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Abstract: The mobile eco-system is driven by an in-
creasing number of location-aware applications. Conse-
quently, a number of location privacy models have been
proposed to prevent the unwanted inference of sensi-
tive information from location traces. A primary focus
in these models is to ensure that a privacy mechanism
can indeed retrieve results that are geographically the
closest. However, geo-query results are, in most cases,
ranked using a combination of distance and importance
data, thereby producing a result landscape that is pe-
riodically flat and not always dictated by distance. A
privacy model that does not exploit this structure of
geo-query results may enforce weaker levels of location
privacy. Towards this end, we explore a formal location
privacy principle designed to capture arbitrary similar-
ity between locations, be it distance, or the number of
objects common in their result sets. We propose a com-
posite privacy mechanism that performs probabilistic
cloaking and exponentially weighted sampling to pro-
vide coarse grain location hiding within a tunable area,
and finer privacy guarantees under the principle inside
this area. We present extensive empirical evidence to
supplement claims on the effectiveness of the approach,
along with comparative results to assert the stronger
privacy guarantees.
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1 Introduction
Location-based applications form a vast majority of
the application eco-system in modern mobile devices.
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Many conventional applications such as search, driving
directions, social messaging, and others, have been re-
designed to be location aware. As such, location infor-
mation forms an important component of interactions
with these applications. Much like how the tracking of
users across browser sessions became concerning, the
ability to access and collect a user’s location informa-
tion over long periods of time is raising concerns as well.
The linkability of a user to potentially private informa-
tion based on gathered location traces have been well-
studied [8, 9, 17]. The mobile application arena is also
getting flooded with developers that do not always have
the security infrastructure to protect the collected data
in storage. Despite the risk, location-based applications
are undoubtedly popular.

Early proposals on location privacy models centered
around the cloaking of the user’s location. However,
these models failed to provide a formal guarantee on
what an adversary can learn by observing the communi-
cation between a location privacy preserving mechanism
(LPPM) and the application server. More recent pro-
posals such as geo-indistinguishability [1] address this
issue by bounding the degree to which an adversary can
distinguish between two locations. A persistent assump-
tion in these proposals (more than a decade worth of
research) is that location-based queries (or geo-queries)
produce results that are dictated only by the distance
of a result object from the query location. However,
clearly verifiable in any popular location-based appli-
cation, geo-query results are ranked based on multiple
criteria, distance being just one of them. Extending lo-
cation privacy models to bridge this long present gap is
therefore important, and forms the motivation for this
work.

We begin with a summary of our contributions in
this work. Starting from the principle of geo-indistin-
guishability, we discuss how the principle enforces a no-
tion of quantifiable indistinguishability based on the dis-
tance between locations. We demonstrate how, under
the use of a weighted sum ranking function, a geo-indis-
tinguishable LPPM allows for distinctions between lo-
cations that are equivalent with respect to the query re-
sults. The primary contribution of this work is the intro-
duction of the (f, ε)-geo-indistinguishable principle. The
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principle is designed with an objective similar to geo-
indistinguishability, but allows for privacy levels to be
controlled as per an arbitrary function of two locations.
For example, if a geo-query returns a unique result set
for a region, then enforcing the principle with the appro-
priate f function would guarantee that no two locations
in the region are distinguishable from each other. Conse-
quently, as the second contribution, we propose a LPPM
that enforces (f, ε)-geo-indistinguishability for applica-
tions where top-K ranking (using both importance and
distance) is performed. We build this LPPM as a two
step application that first discloses coarse grain location
information in the form of a cloaking region to obtain re-
sult ranking metadata, and then executes a probabilistic
retrieval mechanism to obtain details on top ranked re-
sults with (f, ε)-geo-indistinguishability assurances. We
provide analytical results that characterize the privacy
and the quality of service assurances of the approach.
We provide conclusive evidence to support our claims
by applying the approach to a nearby points-of-interest
(POI) search in a real-world database. In addition, we
develop a prototype Android application to demonstrate
how third party APIs can be utilized to execute the var-
ious steps in the approach, and assess its efficiency and
accuracy on a mobile device.

The remainder of the paper is organized as follows.
Section 2 presents the request-response (querying) ar-
chitecture within which a LPPM operates. We move be-
yond distance-only ranking, and present top-K ranking
as the generic sorting operation. Section 3 presents de-
tails of our experimental set up. This is provided early
on so that we can refer to observed results along with
the proposed concepts. Section 4 starts with a discussion
of geo-indistinguishability, and later presents (f, ε)-geo-
indistinguishability, a LPPM based on it, and its char-
acterizations. Section 5 focuses on the accuracy guar-
antees of the proposed LPPM. Section 6 presents an
extensive parametric evaluation of the LPPM, and Sec-
tion 7 discusses the Android application based on the
LPPM. Section 8 provides a discussion on the compara-
tive effectives of the LPPM. Finally, Section 9 presents a
brief overview of prior works, and Section 10 concludes
the paper. We present proofs of all theorems in the ap-
pendix.

2 Top-K Computation
A typical location privacy preserving mechanism
(LPPM) for geo-queries may generate an obfuscated

location for a query and then retrieve a set of POIs
contained within an area centered at the obfuscated lo-
cation. The retrieved set is then filtered for the user’s
actual location and presented to the user. We refer to
this architecture as a 1-level architecture. LPPMs can
differ in terms of their privacy guarantees depending
on how the obfuscated location is generated. They also
differ in terms of their communication overhead depend-
ing on the size of the area of retrieval. The local filtering
of results can be done strictly on the basis of distance
(keep only POIs that are within a certain distance of the
user), or on a combination of distance and other promi-
nence factors. Note that the former method has received
the most attention in the privacy research community,
while the latter method is what is deployed in most
non-private local search applications [11, 20, 23, 32].
For example, a search for “cafe” in a popular platform
such as Google does not always return the nearest cafes,
but the top cafes determined by the query location and
other prominence factors such as user reviews, reference
counts, open hours, and business popularity, among oth-
ers. Therefore, a geo-query search is more accurately a
top-K search.

2.1 Querying Architecture

Any LPPM designed along the lines of the above discus-
sion can provide top-K results by modifying the filter-
ing mechanism. However, the architecture levies a high
communication overhead owing to the retrieval of all
POIs in a large area. The data pertaining to a complete
POI typically contains details such as name, address,
contact numbers, ratings, photos, and multiple reviews.
Since most POIs will be filtered out, the bandwidth con-
sumed while retrieving all such details for the POIs in-
side the area of retrieval is wasted. We therefore con-
sider a revised querying architecture that significantly
reduces this communication overhead.

In the revised architecture, a LPPM retrieves mini-
mal details about the set of POIs within the area of re-
trieval. It is sufficient to obtain the location and promi-
nence of a POI in this step. Search providers do provide
results with such minimal information, for example, a
radarsearch query in the Google Places API returns
the names and locations of POIs within a specified dis-
tance of the given location. Prominence values are not
yet included in these results, but as discussed next, they
can be communicated without revealing the underlying
computation function. A filtering process is next applied
on the POIs and a relevant subset is determined. All
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details for this subset of POIs are then retrieved from
the provider and presented to the user. We refer to this
revised architecture as the 2-level architecture. This ar-
chitecture allows for the ranking of POIs based on an
arbitrary function based on location and prominence,
and has significantly lower bandwidth overhead.

2.2 Top-K Ranking

Given a set of POIs {p1, p2, ..., pn} inside the area of
retrieval, with unique identifiers {id1, id2, .., idn}, loca-
tions {l1, l2, ..., ln}, and prominence {β1, β2, ..., βn};0 ≤
βi ≤ 1, we consider a linear ranking function r′ given as

r′(lu, pi) = αdnorm(lu, li) + (1− α)(1− βi), (1)

where lu is the user’s location, dnorm is a normalized
distance function, and α > 0 is the weight assigned to
the distance between the POI and the user. Lower rank
values are considered better with this function. Nearest
neighbor ranking corresponds to the case of α = 1. The
exact methodology to combine ranking factors is often
not available as public knowledge. However, as long as
the distance part is not multiplicatively combined with
other factors, the assumed ranking function is generic.
Also note that the prominence score can be computed
from multiple factors. Therefore, the function implicitly
captures the combination of more than two factors.

