
Proceedings on Privacy Enhancing Technologies ; 2017 (4):329–344

Saba Eskandarian*, Eran Messeri, Joseph Bonneau, and Dan Boneh

Certificate Transparency with Privacy
Abstract: Certificate transparency (CT) is an elegant
mechanism designed to detect when a certificate author-
ity (CA) has issued a certificate incorrectly. Many CAs
now support CT and it is being actively deployed in
browsers. However, a number of privacy-related chal-
lenges remain. In this paper we propose practical solu-
tions to two issues. First, we develop a mechanism that
enables web browsers to audit a CT log without vio-
lating user privacy. Second, we extend CT to support
non-public subdomains.

Keywords: Certificates, Certificate Transparency, Pri-
vacy, Private domains

DOI 10.1515/popets-2017-0052
Received 2017-02-28; revised 2017-06-01; accepted 2017-06-02.

1 Introduction
There are many documented cases in which Certificate
Authorities (CAs) have issued certificates incorrectly.
While DigiNotar and Comodo are among the most well
publicized examples [2, 33], misissuance happens sev-
eral times a year [50] and can enable active man-in-the-
middle (MITM) attacks on a large population of users.
For example, misissuance of an example.com certificate
can lead to an MITM on all example.com traffic, unless
defenses are deployed.

In response, several defenses have been pro-
posed [16], such as key pinning [3, 20, 22, 29, 34],
DANE [26], Perspectives [49], country-specific restric-
tions [27] and others. Certificate Transparency (CT) [31]
provides an elegant defense that is being actively de-
ployed by web browser vendors and CAs.

A brief overview of CT
The goal of Certificate Transparency is to make all is-
sued certificates publicly visible. By inspecting the set
of issued certificates, domain owners can identify a cer-
tificate issued for their domain without permission and
ensure that it is revoked. To accomplish this, CT uses
a set of public, untrusted, append-only log servers that

*Corresponding Author: Saba Eskandarian: Stanford
University, E-mail: saba@cs.stanford.edu

track and publish all certificates issued by CAs. Even-
tually, major browsers will only trust a certificate if it
comes with a proof that it has been recorded in a public
log. A certificate without such a proof will be treated
as invalid. This will effectively force all CAs to register
every issued certificate with one or more CT logs.

Once CT is enforced by browsers, a rogue certifi-
cate for example.com that is used in an attack must
appear on one of the public logs. This enables adminis-
trators at example.com, or an agent monitoring the logs
on their behalf, to detect the rogue certificate and re-
voke it. CT makes it possible to detect misissuance. The
task of investigating and possibly penalizing negligent
CAs is handled outside of the protocol.

To explain our work, we must first briefly review
how CT works. CT adds an additional step to certificate
issuance. When a CA wishes to issue a certificate for,
say, example.com, it chooses a public CT log and sends
the certificate data, called a precertificate, to the log.
The log uses a secret signing key to generate a Signed
Certificate Timestamp, or SCT, which acts as a promise
that the log will add the certificate to its public log
within a specified period of time, called the maximum
merge delay (MMD, usually 24 hours). This SCT is sent
back to the CA, and the CA typically embeds it in the
final signed certificate as an X.509 extension.

Two types of entities ensure that CAs and log
servers properly follow CT procedures:

– Monitors check for suspicious certificates in logs
by downloading and reviewing all log entries.

– Auditors verify that logs are behaving correctly
based on their partial views of logs and check that
SCTs they encounter appear in logs.

Note that auditors can produce irrefutable crypto-
graphic evidence of misbehavior by logs (such as at-
tempting to delete log entries after inserting them),
whereas monitors search for examples of misissued cer-
tificates which cannot be conclusively proven to indi-
cate misbehaviour. It is assumed that large organiza-
tions such as web hosting providers, content-delivery
networks or CAs themselves will perform the role of
monitors on behalf of their clients. Large organizations
such as Google or independent watchdogs will act as
auditors to ensure logs are generally well-formed and
updated properly.

Article title 330

In addition, web browsers can function as part-time
auditors, periodically checking with logs for proof that
SCTs for certificates from sites the browser has visited
were indeed logged as promised. Every log server stores
its data in a Merkle tree, where each leaf is a hash of
a log entry. This enables the log to efficiently prove
to the auditor that the tested certificate is recorded in
the log data using a standard Merkle proof-of-inclusion.
Auditors obtain an up to date Merkle tree root, called a
Signed Tree Head (STH), via a broadcast/gossip mech-
anism that we do not discuss here.

Privacy challenges with CT
While CT provides a strong defense against misissuance,
several privacy challenges are not addressed by the cur-
rent design and may hinder wide adoption.

First, CT auditing can violate users’ browsing pri-
vacy. Recall that when an auditor, such as a web
browser, encounters a valid SCT, it should check that
the corresponding certificate is properly recorded on the
designated log server. If the certificate is missing from
the log or, more precisely, if the log server fails to prove
inclusion, the browser must then publicize the SCT to
indicate possible misbehavior by the log server. A natu-
ral choice is to report the SCT to the browser’s vendor
(e.g., Google in the case of Chrome). The vendor will
need to investigate the log and potentially remove the
misbehaving log server from the browser’s list of trusted
logs.

We note that this inclusion check by the auditor
is primarily needed for certificates that are not pub-
licly accessible. For public certificates, large auditors
like Google can check certificate inclusion in the log by
themselves.

The problem with this approach is that it violates
user privacy: the browser must send the offending SCT
to the verifier, thereby revealing the user’s browsing be-
havior to the verifier. This is especially troubling con-
sidering that this auditing mechanism is primarily ap-
plied to non-public sites that the user visits. Ideally, we
should enable log server auditing without violating user
privacy. Although, in principle, Tor could be used in this
situation, we seek a solution that does not rely on exter-
nal infrastructure. There are also situations where it is
important to hide the certificate that has been excluded
independent of whether the identity of the reporter is
known.

The second difficulty with CT is that it is currently
incompatible with private subdomains. Consider an en-
terprise that does not want to reveal the domains of

its internal servers to the public. However, the enter-
prise wishes to use a public CA to issue certificates for
its internal subdomains (or to log its privately issued
certificates in a public log). Because domain names are
publicly available in the CT log, logging certificates will
reveal the servers’ private domains.

Certificates issued from private CAs (root CAs not
trusted by default but manually added to browsers) are
exempt from CT as a workaround to this privacy prob-
lem. That is, browsers forgo the SCT requirement for
certificate chains ending in a manually-installed root (a
necessity to enable enterprise data loss prevention tools
to inspect HTTPS traffic).

However, this is unsatisfactory for two reasons.
First, installing a private root on all browsers is a major
configuration burden. More importantly, administering
an internal CA introduces a significant security risk—if
the internal CA is compromised then all client traffic
may be eavesdropped. Organizations may wisely wish
to forgo this risk and rely on an external CA.

1.1 Our Contributions

We develop practical solutions to both challenges dis-
cussed above which can be implemented efficiently on
top of the existing CT specification [31].
Privacy-preserving proofs of misbehavior
We develop an efficient zero-knowledge protocol that en-
ables an auditor, such as a web browser, to prove to its
vendor (say, Google) that it has a valid SCT, properly
signed by the log server, and yet the log omits the cor-
responding certificate. Specifically, the auditor proves
in zero-knowledge that it has a valid SCT, as well as
a valid proof of non-inclusion in the log’s Merkle tree.
This proves log misbehvaior. The vendor learns nothing,
other than the fact that log integrity has failed.

The zero-knowledge proof is about 330 KB and
takes approximately five seconds to generate and three
seconds to verify. This overhead is tolerable, given that
this mechanism is used infrequently. We also consider a
variant that provides weaker privacy guarantees, but ef-
fectively revokes the missing certificate without reveal-
ing it to the verifier. Our construction is presented in
Section 2, where we discuss several practical considera-
tions in its application.

CT for private subdomains
We give a complete solution that makes CT fully
compatible with private subdomains. Our construction
makes it possible for enterprises to use a public CA that

Article title 331

issues standard SCTs without revealing any information
about the names of internal domains. Our construction,
presented in Section 3, uses only commitments and has
very low overhead.

