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Abstract: Information about people’s movements and the
locations they visit enables an increasing number of mobility
analytics applications, e.g., in the context of urban and trans-
portation planning, In this setting, rather than collecting or
sharing raw data, entities often use aggregation as a privacy
protection mechanism, aiming to hide individual users’ loca-
tion traces. Furthermore, to bound information leakage from
the aggregates, they can perturb the input of the aggregation
or its output to ensure that these are differentially private.

In this paper, we set to evaluate the impact of releasing ag-
gregate location time-series on the privacy of individuals con-
tributing to the aggregation. We introduce a framework allow-
ing us to reason about privacy against an adversary attempt-
ing to predict users’ locations or recover their mobility pat-
terns. We formalize these attacks as inference problems, and
discuss a few strategies to model the adversary’s prior knowl-
edge based on the information she may have access to. We
then use the framework to quantify the privacy loss stemming
from aggregate location data, with and without the protection
of differential privacy, using two real-world mobility datasets.
We find that aggregates do leak information about individu-
als’ punctual locations and mobility profiles. The density of
the observations, as well as timing, play important roles, e.g.,
regular patterns during peak hours are better protected than
sporadic movements. Finally, our evaluation shows that both
output and input perturbation offer little additional protection,
unless they introduce large amounts of noise ultimately de-
stroying the utility of the data.
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1 Introduction

The availability of people’s locations and movements supports
progress in “mobility analytics” — e.g., applications geared
to improve urban planning [4], study the effect of “shocks”
on transport [44], predict events [22], detect traffic anoma-
lies [32], generate real-time traffic statistics [1], etc. At the
same time, however, large-scale collection of individuals’
whereabouts prompts serious privacy concerns, as location
data may reveal one’s occupation, lifestyle, as well as polit-
ical and religious beliefs [25, 33]. A possible approach toward
mitigating these concerns is to anonymize location traces prior
to releasing them. Alas, this is ineffective, as location data is
inherently unique to the user, and the identities of the subjects
generating the traces can often be recovered [11, 20, 52].

In some cases, mobility models can be trained using only
aggregate statistics [10, 31, 37], e.g., how many people are in
a certain location at a given time. Therefore, a common ap-
proach is to consider aggregation as a privacy defense, and,
by using appropriate cryptographic protocols, the aggregation
can take place in a privacy-preserving way, i.e., removing the
need for a trusted aggregator [24, 36, 37]. Moreover, Differ-
ential Privacy (DP) [13] can be used to bound the privacy
leakage from releasing aggregate statistics [2, 21], using out-
put [8, 14, 39] or input [17, 38] perturbation. However, there is
no sound method to reason about the privacy lost by single in-
dividuals from the release of raw aggregate time-series. Even
when using DP, we only get privacy guarantees in terms of the
theoretical upper-bounds provided by a generic indistinguisha-
bility parameter — €. Existing location privacy quantification
frameworks [41, 42] do not help either, as they typically focus
on evaluating single user-centric privacy defense mechanisms
(e.g., when one user accesses a location-based service).

In this paper, we present a framework geared to ad-
dress this gap, and use it to provide a thorough evaluation of
aggregation-based location privacy. We consider an adversary
aiming to perform localization attacks, i.e., recovering users’
punctual locations, as well as profiling, i.e., inferring their mo-
bility patterns. We define appropriate metrics to express the
privacy lost from the availability of the aggregates, with re-
spect to the adversary’s prior knowledge. We propose a few
approaches to build such priors, parameterized by location and
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time observations available to her (e.g., users’ frequent loca-
tions on a Monday morning, or observations from the previous
week, etc.), and discuss inference strategies, which employ ei-
ther Bayesian reasoning or greedy approaches to improve the
knowledge of users’ whereabouts, by using the aggregates.

We then utilize our framework to experimentally mea-
sure users’ privacy loss when raw aggregate time-series are re-
leased. We use two mobility datasets obtained from Transport
for London and the San Francisco Cab network. Our compar-
ative analysis shows that, overall, aggregates do improve the
adversary’s prior knowledge about mobility patterns and help
her localize users. Users’ loss of privacy depends not only on
the prior knowledge and the inference strategy of the adver-
sary, but also on the density of her observations. Furthermore,
the adversary’s inference power is influenced by the nature
of the patterns to infer, being regular movements (e.g., peak
hours/weekdays) better protected than irregular ones (e.g.,
evenings/weekends).

Next, we study the privacy protection provided by DP
mechanisms as compared to the release of raw aggregates, vis-
a-vis the utility they provide. Although DP ensures an upper
bound on the amount of leakage, determined by the ¢ parame-
ter, it is often difficult to interpret its real-world meaning and to
choose appropriate values for it, despite directly affecting the
resulting utility of the data. Using our framework, we measure
the privacy gain provided by using DP techniques, and find
that, in our adversarial model, these mechanisms only provide
meaningful additional privacy protection if the noise they in-
troduce is so high that data utility is ultimately destroyed. This
holds for both input and output perturbation techniques.

Our results demonstrate that, while differential privacy of-
fers a promising privacy-enhancing solution to several analyt-
ics and data mining problems, its use in location-oriented ap-
plications (including those recently announced by Google [15]
and Apple [23]) needs to be carefully evaluated with respect to
the actual privacy it provides. Overall, our work highlights the
need for novel defense mechanisms that can offer better pri-
vacy guarantees to individuals whose location data is part of
aggregate time-series releases.

Paper Organization. The next section reviews some back-
ground information. Then, in Section 3, we formalize the prob-
lem of quantifying privacy leakage from aggregate location
time-series. Section 4 presents an experimental evaluation on
two real-world mobility datasets, while Section 5 analyzes DP
techniques for protecting aggregates. After reviewing related
work in Section 6, the paper concludes in Section 7.

2 Preliminaries

Kullback-Leibler (KL) Divergence [27]. Also known as
discrimination information, the Kullback-Leibler (KL) diver-
gence captures the “difference” between two probability distri-
butions. Specifically, for two discrete probability distributions
W and X, the KL-divergence from X to W is defined as:
W(i)

X(i)

Dicc(W[[X) = ) " W(i) - log M
i

where W usually represents the true distribution of data and X

an approximation of W. In other words, KL-divergence from

X to W measures the information lost when X is used to ap-

proximate W. Note that KL is not a metric as it does not satisfy

the triangle equality and in general not symmetric in W and X.

Jensen-Shannon (JS) Divergence [16, 29]. It is used to cal-
culate the similarity between two probability distributions. It
is based on KL-divergence but it is symmetric and always a
finite value. The JS-divergence is a smoothed version of the
KL-divergence Dk (W/||X), defined by:

1 1
ISWIX) = 5D (WIIZ) + 5 DX @)

where Z = % - (W + X). When employing the base 2 log-
arithm for calculating KL-divergence, the JS-divergence is
bounded by 1, thus 0 < JS(W||X) < 1. Note that the square
root of the JS-divergence is a metric denoted as Jensen-
Shannon distance [16] (also bounded by 1). We use JS-
distance to calculate the adversarial error in profiling users.

F1 Score. F1 is often used to evaluate the accuracy of
classification/prediction tasks, as it captures overall perfor-
mance by taking into account both precision and recall. Pre-
cision (aka positive predictive value, or PPV) and recall
(aka true positive rate, or TPR) are defined, respectively, as
PPV =TP/(TP + FP) and TPR = TP/(TP + FN), where
TP, FP, and FN denote, respectively, true positives, false pos-
itives, and false negatives. The F1 score is calculated as:
1 _ 2 TPR-PPV

TPR + PPV
We use it to quantify adversary’s accuracy in localizing users.

3

3 Quantifying Aggregate
Location Privacy

3.1 Problem Statement

In the rest of the paper, we use the notation summarized in
Table 1. We consider a set of users U that move among a set S
of regions of interest (ROIs) — e.g., landmarks, neighborhoods,
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Symbol Description
Adv Adversary
U Set of mobile users
S Set of locations (ROlIs)
T Time period considered
T Inference period
T Observation period
L Ground truth
LP Ground truth mobility profile
A Aggregate time-series
AP Aggregate mobility profile
A Perturbed aggregate time-series
P Adv’s prior knowledge
p Adv’s inference output

Table 1. Notation.

stations — at time instances in the set T. This set represents the
time frame in which locations are collected (e.g., 1 week, 1
month, 1 year), while locations can be aggregated in epochs of
different granularity (e.g., 15 mins, 30 mins, 1 hour).

Ground truth. We model the actual locations S of a user u €
U, during T, using a ground truth matrix L of size |S| x |T|,
in which rows are ROIs and columns are epochs. L is a binary
matrix s.t. Is; € L is 1 if the user was in s € S during epoch
t € T, and O otherwise. We note that depending on the time
granularity of location reports users can be in more than one
ROI in the same epoch, thus, there can be more than one 1 per
column. We also define a mobility profile, LP, where I_E:t € LP
represents the probability that a user is in location s at time slot
tand is computed as ls ¢/ > ;s lj ¢

Aggregates. The aggregate location time-series is represented
by the matrix A, of size |S| X | T’|. We call T’ the inference pe-
riod, i.e., aggregation does not need to happen in the full col-
lection period. Each item ag v € A represents the number of
users in s at epoch t’, and is calculated as ag = Ztuz‘l ls.t/,
where |5+ are the entries of each user’s L. The aggregation
can be performed by a trusted aggregator or via cryptographic
protocols [24, 36, 37]. We also define AP, the aggregate mo-
bility profile, as a probability distribution matrix whose entries
ag,t, € AP are computed as as/ ZjeS
the probability of users being in a ROI at an epoch, while ob-
serving the aggregates. For instance, as’t, = 0.1 indicates that
at time t’, 10% of the user observations are in ROl s.

ajv/- This represents

Prior knowledge. We model the prior knowledge the adver-
sary, denoted as Adv, may have about a user u € U for the
inference period T’, using a matrix P, of size |S| x |T’|. P can
be probabilistic (i.e., describing how likely a user is to visit a
ROI) or binary (i.e., indicating whether a user will visit a ROI
or not). We discuss how to build these priors in Section 3.2.