In the event the service provider is unwilling to re-
veal the α and βi values, the ranking function can be
rewritten as

r(lu, pi) = r′(lu, pi)
α

= dnorm(lu, li) + γi (2)

where γi = 1−α
α (1 − βi). The ranking of POIs is not

affected when using r instead of r′. Therefore, the data
retrieved for all POIs inside the area of retrieval can
be represented as the set Ω = {〈idi, li, γi〉|i = 1...n}.
Locations are typically provided as latitude/longitude
pairs; we convert them to cell coordinates as per our ex-
perimental setup. Consequently, “locations” imply cell
coordinates in the following.

Given Ω and some user location lu, the top-K result
set for lu can be computed using a brute force search.
However, if top-K computations have to be performed
repeatedly, more specifically for multiple nearby loca-
tions, then a brute force search can result in sluggish
performance. Such computations are crucial in our ap-
proach; therefore, we need an effective method to com-
pute multiple top-K sets corresponding to a sub-grid of
cells. Dewri et al. presented an algorithm for this task

where the computation time is significantly reduced by
(i) using a kd-tree branch and bound search instead of a
linear search, and (ii) using an optimization where top-
K search for neighboring cells can be skipped [6]. We
employ this algorithm for our needs.

3 Experimental Setup
We begin with our experimental setup and present re-
sults alongside the proposed concepts and claims. For
most part, the empirical evaluation is performed using a
32×32km2 area centered at downtown Los Angeles, Cal-
ifornia, USA (34.0522o N, 118.2428o W). This area is di-
vided into a grid of cells measuring 100m×100m. While
the approach can be applied to any geo-query based
application, we focus on the domain of finding nearby
points-of-interest. Using the business listings provided
in the SimpleGeo database, we are able to query for mul-
tiple keywords within this area. Parametric evaluation
is shown on three POI keywords, namely bookstore, gas
station, and cafe. There are 155 bookstores, 347 gas sta-
tions and 608 cafes inside the evaluation area, thereby
giving us three scenarios corresponding to low, medium,
and high occupancy POIs. The SimpleGeo database
does not include prominence values for POIs; we as-
signed values to the POIs from {0.95, 0.90, ...,0.3, 0.25}
using a Zipf distribution [24] with exponent 0.8. Lower
prominence scores are more frequent.

To further validate our claims, we implement an An-
droid application that can use the on-board GPS device,
or a simulated GPS that can provide any desired lati-
tude and longitude to the application. Using this appli-
cation, we perform experiments covering five different
cities (Los Angeles, New York, Paris, Vienna and Bei-
jing), and 15 different keywords chosen from the place
types list in the Google Places API.

4 Enforcing Indistinguishability
Consider a LPPM that generates some output s and
shares it with the service provider as part of the query-
ing process. This output in turn can be used by an ad-
versary to infer potential locations for the user. We as-
sume an attacker model where the adversary

1. knows which LPPM is under use,

2. knows all underlying parameters of the LPPM (ex-
cept the user’s location),
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3. can observe all communication between the user
and the service provider (can itself be a honest-but-
curious adversary), and

4. has a prior knowledge on the user expressed as a
probability distribution φ over the set of possible lo-
cations.

Under this model, we express the inferential capabilities
of the adversary in terms of an odds-ratio with respect
to any two locations l and l′, given as

Pr(l|s)
Pr(l′|s) = Pr(s|l)φ(l)

Pr(s|l′)φ(l′). , (3)

If a LPPM generates s independent of the location, i.e.
Pr(s|l)
Pr(s|l′) = 1, we can say that Pr(l|s) ∝ φ(l). In other
words, inferences drawn by the adversary after revealing
output s can also be drawn with just the prior knowl-
edge, implying that the LPPM did not reveal any in-
formation of significance to the adversary. We can then
say that any two locations are indistinguishable based
on the output of the LPPM. Since the prior knowledge of
the adversary can vary, and is outside the control of the
LPPM, it is often the output probabilities (Pr(s|l)) that
are subjected to analysis. The objective is to maintain
a degree of indistinguishability between two locations,
i.e. the odds-ratio should remain as close as possible to
the ratio of the prior probabilities.

4.1 Geo-indistinguishability

The principle of geo-indistinguishability provides a
quantifiable degree to which the odds-ratio can deviate
from the ratio of the prior probabilities [1].

Definition 4.1 (ε-geo-indistinguishability). A
LPPM is ε-geo-indistinguishable if, for any output
lz produced by the LPPM, and any two locations
l, l′ ∈ L ⊆ L with d(l, l′) ≤ r, we can have

Pr(lz|l)
Pr(lz|l′)

≤ eεr,

where d is a distance function and L is a set of locations.

For an intuitive understanding, assume that the
LPPM is used to query for a user located in Los An-
geles downtown. Geo-indistinguishability then ensures
that an adversary will be unable to distinguish with
high certainty the user’s location from other locations
in the downtown area; although, the odds-ratio will en-
able the adversary distinguish between a location in the
downtown area versus a location in one of the suburbs

(farther away from the user’s location). The odds-ratio
is always within a factor of exp {εd(l, l′)} of the ratio of
prior probabilities. Therefore, the inferential advantage
due to the use of the LPPM decreases as the adversary
attempts to narrow down the user’s location to smaller
and smaller areas.

Andrés et al. proposed this principle for LPPMs
along with a mechanism that achieves it. Their mecha-
nism generates lz using a planar Laplace distribution
centered at the user’s location. Thereafter, all POIs
within a distance radR from lz (area of retrieval) are
retrieved from the server and then filtered locally. Since,
the retrieved results have to be useful to the user, radR
must be chosen such that user-relevant results are con-
tained in the retrieved content. However, fixing radR
simply based on the distance of the user from lz intro-
duces inference risks; the authors therefore provide a
procedure to independently decide radR such that all
POIs within a distance radI from the user’s actual lo-
cation (called the area of interest) are retrieved with a
high confidence c (as high as 95%).

radR = radI −
1
ε

(
LambertW−1

(
c− 1
e

)
+ 1
)

(4)

Note that radR is not decided based on the location
of the user or the perturbed location lz. Using Eq. (4),
we can choose radR and compute the resulting ε, or vice
versa . In both cases, the mechanism uses an ε and radR
value such that a high percentage c of the probability
(of the user at a location) mass falls inside the area of
retrieval. With c = 95%, there is at least a 95% chance
that the user is within a distance (radR − radI) from
the perturbed location. Therefore, depending on how a
mechanism enforces the principle, approximate areas of
presence of the user will be revealed with different cer-
tainties; the area of retrieval is one such area, but with
a high certainty (possibly ≈ 100%). We can choose radR
and radI such that (radR − radI) is a very large quan-
tity; but, doing so will force the mechanism to download
a lot of redundant POI data.

4.2 Indistinguishability for Top-K Results

We first introduce the notion of a zone. A zone for a
given location tells us what other locations generate
similar top-K results. We use topK to denote a func-
tion that returns the top-K POIs for a given location.

Definition 4.2 (Zone). For a given location l0 and
0 ≤ m ≤ K, a zone Zm is defined as

Zm(l0) = {l|l ∈ L, |topK(l0) ∩ topK(l)| = K −m}.
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Fig. 1. Variation in the top-10 cafe set in Los Angeles. Ranking
performed with α = 0.8.

Figure 1 depicts an area of Los Angeles, overlaid
with a set of zones. Assume that the user is located
at l0 (say A) in the central zone Z0. For any other lo-
cation l in Z0, the top-10 cafe set is the same as that
for l0 (zero mismatch). When expanding into zone Z1,
the top-10 set undergoes a change in one of the POIs
(one mismatch). Therefore, for any location l ∈ Z1 and
l′ ∈ Z0, we have |top10(l)∩ top10(l′)| = 9. The number of
mismatch increases as we move further out from Z0. By
definition, each zone is disjoint from one another, and
zone boundaries indicate where the mismatch count rel-
ative to topK(l0) increases by one (moving outward). In
a combinatorial sense, a zone Zm can encompass up to(
K
m

)
different top-K sets; but, each such possibility has

exactly m mismatches with topK(l0). Since the change
is minor and happens infrequently, we can retrieve the
top-K result of a location in a neighboring zone and still
provide high accuracy. The bigger lower zones such as
Z0 and Z1 are, the more distant the chosen location can
be without affecting the accuracy. Note that zones are
defined always with respect to a location; in the follow-
ing, we sometimes do not mention this location when it
is clear from the context.