Short-lived certificates
We also consider the implications of using CT in con-
junction with short-lived certificates, which are certifi-
cates that are valid for only one day [47]. The two ideas,
CT and short-lived certificates, seem incompatible: the
large number of short-lived certificates would overwhelm
the log servers. In Section 4 we provide a simple solu-
tion, using Merkle trees, that resolves this tension.

2 Zero Knowledge Proof of
Exclusion

We start by showing how to audit CT logs without vi-
olating user privacy. Specifically, we show how a web
browser can construct an efficient zero-knowledge proof
that a log server has issued a valid SCT but that the
corresponding certificate has not been entered into its
Certificate Transparency (CT) log. This proves that log
integrity has failed without revealing any information
about the user’s browsing behavior.

Throughout the section we use the following termi-
nology:

– Log: The entity managing a CT log and issuing
SCTs that must be inserted into the log.

– Prover: An auditor, such as a web browser, that
obtained a certificate and a SCT by visiting a site,
but the certificate data is missing from the desig-
nated log.

– Verifier: An authority that wants to learn that
a log is misbehaving without learning the prover’s
browsing behavior. That is, without learning the of-
fending SCT. This authority has the power to inves-
tigate the log to determine what went wrong, and
to potentially take steps to revoke the log.

More precisely, a log entry is a tuple (data, I, T),
where I and T are 64-bit integers representing the in-
dex of the entry among the leaves of the Merkle tree
and its timestamp respectively. data represents the rest
of the contents of the log entry (e.g. an X509 certificate).
Recall that log entries make up the leaves of a Merkle
tree, sorted by their timestamp T . An SCT is the pair
(data, T), where data contains the log’s signature on the

domain name and other certificate data. When x repre-
sents a log entry or an SCT, we use Tx to refer to the
timestamp of that entry and Ix to refer to that entry’s
index in the leaves of the log’s Merkle tree.

In our system, the prover proves that it holds an
SCT y whose timestamp Ty falls between the times-
tamps of two adjacent log entries x and z in the Merkle
tree. This proves that the entry y is missing from the
log because it would otherwise appear between x and z.
The proof should reveal nothing to the verifier beyond
the fact that some SCT is missing from the log.

2.1 Privacy Goals and Limitations

We begin by discussing the threat model, and the level
of privacy to be expected from a solution.

Recall that the prover wishes to prove to a verifier
that it holds an SCT y whose timestamp falls between
two neighboring log entries x and z without revealing
x, y, or z. While it is clear why revealing the missing
SCT y would reveal information about the prover’s web
browsing, it may not immediately be obvious why x and
z should also be hidden. The reason is that knowledge
of the timestamps of x and z would allow the verifier to
learn what users have visited some particular suspected
site. The verifier simply visits that site and checks if its
SCT timestamp does indeed fall between the x and z

reported by the prover. We emphasize that it is impor-
tant not only to prevent leaking information about the
prover’s browsing habits but also to avoid giving the
verifier information it could use on its own to uncover
the sites visited by the prover.

Suppose that a log only records SCTs for publicly
accessible domains, and that only a single SCT is miss-
ing from the log, say belonging to domain D. Once the
prover sends the verifier its zero-knowledge proof that
the log is missing some SCT, the verifier could do an
exhaustive search of all public SCTs and learn that the
SCT for domain D has been excluded. This reveals to
the verifier that the prover visited domain D. This pri-
vacy limitation is inherent to CT.

Our approach is primarily used to preserve privacy
when a prover (web browser) audits a private domain
that is not publicly accessible. It also provides privacy
in case the log drops many SCTs from its log data.

An alternative way to protect the privacy of the
prover’s web behavior is to have the prover submit its
accusation to the verifier over Tor. Our solution avoids
relying on external infrastructure like Tor, and does

Article title 332

not rely on non-collusion assumptions that Tor requires.
Moreover, there are situations where it is important not
only to hide the identity of the reporter but also the
identity of the site being visited. Consider for example
if the excluded SCT corresponds to a private domain.
Sending the missing certificate to a verifier, even if it
could be done without revealing the identity of the re-
porter, still reveals the private domain to the verifier.
This means that private reporting of exclusions is im-
portant not only to protect the web history of a user
but also to protect private domains on CT logs.

Recall that there is a period of time, the maximum
merge delay (MMD), after an SCT is issued and before
it is required to be present in the log. One concern is
that this may cause “false positives” where a certificate
with a valid SCT can be shown to be excluded from
the log before the MMD period has elapsed. As we will
see, this does not affect our solution because the prover
must present a log entry that has been added after the
MMD has elapsed.

Actionable evidence
Our zero-knowledge proof hides, by design, all informa-
tion about the log’s infraction, except the fact that some
SCT is missing. This may make a subsequent investi-
gation of the log server more challenging. Once a log
has been shown to have excluded SCTs, it must launch
an internal investigation to determine the source of the
problem and satisfy investigators that its practices are
adequate. At the very least, the log can conclude that
it has been compromised and make sure to change its
signing keys for future operation.

In Section 2.6 we present an alternate approach
that, in addition to proving log-exclusion, lets other
browsers treat the missing certificate as invalid. This
effectively revokes the offending certificate while reveal-
ing nothing to the verifier.

2.2 Preliminaries

Our construction requires the following additional com-
ponents in the CT protocol:

Additional signatures: Each log entry x is accompa-
nied by signed messages

SignkH (H(x)), SignkT (Tx +H(x)), SignkI (Ix +H(x)),

where kH , kT , and kI are different signing keys. Each
SCT y is accompanied only by one signed message
SignkT (Tx + H(x)). In total, this requires 4 additional

signed messages to be distributed by the log for each
certificate: 1 signature in each SCT and 3 signatures in
each log entry.

Ordered log entries: Monitors must make sure that
the ordering of index numbers corresponds to the order
of timestamps in log entries. That is, logs must ensure
that if Ix > Iy, then it must hold that Tx > Ty. This
ensures that the logs fulfill our definition of being well-
formed and contrasts with the current setting where
indexes can be assigned to queued entries in any order
in a sequencing phase after SCTs are distributed.

We also need the following specialized primitives:

Commitments: We need a commitment scheme that
is additively homomorphic and supports efficient zero-
knowledge equality tests and range proofs. We infor-
mally define a commitment with binding and hiding
properties as follows:

– Binding: Given a commitment Cm to message m,
it is computationally hard to decommit it to any
message m′ 6= m.

– Hiding: It is computationally hard to determine
the message m given only commitment Cm.

An additively homomorphic commitment scheme
is one which allows for addition of two values while
both are under commitments. Equality tests check
whether the values of two commitments are equal,
and range proofs prove that the value of a commit-
ment falls within some range (or in our case checks
that the value is greater than zero). Many practical
schemes and protocols with these properties exist [6–
8, 11, 13, 14, 17, 18, 39, 44].

Signatures: We also require a signature scheme with
efficient proofs of knowledge of a signature:

Definition 1 (Proof of Knowledge of a Signature). A
Proof of Knowledge of a signature is a zero knowledge
proof that (pk′, c′1, c′2) ∈ P , where P is defined as the
language of triples (pk, c1, c2) where c1 and c2 are com-
mitments to m and Signpk(m), respectively, for some
message m. Moreover, there exists an extractor E that,
given black box access to the prover, can extract the mes-
sage m and signature Signpk(m).

The following signature schemes have efficient proofs of
knowledge of a signature:

Article title 333

– CL02 [9] signatures, based on RSA
– BBS [5] signatures, based on pairings, can be easily

modified, as described Camenisch and Lysyanskaya
[10], to provide efficient proofs of knowledge of sig-
natures

– CL04 [10] signatures, also based on pairings

Hash function: Finally, we will use a near collision
resistant hash function, defined as follows:

Definition 2 (δ-near collision resistant hash function).
A hash function H : {0, 1}∗ → Zn is δ-near collision
resistant if it is hard to find x, y ∈ {0, 1}∗ such that
|H(x)−H(y)| < δ.