Quantifying aggregate location privacy. Given the observa-
tion of the aggregates (A), and the prior knowledge about each
user (P), Adv aims to infer information about individual users

from the time-series. We model the output of this inference
as a matrix P, for each user, of size |S| x |T’|. We do so to
quantify the privacy loss for individual users given the adver-
sary’s prior knowledge and her capability to exploit the aggre-
gates. Specifically, we measure the adversary’s error vis-a-vis
the ground truth L, after executing inference attacks, consider-
ing two goals: user profiling and user localization.

User Profiling: Adv aims to infer the mobility profile of the
users. Given P and A (or AP), Adv outputs a matrix P. This
matrix contains a probability distribution profile for each user
reflecting the likelihood that the user is in each ROI at each
epoch. To compute Adv’s error, we compare the ground truth
mobility profile LP to Adv’s inference P if we consider the
result of the inference attack, or to the prior P if aggregate
data is not available. For each user and each t’ € T’, we use
the JS metric, reviewed in Section 2, to measure the distance
between the probability distributions. For each user profile, we
measure Adv’s total error over the inference period T’ as:
e ISWEIIPy)

AdvErr;s = i

(C)

Intuitively, at each time slot, JS computes the distance be-
tween the inferred and the ground truth profile, averaged over
the ROIs. This captures the adversary’s error regarding profile
estimation. Eq. 4 averages the distance per slot over all time
slots, i.e., it computes the adversary’s mean error on the infer-
ence period.

User Localization: Adv aims to infer the punctual locations of
the users over time. More formally, given P and A (or AP), Adv
outputs a binary matrix P for each user, with 1°s for ROIs Adv
predicts the user to be in, and 0’s elsewhere. To measure Adv’s
performance we compare her predictive assignment matrix on
each user (either prior P or posterior P) against the ground
truth L. Concretely, we use Adv’s precision and recall when
predicting users’ locations to derive the F1 score, reviewed in
Section 2, and measure the total adversarial error as:

AdvErrg; =1 —F1 )

The F1 score captures the distance between the inferred and
the ground truth binary matrices, i.e., Eq. 5 reflects the adver-
sarial error regarding localization over the inference period.
Note that both adversarial goals have been considered in lo-
cation privacy literature [12, 25, 42, 49], although in different
contexts, namely, reconstructing traces or recovering a user’s
location from obfuscated individual data.

Privacy Loss (PL). For both adversarial goals, we measure the
privacy loss for an individual user from the aggregate location
time-series as the normalized difference between Adv’s error
using her prior knowledge (P), with and without A (AdvErrp A
and AdvErrp resp.). More specifically, for each user we define
the privacy loss (PL) as:
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[AdvEre A AVETRL if AdvErrp # 0 A
PL = P AdvErrp o < AdvErrp 6)

0 otherwise

PL is a value between 0 and 1 and captures Adv’s improvement
towards her goal (either profiling or localizing users).

3.2 Adversary’s Prior Knowledge

We now present a few different approaches to build the adver-
sary’s prior knowledge, which we divide in probabilistic pri-
ors, i.e., user profiles averaging location reports, and assign-
ment ones, i.e., binary matrices representing users’ location
visits over a certain period of time. Essentially, they differ in
how the P matrix is populated, depending on what information
is assumed to be available to the adversary and the strategy
used to extract prior knowledge about each user.

In real life, adversarial prior knowledge may originate
from, e.g., social networks, data leaks, location traces released
by providers, personal knowledge. Here we aim to describe a
generic quantification framework, comparing different adver-
sarial strategies, hence, we opt to construct priors from a sub-
set of the users’ ground truth matrices (L), including epochs
in T C T, which we call the observation period. We follow
intuitive strategies, based on a sensible threat model in which
Adv obtains information about users’ routines and punctual lo-
cations (e.g., where one works/lives) over a certain period of
time. Nonetheless, our framework is generic enough so that
new ways of building Adv’s priors can be easily incorporated.

3.2.1 Probabilistic Priors

Probabilistic priors model prior information that represent
knowledge of user profiles.

ROI Frequency. We start by considering that Adv knows the
probability of a user visiting a given ROI during the full ob-
servation period. We assume that Adv has access to a vector
of size |S|, indicating how frequently the user visits each ROI
during T. Adv then populates P by: (i) transforming the vector
into a probability distribution using the total number of user’s
observations, M, as normalizing factor, and (ii) copying the
distribution onto P, for all time slots of the inference period
T’. More specifically, using the entries I+ in the ground truth
L, webuild P,Vs € S,t' € T/, as:

Prreq_roi (s, t') = Z ls,t/M (M
ROI Seasonality. This prior models the case that Adv knows

the seasonal probability of a user visiting a ROI during the
observation period T, for a given seasonal time period SEAS.

For instance, if SEAS corresponds to one day, and epochs are
of one hour, we assume that Adv obtains a probability dis-
tribution over the ROIs for every hour in a day. If seasonal-
ity is on days of the week, the probability distribution over
ROIs available to the adversary is for each hour, for each day
of the week. More formally, if ¢ denotes the seasonality cy-
cle of SEAS (e.g., ¢ = 24 hours for daily or ¢ = 7 - 24
hours for weekly seasonalities), then the seasonality profile is,
VseS,Vie{l,...,c}:

'T'/c—l I .
ROI_SEAS, ; = k=0 itk ®)
> T/c—1 .
jes k=0 j,i+k-c
Then, we build P, Vs € S,t’ € T as:
Proi_seas(s, t') := ROI_SEAS, ¢/ 104 c ©)

Time Seasonality. We assume Adv knows the seasonal proba-
bility of a user reporting her location (without any information
about which concrete ROIs) during the observation period T,
for a given seasonal time period SEAS. For instance, if SEAS
corresponds to one day, and the granularity is one hour, Adv
learns which hours of a day a user is likely to report locations.
More formally, if ¢ denotes the seasonality cycle of SEAS, then
the time seasonality profile is, Vi € {1,...,c}:

T/c—1

Zjes Zk:o ljitkee
M

where M is the total number of user’s observations within the

period T. Then, P is built, Vs € S, € T, as:

TIME_SEAS; = (10)

1/|S]if TIME_SEAS, o4 c > 0

0 otherwise

Prime_seas(s, t) == { 11

i.e., it is a uniform probability distribution over ROIs for the
time slots when the user is likely to report locations.

3.2.2 Assignment Priors

Next, we describe strategies to compute prior information that
represents knowledge of users’ punctual locations. An assign-
ment prior is modeled as a binary matrix that predicts whether
or not a user will be in a location s € S, at time t’ € T’.

Most popular prior ROIs. We model the case that Adv only
considers users’ favorite locations (POP). Given a probabilis-
tic prior knowledge P, and a threshold § modeling what the
adversary considers to be favorite, Adv builds a binary loca-
tion matrix so thatVs € S,t’ € T’:

LifPyy > 6

(12)
0 otherwise

Ppop(s,t') := {

All prior ROIs. Next, we consider a scenario where Adv con-
siders every location that users visit, but not the frequency
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Prior Description

FREQ_ROI Frequent ROls, over time

ROI_DAY Most frequent ROls, for each time instance of a day
ROI_DAY_WEEK Most frequent ROls, for each time instance of a week
TIME_DAY Most frequent time instances of a day, reporting ROIs
TIME_DAY_WEEK Most frequent time instances of a week, reporting ROls
LAST_WEEK Last week’s ROIs

LAST_DAY Last day’s ROIs

LAST_HOUR Last hour’s ROIs

Table 2. Different ways to build adversarial prior knowledge.

(ALL). Given a probabilistic prior knowledge P, Adv builds
a binary location matrix so that Vs € S,t’ € T’:

PALL(S,tI) = CE|L(PS7t/) (13)

where CEIL is the ceiling function, thus Pap | (s, t’) = 1 iff the
probability of visiting s at t’ is greater than O (i.e., the user has
visited that location during time slots of .

Last Season. We assume that Adv has access to the last sea-
sonal information for each user, i.e., the last season SEAS con-
stitutes the observation period T. For instance, if SEAS corre-
sponds to 1 day and time granularity is 1 hour, Adv only knows
the locations visited in each hour of the last day. Formally, if ¢
denotes the seasonality cycle, e.g., ¢ = 7 - 24 hours for weekly
seasonality, P is built utilizing a sliding window as:

Vs €St € T : PLast_seas(s, t’) == Lyv_c (14)

Summary. Table 2 summarizes our approaches to construct
the adversarial prior knowledge. For priors taking seasonal-
ity into account, SEAS takes a value indicating the seasonal
period we consider to build Adv’s initial knowledge.

3.3 Location Inference Strategies

We now describe possible strategies that the adversary can fol-
low to exploit aggregate locations in order to make inferences
about individuals. We present algorithms that, taking as input
Adv’s prior knowledge about a given user (P) and the loca-
tion aggregate time-series (A or AP), output an updated ma-
trix P. This matrix represents Adv’s posterior knowledge about
the user’s whereabouts over the inference period T’ by virtue
of the availability of the aggregate time-series. The proposed
strategies can be used for both profiling and localization at-
tacks, the difference being the nature of the output matrix IS,
which is probabilistic in the former case and binary in the lat-
ter. In the following, we use ©(:,x) or ©(x, :) to denote all the
instances of a dimension in a matrix ©.

