are used to encode data to the maximum
capacity, the “image” complexity would be significantly dif-
ferent from a typical image transferred in Skype, where many
pixels are similar. As we show in Section 6.2, the traffic gener-
ated when transmitting such images is different from the traffic
resulting from the transmission of images composing a “nor-
mal” Skype stream. To deal with these concerns, we propose a
data encoding scheme based on two basic ideas:

1. Blend synthetic payload video into ‘“normal” Skype
video: Our covert data encoding scheme generates transmitted
video frames (covert frames) from the combination of: carrier
frames and payload frames. Carrier frames can either be ob-
tained from pre-recorded Skype calls or from a live webcam
capture. Payload frames consist of synthetic video frames that
encode application data to be transmitted. Payload and carrier
frames are blended together into covert frames and passed over
to Skype. Figure 2 shows an example of how a (a) carrier frame
and a (b) payload frame are blended into a (c) covert frame to
be dispatched by the sender. The payload frame is overlapped

Name Description Example
ap payload frame area (pixel xpixel) | 160 x 120
ac cell size (pixelx pixel) 4 x4
b color encoding (bits) 1
Tp payload frame rate (frame/sec) 3

Table 1. Payload frame encoding parameters.

in the top-left corner of the carrier frame. Carrier frames aim to
mimic a realistic Skype call by modulating the network stream
observed by the censor thus preserving unobservability.

2. Support tunable payload frame encoding: Our payload
encoding scheme depends on several parameters. Each pay-
load frame encodes N bits of the covert message on a payload
block. Each payload block is a synthetic image that consists of
a grid of cells. Each cell consists of a fix-sized area of con-
tiguous pixels featuring the same color. The color code is used
to encode b, bits of information of the payload block. The to-
tal amount of bits that can be encoded per frame N is then
defined by the geometry of the payload frame and given by:
N = b, X n¢, where n. is the number of cells per frame. As
a result, the communication throughput T is given by N X 7,
where 7, is the rate of payload frames sent per unit of time. To
recover the data, the receiver must collect covert frames at rate
Tp, extract the payload area a, from the frame, average out
the color of each pixel of each cell, and streamline the b, bits
of each cell. Consequently, to decode a payload block, the re-
ceiver must know which encoding parameters were used. For
this reason, the sender appends these parameters into a fixed-
format band atop the payload frame (payload header).

Our encoding scheme is then defined by the parameters in
Table 1: size of payload frame in pixels (ap), size of cells in
pixels (a.), color encoding in bits (b.), and payload frame rate
(rp). We represent a data encoder by tuple S : (ap, ac, be, 7p).
For example (160 x 120,4 x4, 1, 3) means that a cell takes 4x4
pixels and the payload frame size is 160x120 pixels, totaling
ne = 1200 cells. Since the payload data is encoded with 1
bit (yielding a binary black-white image), the payload block
is N = 1200 bits. For a payload frame rate of 3 frames per
second, the maximum throughput 7" is then 3.6 Kbps.

This encoding scheme enables DeltaShaper to handle con-
flicting data encoding requirements by providing multiple de-
grees of freedom. Reducing the number of bits (less than 24
bits) to represent color codes improves resilience to per-pixel
color change introduced by Skype (R1). Increasing the cell
size above 1x1 helps tolerate loss of information between ad-
jacent pixels as a result of video compression (R2). This is
because more pixels will be used to encode a single bit. More-
over, rather than using all frames to encode payload data, our
scheme allows for a reduction in the payload frame rate which



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams —— 10

is important to mitigate the video compression effects that can
cause loss of information between consecutive frames (R3).
Finally, by properly tuning DeltaShaper encoding parameters
one can control the amount of information blended into the
carrier video which will determine how close from a “normal”
Skype call the resulting covert video will be (R4).

4.3 Preserving Unobservability

Unfortunately, due to the complexity of the optimization per-
formed by video encoding/decoding algorithms, there is no
trivial manner to estimate the traffic features of an encoded
video stream. This makes it very hard to create an analyt-
ical model that guides the encoding of the covert channel
such that the resulting stream produced by Skype is indis-
tinguishable from a “normal” Skype stream. Ultimately, we
want DeltaShaper to generate covert videos that preserve the
signature of a “normal” Skype stream while encoding a large
amount of payload data. To that end, we need to characterize
what typical Skype streams are and then devise a technique to
generate covert streams that follow similar traffic patterns.
We designate “normal” Skype streams as regular streams.
A Skype stream is regular if it results from a legitimate video-
conferencing call between Skype users carrying no covert
messages. In such cases, users usually stand in front of the
camera, moving sparingly as they speak. In contrast, we ex-
pect that the resulting traffic pattern to be quite different if
Skype is used for streaming an action movie, for example.
In such cases, frames will change more frequently and exten-
sively causing Skype to send a larger number of long packets
to reflect such changes. To express the intuition that regular
calls tend to follow a common pattern, while inevitably have
some differences, we consider a stream to be irregular if it dif-
fers by more than a given threshold A from a known regular
stream, in which A is obtained by a given similarity function
o. Put more formally, considering sr to be a known regular
stream, f a feature function of the stream (e.g., packet length
distribution), and s¢ an arbitrary stream (that may contain a
covert channel), we say s¢ is indistinguishable from sp if:

o(f(sc[P]), f(sr)) < A

As it will become clear later in the text, DeltaShaper is
able to tune the encoding parameters P for s¢ such that the re-
sulting covert stream satisfies the condition above (and, there-
fore, remains unobservable). Interestingly, the tuning mech-
anisms are independent of the actual feature and similarity
functions used to assess observability. As discussed below, the
current prototype uses the packet size as the relevant feature
and the Earth Mover’s Distance (EMD) [27] as the similarity
function. However, DeltaShaper can be easily reconfigured to

match other features or similarity metrics that can prove to of-
fer a more accurate identification of the covert channel (in fact,
we also use another function in the evaluation section). We dis-
cuss the current choices in detail in the next paragraphs:

1. Find an effective feature function (f): A feature function
extracts some relevant quantitative attribute out of the packet
traces that constitute a stream. Through experimental evalu-
ation, we found the frequency distribution of packet lengths
(f1) to be effective at characterizing a given stream pattern
in Skype. The frequency distribution of packet lengths of a
stream depends on both the input video and compression ap-
plied by Skype. Therefore, blending payload frames into the
carrier frames will alter the packet length distribution. A sim-
ilar reasoning was proven to be successful at differentiating
Skype streams from Tor streams [25]. An alternative func-
tion based on the 2-gram distribution of packet lengths has
allowed for the differentiation of YouTube traffic from Skype
traffic [22]. We found that in the context of DeltaShaper, this
function produces similar results as f;. A discussion on the ac-
curacy of other feature functions is described in Section 6.4.
We did not consider alternative features based on DPI, since
Skype-generated packets are encrypted.

2. Find an effective similarity function (0): A similarity
function aims to calculate the difference between two feature
functions. Since we adopt f;, which outputs the distribution
of a stream’s packet length, we look for metrics that calcu-
late the similarity between two probability distributions. Previ-
ous work has adopted the Kolmogorov-Smirnov test [25, 28].
However, we found Earth Mover’s Distance (EMD) [27] to
produce better results — a comparison between the accuracy
of both similarity functions can be found in Section 6.4.
Due to space constraints, we omit the mathematical formu-
lation of EMD. Intuitively, EMD( f;(sr), fi(sc)) represents
the amount of work that must be undertaken to transform the
packet length frequency distribution of the regular stream sp
to the packet length frequency distribution of stream s¢.