Specifically we will assume H : {0, 1}∗ → Z2λ is a
poly(λ)-near collision resistant hash function, where λ
is a security parameter and poly(λ) denotes some poly-
nomial function of λ.

Although a stronger assumption than collision-
resistance, it appears that most hash functions conjec-
tured to be collision-resistant also satisfy poly(n)-near
collision resistance. If H is modeled as a random or-
acle, then H has poly(n)-collision resistance since the
probability that two random points in {0, 1}n fall within
poly(n) of each other is poly(n)

2n .

2.3 Construction

Protocol Π is between a prover and a verifier with ca-
pabilities to somehow punish a misbehaving log. The
zero knowledge proof is in two parts. In the first part
(summarized in figure 1), the verifier receives commit-
ments CTx , CIx , CTy , CTz , and CIz to the indexes I and
timestamps T of log entries x, z and to the timestamp of
the SCT y. The verifier receives additional commitments
described below, including a commitment to H(x). The
second part proves that the indexes Ix and Iz are ad-
jacent and that the timestamps are ordered such that
Tx < Ty < Tz.

The first part uses the signed messages accompa-
nying a log entry to both verify that the commitments
given by the prover are legitimate and to prove that
each (index, timestamp) pair corresponds to the same
log entry. Using the additive homomorphic properties
of the commitment, both Ix and Tx are added to H(x),
giving commitments to Ix + H(x) and Tx + H(x). The
prover then proves in zero knowledge that the values in
these commitments are properly signed by the log.

To complete the actual proof of omission, the prover
sends and reveals a commitment C1 to the number 1
and proves in zero knowledge that CIx+1 and CIz are
commitments to the same value. Next, the verifier com-
putes commitments Cp1 = CTz−Ty and Cp2 = CTy−Tx .
Finally the prover proves in zero knowledge that p1 > 0
and p2 > 0.

The complete protocol Π is as follows:

1. Prover sends commitments CSignkI (Ix+H(x)),
CSignkH (H(x)), CSignkT (Tx+H(x)), CSignkT (Ty+H(y)),
CSignkI (Iz+H(z)), CSignkH (H(z)), CSignkT (Tz+H(z)),
CTx , CH(x), CIx , CH(y), CTy , CTz , CH(z), CIz , C1,
and rC1 .

2. Verifier computes CIx+H(x), CTx+H(x), CTy+H(y),
CIz+H(z), and CTz+H(z)

3. Prover proves in zero knowledge that each commit-
ment to a signature in step 1 corresponds to the cor-
rect value, as shown in figure 1. That is, the prover
verifies a signature under a commitment for each
edge labeled “verify” in figure 1. Here we are us-
ing three zero-knowledege proofs for the language
(pk′, c′1, c′2) where c′2 is a commitment to a valid sig-
nature under pk′ for a message committed to by c′1.

4. Verifier computes CIx+1, Cp1 = CTz−Ty , and Cp2 =
CTy−Tx .

5. Prover proves in zero knowledge that Ix + 1 = Iz,
p1 > 0, and p2 > 0.

Complexity
The overhead of our scheme does not increase as the size
of the log grows, meaning we achieve O(1) proof con-
struction and verification time in the size of the log. This
optimal asymptotic overhead is enabled by the strict
ordering of log entries by timestamp enforced by mon-
itors. Imposing such a locally checkable condition on
the structure of the log removes the need for any com-
putation that would involve more than one SCT and
two log entries in either the construction of a proof or
its verification. Our construction also enjoys reasonable
overhead in practice, as discussed in section 2.8.

2.4 Security Analysis

We now prove the security of the construction in the
previous section. Appendix A gives a formal definition
of a CT log with the modifications we require for our
scheme to work, a security definition that captures our
goals, and a full proof of security. Informally, we require

Article title 334

CSignkH (H(x))

CH(x) CTx+H(x)

CTx

CSignkT (Tx+H(x))

CIx+H(x)

CIx

CSignkI (Ix+H(x))

sum

verify verify

sum

verify

sum

verifyverify

sum

verify

Fig. 1. The process of getting verified commitments to the Index
and Timestamp of a log entry. SCTs only require one signature
because there is no need to ensure a connection with an Index for
SCTs (which have no Index).

the following properties of a Zero-Knowledge Exclusion
Proof:

– Completeness: Any prover who really does have
an SCT that has been excluded from a log will be
able to convince a verifier of this fact.

– Soundness: No fraudulent prover can convince a
verifier that a log has excluded an SCT. We define
this in terms of a security game ProofExcl between
a verifier V and an adversary A who wishes to run
protocol Π to prove that honest log L has excluded
an entry. We require that no adversary A can win
this game (and therefore convince V to accept a
fraudulent proof) with more than negligible proba-
bility.

– Zero-Knowledge: A verifier learns nothing from
the proof except that a log entry has been excluded.
We achieve this by exhibiting a simulator for the
verifier’s view of the protocol.

The proof of security is given in Appendix A. Here
we sketch the main idea. The proofs for completeness
and zero knowledge follow from the properties of the un-
derlying components of the protocol. Proving soundess
requires more work. The idea is that the adversary is
forced by the security of the signatures to use only in-
dex and timestamp values that appear in the log. We
need to show that the log cannot contain signed sums
s1 = Ix + H(x) and s2 = Iz + H(z), and signed hashes
H(x′) and H(z′) such that s1 − H(x′) is one less than
s2−H(z′). Otherwise, the adversary would obtain a fake
pair of index numbers that are one apart and that can
therefore fool the verifier (a similar statement should
also hold for timestamps). Finding such entries would,
however, break the poly(λ)-near collision resistance of
the hash function, as shown in Appendix A.

2.5 Alternative Construction

The zero-knowledge proof in the previous section can
be modified so that it only relies collision resistant hash
functions, not δ-near collision resistance. However, this
proof is slightly less efficient.

The modified proof Π′ is similar to Π, except that in-
stead of having signatures on Ix +H ′(x) and Tx +H ′(x),
the log publishes signatures on Ix‖H ′(x) and Tx‖H ′(x),
where ‖ denotes concatenation. Before adding Tx or Ix

to H ′(x), the verifier multiplies each by a commitment
to 2n, effectively left-shifting Tx and Ix so the sum with
H ′(x) can be interpreted as a concatenation of the two
values. This simplifies the soundness proof so that the
value of d will always be 0, and any adversary A′ win-
ning the modified security game could be used by an-
other adversary B′ to find a collision for H ′. The proof
that Π′ is a zero-knowledge proof is otherwise very sim-
ilar to that of Π. Although the soundness of Π′ relies
on a weaker assumption than Π, it requires the prover
to send an additional commitment to the verifier and
for the prover and verifier to compute two interactive
multiplications on commitments [11], rendering Π′ less
efficient than Π.

2.6 Actionable Proof of Exclusion

Although we presented a solution with best-possible pri-
vacy, in some contexts it is desirable to reveal some more
information to help with deployment of the system. In
particular, we are interested in the case where the veri-
fier needs some recourse other than completely distrust-
ing a log after learning that the log has cheated. In our
current system, a verifier has no power, for example, to
issue a whitelist or blacklist of trusted/untrusted cer-
tificates for a particular log because it learns nothing
about excluded SCTs other than that they exist.

We can do much better if we are willing to compro-
mise on the degree of privacy offered to provers. Since
it is likely that any SCT excluded from the log but pub-
licly accessible on the internet will be caught by an au-
ditor (e.g. Google) without need for a proof, we must
mainly concern ourselves with SCTs for certificates that
are not publicly accessible. We want a scheme where the
verifier does not learn the certificate corresponding to a
bad SCT but enables browsers to reject that certificate
if they encounter it. In other words, we wish to enable
browsers to recognize when an SCT they encounter has
been excluded from a log without revealing the contents
of the SCT to a verifier.