An ε-geo-indistinguishable LPPM introduces prob-
abilistic uncertainty based on the distance between two
locations. As such, the adversary will gain some infer-
ential advantage when distinguishing between the point
pairs (A,B) or (C,D) in Fig. 1. With ε = ln 4

2000m , the
prior probability ratio will at most change by a factor
of 1.94531 for A and B (or D), and by 3.24901 between
A and C. However, from the standpoint of querying
from zone Z0, locations A and B are equivalent since

they produce the same result set; similarly C and D are
equivalent under the relation of mismatch count.

This brings us to the question of whether geo-indis-
tinguishability can be extended to the context of ranked
geo-queries; we would like a LPPM that provides indis-
tinguishability between two locations based on the simi-
larity of query output from the two locations. In this di-
rection, we extend ε-geo-indistinguishability as follows.

Definition 4.3 ((f, ε)-geo-indistinguishability). Let
L be a set of locations and S be the discrete set of outputs
produceable by a LPPMM . Given a function f such that
f : L × L → [0, 1] and a privacy parameter ε ≥ 0, the
mechanism M is (f, ε)-geo-indistinguishable if ∀L ⊆ L
and ∀s ∈ S, we have

Pr(s|l)
Pr(s|l′) ≤ e

εδ,

when f(l ∈ L, l′ ∈ L) ≤ δ.

In other words, for any subset of locations where
pairwise relations (as measured by the f function) are
bounded by some δ, the degree of indistinguishability is
also bounded by a function of δ. The principle can also
be extended to any subset of S if M has a continuous
range. Since the condition applies to any conceivable
subset of locations, we can say that if f(l, l′) = δ for
any l, l′ ∈ L ⊆ L, then

e−εδ
φ(l)
φ(l′) ≤

Pr(l|s)
Pr(l′|s) ≤ e

εδ φ(l)
φ(l′) . (5)

If f is the normalized Euclidean distance function,
the privacy definition states that the relative degree
of indistinguishability between two locations resulting
from observing an algorithm’s output is related to the
distance between the two locations—the closer the two
locations, the harder it should be to distinguish which
location was used to generate the output. This is pre-
cisely the basis for geo-indistinguishability. However, the
f function can also mean other forms of relationships
between locations. For example, f can be the fraction
of mismatches in the top-K sets of two locations. Under
this metric, if one retrieves the same query result from
two locations (δ = 0), then it should not be possible to
learn which location was used in the query based on the
query result. This gives us perfect indistinguishability
for locations in Z0 (Fig. 1), i.e. Pr(l|s) ∝ φ(l),∀l ∈ Z0.
Further, if two locations generate “similar” query re-
sults, then the degree of indistinguishability should be
related to the degree of similarity. We can say that the
f function is the metric used to relate the similarity of
two locations.
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What is the advantage of having an arbitrary f

function in the privacy definition? The notion of es-
tablishing distinguishability based on arbitrary metrics
is not new. Chatzikokolakis et al. also discuss a gen-
eralized differential privacy principle called dX -privacy
where inputs similar to each other with respect to the
dX function should produce outcomes with similar prob-
abilities [4]. A primary takeaway from the work is that
different metrics can be useful in different applications.
Geo-indistinguishability instantiates this principle us-
ing an Euclidean distance metric on locations. Reed
and Pierce had earlier explored it in a context where
similarities between expressions in functional programs
are captured based on the values they produce [25].
(f, ε)-geo-indistinguishability is a restatement of such
a general principle along with an explicit scaling factor
ε. When limiting geo-indistinguishability to be strictly
based on how close, or far apart, two locations are, we
are unable to exploit any implicit similarities that two
locations can have in the particular application. For ex-
ample, if a query’s result is not highly sensitive to the
location (e.g. searching for top-10 hospitals), then even
two distant locations ought to be fairly indistinguish-
able from one another; or, perhaps we want two loca-
tions to be indistinguishable based on how (dis)similar
they are in terms of the population demographics. A
distance based definition does not allow such possibili-
ties; similarity distance is not always same as physical
distance. One may ask for guarantees that such simi-
lar locations (as per f) exists in the real world. They
may or may not depending on how f is defined and the
type of the application. When considering top-K POI
search, their existence is probable since businesses can
be sparsely placed, and service providers are motivated
towards finding the “best matches” instead of simply
the “nearest matches.” This work demonstrates how in-
stantiating f as the mismatch function can be advan-
tageous in applications performing top-K search based
on distance and prominence.

If we consider Pr(l)/Pr(l′) to reflect the inferential
capability of the adversary (closer to 1 means uncer-
tainty), then Eq. (5) tells us that

ln capability after mechanism’s output
capability before mechanism’s output ≤ εδ.

Then, ε corresponds to how much privacy leakage from
a mechanism is allowed in the worst case (δ = 1). We
may set ε = 0 to force no privacy leakage in any circum-
stance, but doing so can make the mechanism unpro-
ductive. However, if the f function mostly produces a δ
value close to zero for the location pairs under consid-

eration, then the privacy leakage is still close to nil. In
that case, the value of ε can be very high as well, albeit
the privacy leakage is contained (the worst case never
happens). We revisit the assignment of ε in Section 5.3
and determine how it can be chosen to induce a certain
level of utility.

The next question is whether a (f, ε)-geo-
indistinguishable mechanism exists. Indeed, the gen-
eral differential privacy mechanism suggested by Mc-
Sherry and Talwar holds the evidence that a (f, ε)-geo-
indistinguishable mechanism is possible [18]. This mech-
anism is driven by a quality function that can associate
a real valued score to any (s ∈ S, l ∈ L) pair, with higher
scores being more desirable.
Theorem 4.1. Let q be a quality function, q : S ×
L → R+. Given l ∈ L and ε ≥ 0, the general mech-
anism Mg chooses output s with probability Pr(s|l) ∝
exp

{
ε
2q(s, l)

}
. The general mechanism Mg is (f, εC)-

geo-indistinguishable, if ∀L ⊆ L, we have

max
s′∈S;l,l′∈L

(
q(s′, l)− q(s′, l′)

)
= Cδ,

where δ = maxl,l′∈L f(l, l′) and C is a constant.
The general mechanism requires that, in all sub-

sets of locations, the sensitivity of the quality function
(maximum difference in scores) is always within a con-
stant factor of the maximum value of the f function in
the subset. Therefore, as more and more locations are
considered, the sensitivity of the quality function must
grow at a rate proportional to the change effectuated
in the maximum f value. The proportionality constant
C dictates the inferential advantage controlled by the
mechanism.

4.3 An Application for 2-level Querying

The application we consider for a 2-level querying ar-
chitecture first retrieves location and prominence data
on a set of POIs, computes the top-K sets of specific
locations, and then retrieves details on K POIs. The
specific steps are as follows.

Step 1 (Probabilistic cloak) Choose a location lq
uniformly at random from within a radius radI from
the user’s location lu. Send lq to the server.
Step 2 (Minimal download) Download the location
and prominence of all POIs matching the search key-
word that are within a distance radR of lq.
Step 3 (Local computation) Locally compute the
top-K set of every location (cell) within a radius of
radC from lq.
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Step 4 (Indistinguishable retrieval) Choose one of
these sets using a (f, ε)-geo-indistinguishable mecha-
nism and retrieve details for POIs in the set from the
server.

Note that, always retrieving details for the top-K set
corresponding to the user’s true location should be
avoided, since the set may be unique to the user’s loca-
tion, or a small area around it.