3. Set a reference stream (sg): Now that we have defined f
and o, we need to fix a known regular stream to serve as a ref-
erence stream around which DeltaShaper’s generated covert
streams will compare against. Such a regular stream will cor-
respond to streaming the carrier video used by DeltaShaper in
the payload blending process (as shown in Figure 2-a), and can
be obtained by recording the packet trace of a real Skype call,
for example. As it will be clear later in the text, we will have
different reference streams for different network conditions.

4. Compute the similarity threshold (A): The similarity
threshold A aims to set a limit to the maximum difference that
one can expect to find between legitimate regular Skype calls.
To determine this value, we take an empirical approach which
consists of creating a training set of IV legitimate Skype call



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams = 11

videos, replaying each video M times and record the packet
length distribution of the resulting test stream s;;, where 0 <
i < N and 0 < j < M. Then, calculate the distribution sim-
ilarity between each test stream and the reference stream and
obtain the maximum value as A. This value is determined by:

A = maxz(EMD(fi(si;), fi(sr)))

5. Obtain a valid encoding selector (P): The final step con-
sists of determining valid sets of parameter instances (P) to
the payload encoding scheme. We call encoding selector to a
specific instance of P. To be valid, an encoding selector must
produce unobservable streams. Encoding selectors that satisfy
such condition can be found by exploring the space of P gen-
erating a training stream sc[P] and verify that s¢ is indistin-
guishable from s . More precisely:

EMD(fi(sc[P)), fi(s)) =9, Pisvalidif 6 < A

The set of valid encoding selectors must be obtained ex-
perimentally and provided to DeltaShaper as possible encod-
ing selectors to be adopted. If multiple encoding selectors
are valid, DeltaShaper selects the one that delivers the high-
est throughput, which is also determined experimentally. Sec-
tion 6 presents the results of our empirical analysis. Moreover,
the video compression procedures used by different video-
conferencing applications are based in similar algorithms.
The exploration of the space of encoding selectors provides
DeltaShaper a general approach to compute valid encoding
selectors without being tied to a specific videoconferencing
application’s codec implementation.

4.4 Adaptation to Network Conditions

As it turns out, the reference stream sp and respective
threshold A cannot be permanently fixed and hard-coded in
DeltaShaper. In fact, according to our experiments (as ex-
plained in Section 6), the Skype stream distributions that re-
sult from playing a given (carrier) video greatly depend on the
specific network conditions under which the transmission has
occurred, such as bandwidth or packet loss rate. This observa-
tion brings two immediate consequences:

The reference stream and the similarity threshold must be
set dynamically: In order to preserve the properties of unob-
servability on a given connection, it is necessary to adopt ref-
erence stream (spr) and threshold value (A) according to the
specific network conditions. Furthermore, we must take into
account that such network conditions may change over time
either due to contingencies of the network infrastructure or to
active attacks launched by the censor.

The encoder selector must be set dynamically: In response
to changes in network conditions, it is necessary to change the
frame encoding parameters in order to preserve the stream in-
distinguishability. Moreover, the negotiation of new parame-
ters between both endpoints must also be resilient to active
attacks issued by the censor aimed to prevent the agreement
and cause denial of service.

To make our system adapt to the network conditions, the
client endpoint performs the following operations: 1) before
starting data transmission, determines what is the baseline dis-
tribution for the current network conditions, 2) from that base-
line distribution, obtains the ideal parameters from a reference
table, 3) starts encoding data frames according to the deter-
mined parameters and embeds the encoding parameters di-
rectly into each frame, 4) periodically, readjusts to network
conditions, by repeating this procedure starting from 1. Next,
we explain these steps in detail:

1. Finding the reference stream distribution: The main
cause for the change of the threshold value is a modification of
the reference stream distribution upon changes in network con-
ditions. To accommodate to those changes, before the client
starts encoding payload data into carrier frames, the client per-
forms a calibration operation in which it transmits the carrier
video alone without embedding any payload blocks. The client
transmits this video for a certain calibration time T and in
this process collects relevant features about the stream pack-
ets, namely their sizes. These samples will allow the client to
obtain a fingerprint of the carrier video stream for those par-
ticular network conditions.

2. Determining the encoding parameters: Based on the
collected samples, the client will determine which reference
stream the current stream is closer to. The client is pre-
configured with a set of reference streams for different net-
work conditions and checks which of these reference streams
are similar to the current one by computing the similarity met-
ric o for each of them. The client takes the reference stream
that results in the lowest o value and then obtains the ideal pa-
rameters from a reference table. This table is simply a map that
tells for each reference stream which parameter values should
be used for generating the encoding selector. Both reference
streams and reference tables are determined empirically.

3. Agreeing upon common frame encoding parameters:
Since the frame encoding parameters change dynamically, the
client must tell the server which parameters to adopt when de-
coding the payload frames. To this end, each covert frame has
a small meta-data block, with the parameter values used in the
associated payload block. The meta-data block uses a conser-
vative fixed encoding scheme so as to be resilient to errors
and prevent observability anomalies. This makes each frame
self-contained and the parameter agreement resilient to DoS



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams — 12

Epoch 1 Epoch 2

Client

Yy
X
3

I\
o
@
o
~

—H—m

Server

- 1-
N
2

Epoch 1 Epoch 2

Fig. 3. Epochs in a bidirectional covert channel. IP packets are
exchanged during the data transmission phases.

attacks specifically aimed at disrupting parameter exchange.
We defer a discussion on the resilience of the covert chan-
nel against active attacks launched by a censor (e.g. dropping
packets of Skype connections) to Section 6.7.

4. Readjusting the frame encoding parameters: Since the
network conditions may change during a communication ses-
sion, DeltaShaper allows for the readjustment of the encoding
parameters. Essentially, this is achieved by enabling the client
to repeat the calibration process to determine the new param-
eters and then reuse such parameters to encode the ensuing
data frames. Each period comprising a calibration phase and a
data transmission phase is called an epoch. Each session can
comprise multiple epochs. The time span dedicated to the cali-
bration phase and to the data transmission phase are defined by
configuration. To support epochs, the meta-data block includes
a data bit that indicates whether the frame carries useful data
or is used for calibration purposes only. Figure 3 illustrates
the concept of epochs visually; it depicts a timeline diagram
that represents a two-way communication channel established
by DeltaShaper. There are two independent communication
flows, used to send IP packets in both directions: from client
to server (C—S) and from server to client (S—C).

5 Implementation

We implemented a DeltaShaper prototype for Linux. Our sys-
tem comprises several components that implement the client
and server pipelines of DeltaShaper (see Figure 1). Some com-
ponents were built from scratch in C++ and Python; others
are based on existing tools. To intercept TCP/IP packets sent
by applications at the client side, our prototype uses Linux
network namespaces and the netfilter packet filtering frame-
work [26]. Outgoing IP packets are captured by a kernel mod-
ule using netfilter and handled by a user-space program which
encodes and transmits them over Skype. At the server side,
IP packets are decoded and routed to the “localhost” inter-
face to be delivered transparently to the server application.
Video processing operations are performed with the help of
Snowmix [23], FFMPEG [10] and GStreamer [13], which are
used to overlay the payload video on a carrier video. At the

Fragment Fragment
Size Count
(2 bytes) (4 bits)

Fragment
Number
(4 bits)

Packet ID

(2 bytes) Fragment Data

\ -
o

Fragment Container 1

Y Payload -

Segment Data ECC Segment Data EC

o

Trailing Pad

\ J [\ )

N Y
Segment 1 Segmentn

Payload Block

Fig. 4. Format of DeltaShaper messages.

server side, a pool of worker threads extracts the payload out
of the frames, and sends the resulting IP packets to the Linux
kernel. To interface with unmodified Skype client software, the
video is routed to a virtual camera device and fed into Skype.
At the receiver’s endpoint, a thread periodically runs the tool
XWD to obtain a screenshot of the virtual display framebuffer.