Article title 335

We achieve this by relaxing our privacy goals.
Whereas our original proof was of a statement of the
form “There exists a properly signed SCT y whose
timestamp falls between adjacent log entries x and z,”
we now wish to prove that “There exists a properly
signed SCT y whose timestamp falls between adjacent
log entries x and z, and c = H(y) is the hash of y,”
where c is supplied by the prover. By constructing a
proof that intentionally reveals H(y), we make it possi-
ble for an auditor who encounters an SCT y′ to check
if H(y′) = H(y). At the same time, the high entropy
of H(y) ensures that y remains hidden. This weakened
proof is of course only useful if the SCT y in question
is not in the set of publicly available SCTs or else the
verifier could test H(y) against hashes of each available
SCT and discover y by exhaustive search. Fortunately,
the scenario where a non-public SCT is omitted from
the log is exactly the scenario we aim to address.

We need only to make a slight modification to our
zero knowledge protocol in order to achieve this weak-
ened notion of privacy. Suppose we choose to instan-
tiate our protocol with Pedersen commitments [39],
which provide all the properties we require in a com-
mitment scheme. Pedersen commitments are of the form
Cm = gmhr for public g, h and secret randomness r. We
can set r = 0 in our commitment to H(y) and main-
tain the binding property of the commitment due to the
high entropy of H(y), as mentioned above (and have the
verifier compute the commitment gH(y) upon receiving
H(y)). The rest of the proof proceeds as before. Now
the verifier can distribute H(y), and any browser can
check if an SCT it has acquired matches the one used
to construct the proof.

2.7 Practical Considerations

The presented solution can be implemented on top
of the existing Certificate Transparency specification,
RFC6962, with some adjustments.

Key distribution: The existing mechanism for dis-
tributing the log’s key for verifying SCTs signed using
kS can be used for distributing the additional keys for
verifying signatures produced using kH , kT , and kI .

Obtaining entries around a timestamp: The cur-
rent CT RFC only specifies an API for getting the in-
dex of an entry in the log given its hash, requiring the
client to know the timestamp and the certificate for
that entry. A new API endpoint is needed to provide

a number of log entries around a timestamp specified
by the client:/ct/v1/get-entries-around-timestamp
with the following inputs:
– timestamp: The desired timestamp, in decimal.
– count: The desired number of entries.

and the following output for each entry:
– index: Index of the entry.
– sct: JSON structure containing the SCT, as de-

scribed in Section 4.1 of RFC6962.
– signatures: JSON structure containing
SignkH (H(e)), SignkI (i+H(e)) and SignkT (t+H(e))
(H(e), i + H(e) and t + H(e) can be calculated by
the client).

This additional API endpoint may be independently
useful for monitors searching for fraudulent certificates
suspected to be issued around the time of some partic-
ular event, e.g. a security breach.

Adding signatures to SCTs: Signed Certificate
Timestamps have an extensions field which can be
used for embedding the signatures σTy+H(y), σH(y).
As the signature in the Signed Certificate Timestamp
covers the extensions field, these signatures should be
produced before the signature over the entire Signed
Certificate Timestamp, SignkS (s).

Uniqueness of timestamps: Timestamps are re-
quired to be unique under this construction. Distributed
implementation of a log could issue two SCTs with
exactly the same timestamp for two different entries
submitted at the same time. To avoid restricting the
implementation, each front-end of the log will be as-
signed a unique ID, which will be concatenated to the
timestamp to ensure uniqueness. In practice, the unique
ID should be added as an extension to the SCT to avoid
changing the timestamp format currently specified in
the CT RFC.

Denial of Service: The need for the verifier to check
several signatures and zero knowledge proofs introduces
the potential for a denial of service attack launched by
sending many fake proofs that will fail to verify but
will occupy verifier time, thereby preventing proper
functioning of this kind of proof of exclusion. Although
concern regarding denial of service potential is legiti-
mate, it is not as bad as it may first seem. The verifier
can abort verification of a bad proof early in less than
1/7 of the verification time for a correct proof when
either a signature verification fails or the submitted
commitments do not satisfy the relations needed for the

Article title 336

proof to go through.

Uncooperative logs: Logs have an incentive to not re-
spond to queries by auditors who are building a proof of
exclusion. Suppose a log does not respond to timestamp-
based queries. An auditor can instead use index-based
queries (also used by monitors) and perform a binary
search to find the entry with the relevant timestamp
needed for constructing the proof.

A malicious log could go further. Suppose it places
a “dummy” entry on each side of the missing entry and
refuses to respond to requests for those dummy entries.
This prevents the auditor from constructing the proof.
However, this tactic will be unsuccessful because mon-
itors will discover this misbehavior when they attempt
retrieve all log entries as part of their normal periodic
sweep. For this we need that a request to a CT log from a
monitor is indistinguishable from a request from an au-
ditor. This is needed to defeat uncooperative logs, and
is also needed for correct operation of log monitoring.

2.8 Performance Evaluation

We built a prototype of our protocol in parts using
ZKPDL [35] for the purpose of estimating the perfor-
mance of such a scheme and ran it on a consumer lap-
top equipped with an Intel Core i5-2540M Sandy Bridge
Processor at 2.60GHz. Our implementation consisted of
the entire protocol except the verification of the sig-
natures, for which a ZKPDL implementation already
exists for the RSA-based CL02 signature scheme of Ca-
menisch and Lysyanskaya [9]. Using 2048-bit RSA keys,
we measured the proof size, prover computation time,
and verifier computation time for our implementation as
well as the signature verification (which we multiply by
7 to account for the 7 verifications needed in the proof).
The numbers shown in figure 2 are averages over 20
executions. Although the protocol may seem costly, we
point out that it is meant to be executed infrequently
to catch cheating logs and is not expected to be part
of regular, day-to-day web browsing activities. As such,
the cost of under 10 seconds and 350 KB on the net-
work seems reasonable. It is important to note that the
333 KB proof is not something that will be included in
SCTs or logs but data that is generated when the proof
is needed. The overhead for instantiating our scheme
with CL02 and BBS signatures is shown in figure 3 in
terms of growth of SCTs and log entries. These numbers,
especially those for BBS signatures, are very reasonable
when it is considered that the SCTs will typically be

delivered along with certificate chains that are already
sometimes several kilobytes large.

3 Private Subdomains in CT
We next turn to the second privacy difficulty discussed
in the introduction: extending CT to handle private sub-
domains, such as the internal subdomains of an enter-
prise network. Recall that CT requires every SCT and
log entry to reveal the domain name for which the asso-
ciated certificate is issued. This prevents companies who
have private internal subdomains from using a public
CA, an undesirable consequence of CT.

A great deal of discussion has taken place around
this issue in the CT forum [1, 46]. The main proposed
solutions involve redaction of names via wildcards or
inclusion of a domain name hash instead of a cleartext
name. Wildcards in log entries pose a security risk and
can only be used to redact the leftmost label of a domain
name. Hashed domain names, on the other hand, are
vulnerable to a dictionary attack. Since domain names
tend to have very little entropy, a dictionary attack is
a significant threat to a solution that relies on hash-
ing. For these reasons, the current draft RFC for CT
version 2.0 has no solution for this problem [32].

In this section, we will consider the various require-
ments of a solution to this problem and establish a clear
threat model before providing a solution which protects
against all the threats we enumerate.

3.1 Threat Model

Figure 4 depicts interactions between all parties in-
volved in the issuance and use of a certificate in CT.
The domain owner requests a certificate from a CA who
sends a precertificate to a log, which in turn sends the
CA an SCT that is passed on, along with a certificate, to
the domain owner. Later, a site visitor or auditor visits
the site for which the certificate was issued and receives
the certificate and the SCT. We will modify the infor-
mation sent in each message in order to hide private
subdomains.

We state the security requirements from the stand-
point of four parties involved in this scheme:

– Outsider: An outsider viewing the log without hav-
ing visited a private subdomain cannot learn any-
thing about the private subdomain except its suf-

Article title 337

Component Proof Size (bytes) Prover Time (ms) Verifier Time (ms)
Signature Verification (7x) 316888 4986.8 2274.0
Rest of Proof 16328 30.6 36.2
Total 333216 5017.4 2310.2

Fig. 2. Running times and proof size for our zero knowledge proof of exclusion using the signatures of [9].

