
Proceedings on Privacy Enhancing Technologies ; 2018 (1):21–66

Nik Unger and Ian Goldberg

Improved Strongly Deniable Authenticated Key
Exchanges for Secure Messaging
Abstract: A deniable authenticated key exchange
(DAKE) protocol establishes a secure channel without
producing cryptographic evidence of communication. A
DAKE offers strong deniability if transcripts provide no
evidence even if long-term key material is compromised
(offline deniability) and no outsider can obtain evidence
even when interactively colluding with an insider (on-
line deniability). Unfortunately, existing strongly deni-
able DAKEs have not been adopted by secure messaging
tools due to security and deployability weaknesses.
In this work, we propose three new strongly deniable
key exchange protocols—DAKEZ, ZDH, and XZDH—
that are designed to be used in modern secure messaging
applications while eliminating the weaknesses of previ-
ous approaches. DAKEZ offers strong deniability in syn-
chronous network environments, while ZDH and XZDH
can be used to construct asynchronous secure messag-
ing systems with offline and partial online deniability.
DAKEZ and XZDH provide forward secrecy against ac-
tive adversaries, and all three protocols can provide for-
ward secrecy against future quantum adversaries while
remaining classically secure if attacks against quantum-
resistant cryptosystems are found.
We seek to reduce barriers to adoption by describing our
protocols from a practitioner’s perspective, including
complete algebraic specifications, cryptographic primi-
tive recommendations, and prototype implementations.
We evaluate concrete instantiations of our DAKEs and
show that they are the most efficient strongly deniable
schemes; with all of our classical security guarantees,
our exchanges require only 1ms of CPU time on a typ-
ical desktop computer and at most 464 bytes of data
transmission. Our constructions are nearly as efficient
as key exchanges with weaker deniability, such as the
ones used by the popular OTR and Signal protocols.

Keywords: Key exchange, deniability, secure messaging

DOI 10.1515/popets-2018-0003
Received 2017-05-31; revised 2017-09-15; accepted 2017-09-16.

Nik Unger: School of Computer Science, University of Wa-
terloo, njunger@uwaterloo.ca
Ian Goldberg: School of Computer Science, University of
Waterloo, iang@cs.uwaterloo.ca

1 Introduction
In recent decades, our society has become heavily de-
pendent on electronic communication. The Internet has
become the platform upon which our most critical dis-
course is conducted. Protecting the security and privacy
of this communication has never been more important.
At the same time, revelations of widespread surveillance
of the Internet and interference in security technologies
has led to increased public interest in the security and
privacy of their communications. Most Americans want
to maintain control over their information online, while
few have confidence that they can do so [74].

In response to these developments, we have seen an
explosion of new secure messaging protocols, compo-
nents, and applications in recent years [94]. While this
proliferation has led to many options, each providing
a selection of security and privacy protections, indus-
try adoption by WhatsApp [80], Google Allo [81], and
Facebook Messenger [82] have led to a de facto stan-
dardization on the Signal protocol [79] as a means to
secure communications. One of the most important pri-
vacy properties of secure messaging protocols, as first
identified in the Off-The-Record Messaging (OTR) pro-
tocol [19] and later reinforced by Signal, is deniability
(sometimes also called repudiation). A deniable secure
messaging protocol allows users to plausibly deny ex-
changing messages using the protocol in the sense that
the protocol produces no convincing cryptographic ev-
idence of an exchange. This property gained renewed
interest recently after DKIM signatures were used to
confirm the authenticity of emails leaked from the Clin-
ton presidential campaign in the United States [72].

Unfortunately, popular secure messaging protocols
like OTR and Signal do not provide strong deniability.
A protocol is strongly deniable if transcripts provide no
evidence even if long-term key material is compromised
(offline deniability) and no outsider can obtain evidence
even if an insider interactively colludes with them (on-
line deniability). The limited deniability of current se-
cure messaging tools creates severe privacy weaknesses.
A protocol lacking unrestricted offline deniability per-
mits production of irrefutable transcripts that could be
generated only by one of a few potential entities. A pro-
tocol without online deniability allows a participant to

mailto:njunger@uwaterloo.ca
mailto:iang@cs.uwaterloo.ca


Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 22

generate irrefutable cryptographic proof of a conversa-
tion with the aid of an interactive third party [42].