5.1 System Setup and Operation

To initialize the system and establish a covert TCP/IP tun-
nel, users must launch DeltaShaper at both channel end-
points. DeltaShaper instantiates both downstream and up-
stream pipelines at each endpoint. Once the channel has been
established, a server application listening at one endpoint can
be contacted by a client application running on the counterpart
endpoint. Communication occurs over standard TCP/IP sock-
ets without the need to modify the client-server application.
In order to exchange IP packets on overlapping data trans-
mission phases only (see Section 4.4), channel endpoints syn-
chronize each other by checking that the data bit of outgoing
and incoming payload frames is cleared to 0. Upstream frame
rates of each endpoint must also be adjusted to the maximum
supported frame rate. IP packets are encapsulated into payload
blocks and encoded into payload frames before transmission.
For efficient data transmission, we implement error recovery
and packet fragmentation mechanisms. Since Skype provides
ordered frame delivery, we do not have to worry about the de-
livery of out of order or duplicate covert frames. Since covert
frames may be lost, e.g., due to network breakups, we simply
let TCP request the retransmission of the lost payload blocks.

5.2 Message Format and Error Recovery

To support error correction, packet fragmentation, and efficient
bit utilization, we specify a simple message format protocol.
Figure 4 represents the format of DeltaShaper messages high-
lighting three internal abstraction layers.



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams —— 13

Below, we find the payload block, whose bits are directly
encoded into cells of a payload frame. The payload block con-
sists of a body divided into segments which are designed to
support bit error recovery, resorting to error-correcting codes
(ECC). Each segment contains a chunk of application data fol-
lowed by ECC-type specific redundancy bits.

The intermediate abstraction layer results from extracting
the payload block from error redundancy meta-data and con-
catenating the resulting data segments into a single byte se-
quence named payload datagram. This data structure contains
fragments of IP packets. There can be multiple fragments con-
tained in a payload datagram.

The uppermost layer specifies the fragment container,
which represents an individual IP packet fragment. Fragment
containers are included in the body of payload datagrams. The
body of each fragment container contains IP packet data, and
the header comprises: a packet ID, fragment size, fragment
count, and fragment number. These fields enable the recipient
to reconstruct the received fragments into complete IP packets.

Since the color of a received frame may be altered by
Skype’s video compression algorithm, the recovered payload
block may include bit errors. Given that discarding entire
frames in the presence of errors would penalize throughput, we
employ error correcting codes. In particular, we have defined a
general payload block layout that supports configurable error-
correcting codes. In our current prototype, we adopt Reed-
Solomon [32] ECC as a result of our empirical evaluation. We
use a commonly used code denoted as (n,k) = (255,223),
where n corresponds to 255 bytes of data symbol, out of which
k = 223 bytes consist of application data and the remaining
32 bytes encode parity bit symbols (see Figure 4). This code
can correct up to 16 symbol errors per symbol block.

5.3 Encoding Selector Algorithm

Finally, we discuss the network adaptation algorithm imple-
mented by each party during the calibration phase. This al-
gorithm is fundamental to determine the ideal parameters for
payload frame encoding to achive good throughput under the
current network conditions while preserving unobservability.
Algorithm 1 provides a sketch of this algorithm. It starts
with parameters set to null. When the channel state enters the
calibration phase, the algorithm starts playing the carrier video
and intercepting packets of the corresponding Skype stream.
For each packet, it stores relevant information about the packet
in a local database, namely the packet size. When the cali-
bration phase ends, the similarity metric (EMD) is calculated
between a set of reference streams and the recorded packet
samples. Each of these computations yields a A, value. The
next step is to select the smallest of these values A,;;, which

Algorithm 1 Adaptive encoding selector algorithm

1: procedure ENCODINGSELECTOR(s, 1)

2 Sry Dmin < null, oo

3 for all r in reference streams 7 do

4: A, <+ EMD(fi(s), fi(Tr.dist(r)))
5: if A, < A then

6: Sry Dpmin 1, Ay

7 if A, > A then

8 return null

9 return 7’-.params(s,)

corresponds to the reference distribution mostly similar to the
sampled distribution. If A,,;, is greater than the threshold A
then the communication is likely to be unsafe and the user is
recommended to abort the transmission (Line 8). Otherwise,
the communication can be safely undertaken while preserving
unobservability. As a result, the algorithm sets the frame en-
coding parameters from the recommended parameters for the
selected reference distribution s (Line 9). When starting the
data transmission phase, these parameters will be adopted by
the payload encoding scheme (see Section 4.2).

6 Evaluation

To evaluate our system, we test the success of EMD and
A threshold metrics in characterizing Skype streams (Sec-
tion 6.1), assess the ability of DeltaShaper to generate unob-
servable covert channels based on such metrics (Section 6.2)
and measure the performance of DeltaShaper channels while
preserving unobservability (Section 6.3). We explore alterna-
tive traffic features and similarity functions for the purpose of
the classification of streams (Section 6.4) and study the impact
of network perturbations in the ability to distinguish between
regular and irregular streams (Section 6.5). Lastly, we evaluate
our system’s coverage (Section 6.6) and discuss some security
properties offered by DeltaShaper (Section 6.7).

Experimental testbed: Our evaluation was performed on a
quad-core Intel Xeon CPU E3-1220 v3 3.10GHz system pro-
visioned with 32GB of RAM. We set up two 32bit Ubuntu
14.04.3 LTS virtual machines (VMs) with 2GB RAM and 4
virtual CPUs. Each VM runs an instance of Skype v4.3.0.37
and DeltaShaper acting, respectively, as caller and callee of
videocall connections. To emulate varying network conditions
between the VMs, we used the native netem Linux network
emulation functionality. Regarding the dataset, we selected 30
videos representative of actual videocalls. We use these videos
as our training set for regular streams. Such videos generally
exhibit low movement as users typically sit in front of a com-
puter. These videos have not been edited and are free of water-



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams = 14

1. 1.
0 EMD = 0.000 e 0 EMD = 0.039 e
0.8} 7 {1 08 P
’ -
wO06r ____ . s 1w 0.6F _ . /7
[a] | [a)] ]
O 04} 1! 1O 0.4} !
| i
0.2} : Reference Chat Stream |/ 0.2 : Reference Chat Stream |{
! - - Reference Chat Stream ! - - Different Chat Stream
0.0t 0.0
0 300 600 900 1200 0 300 600 900 1200
Packet Length (Bytes) Packet Length (Bytes)
VoMb =0072 ~ | ‘°[eMp=0113 = =
0.8} 1 08 S
w06l e s Ju 06 pceee- i
[a)] ' o 1
O 04 ! {C 0.4 1
0.2} : Reference Chat Stream |{ 0.2 : Reference Chat Stream |{
1 - - lIrregular Stream 1 1 - - lIrregular Stream 2
0.0 — - . ‘ 0.0 — ‘ ' ‘
0 300 600 900 1200 0 300 600 900 1200

Packet Length (Bytes) Packet Length (Bytes)

Fig. 5. Packet length CDF of sample streams.

marks or other visual artifacts. Our dataset of irregular streams
is composed of 30 YouTube videos, where both rapidly chang-
ing scenes and artifacts introduced by video editing software
are common. The duration of each video sample is 30 seconds.