Bayesian Updating. The first strategy, summarized in Algo-
rithm 3.1, computes the posterior probability of u € U being
in each ROI's € S, during t' € T’, given the adversarial prior
knowledge (P) and the aggregate mobility profile AP. Let Eg /
denote the event in which the user appears in location s € S at

Algorithm 3.1: BAYES

Input: P, AP
1 for each u € U do
2 for each t’ € T' do
3 P(;,t") = P(,t') X AP(:,t)
P(t) =Pt/ Y s PGLY)
4 return f’;

Algorithm 3.2: MAX_ROI

Input: P, A
1 Py(,5:) =0
2 LOCy(:,:,:) =10
3 for each u € U do
o | Py=Py|PW

s foreachs € S,;t' € T' do

6 if A(s,t’) == 0 then

7 | LOCy(,s,t') =0

8 else

9 X = Pu(:,s,t/)

10 U* = SORT(X, A(s,t'))
11 for each z € U* do

12 ‘ LOCy(z,s,t') =1

13 for each u € U do
14 P =LOCy(u,::)
15 return ﬁ’;

time t' € T’. Given Adv’s prior information about this event,
Pr[Es ] = Ps v, and her observation O at time t’, i.e., a prob-
ability distribution of users over all ROIs s € S at time t’, we
compute the posterior probability using the Bayes theorem as:

Pr[o‘Es,t’] . Pr[Es,t’}
Pr[O]

P,v = Pr[E,v|0] = 15)

where Pr[O] represents the user’s un-normalized distribution
over ROIs at time t’ and can be calculated using the law of total
probability, i.e., Pr[O] = >, g AP, - Pj v, and Pr[O|Es v] =
A:,t’ is given by the released aggregate statistics.

Max-ROL. The Bayesian approach is well-principled but con-
siders users independently, thus losing information related to
the fact that at most A+ users can be assigned to a location
s, at time t'. We now describe a greedy alternative that ac-
counts for this constraint. The algorithm aims at maximizing
the total probability for each ROI by assigning the most prob-
able users to each location. It is summarized in Algorithm 3.2,
where SORT(V, x) denotes a function that returns the indexes
of the fop x values, of a vector V. Specifically, Adv first con-
catenates the probabilistic prior P matrices of all users u € U
and creates a 3-dimensional matrix of size [U] x |S| x |T’],
which we denote as Py (lines 3—4, Algorithm 3.2). Addition-
ally, she creates a localization matrix of same size, denoted
as LOCy. Next, Adv selects all s,t' s.t. A;¢ = 0 and sets
the corresponding indexes of LOCy to zero, i.e., she discards
locations where no users have been observed during the aggre-
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Algorithm 3.3: MAX_USER

Input: P, A
1 LOCy(:y:,:) =0
2 foreacht’' € T' do
3 for each u € U do
4 ldx = INDEX(P(:,t") > 0.0)
5 for each i € ldx do
6 if ZVGU LOCy(v,i,t') < A(i,t’) then
7 | LOCy(u,i,t) =1
8 if Zweu,jes LOCy(w,j,t') == Zjes A(j,t")
then
9 ‘ break;
10 for each u € U do
11 p= LOCy(u,:,:)
12 return IS;

gation period (lines 6-7). Then, for all non-zero entries in A,
she selects the Ag + most probable users according to her prior,
Pu, setting the corresponding indexes in LOCy to 1 (lines 9—
12). If there are users with equal probability, Adv can use any
criterion, e.g., the total number of location reports (as we do
in our experiments that are presented in Section 4) to make a
decision. Finally, Adv outputs the location assignment profile
of each user as her P matrix (lines 13-15).

Max-User. Our final inference attack is similar in spirit to
the previous greedy strategy but, rather than maximizing the
probability over ROIs, it maximizes each user’s probability
over the ROIs by assigning them to their most likely loca-
tions. The algorithm is summarized in Algorithm 3.3, where
INDEX(V > x) denotes a function that returns the indexes of
a vector V, whose values are larger than x. More precisely, Adv
first sorts users by some criterion, e.g., the total number of lo-
cations that they report (as we will do in our experiments in
Section 4). Then, at each time slot t’ € T’, Adv iterates over
the users and assigns each of them to their most likely ROIs,
provided that each ROI’s aggregate A(s,t’) is still not con-
sumed (lines 3-7, Algorithm 3.3). The procedure is repeated
until the assignments cover all the revealed aggregate informa-
tion (lines 8-9).

Note: Our strategies are suitable for both Adv’s inference
goals, i.e., profiling and localization. For instance, if Adv
is given a probabilistic prior, she can follow MAX_ROI or
MAX_USER strategies and transform their assignment outputs
to probability distributions that can be used for her profiling
goal. Similarly, she can run BAYES on the prior and evaluate
POP and ALL on its output to localize users.

4 Privacy Evaluation of Raw
Aggregates

We now use our framework to experimentally evaluate aggre-
gate location privacy from raw aggregates release. We com-
pare different approaches to build priors (Section 3.2) as well
as strategies to perform inference attacks (Section 3.3), using
two mobility datasets obtained from London’s transportation
authority and the San Francisco Cab network.

4.1 Datasets

Transport for London (TFL). We have obtained, from the
TFL authority, all Oyster card trips on the TFL network from
March 2010 (8GB uncompressed). The Oyster is a personal,
pre-paid, RFID-enabled card, and the most common payment
system on TFL-operated services. Each entry in the data de-
scribes a unique trip and consists of the following fields:
(anonymized) oyster card id, start time, touch-in station id, end
time, and touch-out station id. (Note that the same dataset has
also been used in [7, 28, 37]).

Pre-processing & Sampling. We discard trips from March 29—
31, 2010 to obtain exactly four weeks of data, i.e., from Mon-
day March 1st to Sunday 28th. This yields 60 million trips,
performed by 4 million unique oyster cards, covering 582 sta-
tions (ROIs). Next, we select the top 10,000 oyster ids per total
number of trips: these account for about 6M trips (10%). Con-
sidering oyster trips start/end stations as ROlIs, the top 10,000
users report, 171 £ 26 ROIs in total and 19 £ 9 unique ROIs.
Setting the time granularity to one hour, the mean number of
active time slots for the top 10,000 oysters is 115 + 21 out of
the 672 slots (28 daysx24 hours).

Ground Truth. We use the trips performed by each Oyster
card in the dataset to populate its ground truth matrix L. More
specifically, ls + € L is 1 if the user touched-in or out at station
s, during time slot t € T, and O otherwise. When an Oyster
card does not report any location at a particular time slot, we
assign it to a special ROI denoted as null. Thus, the ground
truth L is a matrix of size |S| x | T| = 583 x 672.

Prior Knowledge (Training data). We build the probabilistic
adversarial prior knowledge using the first 3 weeks of L (i.e.,
75% of data are used for training). Thus, the observation pe-
riod T consists of 21 x 24 = 504 hourly time slots. For the
seasonal assignment priors, we utilize a sliding window on L,
as described in Section 3.2.2.

Testing Data & Aggregates. We evaluate Adv’s performance in
profiling/localizing users against the last week of L (i.e., 256%
of the data are used for testing). Thus, the inference period T’
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consists of 7x 24 = 168 hourly time slots. For each station s €
S, we count the number of users that report their presence in it
(touch-in or touch-out) during each epoch t' € T’, and create
the aggregate time-series A (of size |S| x |T’| = 583 x 168)

. U .
whose items as 1/ are computed as > ‘1 s+ (remind that |5 ¢/

\

u=
are the entries of each oyster’s L). During T’, each station is
reported 818 £ 1,361 times while stations have commuters

touching in/out for 71 &+ 54 out of the 168 hourly time slots.

San Francisco Cabs (SFC). We also use the SFC dataset [34],
with mobility traces recorded by cabs in the San Francisco
area from May 17 to June 10, 2008. Each record includes: cab
identifier, latitude, longitude and a time stamp.

Pre-processing & Sampling. The dataset consists of approxi-
mately 11 million GPS coordinates, generated by 536 taxis. To
facilitate our experiments, we focus on exactly 3 weeks: Mon-
day May 19 to Sunday June 8. We restrict to the downtown
San Francisco area, dividing it into a grid of 10 x 10 = 100
regions (ROIs), each covering an area of 0.5 x 0.37 square
miles. We group traces in one-hour epochs. We also remove
duplicates (e.g., a taxi reporting the same ROI multiple times
during a time slot). This yields a dataset of over 2 million ROIs
reported by 534 taxis, reporting 3, 663 £ 1, 116 locations in to-
tal, covering 77 & 6 unique ROIs (out of the 100 we consider).
Unlike TFL data, the SFC data is less sparse, with cabs report-
ing more locations. On average, cabs are “inside the system”
for 340 % 94 out of the 504 (21 days x 24 hours) time slots.

Ground Truth. For each cab, we build its L matrix, by setting
s+ to 1 if the cab was in the s “cell” during time slott € T,
and 0 otherwise. As for TFL data, if a cab does not report any
location at a time slot we assign it to a special ROI, which
we denote as null, thus, the L matrix is of size |S| x |T| =
101 x 504.

Prior Knowledge (Training data). We build the probabilistic
adversarial prior knowledge using the first 2 weeks of L (i.e.,
~ 66% of the data), thus the observation period T consists
of 14 x 24 = 336 hourly time slots. For the LAST_SEAS
assignment priors, we utilize a sliding window on L.

Testing Data & Aggregates. We quantify Adv’s performance
in profiling/localizing cabs against the last week of L (i.e.,
~ 33% of the data are used for testing), thus, the inference
period T’ consists of 7 x 24 = 168 hourly time slots. For
each s € S, we count the number of taxis reporting it during
epoch t’ € T’, and create the aggregate time-series A (of size
S| x |T'| = 101 x 168) whose items as are computed as
Ztuz‘l s+ (where |g ¢+ are the entries of each cab’s L). During
T’, each ROl is reported 6, 71447, 624 times while ROIs have
taxis in them for 135 £ 61 out of the 168 time slots.
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Fig. 1. Adv’s Profiling Error - FREQ_ROI prior.

4.2 User Profiling

We start our experimental evaluation by quantifying aggregate
location privacy against user profiling (cf. Section 3.1). We
study the impact of the information used to build Adv’s prior
vis-a-vis the strategy used to exploit aggregate data. Specif-
ically, we measure Adv’s performance using the JS distance
from the ground truth (Eq. 4), and use this metric in our plots
(Figures 1-3). During our analysis, we also discuss the privacy
loss (PL, Eq. 6), allowing us to better understand the effect
of aggregate data publication on privacy, independently of the
prior mobility pattern of the user, as PL reflects how much the
adversary has learned with respect to her initial knowledge.