Signature CL02[9] BBS[5]
Log Entry Growth (bytes) 1791 480
SCT Growth (bytes) 597 160

Fig. 3. Expected growth in log entry and SCT size due to inclu-
sion of signatures required for our zero knowledge proof of exclu-
sion protocol when using RSA-based CL02 signatures or pairing-
based BBS signatures. Log entries require including 3 signatures,
and SCTs require 1.

fix. For example, the SCT for private.company.com
should reveal nothing beyond the fact that it be-
longs to a subdomain of company.com.

– Domain Owner: The domain owner must not be
able to frame an honest log by claiming that it has
an SCT for a certificate that does not appear on the
log.

– CA: The CA must not be able to issue a new, valid
certificate using an SCT for another domain that
already appears in a log.

– Log: Logs have the same requirements as in CT
without private domains. Auditors and monitors
should be able to verify that SCTs they encounter
appear in logs, and monitors should be able to ex-
amine the log and find any fraudulent certificates
therein.

3.2 Private Subdomains

These requirements can be met with a scheme that uses
only cryptographic commitments that guarantee bind-
ing and hiding properties. In this scheme, the name of
a domain owner and a commitment to a subdomain ap-
pear in CT logs instead of the subdomain itself. The
decommitment to the subdomain acts as a proof that
the site gives to visitors, allowing them to verify that
the SCT belongs to their domain and that it appears in
a log.

The construction is as follows (summarized in fig-
ure 5): The domain owner D generates a commit-
ment Cd to subdomain d (e.g. for the domain name
secret.example.com, we have D =example.com and
d =secret) with decommitment randomness r. The

Domain Owner D CA Log Operator

Request Certificate

Precertificate

SCT

Certificate, SCT

Domain Owner D Site Visitor
Request Site

Certificate, SCT

Fig. 4. A high-level view of interactions between parties involved
generating and retrieving certificates in CT. We will modify the
messages sent in each message to hide private subdomains.

domain owner sends (d,D,Cd, r) to the CA. The CA
checks that Cd is computed correctly and passes (D,Cd)
to the log in the signed precertificate. The log incorpo-
rates (D,Cd) into the log entry and SCT and sends the
SCT back to the CA who passes it on to the domain
owner as usual. d and r are embedded into the final
certificate issued by the CA. Now any visitor to the site
(or any auditor/monitor) is given the certificate and the
SCT. The visitor verifies that the commitment Cd in the
SCT is in fact a commitment to d with decommitment
randomness r. Monitors who audit the logs can check
that the correct number of example.com certificates are
present on the logs and that no spurious certificates
have been issued.

3.3 Security

We now argue that this scheme achieves security in the
threat model discussed above. Below we outline how

Article title 338

Domain Owner D

C = commit(“secret”, r)

CA Log Operator

log(C, example.com)

Request Certificate
“secret”, “example.com”, C, r

Precertificate
C, “example.com”

SCT
C, “example.com”

Certificate:
“secret.example.com”, r

SCT:
C, “example.com”

Domain Owner D Site Visitor

verify(C, secret, r)

Page Request:
“secret.example.com”

Certificate:
“secret.example.com”, r

SCT:
C, “example.com”

Fig. 5. CT augmented with support for private subdomains. C represents a commitment to the private subdomain “secret” with de-
commitment randomness r. The SCT and log entry for “secret.example.com” replace the private subdomain with C, and visitors to
the site verify that the commitment corresponds to the appropriate subdomain.

Article title 339

each of the security requirements imposed by private
subdomains are met.

Outsider: Due to the hiding property of the commit-
ment, an outsider observing log entries does not learn
the subdomain corresponding to Cd from the log.

Domain Owner: Domain owners cannot frame an
honest log because every SCT from that log is signed
by the log.

CA: The binding property of the commitment scheme
prevents a CA from issuing fraudulent certificates that
reuse existing SCTs because doing so would require
finding, for a commitment Cd to a subdomain d, an al-
ternative decommitment to d′ for which the fraudulent
certificate would be issued.

Log: The means CT provides for auditing and expos-
ing misbehaving logs are not affected by private sub-
domains. We point out that, as mentioned above, any
auditor or monitor given access to d and r can verify an
SCT just as well as it could an SCT for a non-private
domain. Moreover, a monitor working on behalf of a
domain owner will still be able to detect fraudulent cer-
tificates issued for the domain owner’s private subdo-
mains if it is informed of the number of private subdo-
mains the domain owner has registered. If the number
of such subdomains appearing in logs differs from the
expected number, then it is clear that either there are
extra, fraudulent certificates or that the log has with-
held certificates for which it issued SCTs.

3.4 Practical Considerations

The SCT from the log, along with d and r, can be
embedded in the final certificate issued by the CA. A
browser visiting the site would first validate the certifi-
cate and the signature on the SCT. It would then extract
r and d from the certificate and use them to verify the
commitment Cd in the SCT.

4 Short-Lived Certificates in CT
We also consider the interaction of Certificate Trans-
parency with another proposed improvement to the
web’s public-key infrastructure: short-lived certificates
[42]. The fundamental idea behind short-lived certifi-

cates is to issue certificates with relatively short validity
periods (i.e. one or a few days) in order to remove the
need on the part of a client to check whether or not a cer-
tificate received remains valid. Instead of revoking a cer-
tificate, the domain owner in the short-lived certificate
setting simply refrains from issuing a new short-lived
certificate in the event of key compromise. Topalovic et
al. [47] explore the details of this idea and compare it
favorably to other proposed and implemented solutions
for certificate revocation.

Considering the possibility of applying short-lived
certificates in conjunction with certificate transparency
presents the new difficulty of avoiding bloated log sizes.
The frequency with which new certificates would need to
be issued under the short-lived certificate regime would
mean that where one log entry would suffice for a regular
certificate, nearly 100 short-lived certificates would be
needed. A naive integration of the two solutions would
lead to log sizes far larger than is truly necessary, but a
simple solution can remedy this issue and allow the two
solutions to work together quite well.

Instead of creating one log entry per certificate
for short-lived certificates, a large number of potential
short-lived certificates will be allotted one log entry.
This log entry will have a special flag set to indicate that
it corresponds to a family of short-lived certificates, and
the validity period for the log entry will be comparable
to that of a regular, long-lived certificate. The special
log entry will also include the root of a Merkle tree of
all the short-lived certificates affiliated with the entry.
When visiting a site that uses short-lived certificates,
auditors will receive a proof that the SCT for that site’s
certificate is in the Merkle tree whose root appears in
the corresponding log entry. This is the best-of-both-
worlds: the growth rate of the CT log is no different
from that due to a regular certificate, but the short-
lived nature of the individual certificates also resolves
revocation issues.

5 Related Work
Well-documented concerns about the state of the web’s
public-key infrastructure (PKI) [16] have led to a num-
ber of proposed solutions for improving the capacity to
catch problematic CAs or to dispense with CAs alto-
gether. Pinning solutions such as Tack [34] improve se-
curity by adding a “pinned” signing key that is asso-
ciated with a server and without which the server will
not be considered authentic. In addition to CT, a hand-

Article title 340

ful of other proposed PKI improvements rely on the
concept of transparent logs. The EFF’s Sovereign Keys
proposal uses a log to list the Sovereign Keys associ-
ated with domains and allows for automatically rout-
ing around certain certficate-related attacks where users
tend to click through browser warnings [24]. AKI and
ARPKI implement a set of checks and balances to pre-
vent problems rooted in the misbehavior of one or a few
CAs, and ARPKI is co-designed with a formal model
to prove its security properties [4, 28]. Namecoin uses
a blockchain to achieve goals similar to those of other
improved PKI schemes [38]. Taking a somewhat differ-
ent approach, Etemad and Kupcu [21] propose a scheme
where non-colluding servers gossip to catch any cheating
parties.