6.1 Characterization of Skype Streams

We first study whether Skype calls do exhibit measurable pat-
terns that allow us to differentiate regular from irregular calls.
This question is important because such patterns can be used
by a censor to detect suspicious videocalls (i.e., irregular ones)
and block them. The data in Figure 5 indicates that such pat-
terns do exist. It shows the cumulative distribution function
(CDF) of packet lengths for four test Skype streams, each
one represented in a different plot: (a) the stream of an ac-
tual videocall which we take as our reference stream; (b) a
stream of a regular call from a different user; and two irregular
streams corresponding to (c) a football match and, (d) a music
concert. In each plot, we represent the distribution of the test
stream along with the packet length distribution of our refer-
ence stream (the black curve), and determine their similarity
by calculating the respective EMD value. We see that EMD
increases progressively, reaching 0.113 for the most dynamic
video, i.e., the music concert stream. The main differences
can be observed for 40% of packets, which correspond to the
largest packets (above 745 bytes) transmitted. These packets
must encode a higher amount of inter- and intra-frame differ-
ences than in regular videocalls.

To better understand whether these traffic patterns are sta-
ble, and thus can be reliably used for characterizing regular
Skype streams, we study if there are significant differences in
packet length distribution when streaming the same videocall
multiple times over Skype. For each regular video call sample

o
o
@

"

EMD cost
o
o
N
= +
+ =+
e -
I - -+
=
I —— N5
B =
f—=1
R —— ks

o
o
=

0'000 5 10 15 20 25 30

Regular Stream i

Fig. 6. EMD cost of multiple videocall streams.

of our dataset, we replay it 10 times and calculate the EMD of
each resulting stream taking as baseline the average distribu-
tion of all 10 runs. Figure 6 plots the most relevant statistical
indicators for the resulting EMD values of each video: min,
max, mean, and percentiles 5, 25, 50, 75, and 95. On the one
hand, packet length distributions of the same video tend to be
quite similar. This is attested by the fact that the largest dif-
ference observed between 25th and 75th percentile of a single
video is only 0.02. Also, the average EMD value tends to be
very similar among different videos, varying between 0.025
and 0.031. Thus, under the same network conditions, regular
Skype streams display a high degree of similarity.

Our next step is to study whether a censor can differenti-
ate regular from irregular streams by computing the similarity
of packet length distributions. To that end, we take a regular
stream and use it as reference stream to calculate the EMD
cost of other video streams. These video streams were gener-
ated by running each video of the data set 10 times and calcu-
lating statistical indicators of the resulting EMD cost. Figure 7
(a) shows the results obtained, plotting on the left hand side the
EMD cost for regular streams, and on the right hand side the
EMD cost for irregular streams. We can see a pattern in which
regular streams tend to result in a constantly low EMD cost
(below 0.1), whereas irregular streams produce a significantly
scattered pattern varying EMD cost approximately from as low
as 0.025 to as high as 0.25, i.e., by an order of magnitude.

The question is then whether it is possible to define an
EMD cost A threshold that can be used as stream classifier
such that a stream s is considered regular if EMD(sg, s) < A
or irregular otherwise (see Section 4.3). For this particular ex-
periment, A can be set to any value between 0 and the max-
imum observed EMD cost (0.275). To evaluate the effective-
ness of this classifier, we show in Figure 7 (b) the probability
of true positives (sensitivity) and true negatives (specificity)
as we vary A (in x-axis). We can see that, as A increases the



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams

0.300
0.275
0.250
0.225
0.200
0.175
0.150
0.125
0.100F === === mnms oo R EI A
0.075 4 :-ig-:' et 1T -i‘i-i-igggytia:i?ié‘z' A

LI S L

0.050 Hf;gi
0.025'§
10 15 20 25 30 35 40 45 50 55 60
Stream i (a)

EMD Cost

0.000

0 5

1.0

— P(True Positives)
--- P(True Negatives)

0.8

0.6

0.4

0.2

0.0
0.00

0.15 0.20
EMD Cost (b)

Fig. 7. EMD based on reference stream.

number of true negatives starts at 1, meaning that all irregular
streams are correctly identified by the classifier, but eventu-
ally starts decreasing at 0.025 (A 4) because some irregular
streams start being classified as regular. In contrast, the true
positive rate curve begins in 0 and starts increasing when the
EMD cost of some regular streams becomes lower than A.
Eventually, when A reaches 0.11 (A¢), the classifier is able
to correctly identify all regular streams.

Based on how the A threshold is set, several classification
policies are possible. Suppose that a censor wishes to apply
an aggressive policy by blocking all streams that are truly ir-
regular. In this case, A must be set to A 4, which is the point
where the true negative rate starts falling below 100%. The
downside of this policy, however, is that a large number of
regular streams would also be blocked, more specifically 95%
of regular streams (false negatives) causing a massive denial
of service of legitimate Skype users. On the other hand, if the
censor aims to prevent blocking of any regular Skype transmis-
sions (i.e., a conservative policy), A must be set to A¢c. The
negative side-effect of this policy is, however, a loss in speci-
ficity since approximately 80% of irregular streams would also
be classified as regular (false positives). An intermediate possi-
bility that considers the best of both worlds is to take the break-
even point where the probability of true negatives equals the

1.0
0.8
0.6
&
(&)
0.4
______ 500 Kbps
""" 300 Kbps
0.2 --- 200 Kbps
— 150 Kbps
0'00 200 400 600 800 1000 1200 1400

Packet Length (Bytes)

Fig. 8. Packet length varying bandwidth.

probability of true positives. For our classifier, this point cor-
responds to EMD cost 0.066 (A7) which means that setting A
to this value results in 83% accuracy in classifying a stream.
Thus, one can define a A threshold to identify regular streams
with high probability. This is crucial as DeltaShaper explores
this property to hide within regular streams.

For the characterization of Skype streams performed up
until now, we have used the same network conditions for
Skype transmissions. However, the packet length distribution
of Skype streams depends on the available network band-
width. Figure 8 shows the packet length CDF of our reference
stream as we vary the channel bandwidth between 150 and 500
Kbps. We can identify two main groups of streams which dis-
play different CDF shapes: In line with Skype’s bandwidth re-
quirements, one group corresponds to “Regular” video quality
and comprises a bandwidth range between 128 Kbps and 300
Kbps, a second group includes streams between 400Kpbs and
500Kpbs which corresponds to “High Quality Video” trans-
mission. In addition, amongst “Regular” video quality streams
there are also notable differences amongst them, especially for
larger packets (700+ bytes length). This confirms that the ref-
erence stream must be chosen for specific network conditions
of the current communication channel.

6.2 Unobservability Assessment

Skype streams exhibit specific packet length patterns that al-
low a censor to distinguish regular from irregular streams
based on an EMD classifier. Consequently, to produce unob-
servable covert Skype streams, DeltaShaper must be set up
such that the EMD cost of the resulting stream remains be-
low the A threshold. Since the properties of a resulting stream
depend on the encoding parameters provided to DeltaShaper,
we must study which range of encoding parameters is reliable
to produce unobservable covert streams.



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams —— 16

0.25
—— Area: 160x120
== Area: 320x240
0.20 + Area: 480x368
-
wv
o
o
o
=
w
0.00
1x1 2x2 4x4 8x8

CellSize

Fig. 9. EMD cost changing area and cell size.

As listed in Table 1, DeltaShaper can be configured with
four parameters: payload area size, cell size, bit number, and
frame rate. Since the number of possible configurations is very
large, we focus on a subset of configurations that results in
valid configurations, but not necessarily optimal in terms of the
maximum throughput that can be achieved. In our study, we
take the reference stream that was used in the previous section
and the A threshold values that were found for that reference
stream considering “High Quality Video” network bandwidth.