4.2.1 Probabilistic Priors

FREQ_ROL In Fig. 1, we plot the CDF (over the user pop-
ulation) of Adv’s error over the testing week when building
priors using FREQ_ROI, i.e., each user’s frequent ROIs over
time, for both datasets, using different inference strategies. Us-
ing the TFL dataset (Fig. la), a baseline attack where Adv
uses only her prior (blue line) has an average error of 0.37,
while AP (i.e., the population profile extracted from the ag-
gregates) reduces her error to 0.34. When Adv uses both her
prior and the aggregates for the inference, the error is notably
reduced, yielding average errors amounting to 0.15,0.25 and
0.15, respectively, with BAYES, MAX_ROI and MAX_USER.
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More specifically, this corresponds to an average privacy loss
of, resp., 0.6, 0.41, and 0.59 for individuals whose locations
are included in the aggregate time-series.

We also observe that inferences affect users in different
ways, i.e., with BAYES, the adversarial error is reduced for all
users, while with MAX_ROI and MAX_USER for 77% and
95% of all users, respectively. This confirms that MAX_ROI
and MAX_USER are somewhat greedy strategies and may end
up selecting users that either report few (MAX_ROI) or many
(MAX_USER) ROIs overall, to “consume” the aggregates.

With the SFC data (cf. Fig. 1b), the adversarial error only
relying on cabs’ frequent ROIs prior (FREQ_ROI) is higher
compared to that of TFL — 0.65 on average, and in this case it
is quite similar to that owing to the aggregates (AP). It drops
to 0.62 with the Bayesian updating (corresponding to 0.06 pri-
vacy loss) and to 0.56 with MAX_USER (0.16 PL), indicating
that taxis reporting the most locations are regular within them
and end up losing more privacy. We also observe that, unlike
in the TFL experiments, the greedy strategy MAX_ROI actu-
ally deteriorates Adv’s mean error (0.71), owing to the bias
introduced by taxis visiting few ROIs (i.e., cabs having high
probability to appear in a ROI). Overall, we find that profil-
ing commuters based on their frequent ROIs is more effective
than profiling cabs, as cabs report more locations and follow
variable routes during their shifts.

ROI_DAY_WEEK. Next, we report Adv’s error when using
the ROI_DAY_WEEK as her prior, i.e., a weekly profile that
takes into account location frequency as well as time and day
semantics (e.g., users’ locations on Mondays, 3pm). The re-
sults are plotted in Fig. 2, for both datasets. We have also ex-
perimented with location frequency and time only (and not
day) semantics to build the prior (ROI_DAY), which yields
larger errors, as less information is considered. To ease pre-
sentation, we defer details to Appendix A.1.1.

With the TFL data (Fig. 2a), it is clear that com-
muters’ most frequent ROIs for the time instances of a week
(ROI_DAY_WEEK) are a more informative prior than their
frequent ROIs (FREQ_ROI), with an average prior error as
low as 0.19. This shows how time and day semantics help Adv
profile tube commuters. MAX_ROI and MAX_USER strate-
gies slightly enhance Adv’s posterior knowledge and result in,
resp., 0.08 and 0.14 mean privacy loss. Whereas, the Bayesian
inference significantly improves Adv’s performance towards
her profiling goal, yielding an average of 0.27 privacy loss for
the users. With the SFC dataset (Fig. 2b), the average prior
error is lower than with FREQ_ROI as time and day seman-
tics enhance Adv’s performance, but it still remains relatively
high (0.61). Two of the inference strategies reduce Adv’s error,
although not dramatically: BAYES and MAX_USER help Adv
to profile cabs’ mobility and yield, resp., 0.03 and 0.07 privacy
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loss. In contrast, MAX_ROI actually deteriorates Adv’s perfor-
mance and does not harm the cabs’ privacy. Overall, we notice
that profiling cabs using their weekly profiles as prior knowl-
edge is more challenging than profiling commuters whose mo-
bility patterns are more regular.

TIME_DAY_WEEK. Our last experiments with probabilistic
priors measure Adv’s error (see Fig. 3) when her prior knowl-
edge consists only of time information for the users, i.e., she
knows which time slots of the inference week a user is likely
to report ROIs, but not which ROIs. Similar experiments in
which Adv knows which time slots of any day a user reports
ROIs (TIME_DAY) result in larger error and are discussed in
Appendix A.1.1. With the TFL data (Fig. 3a), the error based
on this prior is larger than with ROI_DAY_WEEK, namely,
0.3. “Greedy” strategies (MAX_ROI and MAX_USER) re-
markably improve Adv’s performance (i.e., they result in 0.5
privacy loss on average), as in this case the users reporting the
most ROIs are chosen to consume the aggregates (due to the
prior, users have equal probability to appear in ROIs). On the
other hand, the Bayesian inference only slightly decreases the
adversarial error, due to the small probabilities of her prior,
which consists of a uniform distribution over the tube stations
for the users’ most frequent time slots of a week.

With the SFC data (Fig. 3b), when Adv knows the cabs’
most frequent time slots reporting ROIs, her prior error is
larger compared to that of cabs’ frequent ROIs over the time
instances of a week (ROI_DAY_WEEK), i.e., 0.66. How-
ever, exploiting the aggregate knowledge the error is reduced
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and BAYES, MAX_ROI and MAX_USER inferences yield
0.09, 0.1 and 0.2 mean privacy loss, respectively. Overall, we
point out that due to the different nature of the datasets (sparse
TFL vs. dense SFC), user profiling with time information as
prior knowledge yields different amounts of privacy leakage.

4.2.2 Assignment Priors

Next, we evaluate Adv’s performance with assignment priors,
i.e., when she obtains a historical location profile as her prior
knowledge for the users. We experiment with LAST_WEEK,
LAST_DAY and LAST_HOUR, described in Section 3.2.2.
Unlike probabilistic ones, the privacy loss from aggregates
with assignment priors is very small, as the sliding window
on the ground truth of commuters/cabs already yields highly
informative priors. Since the CDF plots are less illustrative in
this setting, we defer them to Appendix A.1.2 due to space
limitations (Figures 12—13).

With TFL, when Adv knows users’ last week’s where-
abouts (LAST_WEEK), her baseline mean error is 0.17, in-
dicating that commuters are fairly regular in their weekly pat-
terns. BAYES, MAX_ROI and MAX_USER inferences some-
what reduce Adv’s error and achieve only little privacy loss
(0.01, 0.03 and 0.05 resp.). When the users’ last day’s ROIs
are available to Adv (LAST_DAY), her initial error is compa-
rable to LAST_WEEK but smaller (0.15 on average). BAYES
and MAX_ROI only slightly reduce the adversarial error,

causing, resp., 0.02 and 0.05 privacy loss. On the contrary,
MAX_USER does not harm commuters’ privacy as it actually
increases Adv’s error, indicating the most mobile users might
not follow the patterns of their previous day. LAST_HOUR
generates larger error compared to the previous ones (0.19), as
passengers do not exhibit as strong hourly seasonality. Once
again, all inferences yield negligible privacy loss. In general
for TFL, we remark that seasonal historic profiles are more
instructive priors than probabilistic ones (e.g., FREQ_ROI or
TIME_DAY_WEEK), thus, the privacy loss for individuals
from the aggregate time-series is actually small compared to
that of probabilistic priors.

Our experiments on the SFC data show that, unlike TFL,
LAST_HOUR is the most “revealing” among the assignment
priors, with a mean error of 0.53 (vs. 0.63 for LAST_DAY
and 0.67 for LAST_WEEK). Interestingly, Adv profiles cabs
more efficiently knowing their last hour’s ROIs than with prob-
abilistic priors, e.g., their most frequent ROIs (FREQ_ROI)
or their most frequent ROIs for the time slots of a week
(ROI_DAY_WEEK). That is, cabs of San Francisco are more
likely to appear in those ROIs they visited during the last hour,
while their daily/weekly patterns are less regular. In all assign-
ment prior cases, BAYES and MAX_USER reduce Adv’s error
by little, while MAX_ROI increases it, thus, the privacy loss
from the aggregates is again quite low.

4.2.3 Take Aways

Overall, our experiments show that aggregates do help the ad-
versary on the profiling inference goal. The actual degree of
privacy loss for the users depends on the prior: assignment
ones yield smaller privacy leakages, as they are already quite
informative for the adversary compared to probabilistic ones.
We also observe that inferring the mobility profiles of com-
muters from aggregates is significantly easier than profiling
cabs. In other words, cabs’ patterns are not as regular as those
of tube passengers, who exhibit high seasonality. As a conse-
quence, commuters lose much more privacy than cabs from
aggregate locations.

4.3 User Localization

We now measure privacy loss in the context of localization
attacks, i.e., as Adv attempts to predict users’ future locations.
Our experimental setup is the same as with profiling. However,
Adv’s output is not a probability distribution, but a binary lo-
calization matrix, and Adv’s main performance metric (error)
is now computed as 1 — F1 (see Eq. 5).
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4.3.1 Probabilistic Priors

We quantify Adv’s error in localizing users when the prior
knowledge matrix P is built according to users’ most frequent
ROIs over time (FREQ_ROI) and their most frequent ROIs for
each time slot of a week (ROI_DAY_WEEK). Since her prior
is a probability distribution over ROIs for each time slot of
the inference period, Adv’s baseline prediction is to extract the
users’ most popular prior ROIs (POP) or all prior ROIs (ALL)
(cf. Section 3.2.2). For POP, we set the threshold § to 0.5, i.e.,
we consider users’ favorite ROIs those with more than 50%
chance of visiting. As part of her inference strategy, Adv (i)
applies BAYES and evaluates POP and ALL on its output, and
(ii) employs MAX_ROI and MAX_USER. Figures 4-5 plot the
corresponding results, while additional experiments with Adv
knowing users’ most frequent time slots of a week reporting
ROIs are deferred to Appendix A.2.1.