4.3.1 radI , radR and radC

We refer to the areas created by using the three radii
as AI , AR and AC respectively. Figure 2 illustrates the
relationships we establish between the three values. AI
signifies an area of interest for the user, i.e. all rele-
vant POIs contained in AI should be used in determin-
ing the top-K sets. A typical nearbysearch using the
Google Places API requires specification of a similar
radius. Consequently, AR should fully encompass AI .
This can be achieved by setting radR ≥ 2radI . A typ-
ical radarsearch using the Google Places API allows
for this value to be up to 50km. Top-K sets are com-
puted for every location (cell) in AC , and a choice is
made from within these sets. We want the top-K set of
the user to be a part of this sampling; since lq is always
within a distance of radI from lu, inclusion of the user’s
top-K set can be guaranteed by setting radC ≥ radI .
lq, AR and AC are known publicly, but AI is not known
since the user location is a secret. Therefore, the choice
of radC reveals a first level approximation of the area
of presence of the user. We choose radI to control this
approximation, and subsequently set radC = radI . Ser-
vice providers can limit the number of POIs returned
from within the area of retrieval (radarsearch puts a
limit of 200); therefore, we choose radR to the minimum
value necessary, i.e. 2radI . This approach leaves us with
making one parametric choice, radI , with the other two
decided as radR = 2radI and radC = radI .

4.3.2 Probabilistic cloak

The four steps in the 2-level querying architecture is
composed of two disclosure mechanisms—probabilistic
cloak and indistinguishable retrieval. Probabilistic cloak
reveals a coarse approximation of the user’s location,
given in terms of the area AC centered at lq. Since lq is
always within a distance radI from the user location lu,
this disclosure can be controlled by setting larger values

Fig. 2. Areas induced by the three radii values. lu is the true user
location and lq is a randomly generated location within distance
radI of lu. Location and prominence data is downloaded for all
POIs inside AR. radI : radR : radC = 1 : 2 : 1.

for radI . lq is chosen uniformly at random, thereby lim-
iting the leakage on where the user is within the area of
retrieval.

Proposition 4.1. Given lq, radI , radR and radC ,
where radR = 2radI and radC = radI , we have

(i) Pr(l|lq, radI , radR, radC) = 0 if l /∈ AC , and
(ii) ∀l ∈ AC , Pr(l|lq, radI , radR, radC) ∝ φ(l).

The above proposition tells us that, as a result of
the probabilistic cloak, the adversary gets to know that
the user is not outside of AC . However, locations inside
AC are still indistinguishable (discrimination is possi-
ble only to the extent possible by already existing prior
knowledge φ). Therefore, the odds-ratio expressed in Eq.
(3) remains unchanged for locations inside AC . In the
next section, we introduce our mechanism for indistin-
guishable retrieval that limits the leakage of the user
position when POI details are retrieved. As such, the
subsequent analysis is focused on the privacy guaran-
tees within AC .

4.3.3 Indistinguishable retrieval

For step 3, we use the computation process discussed
in Section 2.2 to determine the top-K sets of all loca-
tions in AC . Let T = {t1, t2, ..., tm} represent the col-
lection of these top-K sets corresponding to the loca-
tions l1, l2, ..., lm ∈ AC , i.e. topK(li) = ti. For step 4,
we consider the following instantiation of the general
mechanism Mg.
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Definition 4.4 (Mechanism Mfgi). Let the quality
function q : T × AC → R+ be the fraction of matches
between a set t ∈ T and the top-K set of location l ∈ AC ,
i.e.

q(t, l) = |t ∩ topK(l)|
K

.

Given the user location lu, mechanism Mfgi outputs a
set t ∈ T with probability Pr(t|lu) ∝ e ε2 q(t,lu).

The quality function in mechanism Mfgi is a mea-
sure of the overlap between two top-K sets. Conse-
quently, the probability with which a set is chosen by
the mechanism decays exponentially as it becomes more
and more different from the top-K set corresponding to
the user’s location. Details are subsequently retrieved
for the POIs included in the output produced by Mfgi,
which now adds to the knowledge of the adversary.

Theorem 4.2. Mechanism Mfgi is (f, ε)-geo-indistin-
guishable for locations in L = AC when

f(l, l′) = 1− |topK(l) ∩ topK(l′)|
K

.

The f function here is the fraction of mismatches
in the top-K sets of two cells l and l′. (f, ε)-geo-indis-
tinguishability implies that, for all pairs of locations in
AC whose top-K sets have at most a fraction of δ mis-
match, the probabilities of producing a certain output
from either location in the pair will differ at most by
a factor of eεδ and at least by a factor of e−εδ of each
other. For location pairs where there are no mismatches
(δ = 0), the probabilities will be equal. For location
pairs with complete mismatch (δ = 1), the probability
ratio is between eε and e−ε. This captures the guarantee
that any location l (including the user location lu) will
be indistinguishable in zone Z0 (defined corresponding
to topK(l)), and difficult to distinguish from locations
in nearby zones. The best case happens when the en-
tire AC is covered in a single zone, a possibility that
can emerge when POIs are sparse, and their ranking
involves both distance and prominence.

4.3.4 Radius choice and privacy

A mechanism can enforce (f, ε)-geo-indistinguishability
over any subset of locations. Any choice will result in
some trade-off between privacy and cost. Our approach
balances it by saying that the area inferable is always
AC , and within that area, distinguishability is a func-
tion of the similarity of query results. While in a typical
execution of the geo-indistinguishability based mecha-

nism in Section 4.1, there is a negligible chance that the
area of retrieval does not contain the user, here there
is no such uncertainty about AC . It is therefore im-
portant to stress that Mfgi can enforce the principle
only for locations inside L = AC (Thm. 4.2). The cred-
ibility of a mechanism then depends on the size of the
area it reveals (with high certainty) and how is privacy
enforced inside that area. As before, no radii value is
decided based on the location of the user; they are di-
rectly dependent on the system parameter radI . Both
approaches benefit from the choice of larger radii val-
ues since the revealed area is then of a larger size. How-
ever, an approach designed for a 1-level architecture will
require the download of large amounts of data, while
an approach for a 2-level architecture will only down-
load location and prominence data. In this regard, a
2-level architecture scales better and can accommodate
the requirement of larger retrieval areas (arising from
the choice of larger radI values) without much affect on
the communication cost.

4.3.5 Characterization

Mechanism Mfgi makes locations in zone Z0 indistin-
guishable from each other; however, the degree of in-
distinguishability reduces with respect to locations in
other zones. An an example, consider ε = 30 in (f, ε)-
geo-indistinguishability, with the user being at l0. Then
for a location l that has the same top-K result set as
that of l0 (l ∈ Z0(l0); δ = 0), the posterior probability
ratio (Def. 4.3) is one, meaning the locations are in-
distinguishable. When δ = 0.1 (1 mismatch), the ratio
is at most 20.09. On the other hand, enforcing ε-geo-
indistinguishability with ε = 0.00474 (area of interest
of radius 1km will be inside area of retrieval of radius
2km with 95% confidence), a location l that is at most
500 meters away from l0 will have the ratio to be at
most e500ε = 10.68. Therefore, if it is the case that
all locations within 500 meters of l0 are in Z0(l0), then
clearly (f, ε)-geo-indistinguishability provides a stronger
privacy guarantee than ε-geo-indistinguishability. In the
following theorem, we generalize this intuition, and
characterize the size that zones need to be if (f, ε)-geo-
indistinguishability is to be a preferable choice.

Theorem 4.3. Let s be the output of a εgi-geo-indistin-
guishable mechanism and s̃ be the output of a (f, εfgi)-
geo-indistinguishable mechanism when the input (user)
location is l0. Let Lm = {l|l ∈ L, d(l0, l) ≥ εfgim/εgiK}
with d as the Euclidean distance function. If Zm(l0) ⊆
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Lm for all m ∈ {0, 1, ...,K}, then ∀l ∈ L

Pr(l|s̃)
Pr(l0|s̃)

≤ Pr(l|s)
Pr(l0|s)

.