We start by analyzing the combined effects of the pay-
load area size and the cell size, fixing the bit number in 1
bit/cell and the frame rate in 1 frame per second. Figure 9
shows the EMD cost for several configurations varying the
cell size between 1x1 and 8x8 pixels and the area size rang-
ing from 160x120, 320x240, and 480x368. The area sizes
were chosen to cover roughly 1/16, 1/4, and 1/2 of the frame
size, respectively, while aligning the payload size to the size
of a macroblock. In the H.264 video encoding standard (used
by Skype), frames are divided into small matrices of pixels
(16x16) named macroblocks which are used for improving
the efficiency of the video compression algorithm. The plot
is annotated with A threshold values for the three policies dis-
cussed in the previous section: aggressive (A 4), conservative
(A¢), and intermediate (A). For example, for an intermedi-
ate policy, there are five configurations that produce unobserv-
able streams, i.e., for area sizes 160x120 or 320x240 and cell
sizes 4x4 or 8x8; and for area size 480x368 and cell size 8x8.
As the cell size increases, the EMD cost tends to decrease be-
cause larger areas of the frames will be colored with the same
color thereby improving the efficiency of the video compres-
sion algorithm. However, the payload area size 480x368 was
consistently found to generate streams identified as irregular
by the classifier, when encoding more than 1 bit per cell.

For the area / cell size configurations found to be valid, we
studied how unobservability changes as a function of the num-

Area: 320x240

0.35 .
= 8-3(5% v Cell: 1x1 |4
8 0_20’ =-n Cell: 2x2 ||
A 0.15 a-a Cell: 4x4 ||
= 0.10F- 0 Cell: 8x8 |[1Ac
w 0.05 ’ ‘.-..Q..v.‘"."ﬁ'..'.,,.Q...‘v‘_"’;";0;"."J."-u‘a.“_‘“."!“;'t“a‘."z %I
0.00 ‘ : : A
1 5 9 13 17 21
Bits per Cell
0.14 Area: 160x120 I
2 8%(2) v~ Cell: 1x1 .:Ac
8 0:08— =-x Cell: 2x2 4
Q 0.06 a-a Cell: 4x4 [{Ar
E 88‘2" L,A._ amrATA eI A TR s 1A,
0.00; 5 9 13 17 21
Bits per Cell

Fig. 10. EMD cost varying the bits per cell.

0.20

0.15}

EMD Cost
o
=
S

0.05}

0.00

1 2 3 4 5 6 7 8 9
Frames Per Second

Fig. 11. EMD cost varying the frame rate.

ber of bits per cell. Figure 10 shows our results covering the
domain of data bit numbers. In general, unobservability tends
to be degraded as the number of bits increases. Some configu-
rations, however, have a more flattened evolution of the EMD
cost. In particular, two configurations fall consistently below
the A threshold value for intermediate blocking policy (Aj),
namely (160x120, 4x4) and (320x240,8x8). This means that
both these encoding configurations are good candidates to gen-
erate covert streams that are both unobservable and can deliver
a large data throughput range (due to the large data bit num-
ber). Note that since (320x240,8x8) is proportionally larger
than (160x120, 4x4), both these configurations can encode the
same amount of cells per frame.

Lastly, we study how the frame rate affects unobservabil-
ity. Figure 11 shows how the EMD cost varies as we increase
the frame rate. We define a fixed payload area size 320x240
and cell size 8x8, and measure the EMD cost for a cell bit en-
coding range varying between 1 and 6 bits per cell. Although



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams = 17

»
o

--- Area: 160x120, Cell: 4x4
— Area: 320x240, Cell: 8x8 |,.--"

w

Ul
Y
1
[

.

Error Percentage
= = N N w
(6, o [6,] o [6,] o

1 5 9 13 17 21
Bits per Cell

Fig. 12. Error rate increasing bits per cell.

the (160x120, 4x4) configuration encodes the same amount of
bits per cell, these are more difficult to decode due to a higher
error rate. Results show that increasing the frame rate quickly
results in EMD costs above A. A notable exception is the 1
bit per cell encoding scheme, which remains below A for all
tested frame rates. Schemes with higher bit numbers can only
tolerate the minimal frame rate value (1 frame per second).

6.3 Channel Performance

Although it is possible to generate covert streams from nu-
merous encoding configurations, DeltaShaper can only safely
adopt those that result in unobservable streams. The need to
satisfy this property constrains the maximum amount of en-
coded data per frame, placing a limit to the performance that
can be delivered by a DeltaShaper channel. Performance can
also be affected by decoding errors at the receiver when in-
terpreting the cell color of payload frames. As the number of
encoding bits used per cell increases, the video compression
algorithm tends to introduce more changes in the less signifi-
cant bits of the color of each pixel, introducing more decoding
errors. This trend can be observed in Figure 12, which shows
how the error rate increases as the number of encoding bits in-
creases for configurations (160x120, 4x4) and (320x240, 8x8).

Taking into account both restrictions in terms of unob-
servability and decoding errors, we identify the candidate
encoding configuration for DeltaShaper which consists of:
320x240 area size, 8x8 cell size, 6 bits per cell, at 1 frame per
second. We decided to be more conservative with respect to
the bit encoding scheme (less than 9 bits per cell) because even
sporadic unrecoverable bit errors can result in the loss of an en-
tire payload frame which will significantly affect throughput.
Table 2 lists the maximum goodput that we can achieve under
this scheme: 2.56 and 3.12 Kbps, respectively with and with-
out error correction codes, measured while running an actual

Params With ECC  Without ECC
Raw Throughput | 6.24 Kbps 7.20 Kbps
Goodput 2.56 Kbps 3.12 Kbps
RTT 2s 984ms 25 973ms

Table 2. Performance measurements.

TCP connection and taking into account the overheads intro-
duced by covert frames’ meta-data and TCP/IP headers.

Comparison with state-of-the-art systems: Although we
could not repeat the same experiments for related censorship-
resistant systems, we provide some performance numbers of
such systems as reported by their respective authors. As a tun-
neling system incapable of providing resistance against pas-
sive attacks, FreeWave achieves a throughput of 18.75 Kbps.
In DeltaShaper, covert data is carefully encoded before being
tunneled through the cover protocol, ensuring that the gener-
ated traffic resembles legitimate flows. This approach is simi-
lar to that of Castle and CovertCast. Interestingly, we observe
that the goodput obtained by DeltaShaper is within the total
throughput obtained by Castle — DeltaShaper reaches a good-
put of 3.12 Kbps while Castle attains a covert transfer rate of
3.48 Kbps without accounting for the overheads introduced
by high level protocols. The higher throughput attained by
CovertCast — roughly 168 Kbps — can be explained by the lack
of profile-specific optimizations performed by the underlying
video codec, a higher video resolution, and the wide diversity
of videos composing live-streaming platforms’ traffic. Lastly,
by focusing on steganographic security, SkypeLine and Rook
attain much lower covert data transfer rates - the throughput of
Rook caps between 0.024 Kbps and 0.04 Kbps while Skype-
Line attains a maximum throughput of 0.064 Kbps.

6.4 Alternative Metrics

So far, we have used a single reference stream for comput-
ing the A thresholds. We have also assumed that the adversary
was using the same functions as DeltaShaper to detect covert
channels (i.e., packet length as the feature function and EMD
as the similarity function). However, in a real setting, an ad-
versary would compare the target stream being classified not
with a single regular stream, but with a set of regular streams,
thus taking into account the differences among regular streams
that are inherent to Skype traffic. Also, the adversary may use
alternative features or similarity functions to achieve higher
accuracy in detecting streams with a covert channel.