FREQ_ROL. Fig. 4a plots the CDF of Adv’s error in localiz-
ing TFL passengers with their frequent ROIs over time as prior
knowledge. Using only the prior, i.e., predicting that users
will appear in all their frequent ROIS (ALL), we get a very
large average error (0.97); evaluating ALL after applying the
Bayesian inference slightly reduces the adversarial error (0.93)
and yields very small privacy loss (on average, 0.04). When
predicting that commuters will appear in their most popular
ROIs (POP), Adv’s mean error drops to 0.21. Again, BAYES
does not improve Adv’s performance, as the prior probabili-

ties are so small that, after updating, they do not exceed d.
We observe that with POP, Adv predicts users to be out of
the transportation system during the time slots of T’. Interest-
ingly, such a conservative strategy yields a small adversarial
error overall, however, this occurs due to the fact that the TFL
dataset is relatively sparse. With the greedy inference strate-
gies (MAX_ROI and MAX_USER), Adv’s mean error is much
smaller than ALL, respectively, 0.32 and 0.23. Their error pat-
terns are different as they select different sets of users to cover
the aggregates. MAX_ROI achieves an error of 0.5 or less for
70% of the users, while MAX_USER for 90%. In both cases,
Adv’s error is reduced notably in comparison with the ALL
baseline strategy, and we find that the aggregates do indeed
yield substantial privacy loss (resp., 0.66 and 0.77).

In Fig. 4b, we plot the CDF of Adv’s error while attempt-
ing to localize SFC cabs over T’, again given their most fre-
quent ROIs as prior. Similar to TFL experiments, when Adv
extracts cabs’ most popular prior ROIs (POP), she predicts all
of them to be outside the network, since the prior probabilities
are smaller than the threshold (6 = 0.5), and the Bayesian in-
ference updates them negligibly. However, unlike TFL, Adv’s
error with POP is 0.9 on average, proving it to be a bad strat-
egy for localizing cabs. Predicting that cabs will show up in
all their prior ROIs (ALL) slightly improves her predictive
power as the mean error drops to 0.83, while BAYES negligi-
bly reduces it further. Both MAX_ROI and MAX_USER infer-
ences improve Adv’s predictions compared to the ALL base-
line, and they yield, resp., 0.08 and 0.11 privacy loss. How-
ever, we observe that MAX_ROI behaves more consistently
than MAX_USER (which reduces Adv’s error only for 50%
of the cabs), indicating ROI regularity. Overall, it is clear that
localization strategies behave quite differently on datasets of
dissimilar characteristics.

ROI_DAY_WEEK. Fig. 5 displays the CDF of Adv’s error
localizing users with their most frequent ROIs for each time
slot of a week (ROI_DAY_WEEK) as prior knowledge. For
TFL, we notice that all prior ROIs yield a mean adversarial
error of 0.34 and Bayesian updating slightly reduces it and
yields insignificant privacy loss (0.03). In this case, users’
most popular prior ROIs (POP) reduce Adv’s error to 0.19.
The BAYES and POP inference results in a negligible mean
privacy loss (0.06). In contrast, compared to ALL, MAX_ROI
and MAX_USER generate a notable privacy loss (0.29 and
0.26 on average). MAX_USER yields larger errors for users
that are selected to cover the aggregates, while the error gets
smaller for those users that were not (because the aggregates
were consumed). On the other hand, MAX_ROI predicts bet-
ter than MAX_USER for 25% of users, who are highly reg-
ular in the ROIs they visit. In comparison to FREQ_ROI,
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Fig. 5. Adv’s Localization Error - ROI_DAY_WEEK Prior.

ROI_DAY_WEEK enables Adv to localize commuters more
efficiently, proving it to be a more informative prior.

With the SFC data (Fig. 5b), localizing cabs via all their
prior ROIs (ALL) yields a mean error of 0.71, while BAYES re-
duces it insignificantly. Interestingly, with ROI_DAY_WEEK
being an instructive prior, ALL proves to be the best strat-
egy. Extracting the cabs most popular ROIs (POP) results in
an average error of 0.9 confirming once again that this strat-
egy does not perform well on the dense cab data. Further-
more, MAX_ROI and MAX_USER yield significant privacy
loss (resp., 0.17 and 0.18), compared to the baseline POP.

Overall, our experiments demonstrate that Adv is more ef-
fective in localizing commuters/cabs with ROI_DAY_WEEK
than FREQ_ROI, however, the privacy loss for individuals is
smaller due to the more revealing prior knowledge.

4.3.2 Assignment Priors

Finally, we assume Adv obtains a historical assignment
prior for the users, i.e., we experiment with LAST_WEEK,
LAST_DAY, and LAST_HOUR priors in the context of the
localization inference task. Due to space limitations, we de-
fer the details of the corresponding results (and plots) to
Appendix A.2.2. We find that TFL commuters are best lo-
calized with their last week’s ROIs (average error is 0.24
with LAST_WEEK, 0.27 with LAST_DAY, and 0.31 with
LAST_HOUR), whereas, SFC cabs with their last hour’s
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ROIs (average error is 0.73 with LAST_WEEK, 0.71 with
LAST_DAY and 0.64 with LAST_HOUR). Moreover, as in
the profiling case, the availability of aggregates yields limited
privacy loss when the adversarial prior knowledge is built via
assignments. This indicates that, since assignment priors are
already quite instructive, the aggregates do not significantly
improve Adv’s knowledge of individual users’ whereabouts.

4.3.3 Take Aways

Similar to profiling, localization inferences performed using
the aggregates yield different degrees of loss in privacy for in-
dividual users, depending on Adv’s prior knowledge. Assign-
ment priors are more revealing than probabilistic ones, thus
aggregates end up leaking less privacy overall. We also ob-
serve that commuters are best localized via their popular ROIs
(POP), while cabs by their most recent ROIs (LAST_HOUR).
Once again, localizing commuters is easier than localizing
cabs as the former ones exhibit seasonality, while the latter
ones have irregular patterns.

4.4 Privacy Implications of Regular
Mobility Patterns

Experimenting with our framework also provides some inter-
esting considerations about Adv’s error over the time slots of
the inference week. One would expect the leakage to vary ac-
cording to time of the day (e.g., peak hours vs. night) or days
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of the week (e.g., weekdays vs. weekends) since the number
of users in the system, and their concentration, varies signifi-
cantly. In this case, users would have variable levels of privacy
protection over time. In order to validate this intuition, we pick
a case-study out of our experimental setup and examine the
patterns in Adv’s mean error during the hourly time slots of the
inference week. Fig. 6 plots the evolution of Adv’s mean error
over time for tube passengers (TFL) and taxis (SFC), when
Adv obtains their most frequent ROISs for the time slots of day
(ROI_DAY) as prior knowledge.

For TFL (Fig. 6a), we observe different patterns w.r.t.
hours of the day and weekdays, as expected. Only considering
the prior (ROI_DAY), Adv’s error is smaller in the morning
hours than mid-day or evening hours, likely because tube pas-
sengers are regular in their commuting routines to work, while
in the evening they might go to the gym, meet friends, or go
shopping before traveling back home. As the aggregate time-
series is available to Adv, her error is reduced during morning
hours not nearly as much as in mid-day and evening hours. In
other words, commuters lose more privacy if they travel during
mid-day, as there are fewer users in the transportation system,
or in the evening hours, because the aggregates reflect their
irregular mobility pattern. Similarly, we observe that the ag-
gregates give Adv a much more significant advantage during
the weekends than on weekdays, as commuters more likely
follow variable routes.

Likewise, for SFC (Fig. 6b), we observe distinct patterns
in Adv’s error w.r.t hours of the day and weekdays. With
the prior (ROI_DAY), Adv’s error has a spike in the morn-
ing peak hours of weekdays indicating that cabs follow vari-
able routes at these times and are not highly predictable. We
find that Adv’s prior error is smaller (0.57) during mid-day
hours (i.e., 12pm—4pm) as cabs might be parked waiting for
clients, or fewer routes might be performed during that shift.
Indeed, the availability of the aggregate time-series harms
cabs’ privacy more during mid-day time slots as BAYES and
MAX_USER reduce Adv’s error significantly (higher privacy
loss). Finally, we note that, among the inference strategies,
MAX_USER gives Adv remarkable advantage in profiling cabs
during weekends as the cabs reporting the most ROIs are likely
to follow routes that are reflected by the aggregates.

5 Privacy Evaluation of Defense
Mechanisms

In the previous section, we have shown that aggregate location
time-series leak information about individuals’ whereabouts,
and have evaluated how, based on different priors and infer-
ences. Next, we study whether mechanisms supporting the re-

lease of aggregate information in a privacy-respecting manner
are effective at avoiding such privacy leakage, and to what ex-
tent. Specifically, we focus on the protection offered by Dif-
ferential Privacy (DP) [13], using either output or input pertur-
bation techniques. The former add noise to the output of the
aggregation process, whereas, with the latter, noise is added
to users’ inputs before aggregation. We do not consider other
defense mechanisms, e.g., based on k-anonymity, as they have
already been shown to be ineffective [43].

In theory, one can assess the level of privacy provided by
DP mechanisms as it is configured by the parameter €, which
determines the privacy risk incurred when releasing statistics
computed on sensitive data (providing an upper bound). While
€ expresses the relation between the level of privacy before
and after the release, and provides protection against arbitrary
risks, it is not an absolute measure of privacy and it is often not
clear how to interpret, in practice, the actual level of privacy
enjoyed by individuals in the dataset, nor is how to choose the
value of € to obtain the desired protection.

In the rest of this section, we use our framework to mea-
sure to which extent DP mechanisms reduce the privacy leak-
age compared to the release of raw aggregates, vis-a-vis the
resulting utility of the data. That is, we quantify the protection
that these mechanisms provide to users in presence of an ad-
versary that, as in Section 4, has access to the aggregates (now
perturbed via a DP mechanism) and uses that information to
improve her prior knowledge about users’ whereabouts.