Certificate Transparency has received heightened
academic attention as it begins to be widely deployed in
Chrome and Chromium browsers. Multiple works have
analyzed the security of Certificate Transparency and its
generalizations or designed efficient protocols for parts
of the scheme that are not specified in the current RFC.
Chuat et al. [15] provide efficient gossip protocols to en-
sure that different users of CT do in fact have the same
view of the logs with which they interact, and Dowling
et al. [19] formally prove the security of many aspects of
Certificate transparency. In the space of extensions and
modifications to CT, Singh et al [45] propose a vari-
ant of CT with extended functionality and shorter log
proofs, and Chase and Meiklejohn [12] prove the secu-
rity of a generalization of Certificate Transparency they
call “Transparency Overlays,” which can be added on
top of other protocols such as Bitcoin to add a layer of
transparency. They leave the exploration of the interac-
tion between transparency and privacy as an interesting
open problem, one which our work begins to study.

The notion of transparency itself has been studied
in various settings not necessarily related to the web’s
PKI and appears to be a fairly general notion. Revoca-
tion Transparency provides a transparency-based solu-
tion for certificate revocation [30]. DECIM [51] uses a
transparency log to keep track of uses of a public key
in a messaging context, thereby enabling its owner to
detect key misuse. Fahl et al. [23] improve the secu-
rity of mobile app distribution with “Application Trans-
parency.” Extended Certificate Transparency [43] adds
a second log to efficiently handle certificate revocation
and presents an application to secure email. Finally, a
number of works have focused on building general trans-
parent data structures and enabling computation over
them [37, 40, 41, 48].

At least two systems have combined transparency
with privacy notions. CONIKS [36] provides a transpar-
ent identity/value map (with key management for se-
cure communication as a motivating application) while
hiding identifiers and values. NSEC5 [25] is an exten-
sion to DNSSEC providing stronger privacy by hiding
the set of valid subdomains for any given domain. Both
use VRFs as a key building block for preserving privacy.

6 Availability
The simulation code for the second part of our zero
knowledge proof of exclusion can be found on GitHub
at https://github.com/SabaEskandarian/CTZKPExcl.
The code used to interpret and run the simulation,
along with the implementation of the signature scheme
is part of the ZKPDL project [35] at https://github.
com/brownie/cashlib.

7 Conclusion and Open Questions
We have examined various elements of Certificate Trans-
parency with the goal of applying cryptographic solu-
tions to remedy the compromise of private information
without significantly disrupting the operation of CT as
it is currently designed. Our primary goals were to de-
velop a privacy-preserving means of exposing logs that
have excluded certificates after issuing SCTs for them
and to securely redact private subdomains in CT logs.
We accomplished the former goal by developing a zero
knowledge proof that achieves the best possible secu-
rity for privately implicating a cheating log. The latter
problem was solved by the realization that commitment
schemes appropriately applied exactly match the secu-
rity properties required for private subdomains. We also
showed how CT and short-lived certificates can be used
in concert. It is our hope that these practical solutions
based on widely-used cryptographic primitives can be
applied to promote a more transparent web without any
compromise in user privacy.

We leave the following open questions for future
work:

– Are there improved, practical schemes for browsers
to privately query CT logs? We considered some
partial solutions in section 2.7, but a complete so-
lution to this problem would be very useful. One
possibility is to use a mechanism similar to OCSP

https://github.com/SabaEskandarian/CTZKPExcl
https://github.com/brownie/cashlib
https://github.com/brownie/cashlib

Article title 341

stapling, where the proof of SCT inclusion in the
log is sent with a site’s certificate, but this would
require more bandwidth and frequent updates to
the proof to use an up-to-date STH.

– Can the zero knowledge proof of exclusion of log
entries we present be modified to require fewer sig-
natures or even more lightweight primitives, thereby
reducing overhead in SCTs and log entries?

– We have shown how to achieve private subdomains
in CT. Is it also possible to efficiently make entire
domain names private? Such a scheme would be use-
ful in practice for enterprises who wish to register
domains for new projects before announcing them
publicly.

Acknowledgements
This work is supported by grants from NSF, DARPA,
ONR, and the Simons Foundation. Opinions, findings
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of DARPA.

References
[1] Certificate transparency policy (google groups). groups.

google.com/a/chromium.org/forum/#!forum/ct-policy.
[2] Heather Adkins. An update on attempted man-in-the-middle

attacks, 2011. security.googleblog.com/2011/08/update-on-
attempted-man-in-middle.html.

[3] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian
Perrig, Ralf Sasse, and Pawel Szalachowski. Arpki: Attack
resilient public-key infrastructure. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 382–393. ACM, 2014.

[4] David A. Basin, Cas J. F. Cremers, Tiffany Hyun-Jin Kim,
Adrian Perrig, Ralf Sasse, and Pawel Szalachowski. ARPKI:
attack resilient public-key infrastructure. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November
3-7, 2014, pages 382–393, 2014.

[5] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short
group signatures. In Advances in Cryptology - CRYPTO
2004, 24th Annual International CryptologyConference,
Santa Barbara, California, USA, August 15-19, 2004, Pro-
ceedings, pages 41–55, 2004.

[6] Fabrice Boudot. Efficient proofs that a committed num-
ber lies in an interval. In Advances in Cryptology - EURO-
CRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges, Belgium,
May 14-18, 2000, Proceeding, pages 431–444, 2000.

[7] Stefan Brands. Rapid demonstration of linear relations
connected by boolean operators. In Advances in Cryptology
- EUROCRYPT ’97, International Conference on the Theory
and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, pages 318–333,
1997.

[8] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient
protocols for set membership and range proofs. In Advances
in Cryptology - ASIACRYPT 2008, 14th International Con-
ference on the Theory and Application of Cryptology and
Information Security, Melbourne, Australia, December 7-11,
2008. Proceedings, pages 234–252, 2008.

[9] Jan Camenisch and Anna Lysyanskaya. A signature scheme
with efficient protocols. In Security in Communication Net-
works, Third International Conference, SCN 2002, Amalfi,
Italy, September 11-13, 2002. Revised Papers, pages 268–
289, 2002.

[10] Jan Camenisch and Anna Lysyanskaya. Signature schemes
and anonymous credentials from bilinear maps. In Advances
in Cryptology - CRYPTO 2004, 24th Annual International
CryptologyConference, Santa Barbara, California, USA, Au-
gust 15-19, 2004, Proceedings, pages 56–72, 2004.

[11] Jan Camenisch and Markus Michels. Proving in zero-
knowledge that a number is the product of two safe primes.
In Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic, May 2-6, 1999, Pro-
ceeding, pages 107–122, 1999.

[12] Melissa Chase and Sarah Meiklejohn. Transparency overlays
and applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 168–179, 2016.

[13] David Chaum, Jan-Hendrik Evertse, and Jeroen van de
Graaf. An improved protocol for demonstrating posses-
sion of discrete logarithms and some generalizations. In
Advances in Cryptology - EUROCRYPT ’87, Workshop on
the Theory and Application of of Cryptographic Techniques,
Amsterdam, The Netherlands, April 13-15, 1987, Proceed-
ings, pages 127–141, 1987.

[14] David Chaum and Torben P. Pedersen. Wallet databases
with observers. In Advances in Cryptology - CRYPTO ’92,
12th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 16-20, 1992, Proceedings,
pages 89–105, 1992.

[15] Laurent Chuat, Pawel Szalachowski, Adrian Perrig, Ben
Laurie, and Eran Messeri. Efficient gossip protocols for
verifying the consistency of certificate logs. In 2015 IEEE
Conference on Communications and Network Security, CNS
2015, Florence, Italy, September 28-30, 2015, pages 415–
423, 2015.

[16] Jeremy Clark and Paul C. van Oorschot. Sok: SSL and
HTTPS: revisiting past challenges and evaluating certificate
trust model enhancements. In 2013 IEEE Symposium on
Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013, pages 511–525, 2013.

[17] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy
Clark, and Dan Boneh. Provisions: Privacy-preserving proofs
of solvency for bitcoin exchanges. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, Denver, CO, USA, October 12-6, 2015,

groups.google.com/a/chromium.org/forum/#!forum/ct-policy
groups.google.com/a/chromium.org/forum/#!forum/ct-policy
security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html

Article title 342

pages 720–731, 2015.
[18] Ivan Damgård and Eiichiro Fujisaki. An integer commitment

scheme based on groups with hidden order. IACR Cryptology
ePrint Archive, 2001:64, 2001.