The above theorem characterizes when a (f, ε)-geo-
indistinguishable mechanism is not worse than a conven-
tional geo-indistinguishable mechanism in terms of the
discriminatory advantage (the odds-ratio) introduced
by the mechanisms. In conventional geo-indistinguisha-
bility, relative to any fixed location l0, indistinguisha-
bility as measured by the output probability ratio di-
minishes continuously with increasing distance from l0;
whereas the changes generate a monotonic step func-
tion inMfgi. Theorem 4.3 implies that the step function
εfgi
εgi

f(l0, ·) should preferably grow slower than the dis-
tance function d(l0, ·). Therefore, any zone Zm should
start at a distance of εfgim

εgiK
or more from l0. Figure 3

shows this minimum distance in three different scenar-
ios. Each scenario captures the case when the ε values
are chosen such that a given level of confidence (c) is
always present in the service quality. The parameter ε
in geo-indistinguishability is chosen so that the area of
retrieval (radR = 2km) contains the area of interest
(radI = 1km) with confidence c [1]—the three corre-
sponding εgi values are ε0.99 = 0.00664, ε0.95 = 0.00474,
and ε0.90 = 0.00389 (the subscript indicates the confi-
dence level). Correspondingly, the parameter in (f, ε)-
geo-indistinguishability is obtained such that at most 2
mismatches can happen with probability c—the three
corresponding εfgi values are ε0.99 = 32.67, ε0.95 =
19.68, and ε0.90 = 13.38. We discuss the methodology for
this in Section 5.3. At a confidence level of 95%, zones
are required to have a span of at least 415.19m, which
changes to 492.02m at 99%. When a zone is wider than
this minimum necessary size, it allows subsequent zones

to be narrower by an equal amount. Since not all loca-
tions in Z0 are always the required distance away from
the closest border of Z0, it is clear that the inequality
does not hold for all query locations l0. Nonetheless, the
inequality may still hold farther out if subsequent zones
are wider than necessary. On 1000 random queries in
Los Angeles with α = 0.8, we observed that the average
radius of Z0 and Z1 (relative to the centroid of Z0) is
908m and 2.086km respectively for a dense POI such as
cafe, while it is 1.212km and 2.473km for a sparse POI
such as bookstore.

4.3.6 Composite privacy

The 2-level application is composed of two forms of lo-
cation disclosure: one direct (in the form of a perturbed
location), and one indirect (in the form of a top-K set).
As such, the overall privacy enforced in such an applica-
tion is dependent on what inferences can be drawn by an
adversary using a composition of all outputs produced
by all mechanisms in the application. In our particular
instantiation, the probabilistic cloaking mechanism pro-
tects the privacy of the user at a coarse (tunable) level.
Nonetheless, the mechanism’s dependence on radI helps
an adversary immediately disqualify locations that are
more than radI distance away from the center of the
area of retrieval. However, the uniform random sampling
performed in the mechanism does not allow finer grain
localization of the user than what is already possible
using the prior knowledge of the adversary (Prop. 4.1).
Subsequently, the privacy inside the area of retrieval is
dictated by the indistinguishable retrieval mechanism
(Mfgi). The composite privacy guarantee in our appli-
cation can therefore be stated as satisfying (f, ε)-geo-
indistinguishability inside the area of local computation
(AC), and non-existent on areas outside. We demon-
strate in Section 8 that such a composite mechanism
can induce higher estimation errors than a single step
mechanism for a Bayesian adversary.

We can replace the probabilistic cloaking mecha-
nism by a standard geo-indistinguishable mechanism in
order that locations outside AC also carry a non-zero
probability for the user to be present. In most practical
usages, such a mechanism will still be tuned such that
a significant portion of the probability mass (95% or
99%) is still inside the area the retrieval, implying that
the user is “very likely” to be inside the retrieval area.
For composite privacy, the posterior knowledge result-
ing from the use of geo-indistinguishability will serve as
the prior knowledge in the analysis of the subsequent
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Fig. 4. Observed and fitted base match distribution (rad =
2km,K = 10) for cafes in Los Angeles, CA, USA. Inset fig-
ure shows probability of obtaining matches in the set chosen by
mechanism Mfgi.

(f, ε)-geo-indistinguishable retrieval mechanism. When
a high confidence value c is used, this posterior knowl-
edge is more revealing than when using the uniform
probabilistic cloaking mechanism. This highlights the
importance of exploring disclosure mechanisms in the
first step that are more (privacy) protective than that
in the subsequent retrieval step. We have not studied
here how coarse grain and fine grain disclosures in the
two steps can be best composed to obtain better levels
of composite privacy than when using a single 1-level
application.

5 Retrieval Accuracy
The retrieval accuracy in the 2-level application de-
scribed above is determined by the number of matches
in the top-K set chosen by mechanism Mfgi and the
top-K set corresponding to the user location. This in
turn is influenced by the density of relevant POIs in the
neighborhood of the user. Therefore, our approach in-
cludes some observations derived from real world POI
categories and their densities.

5.1 Base Match Distribution

A top-K ranking function emphasizes both distance and
prominence of a POI. As a result, the top-K set corre-
sponding to a location does not undergo abrupt changes
in neighboring locations. It can therefore be expected
that, irrespective of the use of any privacy mechanism,
the top-K set relative to the user’s location will have

matches with the top-K set of nearby locations. The
base match distribution attempts to capture this simi-
larity as a probability mass function.

Definition 5.1 (Base match distribution). The
base match distribution ωrad,K is the probability dis-
tribution corresponding to the discrete random variable
Rrad,K : L × L → {Θ, 0, 1, ...,K} where

Rrad,K(l, l′) =

{
Θ , if d(l, l′) > rad

|topK(l) ∩ topK(l′)| , otherwise
.

The base match distribution ωrad,K(m) provides the
probability that any two locations within a distance rad
of each other will have m matches in their top-K sets.
For example, Fig. 4 shows a histogram of the number
of matches (top-10 “cafe” sets) seen in a sample of 106

location pairs in Los Angeles, with locations in a pair
being at a distance of at most 20 cells (2km) from each
other. We obtain an estimate of the base match distribu-
tion ω̂20,10 by fitting a beta-binomial distribution to this
data. This estimate is useful in obtaining an insight into
the approximate scale of ε that needs to be chosen in
Mfgi for the mechanism to generate useful results. It is
impractical to estimate a base match distribution for ev-
ery possible search keyword; therefore, we also validate
the comparative effectiveness of using a simple binomial
distribution, or even a uniform distribution.

5.2 Match Probability

When the base match distribution is skewed towards
higher matches, a uniform sampling from the different
top-K sets can itself lead to a majority of high matches.
For example, ω̂20,10 implies a match of 8 or more in ap-
proximately 60% of the cases. Mechanism Mfgi further
scales these probabilities to make the drawing of high
match sets significantly more likely.

Proposition 5.1. MechanismMfgi produces an output
t for the user location lu such that

Pr(|t ∩ topK(lu)| ≥ m) =
∑K
i=m ωrad,K(i) exp

{
ε

2K i
}∑K

j=0 ωrad,K(j) exp
{

ε
2K j

} ,
where ωrad,K is the base match distribution for the top-
K search.

We can cluster the candidate top-K sets into equiv-
alence classes based on the number of matches they
have with topK(lu). The base distribution then pro-
vides an estimate of the percentage of sets with a given
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Fig. 5. Observed match frequencies in three different POI cate-
gories. Top-10 sets computed with α = 0.8 and radC = 2km.
Mfgi samples using ε = 30.

quality score. Mechanism Mfgi exponentially scales the
probability of choosing an output with higher quality
score. The inset plot in Fig. 4 shows the impact of this
scaling when picking a top-10 cafe set in the example.
The scaling increased the probability of obtaining 8 or
more matches to 98% with ε = 30. Figure 5 depicts the
match frequencies in three different POI categories, hav-
ing low, medium and high occupancy across the query
area. Mechanism Mfgi is used here with radC = 2km
and ε = 30, and α = 0.8 for top-10 ranking. For each
category, the data points are generated by performing
queries from 1000 randomly chosen locations within the
experiment area, with 100 executions of Mfgi at each
location. The match probabilities computed from us-
ing a fitted base distribution reasonably captures the
observed match frequencies. As expected, sparse POIs
(bookstore in this case) induce a higher retrieval accu-
racy.