5.1 Metrics

Privacy Gain. We quantify the protection provided by DP
techniques in terms of the “privacy gain” they yield, which
we define to denote the difference in Adv’s error when using
her prior (P) with the noisy aggregates A’ (AdvErrp as) mi-
nus that with the raw aggregates A (AdvErrp ), normalized
by the maximum gain the mechanism can provide. That is, we
measure privacy gain (PG) as:

AdvErrp a7 —AdVErrp A

T—AdvErrp A if AdvErrp o # 1 A

PG = AdvErrP7A/ > AdvErrp,A (16)

0 otherwise

PG is a value between 0 and 1 capturing Adv’s deteriora-
tion towards her goal (e.g., profiling users) owing to the noise
added by the DP techniques.

Mean Relative Error (MRE). We also use the MRE to mea-
sure utility, specifically, to capture the error between an orig-
inal time-series Y of n time points and its noisy version Y’,
which comes as the result of perturbation. More precisely:
Y — il

max(ﬂin) an

MRE(Y,Y’) = (1/n) Z
i=0
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where [ is a sanity bound mitigating the effects of very small
counts. As done in previous work [2], we use MRE to mea-
sure the utility loss when a privacy mechanism is applied to an
aggregate time-series, and we adjust 8 t0 0.1% of >, Y.

5.2 Output Perturbation

We first evaluate differentially private mechanisms based on
output perturbation, in which an entity adds noise to the statis-
tics prior to their release. This entity can be trusted with the
individual users’ data [2, 18] or only be allowed to com-
pute aggregate statistics, e.g., using cryptographic protocols
for private aggregation [5, 36, 37]. We evaluate two specific
approaches: the Simple Counter Mechanism [8, 14] and the
Fourier Perturbation Algorithm [39].

Simple Counter Mechanism (SCM) [8, 14]. SCM is a
straightforward extension of the Laplace mechanism proposed
by Dwork et al. [13] for time-series. It answers a new query
at each time slot (e.g., how many users are in a ROI at that
time) and randomizes the answer with fresh independent noise.
Given ¢, for a ROl s € S, for each time slot t' € T/, SCM
samples a fresh random value from the Laplace distribution
~p ~ Lap(1/e) (recall that each user is counted at most once
in Ag) and releases the perturbed aggregate A'sy = Agyr +7v,
where Ag is the true aggregate value.

Due to the composition theorem [14], and given that the
number of locations and time slots in the inference period for
which data is released, are |S| and | T’| respectively, the mecha-
nism is overall O(|S| - |T’| - €) differentially private. Thus, the
privacy leakage increases linearly with the number of ROIs
and the length of the inference period. This version of SCM
only guarantees event-level privacy [8, 14] for the users, i.e.,
it protects whether or not a user was in a ROI at a specific
time slot. If one desires to achieve stronger privacy guaran-
tees with SCM, then the noise can be distributed according
to Lap(|T’|/e€) (i.e., users are protected within the aggregates
of a region, during the whole period T’) and SCM becomes
O(|S| - €) differentially private. Alternatively, to guarantee e-
DP (i.e., users are protected within the aggregates of all re-
gions, during T’) the noise must be distributed according to
Lap(|S| - |T’|/¢), increasing privacy at the cost of utility.

Fourier Perturbation Algorithm (FPA) [39]. FPA improves
the privacy/utility trade-off offered by SCM by reducing the
amount of noise needed to obtain the same level of privacy.
This reduction is based on performing the noise addition in
the compressed domain as follows. First the time-series is
compressed using the Discrete Fourier Transform (DFT) and
the first k Fourier coefficients, Fy, are kept. Then, Fy is per-
turbed with noise distributed according to Lap(y/k - |T’|/€),

and padded with zeros to the size of the original time-series.
Finally, the inverse DFT is applied to obtain the perturbed ag-
gregates to be released. This version of FPA guarantees e-DP
for each ROI (thus, overall it’s O(|S] - €) differentially private)
with better utility than SCM. Note that a mechanism similar to
FPA has also been applied in [2].

Evaluation. We present the results of our evaluation on two
case-studies: (i) user profiling on the TFL dataset with Adv ob-
taining FREQ_ROI as her prior knowledge and following the
greedy MAX_ROI strategy, and (ii) user profiling on the SFC
data when Adv knows FREQ_ROI and employs MAX_USER.
Although we restrict to two cases, due to space limitations,
their choice is reasonable as our analysis in Section 4 shows
that, in these settings, the aggregates yield significant privacy
loss for individual users.

We parameterize SCM and FPA perturbation mechanisms
with e € {0.001,0.01,0.1,1.0}. For SCM, we experiment
with variable magnitude of Laplacian noise to demonstrate the
actual protection it offers with respect to its theoritical privacy
guarantees. Since SCM with Lap(|S| - |T’|/e) is expected to
yield unnecessarily huge error in the aggregates (i.e., it is prac-
tically impossible for commuters/cabs to appear in all ROIs in
every time slot of the inference period), we also report SCM
with noise distributed according to Lap(A/¢), where A is the
sensitivity of users within the aggregates A, i.e., the maximum
number of location reports by a user/cab during T’ in the TFL
and SFC datasets (224 and 2,687 resp.). Furthermore, for FPA,
as done in [39], we experiment with the parameter k to mini-
mize its total error, finding that k = 25 yields the best results
on TFL and k = 20 on the SFC data.

Utility. Tables 3 and 4 report the utility for both datasets, in
terms of MRE, of the mechanisms for different values of e.
Overall, as expected, for all mechanisms the higher the privacy
(i.e., lower € values), the lower the utility (i.e., bigger MRE).

In our first case study (Table 3), SCM-Lap(|S]| - |T’|/¢)
yields the worse utility, with perturbed aggregates being about
700 times worse estimates than raw ones, for all values of e.
Moreover, SCM-Lap(A/e) and SCM-Lap(|T’|/¢) still yield
very high errors, even for a mild level of privacy (¢ = 0.01).
The highest utility is provided by SCM-Lap(1/¢), followed
by FPA. Nonetheless, with the former, the utility is at least
8 times worse than the raw aggregates (MRE=7.8) for small
€ values (0.01 or less). In our second case study (Table 4), we
observe that SCM-Lap(|S| - | T’|/€) and SCM-Lap(A/¢) result
in very large errors (MRE> 24), while SCM-Lap(|T’|/¢) fol-
lows closely. FPA and SCM-Lap(1/¢) yield the best utility, al-
though for sensible levels of (expected) privacy (i.e., e = 0.01)
the perturbed aggregates are about 8 and 5 times worse esti-
mates than the raw ones, respectively.



What Does The Crowd Say About You? Evaluating Aggregation-based Location Privacy —— 169

e 0001 0.1 0.1 1.0
SCM - Lap(|S|- |T’|/e) 739.9 7432 7358 709.4
SCM - Lap(A/e) 7201 6051 1689 167
SCM - Lap(|T’| /) 719.8 5496 1235 128
FPA 11714 117 13 03
SCM - Lap(1/e) 744 78 09 01

Table 3. TFL: MRE (Utility) of output perturbation mechanisms.

1. Prior: FREQ_ROlI, Inference: MAX_ROI
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Fig. 7. TFL: Privacy gain for output perturbation DP mechanisms.

Privacy Quantification. Figs. 7 and 8 display box-plots of
the privacy gain (PG, see Eq. 16) enjoyed by individual users
in both datasets thanks to the perturbation mechanisms, for
increasing values of e. To ease presentation, the plots do not
include SCM-Lap(|S|-|T’|/€), which, as discussed earlier,
completely destroys utility. In the TFL case study (Fig. 7),
the four mechanisms exhibit very different behaviors. SCM-
Lap(A/e) and SCM-Lap(|T’|/¢) offer the best privacy protec-
tion, with an average privacy gain as high as 0.77 for e < 0.1,
and 0.65 and 0.62, resp., for ¢ = 1.0. However, as discussed
above (and shown in Table 3), this protection comes with very
poor utility. We also find that SCM-Lap(1/¢) and FPA offer
similar protection (PG=0.74 on average) for ¢ = 0.001, while,
as € grows, the gain drops significantly, being negligible when
e = 1.0. While this is somewhat expected for SCM-Lap(1/e),
it is quite surprising for FPA, which in theory should provide
as much protection as SCM-Lap(|T’|/e).

In the SFC case (Fig. 8), we observe that SCM-Lap(A/e¢)
and SCM-Lap(|T’|/¢) provide the best privacy gain (0.36 on
avg.) for all values of e. FPA and SCM-Lap(1/¢) behave simi-
larly to the previous two for € < 0.01, however, as € increases
the privacy gain approaches zero.

Remarks. Our evaluation not only highlights a possible gap
between theory and practice w.r.t. privacy guarantees offered
by DP mechanisms, but also shows that these struggle to offer
strong privacy under continual observation (as in the case of
aggregate location time-series) without destroying utility. For
instance, FPA with ¢ = 0.01 provides reasonably high gain
in privacy (PG=0.62) for TFL commuters, however, the MRE
of the published aggregates is approximately 11. For instance,
if there are 100 people in an underground station, the system

e 0001 001 01 10
SCM-Lap(|S|- [T|/e) 26.8 263 262 262
SCM - Lap(A/e) 269 265 259 243
SCM - Lap(|T’|/e) 261 259 224 83

FPA
SCM - Lap(1/e)

241 8.8 1.1 0.3
19.9 5.1 0.6 0.1

Table 4. SFC: MRE (Utility) of output perturbation mechanisms.
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Fig. 8. SFC: Privacy gain for output perturbation DP mechanisms.

will report that there are instead 1,200. Similarly, on the SFC
dataset, when FPA provides good level of privacy for cabs (i.e.,
PG = 0.36 with ¢ = 0.01), the MRE is almost 9.

5.3 Input Perturbation

We now look at input perturbation-based DP techniques,
whereby users add noise to their inputs prior to the ag-
gregation process. In particular, we focus on Randomized
Response (RR) [17, 38, 47]. We do not consider geo-
indistinguishability [3], a mechanism to provide individual
users with differential privacy guarantees while using location-
based services, since there is no scheme that uses such ap-
proach to collect or release aggregate locations. (In fact, we
consider this as an interesting open problem for future work.)