[19] Benjamin Dowling, Felix Günther, Udyani Herath, and Dou-
glas Stebila. Secure logging schemes and certificate trans-
parency. In Computer Security - ESORICS 2016 - 21st Eu-
ropean Symposium on Research in Computer Security, Her-
aklion, Greece, September 26-30, 2016, Proceedings, Part II,
pages 140–158, 2016.

[20] Peter Eckersley. Sovereign keys: A proposal to make https
and email more secure. Electronic Frontier Foundation, 18,
2011.

[21] Mohammad Etemad and Alptekin Küpçü. Efficient Key Au-
thentication Service for Secure End-to-End Communications,
pages 183–197. Springer International Publishing, Cham,
2015.

[22] C. Evans, C. Palmer, and R. Sleevi. Public key pinning
extension for http. RFC 7469, April 2015.

[23] Sascha Fahl, Sergej Dechand, Henning Perl, Felix Fischer,
Jaromir Smrcek, and Matthew Smith. Hey, NSA: stay away
from my market! future proofing app markets against pow-
erful attackers. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, pages 1143–
1155, 2014.

[24] Electronic Frontier Foundation. Sovereign keys. www.eff.
org/sovereign-keys.

[25] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, and
Leonid Reyzin. NSEC5 from elliptic curves: Provably pre-
venting DNSSEC zone enumeration with shorter responses.
IACR Cryptology ePrint Archive, 2016:83, 2016.

[26] P. Hoffman and J. Schlyter. The dns-based authentication
of named entities (dane) transport layer security (tls) proto-
col: Tlsa. RFC 6698, August 2012.

[27] James Kasten, Eric Wustrow, and J Alex Halderman. Cage:
Taming certificate authorities by inferring restricted scopes.
In International Conference on Financial Cryptography and
Data Security, pages 329–337. Springer, 2013.

[28] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig,
Collin Jackson, and Virgil D. Gligor. Accountable key infras-
tructure (AKI): a proposal for a public-key validation infras-
tructure. In 22nd International World Wide Web Conference,
WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, pages
679–690, 2013.

[29] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perring,
Collin Jackson, and Virgil Gligor. Accountable key infras-
tructure (aki): a proposal for a public-key validation infras-
tructure. In Proceedings of the 22nd international confer-
ence on World Wide Web, pages 679–690. ACM, 2013.

[30] B. Laurie and E. Kasper. Revocation transparency. www.
links.org/files/RevocationTransparency.pdf.

[31] B. Laurie, A. Langley, and E. Kasper. Certificate trans-
parency. RFC 6962, June 2013.

[32] B. Laurie, A. Langley, E. Kasper, E. Messeri, and
R. Stradling. Certificate transparency version 2.0. RFC-
bis 6962-bis, 2017.

[33] Ben Laurie. Improving ssl certificate security, 2011. security.
googleblog.com/2011/04/improving-ssl-certificate-security.
html.

[34] Moxie Marlinspike and Trevor Perrin. Trust assertions for
certificate keys. tack.io/draft.html, 2013.

[35] Sarah Meiklejohn, C. Christopher Erway, Alptekin Küpçü,
Theodora Hinkle, and Anna Lysyanskaya. ZKPDL: A
language-based system for efficient zero-knowledge proofs
and electronic cash. In 19th USENIX Security Symposium,
Washington, DC, USA, August 11-13, 2010, Proceedings,
pages 193–206, 2010.

[36] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Ed-
ward W. Felten, and Michael J. Freedman. CONIKS: bring-
ing key transparency to end users. In 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015., pages 383–398, 2015.

[37] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine
Shi. Authenticated data structures, generically. In ACM
SIGPLAN Notices, volume 49, pages 411–423. ACM, 2014.

[38] Namecoin. namecoin.org.
[39] Torben P. Pedersen. Non-interactive and information-

theoretic secure verifiable secret sharing. In Advances in
Cryptology - CRYPTO ’91, 11th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August
11-15, 1991, Proceedings, pages 129–140, 1991.

[40] Roel Peeters and Tobias Pulls. Insynd: Improved privacy-
preserving transparency logging. In Computer Security -
ESORICS 2016 - 21st European Symposium on Research
in Computer Security, Heraklion, Greece, September 26-30,
2016, Proceedings, Part II, pages 121–139, 2016.

[41] Tobias Pulls and Roel Peeters. Balloon: A forward-secure
append-only persistent authenticated data structure. In
Computer Security - ESORICS 2015 - 20th European Sym-
posium on Research in Computer Security, Vienna, Austria,
September 21-25, 2015, Proceedings, Part II, pages 622–
641, 2015.

[42] Ronald L. Rivest. Can we eliminate certificate revocations
lists? In Financial Cryptography, Second International Con-
ference, FC’98, Anguilla, British West Indies, February 23-
25, 1998, Proceedings, pages 178–183, 1998.

[43] Mark Dermot Ryan. Enhanced certificate transparency and
end-to-end encrypted mail. In 21st Annual Network and
Distributed System Security Symposium, NDSS 2014, San
Diego, California, USA, February 23-26, 2014, 2014.

[44] Claus-Peter Schnorr. Efficient signature generation by smart
cards. J. Cryptology, 4(3):161–174, 1991.

[45] Abhishek Singh, Binanda Sengupta, and Sushmita Ruj. Cer-
tificate transparency with enhancements and short proofs.
2017.

[46] R. Stradling and E. Messeri. Certificate transparency: Do-
main label redaction. Internet-draft, 2017.

[47] Emin Topalovic, Brennan Saeta, Lin shung Huang, Collin
Jackson, and Dan Boneh. Towards short-lived certificates. In
W2SP, 2012.

[48] Jelle van den Hooff, M. Frans Kaashoek, and Nickolai Zel-
dovich. Versum: Verifiable computations over large public
logs. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014, pages 1304–1316, 2014.

[49] Dan Wendlandt, David G. Andersen, and Adrian Perrig.
Perspectives: improving ssh-style host authentication with
multi-path probing. In 2008 USENIX Annual Technical
Conference, Boston, pages 321–334, 2008.

www.eff.org/sovereign-keys
www.eff.org/sovereign-keys
www.links.org/files/RevocationTransparency.pdf
www.links.org/files/RevocationTransparency.pdf
security.googleblog.com/2011/04/improving-ssl-certificate-security.html
security.googleblog.com/2011/04/improving-ssl-certificate-security.html
security.googleblog.com/2011/04/improving-ssl-certificate-security.html
tack.io/draft.html
namecoin.org

Article title 343

[50] Andrew Whalley. Distrusting wosign and startcom certifi-
cates, 2016. security.googleblog.com/2016/10/distrusting-
wosign-and-startcom.html.

[51] J. Yu, M. Ryan, and C. Kremers. Decim: Detecting endpoint
compromise in messaging. IACR Cryptology ePrint Archive,
2015, 2015.

A Security Model and Proof
Details

Below we give a formalization of the definition of a CT
log that has been modified to include our additional
requirements.

Definition 3 (CT Log). A CT log is an entity that
maintains append-only lists Log, hashLog, ILog, and
TLog as well as 4 signing keys kH , kT , kI , kS and a
counter i. A CT log’s lists are initially empty, and the
counter is initially set to 0. It also has access to poly(λ)-
near collision resistant hash function H, a signature
scheme σ = (KeyGen′,Sign′,Verify′) , and another sig-
nature scheme σk = (KeyGen, Sign,Verify) with effi-
cient proof of knowledge properties (as in Definition 1).
Upon receiving a message m, t from party P , a log forms
the SCT s = (m, t) and takes the following actions1:
– send P (H(s),SignkH (H(s)))
– send P (t+H(s),SignkT (t+H(s)))
– send P the SCT s and Sign′kS (s)
– append e = (m, i, t) to Log
– append (H(e),SignkH (H(e))) to hashLog
– append (i+H(e),SignkI (i+H(e))) to ILog
– append (t+H(e),SignkT (t+H(e))) to TLog
– increment i by one
A well-formed list Log consists of poly(λ) entries or-

dered by increasing order of I. Values of I must begin
at zero and be incremented by one for each subsequent
entry. Values of T must fall within a range of poly(λ)
where λ is a security parameter. Furthermore, the order
of entries of I and T must correlate, that is, if Ix > Iy,
then it must hold that Tx > Ty. Lists hashLog, ILog, and
TLog have one entry per entry in Log and are sorted in
the same way.