To assess the ability of the adversary to correctly classify
streams when using different functions, we have performed
additional tests, letting the adversary use alternative traffic



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams —— 18

Feature Packet Length  Bi-Grams Packet Length Inter-Packet Time Bi-Grams Inter-Packet Time
Similarity EMD% / KS% EMD% / KS% EMD% / KS% EMD% / KS%
Unperturbed Stream
88/78 85/72 85/82 88 /77
Perturbed Stream
Bandwidth
500 Kbps 85/70 82/78 88/75 90 /68
300 Kbps 75/68 75/ 68 72/68 78 /68
Packet Loss
5% 76 /72 82/72 68 /75 78170
10% 75182 78178 72/73 7560
20% 78175 85/78 75/58 88/72
Network Jitter
10ms 82/78 85/72 75/72 77 /68
20ms 78/85 85/78 67 /60 67 /67
50ms 82/78 82/78 68 /55 68 /62

Table 3. Accuracy of the adversary using different feature and similarity functions in unperturbed/perturbed streams. Underlined entries
represent the accuracy of a classifier relying on packet lengths frequency distribution as feature function and EMD as similarity function.

features, namely: bi-gram distribution of packet sizes, inter-
packet time, bi-gram distribution of inter-packet times. Some
of these features have been previously adopted in the related
work [22, 24, 25]. We have also experimented as a similarity
metric the Kolmogorov-Smirnov (KS) distance-based classi-
fier for all the studied traffic features, given that the 2-sample
KS test for statistical significance has been successfully ap-
plied in traffic classification in the related literature [25, 28].
Table 3 depicts the classification results for the different
combinations of the features listed above with both the EMD
and KS similarity metrics. In all these results, each regular /
irregular test stream was compared against all streams com-
prising the regular streams dataset (by taking the average of
the different As). The first row of the table shows the clas-
sifier accuracy in unperturbed network conditions, while the
remaining rows show the classifier accuracy for streams in
perturbed network conditions. The induced perturbations will
be described in Section 6.5 thus, for now, we concentrate on
the results depicted in the first line. As expected, the adver-
sary is able to distinguish between regular and irregular Skype
streams when using other traffic features. In unperturbed con-
ditions, a classifier based on the bi-grams of inter-packet times
achieves a similar accuracy to one based in packet lengths
(88%). However, building the latter model takes nearly ten-
fold the time spent in building the former (~64s vs ~6s) due
to the computations involved in the creation and processing of
bi-grams. Thus, we consider that packet length / EMD offers
the best results (which further substantiates the choice of these
functions for parameter configuration on our prototype).
Furthermore, when comparing the EMD similarity met-
ric with KS, it is possible to observe that EMD offers a bet-
ter traffic classification accuracy. Particularly, for unrestricted

network conditions, the combination of the KS similarity met-
ric and the analysis of inter-packet times yields 82% accuracy,
6% short of the maximum classification accuracy that can be
achieved by EMD under the same network conditions (88%).

6.5 Effect of Network Perturbations

A censor may introduce controlled network perturbations with
the goal of increasing stream classification accuracy. We study
the impact of bandwidth throttling, loss of random packets,
and the introduction of jitter and packet delay on the ability of
the censor to distinguish between regular / irregular streams.
If such perturbations allow a censor to increase its accuracy
without severely degrading the quality of the video calls, this
fact could be used to more reliably detect DeltaShaper streams.

Table 3 presents the relevant results of our study. It shows
the accuracy of the adversary, when it uses different feature
and similarity functions to classify regular / irregular streams
under different network perturbations. In the discussion below,
when referring to concrete values, we use the values obtained
by an attacker relying on the packet length / EMD functions to
perform the classification (values underlined).

Bandwidth throttling: To assess the classification accuracy
of throttled Skype streams, we repeat our tests for three band-
width configurations: unrestricted, 500 Kbps, and 300 Kbps. A
300 Kbps throttle resulted in a high packet loss rate, which cul-
minated in a high FPS drop from 30 to 5 FPS, and impairing
visual experience. As shown in the table, the classifier accu-
racy worsens alongside bandwidth reductions, from 88% (un-
restricted) to 75% (300 Kpbs). By throttling streams to 300
Kbps, ill-classifications are at least doubled versus unthrottled



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams —— 19

Use Case Protocol Setup w/ DS Protocol Session w/ DS Protocol Session w/o DS  Overhead
(mm:ss) (mm:ss) (mm:ss)

A. Wget 0:13 0:22 < 0:01 3,142.9x
B. FTP 0:29 1:43 0:09 11.4x
C. SMTP 0:51 2.4 0:38 4.2x

D. SSH 1:09 1:29 0:06 14.8x
E. Telnet 0:51 1:13 0:06 12.2x
F. Netcat Chat - 0:01 < 0:01 166.7 x
G. SSH Tunnel 1:09 2:19 0:22 6.3x

Table 4. Execution time for DeltaShaper use cases: fetch 4KB web page from receiver (A), connect to receiver through FTP, run’ls’ and
download a 4KB file (B), open telnet to receiver and tunnel a small email through an SMTP server running on the receiver (C), open
SSH session to receiver and run “Is” (D), open telnet to receiver and execute “Is” (E), send message to netcat server on receiver mimick-
ing text chat (F), tunnel SSH session to remote SSH server through the receiver, and execute “Is” (G).

streams. Thus, this strategy is not effective due to the large rate
of false positives and false negatives that it may generate.

Packet loss: A censor can also perform arbitrary packet drop-
ping. Packet dropping may affect ongoing streams in unpre-
dictable ways that may be used to increase the classification
accuracy between regular and irregular streams. To study this
effect, we repeat our tests for three different packet loss rates:
5%, 10%, and 20%. By visually examining ongoing streams,
we observed that while a 5% packet dropping rate is sufficient
for sustaining an acceptable viewing experience, a 20% packet
dropping rate greatly affects the stream quality. As Table 3
shows, the classifier accuracy is severely affected by even a
small packet dropping rate. In fact, when analyzing the mini-
mal degree of packet loss tested (5%), the false positive / nega-
tive rates (24%) are doubled when compared with unimpaired
network conditions’ false positive / negative rates (12%).

Packet delay and jitter: Videoconferencing traffic tends to be
sensitive to network jitter, since multimedia data must be de-
livered in a timely and sequential fashion. To study whether the
manipulation of jitter translates into an increase of classifica-
tion accuracy, we repeat our tests for three different configura-
tions of packet delay and jitter: the connection delay was set to
20ms while jitter was adjusted in each different experiment to
10ms, 20ms, and 50ms, respectively. As shown in Table 3, the
accuracy of the classifier is negatively affected, although mod-
erately, by the introduction of jitter. One can also argue that a
censor would refrain from employing perturbations other than
the one which constitutes the first experiment, since the intro-
duction of 20ms or 50ms of jitter greatly impacts the end-user
experience for legitimate connections.

Summary: Results in Table 3 justify our design choices when
building stream classifiers. We have observed that when al-
ternative features were used to classify streams in perturbed
conditions, classifiers generally followed a decline in accu-
racy vs unperturbed conditions. In fact, only a single classifier
based on bi-grams of inter packet times (BIPT) / EMD was

able to obtain a better classification accuracy in a specific set-
ting (Bandwidth = 500 Kbps). Although the frequency distri-
bution of packet lengths (PL) may not be the absolute best fea-
ture to inspect in every scenario (e.g. Bandwidth = 500 Kbps,
PL / EMD = 85%, BIPT / EMD = 90%), this feature function
still offers a reasonable accuracy while providing a sound and
lightweight approach for building classifiers. The analysis of
PL has also shown to be the best approach to classify streams
in unperturbed environments. Hence, the analysis of such fea-
ture may be advantageous to a censor which attempts to clas-
sify streams while refraining itself from introducing perturba-
tions that affect the quality of legitimate Skype streams. Lastly,
when comparing between EMD and KS similarity functions,
we can observe that among all experiments KS seldom offers
better results than EMD (in only four ocasions).