5.3 Choosing ε

The choice of ε directly influences the output probabil-
ities of the sets, and in turn impacts the retrieval ac-
curacy. We can ensure that Mfgi provides a minimum
of m matches with confidence c by solving for ε in the
following equation derived from Prop. 5.1.

c

m−1∑
i=0

ωrad,K(i) exp
{ ε

2K i
}
−

(1− c)
K∑
i=m

ωrad,K(i) exp
{ ε

2K i
}

= 0

(6)
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Fig. 6. Computed ε using various base distributions and confi-
dence levels c = 0.99, 0.95 and 0.90.

We use a Newton-Raphson iterative solver in R to
solve for ε. Figure 6 illustrates the minimum ε value
necessary to guarantee at least m matches (x-axis) in
the chosen set with a confidence of 90%, 95% and 99%.
While the use of the base match distribution is prefer-
able in determining ε, it is not necessarily practical. The
figure also presents the ε values obtained by using two
other distributions in lieu of the base match distribu-
tion—a uniform distribution signifying no knowledge of
the base distribution, and a binomial distribution with
parameters n = 10 and p = 0.7962. The parameters of
the binomial distribution are chosen such that approxi-
mately 2

3 of the probability mass is concentrated in val-
ues greater than 7. This choice is made after analyzing
the empirical base distribution of 15 different POI cat-
egories, where the total probability mass in 8, 9 and 10
matches is observed to be between 60-75%. The bino-
mial distribution approximates the trends of the three
low, medium, and high occupancy POI categories better
than the uniform distribution. It overestimates ε when
higher match counts are desired. Based on the binomial
base distribution, a value of ε = 32.67 gives us a 99%
probability of obtaining 8 or more matches.

6 Parametric Evaluation
The performance of the proposed 2-level application
is determined by a combination of three parameters,
namely α : the weight given to distance in the rank-
ing function, radI : the area of interest, and ε : the
privacy parameter in Mfgi. We provide comparative re-
sults of their impact on the retrieval accuracy for the
three example POI categories. The default values are
radI = 2km and ε = 30, with top-10 ranking performed
using α = 0.8.
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Fig. 7. Impact of the area of interest (radI) on retrieval accu-
racy. radC = radI .

radI Impact. Figure 7 depicts the percentage fre-
quency when exactly m matches are obtained between
the actual top-K result set and that generated byMfgi.
The chances of retrieving the exact set drops as the
area of interest becomes larger, while that of retriev-
ing a set with one or two mismatches increases. The
behavior is not surprising since larger radI values, cor-
respondingly a larger radC , imply that the potential
set of outputs contains a comparatively smaller fraction
of samples with m = 10. As such, the base distribution
has a lower mass at that point. However, increasing radI
also creates higher chances of covering zones Z1 and Z2 .
The number of potential sets in Z1 and Z2 are combina-
torially higher than in Z0 (single top-K set); increasing
radI creates avenues for inclusion of more of these sets.
As long as radI is not set so large that other low match
sets get included in majority, we can expect to retain
the high retrieval accuracy. At radI = 5km, we still ob-
tain 8 or more matches with probability greater than
90%, higher in some POI categories.

α Impact. Figure 8 depicts the impact of α on the
retrieval accuracy. α = 0 signifies ranking based only on
prominence, and hence there is a single top-K set cor-
responding to all locations. α = 1 signifies a K-nearest-
neighbor ranking; this case presents the least favorable
condition for mechanism Mfgi. The case of α = 1 also
demonstrates what happens when a uniform distribu-
tion is assumed for the POI importance; since ranking
uses relative scores, using α = 1 or using the same γi
value for all POIs produces the same ranks. Any devia-
tion from a uniform distribution favorably impacts the
expected accuracy since we can increase the chances for
two locations to have the same top-K results. Between
these two extreme conditions, differences in the retrieval
accuracy is mostly observed for m = 9 and m = 10. The
differences are less prominent in the sparsely distributed
POI as changes in the top-K set are unlikely for small
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changes in the user location. With α = 0.2 or α = 0.5
(half the weight on the distance value), we obtain a sig-
nificantly high probability (> 95%) of obtaining 9 or
more matches. Therefore, accurate results can be re-
trieved irrespective of how distance and prominence are
weighed in the ranking by the service provider. The high
accuracy in retrieving true results can be attributed to
the exponential scaling performed by the mechanism to
the output probabilities of high scoring sets.

ε Impact. Figure 9 depicts the impact of ε on the
retrieval accuracy. Lower values of ε reduce the influence
of the exponential weights on the base match distribu-
tion. At ε = 0, the mechanism samples proportional to
the base distribution. High matches can be made more
likely by increasing its value. Observe that the differ-
ences in match probability is more prominent in cases
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Fig. 10. Position of POIs in the true top-K set when missed by the application.

such as m = 9 and m = 10. Even with a small value
such as ε = 1, we observe probabilities as high as 80%
for 7 or 8 matches. We discussed in Section 5.3 how the
parameter can be appropriately chosen when a given
level of certainty is desired in the number of matches.
High values for the parameter can still be chosen (for
better accuracy) when most location pairs under consid-
eration are likely to produce similar results (e.g. sparse
POIs). Since ε reflects the worst case inferential capa-
bility (when mismatch is 100%), the resulting impact
on privacy can still be relatively low as the mismatch
function’s value acts as a scale down multiplier to ε.

7 An Android Implementation
We implemented the example 2-level POI search ap-
plication in Android using the Google Places API to
perform the queries. The application allows the user to
input a search keyword and reads the device GPS (or
a simulated GPS) to obtain the user location. It then
retrieves POI locations for the search category using a
radarsearch query. A radarsearch query returns loca-
tions and unique identifiers for POIs within a specific
radius (radR) of the query point. The area of inter-
est (radI) is a configurable parameter which we set to
2km in the following; correspondingly radR = 2radI =
4km. 10-nearest-neighbor ranking is performed (α = 1),
partly because prominence data is not yet available
using the Places API, and partly because K-nearest-
neighbor search produces the worst case behavior as
per the parametric evaluation. Details are then retrieved
(using the details endpoint and identifiers of the POIs)
for 10 POIs decided by the (f, ε)-geo-indistinguishable
mechanism Mfgi with ε = 30. The application is run

on a Nexus 5X smartphone over a 4GLTE connection.
All networking tasks are performed using a thread-pool
with 4 threads, and HTTP persistent connections (to
reduce latency).

We use a desktop application to perform 1000
radarsearch queries from random locations for each
of the 15 chosen search keywords and in each of the
five chosen cities (Los Angeles, New York, Paris, Vi-
enna and Beijing), giving a total of 75000 queries. We
also run mechanism Mfgi to pick a set for details re-
trieval. This process allows us to compute retrieval ac-
curacy and analyze the ranks of missed POIs. For a
subset of 100 queries (per city per keyword) chosen uni-
formly at random, the Android application is executed
on the smartphone and performance results such as tim-
ing and bandwidth usage are gathered. We restrict the
experiments on the smartphone to a smaller subset since
running all 75000 queries from the phone would incur a
large cumulative 4G bandwidth (≈ 7.6GB).

Rank of missed POIs. Figure 10 shows whisker
plots of the position (1 = highest rank, to 10 = low-
est rank) of POIs that appear in the actual top-10 set
but are missed by the application. Results from the five
cities are summarized across different categories. The
median position is approximately 8, with POIs in the
top 6 positions being retrieved at least 75% of the times.
This highlights that changes appearing in the top-10
sets are incremental and often starts in the lower ranked
POIs.

Retrieval accuracy. Figure 11 summarizes the
percentage number of times (empirical probability)
when at least a given number of matches are found.
The key point we highlight here is that the observations
are very similar across the different cities (Fig. 11a) and
across different keywords (Fig. 11b). The observations
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are in accordance with the results seen in the evaluation
performed within the Los Angeles area alone.