Randomized Response (RR) can be used to privately collect
statistics from users participating in surveys [47], crowdsourc-
ing statistics from client software [17], sharing historical traf-
fic data [15], as well as privately aggregating user locations in
real-time [38]. In particular, the SpotMe system [38] lets users
perturb their location at each time instance t’ € T’ by claiming
tobeinaROI's € S (a “yes” response) with some probability
p, or report the truth (i.e., whether they are or not in location s)
with probability 1 — p. The aggregator collects the perturbed
user inputs and computes the aggregation estimating the num-
ber of individuals in each location s € S and every time slot
t' € T/, via Agp = totalg s - Pyels%";)ﬂ), where totalg v/ is the
total number of responses received for ROI s at time t’ and

Y€Ss ¢/

PyeSS,t' ~ total,

~ depicts the proportion of “yes” responses.

This mechamsm is In W-DP at each time slot [48],
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p 0.1

TFL-MRE 21 39 6.1 93 176
SFC-MRE 04 0.7 11 16 29

03 05 07 0.9

Table 5. SpotMe [38]: MRE (Utility) for increasing values of p, on
TFL and SFC datasets.
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Fig. 9. SpotMe [38]: Privacy gain for increasing values of p, on TFL
and SFC datasets.

thus, overall it guarantees O(|T'| - In W) differen-
tial privacy due to the composition theorem.

Evaluation. We evaluate SpotMe [38], as a representative for
RR input perturbation mechanisms, using our framework. In
this context, Adv is assumed to obtain the estimated perturbed
aggregates A’ that result as users apply the RR mechanism on
their inputs. As in the output perturbation case, we focus on
two user profiling case-studies: (i) TFL data with FREQ_ROI
adversarial prior knowledge and MAX_ROI inference, and (ii)
SFC dataset with FREQ_ROI prior and MAX_USER strategy.

Utility. Table 5 shows the MRE of the perturbed aggregates,
highlighting that, as p grows (i.e., as commuters/cabs perturb
their inputs with higher probability) the utility of the aggre-
gates declines. For TFL, with p = 0.1, the MRE over all sta-
tions is 2.1, and 17.6 with p = 0.9. For SFC, the MRE over
all ROIs is 0.4 for p = 0.1, while for p = 0.9 the perturbed
aggregates are approximately 3 times worse than the raw ones.

Privacy Quantification. Fig. 9 plots the privacy gain pro-
vided by the RR mechanism w.r.t. the parameter p, for users
in both TFL and SFC datasets. For TFL, we observe that, as
p increases, PG also increments, reaching up to 0.6 with the
most conservative parameterization (p = 0.9). In comparison
to the output perturbation mechanisms applied on TFL data,
SpotMe yields smaller privacy gains while keeping the util-
ity levels higher. Interestingly, for SFC, we observe that, as p
grows, the privacy gain only increases negligibly. For p = 0.5,
the average PG is 0.04, while it’s only 0.1 when p = 0.9.
Recall that, with output perturbation mechanisms on the SFC
data, privacy gain reaches 0.36, although yielding lower util-
ity. This highlights the challenges of using RR mechanisms,
such as SpotMe, on dense datasets with few users.

5.4 Discussion

Our evaluation of defense mechanisms based on differential
privacy (DP) highlights the difficulty to fine-tune the trade-off
between privacy and utility. More specifically, our case studies
show that using existing DP mechanisms in a straightforward
manner yields poor utility in the context of aggregate location
time-series in the settings considered in this paper, i.e., mobil-
ity analytics over transport data. As expected, we observe that
the performance of DP mechanisms in terms of privacy and
utility is highly dependent on the intrinsic characteristics of the
datasets used in our experiments. For instance, in the sparse
TFL dataset containing thousands of users moving among a
relatively large number of ROIs (583), output and input per-
turbation achieve reasonable levels of privacy, with the latter
performing better than the former in terms of utility. On the
other hand, on the denser SFC dataset, which includes fewer
users and ROIs (101), output perturbation does not yield sig-
nificant privacy protection, and input perturbation only a neg-
ligible one. Moreover, our analysis shows that it is challenging
to achieve good utility while applying DP on continuous data,
such as aggregate location time-series, and mechanisms that
reduce the required amount of noise (e.g., FPA) still do not
provide acceptable privacy guarantees.

Moreover, data pre-processing techniques [2], like sub-
sampling and clustering, could theoretically be used to im-
prove the utility of DP mechanisms (e.g., by reducing the num-
ber of locations reported by the users or merging sparse ROIs
together), however, such an approach is application dependent
and cannot be considered a generalizable solution.

Finally, although the generic framework of differential
privacy abstracts from adversarial prior knowledge, our anal-
ysis indicates that the concrete nature of this prior should
be taken into account when evaluating defense mechanisms.
While some priors may not help the adversary, our experi-
ments show that realistic approaches of building adversarial
prior knowledge, for example considering users’ frequent lo-
cations, can help an adversary when performing inference at-
tacks to extract knowledge, even from aggregates perturbed
with DP.

6 Related Work

Attacks on Location Privacy. Prior work presenting attacks
on location privacy mostly focuses on inferring users’ where-
abouts from access to individuals’ location data, whether ob-
fuscated or not. Some show that both anonymization and k-
anonymity-based mechanisms are ineffective at protecting pri-
vacy [20, 33, 42, 43, 52]. (Also see surveys by Krumm [26]
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and Ghinita [19]). More recently, researchers analyzed the pro-
tection provided by location proximity schemes adopted by
social networks [35, 46, 51], confirming that mechanisms like
cloaking or naive perturbation are also unsuccessful.

Independently of our work, Xu et al. [50] have recently
presented an attack that recovers individual users’ trajectories
from aggregate mobility data, by exploiting the uniqueness
and the regularity of human mobility. Although their setting
is somewhat similar to ours, the adversarial task they consider
is quite different. Moreover, our work introduces a methodol-
ogy to reason about the effect of releasing location aggregates
on individuals’ privacy—with and without DP protection.

Privacy-Preserving Aggregation. There are two main
privacy-enhancing strategies to collect location data and com-
pute aggregate time-series. (1) Cryptographic protocols for
private aggregation can let a server obtain aggregates with-
out learning users’ individual records [31, 36, 37], but make
no consideration about the privacy loss from learning and/or
releasing exact statistics. We have evaluated this scenario in
Section 4. (2) Perturbation techniques can be used to hide
individual inputs rather than encrypting them. Ho et al. [21]
use quadtree spatial decomposition and density based clus-
tering for privately mining location databases, while Kopp et
al. [24]’s framework enables the collection of quantitative vis-
its to sets of locations following a distributed approach. Chen
et al. [9] focus on spatial data aggregation in the local setting
and propose a framework that allows an untrusted server to
learn the user distribution over a spatial domain relying on a
personalized count estimation protocol and clustering. As dis-
cussed earlier, SpotMe [38] uses an algorithm based on Ran-
domized Response [47] to estimate the number of people in
geographic locations. We have evaluated this kind of solutions,
specifically, SpotMe [38], in Section 5.3.

Private Location Data Publishing. Machanavjjhala et
al. [30] use synthetic data generation techniques to publish
commuting patterns in a differentially private way, while Acs
and Castelluccia [2] describe a differentially private scheme
to release the spatio-temporal density of Paris regions using
records provided by a telco operator. To et al. [45] focus on
releasing location entropy for ROIs under differential privacy
guarantees: they study the bounds of location entropy and
show that e-differential privacy requires an excessive amount
of noise, so they use weaker notions achieving better utility.
Besides specific location-oriented private publishing, differ-
ential privacy has been proposed as a solution for releasing
generic time-series of aggregate statistics. Examples are the
various differentially private counting mechanisms by Chan et
al. [8], or Fan et al.’s adaptive system [18] that uses a combi-
nation of filtering and sampling to increase the utility of differ-
entially private aggregates. Rastogi and Nath [39] use an algo-

rithm based on Discrete Fourier Transform to privately release
aggregate time-series, while Shi et al. [40] combine encryp-
tion with data randomization to achieve differential privacy
for time-series data. We have evaluated the privacy provided
by this approach in Section 5.2, using the schemes in [8, 39].

Quantifying Location Privacy. Previous work on privacy
quantification has studied the privacy loss incurred when dis-
closing obfuscated traces of individual users, e.g., when us-
ing location-based services. The main work in this area is the
quantification framework by Shokri et al. [41, 42], which con-
siders a strategic adversary that has prior information about
users’ mobility patterns, knows the location privacy-protection
mechanism they use, and deploys inference attacks based on
this information and the observation of the obfuscated traces.

This framework is conceived for evaluating privacy-
preserving mechanisms applied to individuals’ traces, there-
fore, the techniques used in their work are not applicable in
the context of location privacy-preserving mechanisms based
on aggregation. Nonetheless, if we were to compare our frame-
work to Shokri et al.’s, we would observe that it does not only
differ in the modeling of the adversary’s prior knowledge, ob-
servation, and goal, but it is also driven by the definition of new
metrics to model the adversary’s error in this scenario. More-
over, we introduce new inference attacks tailored to the aggre-
gate scenario and evaluate the impact on privacy of: (i) priors
of different nature — specifically, both assignment and proba-
bilistic, while only probabilistic are considered in [41, 42], (ii)
priors based on more or less complete information, and (iii)
sparsity of the location data that should be protected.

7 Conclusion

Publishing aggregate location information is often considered
a privacy-friendly strategy to support mobility analytics ap-
plications, especially if the aggregation itself is performed
in a privacy-preserving way [24, 36, 37] (i.e., without the
need for trusted aggregators), and/or Differential Privacy (DP)
is used to perturb aggregates [8, 14, 38, 39]. However, as
opposed to privacy-preserving mechanisms for single users’
traces [41, 42], there has been very little work on understand-
ing the privacy threat that releasing aggregate location time-
series poses on individuals whose locations are part of such
aggregates.

This paper presented a first-of-its-kind analysis of aggre-
gate location privacy. We introduced appropriate metrics to
reason about privacy in the presence of an adversary aiming
to localize and/or profile individual users, and proposed strate-
gies to model the adversary’s prior knowledge as well as to
exploit aggregate information to perform inference attacks.
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We used two real-world mobility datasets with different mo-
bility characteristics to evaluate both the case in which raw
aggregates are released, and when aggregates are perturbed to
achieve Differential Privacy (DP) guarantees. Our experiments
show that aggregates do help the adversary uncover mobility
patterns and localize users, and that DP only improves privacy
when adding so much noise that the utility of the time-series
is destroyed.