6.6 Use Cases

Given that the data throughput that can be achieved while pre-
serving unobservability is relatively small, DeltaShaper is not
adequate for the transmission of bulk data. Nevertheless, it
can sustain the execution of a plethora of applications that are
not bandwidth hungry. To confirm this hypothesis, we tested
DeltaShaper with seven use cases (A-G) depicted in Table 4.
In use cases A-F, the client communicates only with the
receiver over a DeltaShaper channel. In use case G, the re-
ceiver acts as a relay tunneling traffic between the client and
a remote party. Excepting case A, all other use cases are per-
formed interactively, where a proficient user types the com-
mands required to establish the different types of connections
in a terminal. Table 4 provides a summary of the execution
time for each use case when performed using DeltaShaper and
without using DeltaShaper, i.e., using overt communication
channels between client and receiver. The figures represented
in the third and fourth column of Table 4 account for an aver-
age of the cumulative time of an entire session of the consid-



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams —— 20

ered protocol, including connection setup phase. The second
column of this table depicts the time spent in the connection
setup phase of the protocol when using DeltaShaper. We note
that the latency observed for the feedback of commands issued
in interactive sessions is akin to the time spent in observing a
request-response through netcat, i.e. in the order of seconds.
We see that the execution time is several orders of mag-
nitude higher in DeltaShaper than in overt channels. Such
a large overhead is expected given the low throughput that
DeltaShaper can currently deliver. Nevertheless, in spite of
these delays, all tested use cases are fully functional. We can
observe that our system allows for the execution of traditional
TCP/IP applications which can be used in practice to cover
different needs exhibited by users actively evading censorship.

6.7 Security Discussion

We now discuss relevant security properties of DeltaShaper:

1. Attacks detecting patterns in streams: Since Skype traffic
is encrypted, it is hard for a censor to detect patterns based
on packet content. In addition, given that DeltaShaper gen-
erates covert streams indistinguishable from regular streams,
censors cannot block our system without disrupting the Skype
service to legitimate users. Nevertheless, it is possible that by
replaying the same carrier video for covert channel modulation
purposes, repeatable packet distribution patterns can emerge
that may be spotted by a censor. To mitigate this attack, car-
rier videos may be directly captured from an actual webcam
or pre-recorded carrier videos may be rotated periodically by
DeltaShaper to limit pattern exposure to the censor.

2. Denial of service attacks: A censor may drop packets of
Skype streams to prevent the delivery of video frames. This
attack, however, does not permanently disrupt DeltaShaper’s
covert channel because the TCP layer will retransmit lost
IP packets automatically in newly issued frames. Also,
DeltaShaper frames are self-contained: meta-data and payload
data are included in each frame being scraped. Thus, the cen-
sor is unable to prevent the decoding of covert frames which
are successfully delivered. Moreover, shall the censor extend
its attack period, Skype video calls will experience a reduction
in quality (as studied in Section 6.5) affecting legitimate users.

3. Defense against active probing: In order to thwart active
probing attempts, DeltaShaper servers can be configured to ac-
cept calls from added contacts, ignoring calls from unknown
Skype IDs. To advertise DeltaShaper servers, volunteers may
share circumvention servers’ Skype IDs and respective access
credentials (like a password) through some out-of-band chan-
nel among users within the censored region. A client can then
place a contact request, including the corresponding creden-

tial, to a DeltaShaper server. This prevents the circumvention
server to blindly accept calls from censors’ Skype endpoints.

7 Future Work

In this section we outline some avenues of future work regard-
ing the issue of dynamic adaptation for achieving unobserv-
ability and further studies on the applicability of our system to
alternative videoconferencing applications.

Adaptation mechanism: As described in Section 4.4, the cali-
bration procedure is conducted periodically to set the encoding
parameters for the next data transmission phase. If the period
between consecutive adaptations is large enough, the adver-
sary may have enough time to perturb the stream and observe
the covert channel. The quest for more sophisticated adaptive
mechanisms which can strengthen the unobservability of the
covert stream is an interesting topic of future research.

Video-carrier independence: It would be interesting to as-
sess whether DeltaShaper can be used with alternative video-
conferencing applications. Albeit we have not performed any
experiments to verify this hypothesis, we have two arguments
that suggest this is possible. Firstly, DeltaShaper requires no
changes to the videoconferencing application; it simply trans-
mits frames to a camera driver that feeds the application. Sec-
ondly, several videoconferencing systems use the same or sim-
ilar codecs as Skype. Even if the videoconferencing system
uses another codec, our calibration procedure is codec agnos-
tic and does not require previous knowledge about the charac-
teristics of the codec to derive encoding parameters.

8 Conclusions

In this paper we introduced DeltaShaper, a censorship-
resistant system which leverages the video channel of a pop-
ular videoconferencing application to tunnel covert data. Our
system offers a data-link interface, supporting the execution of
several applications running over TCP/IP, offering users differ-
ent possibilities for transferring information in an unobserv-
able way. We have performed an extensive evaluation of our
prototype so as to define which combinations of encoding pa-
rameters can defend against traffic analysis.

Acknowledgments: We thank the anonymous reviewers and
our shepherd, Mashael Al-Sabah, for their comments and sug-
gestions. This work was partially supported by the EC through
project H2020-645342 (reTHINK), and by Fundagdo para a
Ciéncia e Tecnologia (FCT) through the project with reference
UID/ CEC/ 50021/ 2013.



DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams —— 21

References

(1]

(2]

(3]

[4]

(6]

(7]

0]

[10]
(1]

[12]

[13]

[14]

C. Bocovich and |. Goldberg, “Slitheen: Perfectly imitated
decoy routing through traffic replacement,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, 2016, pp. 1702—
1714,

C. Brubaker, A. Houmansadr, and V. Shmatikov, “Cloudtrans-
port: Using cloud storage for censorship-resistant network-
ing,” in Privacy Enhancing Technologies, ser. Lecture Notes
in Computer Science, E. De Cristofaro and S. Murdoch, Eds.
Springer International Publishing, 2014, vol. 8555, pp. 1-20.
A. Chaabane, T. Chen, M. Cunche, E. De Cristofaro,

A. Friedman, and M. A. Kaafar, “Censorship in the wild: An-
alyzing Internet filtering in Syria,” in Proceedings of the 2014
Conference on Internet Measurement Conference, Vancou-
ver, BC, Canada, 2014, pp. 285-298.

R. Dingledine, “Obfsproxy: the next step in the censorship
arms race,” https://blog.torproject.org/blog/obfsproxy-next-
step-censorship-arms-race, 2012, accessed: 2017-06-12.
R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
second-generation onion router,” in Proceedings of the 13th
Conference on USENIX Security Symposium, San Diego,
CA, USA, 2004.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Pro-
tocol misidentification made easy with format-transforming
encryption,” in Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security, Berlin,
Germany, 2013, pp. 61-72.

K. P. Dyer, S. E. Coull, and T. Shrimpton, “Marionette: A pro-
grammable network-traffic obfuscation system,” in Proceed-
ings of the 24th USENIX Conference on Security Sympo-
sium, Washington, D.C., USA, 2015, pp. 367-382.

T. Elahi, C. M. Swanson, and |. Goldberg, “Slipping past the
cordon: A systematization of Internet censorship resistance,”
in CACR Tech Report 2015-10, 2015.

R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver, and
V. Paxson, “Examining how the great firewall discovers hid-
den circumvention servers,” in Proceedings of the 2015 ACM
Conference on Internet Measurement Conference, Tokyo,
Japan, 2015, pp. 445-458.