A CT log also responds to requests for entries in its
lists with the requested information.

1 Although in reality it is the log who assigns t and not P , defin-
ing the security model such that P selects t makes the adversary
strictly more powerful in our setting.

We make use of the following proof of exclusion sound-
ness game and security definition in proving the security
of our proposed zero knowledge exclusion proof.

Definition 4 (ProofExclΠ,A,V,L(λ)). The proof of ex-
clusion game is played by an adversary A with a log L
and Verifier V using protocol Π and security parame-
ter λ. L maintains append-only lists Log (a well-formed
CT log), hashLog, ILog, and TLog, which are initially
empty. L also has the appropriate signing keys and a
counter i, initialized to zero. The game consists of two
phases:
1. A interacts with L in poly(λ) rounds where in each

round A sends L a message (m, t) with the range of
all t’s sent being at most poly(λ) and each t strictly
greater than the previous one. After each round, A
retrieves from L the new entry added to each list L
holds.

2. A interacts with V according to Π, with A playing
the role of the prover and V the role of the verifier.
At the end of the protocol, V outputs a bit b = 1 if it
accepts the proof from A as valid, and outputs b = 0
otherwise.

A wins the game when V outputs b = 1.

Definition 5 (Zero-Knowledge Exclusion Proof). A
zero-knowledge exclusion proof is an interactive proto-
col between a Prover P with access to log entries x, z,
SCT y, signatures σIx+H(x), σTx+H(x), σH(x), σTy+H(y),

σH(y), σIz+H(z), σTz+H(z), and σH(z) and a Verifier V
with access to the public keys corresponding to the signa-
tures who outputs 1 or 0 at the end of their interaction.
Both parties are given access to a log L and a security
parameter λ. We require the following properties from a
secure exclusion proof:
1. Completeness: ∀x, y, z s.t. Ix + 1 = Iz, Tx < Ty <

Tz, and σm is a signature on m for all signatures
above, V outputs 1.

2. Soundness: ∀ PPT Adversaries A,
Pr[ProofExclΠ,A,V,L(λ) = 1] ≤ negl(λ).

3. Zero-Knowledge: There exists an efficient simu-
lator S that, given only λ, can generate a tran-
script indistinguishable from that of the interaction
between P and V .

For convenience of notation, the formal proof refers to
the lists of log entries, hashes of log entries, hashes plus
indexes, and hashes plus timestamps as Log, hashLog,
ILog, and TLog, respectively.

security.googleblog.com/2016/10/distrusting-wosign-and-startcom.html
security.googleblog.com/2016/10/distrusting-wosign-and-startcom.html

Article title 344

Theorem 6. If H is a poly(λ)-near collision resistant
hash function, the signature schemes σ, σk used are exis-
tentially unforgeable, and σk allows for efficient proofs
of knowledge of a signature, then Π is a secure Zero-
Knowledge Exclusion Proof.

Proof. Completeness. The completeness of the proof
follows directly from the construction. Any prover with
access to an SCT y with the given properties that has
access to the log can follow the protocol and convince
a verifier that the log is cheating.

Soundness. We prove that no adversary A can win
the security game ProofExcl with greater than negligible
probability through a series of three hybrids:

– hybrid 0: The security game ProofExclΠ,A,V,L(λ).
– hybrid 1: Same as hybrid 0, except after V outputs
b, we run the extractor for each proof of knowledge
of a signature and output 0 if any of the extractions
fail. This is indistinguishable from hybrid 0 by the
extractability property of the proof of knowledge of
a signature. Since the proof of knowledge protocol
has an efficient extractor, we will never fail to ex-
tract the signatures used.

– hybrid 2: Same as hybrid 1, except after the verifi-
cation of the extractions, the verifier checks the ex-
tracted signatures and outputs 0 if any of them are
not found in the corresponding list held by L: either
Log, hashLog, ILog, or TLog. The adversary’s ad-
vantage is at most negligibly changed from hybrid 1
due to the existential unforgeability of the signature
scheme. If V could ever output zero based on this
additional check, we could construct a new adver-
sary B that breaks the existential unforgeability of
the signature scheme by running the protocol until
V outputs 0 on this check and then outputting the
signature s that was not found in the log. Since all
signatures made by L are in one of the lists, s must
be a forged signature. Thus the additional check in
this hybrid will only change the output of V from
hybrid 1 with negligible probability.

Now we prove that no adversary A can win hybrid game
2 with more than negligible probability. Note that we
only need to prove the soundness for the first part of
the protocol, as soundness for the second part of the
protocol follows from the soundness of the various zero
knowledge proofs it uses as subroutines. That is, we need
only show that no adversary A can fake the indexes or
timestamps of signed entries from L. We show here the

proof for indexes; the proof for timestamps is almost
identical.

In order for an adversary A to fraudulently win the
game, it must find log entries x′, x′′, and x∗ (or z′, z′′,
and z∗) such that it can add Ix′′ and H(x′) to get a
value equal to Ix∗ + H(x∗). Since a signature on the
latter value will be in ILog, this will allow A to submit
an acceptable proof that uses an index and hash from
different log entries.

More formally, any adversary A that wins the game
must produce commitments CI′′x+H(x′), CI∗x+H(x∗),
CI′′z +H(z′), and CI∗z+H(z∗) that satisfy the following con-
ditions:

– Ix′′ + 1 = Iz′′

– Ix∗ +H(x∗) = Ix′′ +H(x′)
– Iz∗ +H(z∗) = Iz′′ +H(z′)
– (Ix′′ +H(x′),SignkI (Ix′′ +H(x′)) ∈ ILog
– (Iz′′ +H(z′),SignkI (Iz′′ +H(z′)) ∈ ILog
– x′ 6= x′′ OR z′ 6= z′′

We will consider the case where x′ 6= x′′. The case
for z′ 6= z′′ is identical. If the adversary succeeds, then
it must have found values Ix∗ , x

∗, Ix′′ , x
′ such that

Ix∗ +H(x∗) = Ix′′ +H(x′) (1)

Define d = Ix′′ − Ix∗. Then we have that

H(x∗) = H(x′) + d (2)

But d < poly(λ) since A can only send polynomially
many messages to L to populate the log. Thus we can
define adversary B that breaks the d-near collision re-
sistance of H by calling A as a subroutine, using the
extractors from the zero knowledge proofs in the sec-
ond part of the protocol to retrieve the contents of the
commitments A used, and outputting x∗, x′ as its near
collision. This completes the soundess proof.

Zero-Knowledge. The zero knowledge property is
easy to establish as the sequential composition of a se-
ries of other zero knowledge proofs. The simulator starts
by committing to a series of random values (except
the commitment/reveal to 1, which must necessarily be
done honestly). After the verifier computes the appro-
priate sums of commitments, the simulator sequentially
executes several copies of the simulator of “knowledge
of a signature” from Camenisch and Lysyanskaya ([9]
or [10], depending on the signature scheme used). After
the remaining computations on the commitments by the
verifier, the simulator finally runs the simulator for the
proof of equality of committed values and the two range
proofs.

	Certificate Transparency with Privacy
	1 Introduction
	1.1 Our Contributions

	2 Zero Knowledge Proof of Exclusion
	2.1 Privacy Goals and Limitations
	2.2 Preliminaries
	2.3 Construction
	2.4 Security Analysis
	2.5 Alternative Construction
	2.6 Actionable Proof of Exclusion
	2.7 Practical Considerations
	2.8 Performance Evaluation

	3 Private Subdomains in CT
	3.1 Threat Model
	3.2 Private Subdomains
	3.3 Security
	3.4 Practical Considerations

	4 Short-Lived Certificates in CT
	5 Related Work
	6 Availability
	7 Conclusion and Open Questions
	A Security Model and Proof Details