We believe that our work will encourage further research
on inference attacks as well as on the adversary’s capability to
obtain useful priors, also aiming to gain a better understand-
ing of their dependence. Moreover, our results motivate future
work towards the design of new differential privacy techniques
that take into account temporal as well as spatial correlations,
such as those discussed in [3, 6] which may provide a promis-
ing direction. Overall, we highlight the need for novel defense
mechanisms that can offer better privacy guarantees to indi-
viduals whose location data is part of aggregate time-series
releases, including in the context of “privacy-friendly” appli-
cations recently announced by Google [15] and Apple [23].
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Fig. 10. Adv’s Profiling Error - ROI_DAY Prior.
A Additional Experiments

We now report additional details about experimental results
on Adv’s inference tasks based on other approaches of prior
knowledge.

A.1 User Profiling

A.1.1 Probabilistic Priors

ROI_DAY. Recall that, with ROI_DAY, Adv knows for the
users, a profile for each hour of any day (e.g., user’s fre-
quent locations at 4pm). For TFL (Fig. 10a), we observe
that this is a more instructive prior than commuters’ frequent
ROIs (FREQ_ROI), with an average prior error of 0.25. More-
over, we note that BAYES and MAX_ROI inferences remark-
ably improve Adv’s profiling accomplishment for all users,
yielding 0.41 and 0.31 average privacy loss, respectively.
MAX_USER improves Adv’s predictions for ~ 80% of the
users and achieves 0.37 average loss in privacy. Similarly for
SFC (Fig. 10b), ROI_DAY (0.63 avg. error) is a more reveal-
ing prior knowledge than cabs’ frequent ROIs (FREQ_ROI
— 0.65) for Adv. BAYES and MAX_USER give advantage to
Adv in profiling users (resulting in 0.06 and 0.13 privacy loss,
resp.) while MAX_ROI does not, once again, indicating the
bias of this strategy towards less active cabs.


http://crawdad.org/epfl/mobility/20090224
http://crawdad.org/epfl/mobility/20090224

What Does The Crowd Say About You? Evaluating Aggregation-based Location Privacy = 174

1.0
r === TIME_DAY
0.8 3 e
5 . BAYES

n 5 ana MAX_ROI
20.6 '.i =@ MAX_USER
>
[¢)
LIL04 :‘

N Y
S H

0.2

0'8.0 0.2 0.4 0.6 0.8 1.0

Adversarial Error
(a) TFL
1.
== TIME_DAY
AP
0.8
wnit BAYES

" anw MAX_ROI
£0.6;| mia MAX_USER
o
4
UO.4

0.2

00 0.2 0.4 06 08 1.0

Adversarial Error
(b) SFC

Fig. 11. Adv’s Profiling Error - TIME_DAY Prior.

TIME_DAY. Fig. 11a plots the CDF of Adv’s total error in
profiling TFL commuters, with the TIME_DAY prior knowl-
edge, i.e., a time profile indicating which hours of day a
user is likely to report ROIs. We observe that Adv’s perfor-
mance is worse (0.52 mean error) compared to priors con-
taining location information (i.e., FREQ_ROI, ROI_DAY or
ROI_DAY_WEEK). This is expected, since TIME_DAY prior
contains only time information for the users, and it is a uni-
Sform distribution over all ROIs, for the time slots that they are
likely to be inside the transportation system. Indeed, Fig. 11a
shows that profiling only with the aggregate profile (AP), Adv
achieves smaller error (0.34). Among the inference strategies,
we note that BAYES negligibly improves Adv’s error in profil-
ing users due to the very small prior probabilities. MAX_ROI
and MAX_USER attacks exhibit similar performance, as in
both cases the users who are more likely to be inside the
system, are selected to cover the aggregate values (in this
case both strategies pick users based on their total number of
ROIs). With these strategies, Adv’s performance increases sig-
nificantly and there is notable privacy loss for the users (0.72
on average).

On the SFC dataset (Fig. 11b), we observe that when Adv
knows the cabs’ most frequent time slots of day (TIME_DAY),
she obtains a worse prior (0.73 mean error) compared to cabs’
most frequent ROIs (FREQ_ROI — 0.65) or cabs’ most fre-
quent ROIs with time and day semantics (ROI_DAY_WEEK
— 0.61). Unlike TFL, Bayesian updating yields a 0.1 privacy
loss (as with fewer ROIs in the SFC data, BAYES affects sig-
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Fig. 12. Adv’s Profiling Error - LAST_WEEK, LAST_DAY and
LAST_HOUR Priors - TFL.

nificantly the posterior probabilities), while the greedy strate-
gies perform even better. More precisely, with MAX_ROI the
mean privacy loss is 0.16 and with MAX_USER 0.22.

A.1.2 Assignment Priors

Due to space limitations, the figures that show the results of
user profiling based on assignment priors (i.e., LAST_WEEK,
LAST_DAY and LAST_HOUR) are presented here. Figures 12
and 13 plot the results that are discussed in Section 4.2.2.

A.2 User Localization

A.2.1 Probabilistic Priors

TIME_DAY_WEEK. Fig. 16 displays Adv’s error when
localizing users with the TIME_DAY_WEEK prior. For
TFL (Fig. 16a), we observe that ALL results in a very
large error (0.99 on average). This is not surprising since
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TIME_DAY_WEEK is a uniform distribution over ROIs, for
the time slots that users are likely to be in the transporta-
tion system. ALL after BAYES achieves negligible privacy loss
(0.03), while we observe no adversarial advantage between
POP and POP after BAYES due to the very small prior prob-
abilities. Furthermore, both MAX_USER and MAX_ROI im-
prove remarkably Adv’s performance compared to ALL and
they yield 0.79 and 0.77 average privacy loss respectively. We
note that MAX_ROI achieves error larger than 0.25 for 20%
of the users while MAX_USER yields error larger than 0.25
for only 5% of the users, i.e., those users that report the most
locations and always get assigned to locations to consume the
aggregates.

For the SFC data (Fig. 16b) we observe that ALL yields
0.84 average error, while ALL after BAYES results in small
privacy loss (0.04). Once again, POP is the worst inference
strategy as the small probabilities of the prior do not exceed the
threshold § and cabs are predicted to be outside the network.
Moreover, unlike the case of ROI_DAY_WEEK, MAX_ROI
now improves Adv’s performance for localizing all the cabs,
yielding 0.09 privacy loss. MAX_USER achieves a similar
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Fig. 14. Adv’s Localization Error - LAST_WEEK, LAST_DAY and
LAST_HOUR Priors - TFL.

mean loss in privacy, however, Adv’s knowledge is only im-
proved for 60% of the cabs compared to the baseline ALL.
Once again, we remark how localization strategies result to
different amount of privacy leakage on sparse (TFL) and dense
(SFC) datasets.

A.2.2 Assignment Priors

We evaluate Adv’s performance against user localization, i.e.,
predicting users’ future locations with a seasonal part of their
ground truth as prior knowledge. In particular, we experiment
with LAST_WEEK, LAST_DAY and LAST_HOUR and focus
on the MAX_ROI and MAX_USER inference attacks. Adv’s
baseline prediction is to replicate the prior, as described in
Section 3.2.2. Figs 14-15 plot the CDF of Adv’s error in local-
izing commuters and cabs, over the inference week.

LAST_WEEK. Adv’s average error localizing tube pas-
sengers with LAST_WEEK is 0.24. Both MAX_ROI and

MAX_USER inference strategies vaguely improve her per-
formance and yield small privacy loss (0.02). This indicates
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that users reporting lots of ROIs and ROIs themselves show
regularity within weeks. Furthermore, MAX_USER attack is
more consistent in improving Adv’s localization success than
MAX_ROI, which increases Adv’s error (compared to the
prior) for 5% of the users. For SFC cabs, we observe that
Adv’s avg. localization error is 0.73, while both MAX_ROI
and MAX_USER do not reduce it further. Unlike TFL, we ob-
serve that the aggregates do not give any advantage to Adv in
localizing taxis and there is no privacy loss.

LAST_DAY. With LAST_DAY, Adv’s mean error in pre-
dicting TFL passengers’ locations during the inference week
is 0.27, thus, this prior is less revealing than LAST_WEEK
(0.24). This indicates that commuters show stronger weekly
seasonality in their journeys. MAX_ROI and MAX_USER
achieve very small privacy loss (0.01 and 0.02 resp.), thus,
aggregate time-series enhance insignificantly Adv’s inference
goal. MAX_USER constantly reduces Adv’s error over the
prior, while MAX_ROI increases it for a small percent-
age of users (5%). For SFC, Adv’s localization error with
LAST_DAY is 0.71 indicating that cabs are a bit more likely
to appear in the ROISs of last day rather than those of last week
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Fig. 16. Adv’s Localization Error - TIME_DAY_WEEK Prior.

(0.73 error). Once again, the greedy inference strategies do not
help Adv improve her predictions and there is negligible pri-

vacy loss.

LAST_HOUR. Finally, we plot Adv’s error while localizing
users with the LAST_HOUR prior. For TFL, we observe that
her error is now larger (0.31) compared to the two previous
cases (LAST_WEEK, LAST_DAY) indicating that, in general,
commuters do not show up in the ROIs of their last hour.
The knowledge of the aggregate time-series enables Adv to
improve her localization performance insignificantly and the
greedy strategies MAX_ROI and MAX_USER yield negligible
amount of privacy loss (0.01 and 0.02 resp.). When localizing
SFC cabs with LAST_HOUR, Adv’s mean error is 0.64. Thus,
as this assignment prior helps Adv localize cabs better than
LAST_DAY (0.71) or LAST_WEEK (0.73) and unlike tube
commuters, taxis are more likely to appear in the locations
they have recently reported. Both inference strategies lead to

very small privacy loss.
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