FFmpeg, https:/ffmpeg.org, 2000, accessed: 2017-06-12.

D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson,
“Blocking-resistant communication through domain fronting,”
in Proceedings on Privacy Enhancing Technologies 2015.2,
Philadelphia, PA, USA, 2015, pp. 46-64.

J. Geddes, M. Schuchard, and N. Hopper, “Cover your acks:
Pitfalls of covert channel censorship circumvention,” in Pro-
ceedings of the 2013 ACM SIGSAC Conference on Com-
puter and Communications Security, Berlin, Germany, 2013,
pp. 361-372.

GStreamer, https://gstreamer.freedesktop.org/, 2001, ac-
cessed: 2017-06-12.

B. Hahn, R. Nithyanand, P. Gill, and R. Johnson, “Games
without frontiers: Investigating video games as a covert chan-
nel,” in 2016 IEEE European Symposium on Security and
Privacy (EuroS&P). Saarbrucken, Germany: IEEE, 2016,
pp. 63-77.

(18]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

(29]

[26]

(27]

(28]

(29]

A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot
is dead: Observing unobservable network communications,”
in Proceedings of the 2013 IEEE Symposium on Security
and Privacy, San Francisco, CA, USA, 2013, pp. 65-79.

A. Houmansadr, G. T. Nguyen, M. Caesar, and N. Borisov,
“Cirripede: Circumvention infrastructure using router redi-
rection with plausible deniability,” in Proceedings of the 18th
ACM Conference on Computer and Communications Secu-
rity, Chicago, IL, USA, 2011, pp. 187-200.

A. Houmansadr, T. J. Riedl, N. Borisov, and A. C. Singer, “I
want my voice to be heard: IP over Voice-over-IP for unob-
servable censorship circumvention.” in Proceedings of the
20th Annual Network & Distributed System Security Sympo-
sium, San Diego, CA, USA, 2013.

J. Angwin, C. Savage, J. Larson, H. Moltke, L. Poitras and J.
Risen, “AT&T Helped U.S. Spy on Internet on a Vast Scale,’
https://www.nytimes.com/2015/08/16/us/politics/att-helped-
nsa-spy-on-an-array-of-internet-traffic.html, 2015, accessed:
2017-06-12.

J. Karlin, D. Ellard, A. Jackson, C. Jones, G. Lauer, D. Mank-
ins, and T. Strayer, “Decoy routing: Toward unblockable In-
ternet communication,” in Proceedings of the USENIX Work-
shop on Free and Open Communications on the Internet,
San Francisco, CA, USA, 2011.

S. Khattak, T. Elahi, L. Simon, C. M. Swanson, S. J. Mur-
doch, and |. Goldberg, “Sok: Making sense of censorship
resistance systems,” in Proceedings on Privacy Enhancing
Technologies, vol. 2016, no. 4, Darmstadt, Germany, 2016,
pp. 37-61.

K. Kohls, T. Holz, D. Kolossa, and C. Pdpper, “SkypeLine:
Robust hidden data transmission for VolP,” in Proceedings
of the 2016 ASIA Computer and Communications Security,
Xi’an, China, 2016.

S. Li, M. Schliep, and N. Hopper, “Facet: Streaming over
videoconferencing for censorship circumvention,” in Pro-
ceedings of the 13th Workshop on Privacy in the Electronic
Society, Scottsdale, AZ, USA, 2014, pp. 163-172.

P. Maersk-Moller, “Snowmix,” https://sourceforge.net/projects/
snowmix/, 2012, accessed: 2017-06-12.

R. McPherson, A. Houmansadr, and V. Shmatikov, “Covert-
cast: Using live streaming to evade internet censorship,” in
Proceedings on Privacy Enhancing Technologies, vol. 2016,
no. 3, Darmstadt, Germany, 2016, pp. 212—225.

H. Moghaddam, B. Li, M. Derakhshani, and |. Goldberg,
“Skypemorph: Protocol obfuscation for Tor bridges,” in Pro-
ceedings of the 2012 ACM Conference on Computer and
Communications Security, Raleigh, NC, USA, 2012, pp. 97—
108.

Netfilter Framework, http://www.netfilter.org/, 1998, ac-
cessed: 2017-06-12.

Y. Rubner, C. Tomasi, and L. J. Guibas, “The Earth Mover’s
Distance As a Metric for Image Retrieval,” Int. J. Comput.
Vision, vol. 40, no. 2, pp. 99—121, Nov. 2000.

P. Vines and T. Kohno, “Rook: Using video games as a low-
bandwidth censorship resistant communication platform,” in
Proceedings of the 14th ACM Workshop on Privacy in the
Electronic Society. — Denver, CO, USA: ACM, 2015, pp.
75-84.

L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and T. Shrimp-
ton, “Seeing through network-protocol obfuscation,” in Pro-


https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race
https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race
https://ffmpeg.org
https://gstreamer.freedesktop.org/
https://www.nytimes.com/2015/08/16/us/politics/att-helped-nsa-spy-on-an-array-of-internet-traffic.html
https://www.nytimes.com/2015/08/16/us/politics/att-helped-nsa-spy-on-an-array-of-internet-traffic.html
https://sourceforge.net/projects/snowmix/
https://sourceforge.net/projects/snowmix/
http://www.netfilter.org/

DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams —— 22

ceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, Denver, CO, USA,
2015, pp. 57-69.

[30] Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr, and
N. Borisov, “Censorspoofer: Asymmetric communication
using IP spoofing for censorship-resistant web browsing,”
in Proceedings of the 2012 ACM Conference on Computer
and Communications Security, Raleigh, NC, USA, 2012, pp.
121-132.

[31] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister,

S. Cheung, F. Wang, and D. Boneh, “Stegotorus: A camou-
flage proxy for the Tor anonymity system,” in Proceedings of
the 2012 ACM Conference on Computer and Communica-
tions Security, Raleigh, NC, USA, 2012, pp. 109—120.

[382] S. B. Wicker, Reed-Solomon Codes and Their Applications.
IEEE Press, 1994.

[33] P. Winter, T. Pulls, and J. Fuss, “Scramblesuit: A polymorphic
network protocol to circumvent censorship,” in Proceedings
of the 12th ACM Workshop on Privacy in the Electronic Soci-
ety, Berlin, Germany, 2013, pp. 213-224.

[34] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing:
An efficient defense against statistical traffic analysis,” in
Proceedings of the 16th Network and Distributed Security
Symposium, San Diego, CA, USA, 2009, pp. 237-250.

[85] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman,
“Telex: Anticensorship in the network infrastructure,” in Pro-
ceedings of the 20th USENIX Conference on Security, San
Francisco, CA, USA, 2011.

[36] W. Zhou, A. Houmansadr, M. Caesar, and N. Borisov,
“Sweet: Serving the web by exploiting email tunnels,” in
Proceedings of the 6th Workshop on Hot Topics in Privacy
Enhancing Technologies, Bloomington, IN, USA, 2013.



	DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams
	1 Introduction
	2 Related Work
	3 Goals and Threat Model
	4 Design
	4.1 Design Challenges
	4.2 Data Encoding and Decoding
	4.3 Preserving Unobservability
	4.4 Adaptation to Network Conditions

	5 Implementation
	5.1 System Setup and Operation
	5.2 Message Format and Error Recovery
	5.3 Encoding Selector Algorithm

	6 Evaluation
	6.1 Characterization of Skype Streams
	6.2 Unobservability Assessment
	6.3 Channel Performance
	6.4 Alternative Metrics
	6.5 Effect of Network Perturbations
	6.6 Use Cases
	6.7 Security Discussion

	7 Future Work
	8 Conclusions