Runtime performance. Figure 12a shows the
quartiles of the end-to-end time to execute one complete
query in the Android application. The end-to-end time
consists of compute and network time. Compute time
includes the parsing of network data, computing top-K
sets, computing the probability mass function, sampling
using the mechanism, and updating the user interface
with details of retrieved results. Network time includes
connection time to Google servers, issuing requests, and
then buffering of responses. As a result of the fast top-
K computation algorithm, the compute time is under
half a second in all cases. The network communication
takes the most time, contributing a median of 2.5 sec-
onds. Note that the total time to execute a query in a
typical search application (e.g. Google Maps search for
Android) averages around 2.5 seconds. Therefore, the
overhead introduced in the 2-level application is negli-
gible.

Communication cost. Figure 12b shows the size
of the responses (as JSON files) received from per-
forming a radarsearch and a POI detail query. A
radarsearch query returns an average size of 43.3KB
of data, a median of 26.1KB, and sizes are between
100KB to 110KB in 25% of the queries. Each query
to retrieve details about one POI returns an average of
6.3KB, and a median of 5.4KB. The 2-level application
performs one radarsearch query and retrieves details
on K (= 10) POIs, therefore incurring a median cost of
78.8KB and an average of 107KB per query. A 1-level
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Fig. 12. (a) End to end time of one query in the Android applica-
tion. (b) Size (KB) of JSON file retrieved in a radarsearch and
POI detail query. radR = 4km.

application will have to retrieve details on all POIs in-
side the area of retrieval, which amounts to an average
size of 1.2MB per query for 200 POIs found inside the
area of retrieval. Therefore, the total bandwidth cost in
the 2-level architecture can be around 10 times (107KB
vs 1.2MB) lower than in the 1-level architecture.

8 Comparative Performance
In Section 4, we provided a characterization for query
locations when the proposed mechanism can provide
higher indistinguishability than a ε-geo-indistinguish-
able mechanism. Next, we present a comparative as-
sessment in terms of a separate privacy metric, namely
the expected estimation error of the adversary. For a
given prior distribution φ on locations, the expected es-
timation error of the adversary measures the average
distance between the true location of the user and the
location estimated by the adversary [27]. Therefore, this
metric computes the privacy level taking into consider-
ation the likelihood of the user being in locations fa-
vorable under Thm. 4.3, as well as those that are not.
Consider the geo-indistinguishable mechanism in Sec-
tion 4.1, where the output produced by the mechanism
is a perturbed location lz. The expected estimation er-
ror of a Bayesian adversary is then computed as

experrM =
∑

l,lz,l′∈L

φ(l) Pr(lz|l) Pr(l′|lz)d(l, l′). (7)

Using Eq. (4), we compute the minimum required
value of ε such that the area of interest with radI = 1km,
is contained within an area of retrieval (center lz and
radR = 2radI = 2km) with confidence c = 0.90 , giving
us ε0.90 = 0.00389.
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Fig. 13. Expected estimation error of adversary.

For our 2-level approach, a perturbed location lq is
produced in the probabilistic cloaking step, and then a
set s ∈ T is produced in the retrieval step. The expected
error is therefore computed as

experrM =∑
l,lq,l′∈L;s∈T

φ(l) Pr(lq|l) Pr(s|lq, l) Pr(l′|s, lq)d(l, l′). (8)

Pr(s|lq, l) is as per mechanism Mfgi, and Pr(l′|s, lq)
is computed as

Pr(s|l′, lq) Pr(lq|l′)φ(l′)∑
l′′ Pr(s|l′′, lq) Pr(lq|l′′)φ(l′′) . (9)

Recall that the output is generated by first selecting a
location (lq) for retrieval and then choosing an output
from one of the top-K sets. Specifically, Pr(lq|l) = 0 if
d(l, lq) > radI and is 1

πrad2
I

otherwise (lq is uniformly
chosen for POI location retrieval). Similarly, Pr(s|lq, l)
is zero if s is not the top-K set of some location within
a distance of radI (radC = radI) from lq. Note that
the expected estimation error computation accounts for
each step in both mechanisms. As such, the metric’s
value reflects an overall privacy level enforced by the
mechanisms. For the prior distribution, we consider a
uniform distribution inside an area with 1km radius cen-
tered at Los Angeles downtown (34.0522o N, 118.2428o

W). We consider the ε parameter in Mfgi under two ac-
curacy requirements: 8 or more matches with 95% con-
fidence, and 9 or more matches with 90% confidence.
We compute the parameter by solving Eq. (6) using the
empirical base match distribution corresponding to the
search keyword and a Bin(10, 0.7962) distribution as the
base match distributions.

For a mechanism that results in uniform probabili-
ties for the terms in Eq. (7), the expected error in the
given scenario is 908m. Using uniform probabilities also

signify an “ignorant” adversary lacking any prior knowl-
edge about the user, or the mechanism in use. Such a
mechanism only reveals the area of retrieval, and that
the user is most likely somewhere inside it. Figure 13
shows the expected error for a top-10 search with the
keyword “cafe.” The ε-geo-indistinguishable mechanism
provides an expected error of 691m; comparatively, the
use of mechanism Mfgi results in an expected error
of 840m when using the binomial base distribution (8
matches at 95% confidence level). The difference be-
tween the two approaches also appears in the resulting
bandwidth usage. There is an average of 117 cafes in-
side an area of retrieval of radius 2km. Using the average
response sizes reported in Section 7, a query using a geo-
indistinguishable mechanism would result in the usage
of 737.1KB, compared to approximately 85KB with the
(f, ε)-geo-indistinguishable mechanism.

9 Related Work
Anonymity sets. Location privacy has earlier been
achieved through the use of obfuscation and dummy
queries. A user can hide her actual query in a set
of dummy queries and achieve location privacy [15].
Gruteser and Grunwald [12] proposed the use of spa-
tial and temporal cloaking to obfuscate user locations.
The cloaking is performed at a trusted third party site.
Individual preferences in terms of temporal and spatial
tolerances can also be incorporated during such cloaking
[10]. Enforcing properties such as k-anonymity ensures
that users will not be uniquely located inside a region
in a given period of time. Multiple other suggestions are
available on how the cloaking region should be formed
[2, 7, 16, 19]. Kalnis et al. proposed that all obfuscation
methods should satisfy the reciprocity property [13] in
order to prevent inversion attacks where knowledge of
the underlying anonymizing algorithm can be used to
identify the actual user.
Beyond anonymity sets. Moving beyond anonymity
sets, Khoshgozaran et al. proposed a protocol where K-
nearest neighbor queries are reduced to a set of private
block retrieval operations on a database [14]. These re-
trievals can be performed using a tamper-resistant pro-
cessor located at the server so that the content provider
is oblivious of the retrieved blocks.

Xu and Cai argued that privacy should be treated
as a feeling-based property, and proposed using the pop-
ularity of a public region as the privacy level [31]. So-
riano et al. showed that the privacy assurances of this
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model do not hold when the adversary possesses foot-
print knowledge on the spatial regions over time [29].
Niu et al. recently revisited the use of dummy queries
with the objective of addressing side information that
the adversary may have on query probabilities from dif-
ferent locations [21]. In a subsequent work, the authors
demonstrated that caching of query results can help im-
prove the privacy in dummy query models [22]. These
works are driven by an entropy-based privacy metric.

Shokri et al. argued that location privacy should
be quantified based on the expected estimation error of
an adversary [26]. They provided a method to arrive at
different types of inferences regarding a user’s location
based on a known mobility profile of the user. Using
methods of likelihood estimations, the authors showed
that above measures such as the anonymity set size or
entropy do not correctly quantify the privacy enforced
by the method [28].
Differential privacy. Dewri introduced the idea of
merging a well-known form of privacy in databases,
namely differential privacy, and k-anonymity [5]. Under
this model, an anonymity set of size k is first formed
and then an obfuscated location is generated such that
the probabilities of reporting this location from any of
the k locations are close to each other. Andrés et al. im-
proved this approach by proposing geo-indistinguisha-
bility [1]. Xiao and Xiong further proposed differential
privacy based extensions to prevent inferences in contin-
uous query systems [30]. These integrations of location
privacy and differential privacy remain the state-of-the-
art in privacy models for location privacy protection.
The primary drawback of these models is that the choice
of the obfuscated location is driven only by privacy re-
quirements, and no attempt is made to accommodate
or exploit its impact on the query results.
Privacy-accuracy trade-off. Examination of the pri-
vacy/accuracy trade-off in location-based applications is
rare. Shokri et al. explored an optimal location obfusca-
tion method that can hinder privacy attacks and provide
the best service quality, essentially targeting an equi-
librium solution in a Stackelberg Bayesian game [27].
They compute quality loss as the average dissimilarity
in service quality between the user’s true location and
a pseudo-location. Privacy is computed as the expected
error of the adversary in an inference attack. Along sim-
ilar lines, Bordenabe et al. provided a mechanism to
minimize the service quality loss for a given degree of
geo-indistinguishability [3]. Similar to most of the earlier
works, both of these works assume that service quality
in an application is directly proportional to the distance
between the pseudo-location and the true location.

To the best of our knowledge, Dewri et al.’s prior
work is the only known attempt to consider arbitrary
ranking functions for local search results [6]. They pre-
sented a fast top-K computation algorithm suitable for
use in a mobile device, and provided evidence that top-
K sets do not change significantly for nearby locations.
They also provided empirical results demonstrating that
reasonable privacy can be achieved for certain prior dis-
tributions. However, the work falls short of providing a
formal privacy guarantee, especially when assumptions
on prior distributions cannot be made.

10 Conclusions
In this work, we presented a LPPM for points-of-interest
retrieval where a query point is cloaked within an area of
retrieval, and all locations inside the area whose top-K
result sets have the same number of mismatches rela-
tive to the top-K set of the query point become equally
indistinguishable. We theoretically characterized when
the approach provides stronger levels of privacy than
a geo-indistinguishable mechanism, and provided the
framework necessary to tune the mechanisms to guar-
antee a required level of accuracy. The empirical eval-
uation drives us to the conclusion that our LPPM can
retain high similarity with the sought top-K set, irre-
spective of the how much contribution distance makes
to the ranking, the density of the POIs in the search
area, or variations in the ε parameter. The mechanism
can execute on a mobile device without generating any
noticeable delays or incurring excessive bandwidth cost.
It also induces expected errors (for an adversary) that
are closer to that produced by a uniform output mech-
anism.

As with geo-indistinguishability, the privacy assur-
ances in (f, ε)-geo-indistinguishability also degrade if
used to protect multiple locations. For the scenario
where n queries are made in sequence, the effective ε
value in both mechanisms is nε at the end of the queries.
Clearly, an inherent trade-off can be achieved in the
accuracy of query results and the corresponding pri-
vacy guarantees. It may also be useful to determine the
largest area AC that can be realized by the proposed
mechanism for a given POI distribution and a given
level of communication cost in the 2-level architecture.
Doing so will enable clearer comparisons of privacy lev-
els induced by the mechanism, all else being equal. We
leave the in-depth exploration of these aspects for future
work.
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APPENDIX

Proof of Theorem 4.1

For some output s ∈ S, and any l, l′ ∈
L ⊆ L such that maxl,l′∈L f(l, l′) = δ and
maxs′∈S;l,l′∈L (q(s′, l)− q(s′, l′)) = Cδ, we have

Pr(s|l)
Pr(s|l′) = exp

[ ε
2(q(s, l)− q(s, l′))

] ∑
s′∈S exp

[
ε
2q(s

′, l′)
]∑

s′∈S exp
[
ε
2q(s′, l)

]
≤ exp

[ ε
2Cδ

]
exp

[ ε
2Cδ

]
= eεCδ.�

Proof of Proposition 4.1

Let the user be at location lu and φ be the prior distri-
bution that the adversary has on the user’s location. lq
is selected uniformly at random from AI (disc centered
at lu with radius radI ; see Fig. 2). Then

Pr(lq|l, radI) =

{
p , d(lq, l) ≤ radI
0 , otherwise

,

where p is the constant probability value under the def-
inition of a uniform distribution.

(i) AC is centered at lq and has radius radC = radI .
For any point l /∈ AC , we have d(lq, l) > radI . Therefore,
lq could not have been selected if the user was at l /∈ AC .

(ii) For l, l′ ∈ AC , we have d(lq, l) ≤ radC and
d(lq, l′) ≤ radC . Then,

Pr(l|lq, radI , radR, radC)
Pr(l′|lq, radI , radR, radC)

=
Pr(lq, radI |l)φ(l)

Pr(lq, radI |l′)φ(l′)

=
Pr(lq|l, radI)Pr(radI |l)φ(l)

Pr(lq|l′, radI)Pr(radI |l′)φ(l′)

= pφ(l)
pφ(l′) [radC = radI is chosen statically]

= φ(l)
φ(l′) .

Therefore, ∀l ∈ AC , Pr(l|lq, radI , radR, radC) ∝
φ(l).�

Proof of Theorem 4.2

f is the fraction of mismatches in the top-K sets of two
locations l, l′ ∈ L = AC . If maxl,l′∈L⊆L f(l, l′) = δ, i.e.
f(l, l′) ≤ δ then |topK(l) ∩ topK(l′)| ≥ K(1− δ).

Lm

l0

Z
m
 boundaries

ϵfgi.m

ϵgi.K

Fig. 14. Zm(l0) and Lm with Zm(l0) ⊂ Lm.

Consider |topK(l)∩ topK(l′)| = K(1− δ). Therefore,
the two top-K sets differ in Kδ elements. The maximum
difference in quality is provided by the set t which has
the least overlap with one of the sets, and the most
overlap with the other while satisfying the condition. If
t overlaps in Kδ + b elements in one set, then at least b
elements of t will also appear in the other set. Therefore,
the maximum difference in quality scores in this case will
be Kδ+b

K − b
K = δ.

For cases where |topK(l) ∩ topK(l)| > K(1− δ), the
sets will differ in less thanKδ elements; so the maximum
difference in quality scores will be less than δ.

Combining both cases, when |topK(l) ∩ topK(l′)| ≥
K(1− δ), the maximum difference in quality scores will
be δ.

max
s′∈S;l,l′∈L⊆L such that f(l,l′)≤δ

(
q(s, l)− q(s, l′)

)
= δ.

Here the constant C = 1. Therefore, by Thm. 4.1,
the mechanism is (f, ε)-geo-indistinguishable.�

Proof of Theorem 4.3

Figure 14 illustrates the relationship between Zm(l0)
and Lm. For all l ∈ Z ⊆ Zm(l0) ⊆ Lm, we have f(l, l0) =
m
K . Therefore,

max
l∈Z

Pr(s̃|l)
Pr(s̃|l0) = e

εfgim/K

≤ eεgid(l,l0), ∀l ∈ Z [since l ∈ Lm]

≤ max
l∈Z

Pr(s|l)
Pr(s|l0) .



Location Privacy for Rank-based Geo-Query Systems 96

Considering Z as singleton sets (Z = {l}), we obtain,
∀l ∈ Zm(l0)

Pr(s̃|l)
Pr(s̃|l0) ≤

Pr(s|l)
Pr(s|l0) .

Using the fact that L =
K
∪

m=0
Zm(l0), we have from Eq.

(3), ∀l ∈ L

Pr(l|s̃)
Pr(l0|s̃)

≤ Pr(l|s)
Pr(l0|s)

.�

Proof of Proposition 5.1

For any output choice t that has i matches with
topK(lu), we have q(t, lu) = i/K. Since the expected
number of top-K sets with i matches in a radius of rad
is ωrad,K(i), we have

Pr(|t∩topK(lu)| = i) = ωrad,K(i)
exp

{
ε
2
i
K

}∑K
j=0 ωrad,K(j) exp

{
ε
2
j
K

} .
Therefore,

Pr(|t ∩ topK(lu)| ≥ m) =
K∑
i=m

Pr(|t ∩ topK(lu)| = i)

=
∑K
i=m ωrad,K(i) exp

{
ε

2K i
}∑K

j=0 ωrad,K(j) exp
{

ε
2K j

} .�
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