For illustrative purposes, Appendix A describes
how a malicious Signal or OTR participant can use a
third-party service to reserve the capability, on a per-
session basis, to produce non-repudiable conversation
transcripts. Appendix A also describes another attack
in which an authority coerces an honest OTR or Signal
user into participating in a malicious protocol that pro-
duces proof of message authorship in real time without
compromising the user’s long-term secret key. In gen-
eral, this attack works by forcing the user to interac-
tively authenticate ephemeral decryption keys privately
generated by the authority.

The primary component that provides deniability in
secure messaging protocols is a deniable authenticated
key exchange (DAKE) [37]. In this work, we present
three new DAKEs—DAKEZ, ZDH, and XZDH—that
are designed to patch this weakness in modern secure
messaging environments while overcoming barriers to
adoption. Our schemes can act as drop-in replacements
for the DAKEs in protocols like OTR and Signal in order
to efficiently provide strong deniability without sacrific-
ing any existing security properties. Our definitions also
explicitly include the option to add quantum resistance.
Our other contributions in this work include:
1. concrete instantiations of our protocols and their

constituent primitives to simplify development, in-
cluding explicitly defined zero-knowledge proofs;

2. definition and construction of dual-receiver encryp-
tion with associated data, a natural extension of
dual-receiver encryption, and its security properties;

3. a concrete performance comparison between efficient
implementations of our DAKEs and existing key ex-
changes used by secure messaging applications; and

4. a discussion of the relationship between online deni-
ability and key compromise impersonation attacks—
a rarely mentioned and important topic—and tech-
niques for messaging tools to mitigate these attacks.
The remainder of this paper is structured as fol-

lows: Section 2 surveys related work on deniability and
key exchanges; Section 3 defines the security properties
and features of our DAKEs, and outlines our approach
for achieving these properties; Section 4 establishes no-
tation and introduces constructions for cryptographic
primitives; Section 5 defines DAKEZ; Section 6 defines
ZDH; Section 7 defines XZDH; Section 8 covers practi-
cal considerations for deploying our DAKEs; Section 9
describes our implementation; Section 10 evaluates the
time and space efficiency of our protocols and existing

key exchanges; Section 11 discusses key compromise im-
personation attacks in the context of strongly deniable
key exchanges; and Section 12 concludes.

2 Related Work
An authenticated key exchange (AKE) is a protocol that
allows two parties—an initiator and a responder—to
securely derive a shared secret and authenticate each
other. Bellare and Rogaway first formalized the defi-
nition of AKEs in 1993 [10]. Shortly afterward, several
AKEs claimed to offer deniability informally [20, 66, 67].
Each of these DAKEs lacks some aspect of strong deni-
ability. In a mostly independent line of research, denia-
bility was widely studied in the context of authentica-
tion [43, 44, 62, 101].

With the release of the Off-the-Record Messaging
protocol in 2004, deniability was recognized as a desir-
able feature for secure messaging [19]. Since then, a vari-
ety of DAKEs have been published [37, 42, 61, 75, 87, 93,
97, 99]. Walfish [95] was the first to introduce a DAKE,
Φdre, that simultaneously provides strong deniability,
(weak) forward secrecy [14], security against active at-
tackers, and operation without trusted authorities. This
work was later reiterated in a publication by Dodis et
al. [42]. In 2015, we introduced two DAKEs designed for
secure messaging—RSDAKE and Spawn—with compa-
rable security proofs [93]. Notably, Spawn was the first
DAKE with (partial) online deniability that can be used
in non-interactive applications.

The most popular secure messaging protocols in
practice, OTR [3] and Signal [79], use DAKEs with
weaker deniability. OTR’s variant of the SIGMA DAKE
offers no online deniability, and requires fragments of
legitimate exchanges to forge transcripts offline. Signal
originally used 3DH [78], an implicit DAKE with unre-
stricted offline deniability (i.e., anyone can forge tran-
scripts using only public keys), but lacking online deni-
ability. Signal recently switched to a DAKE known as
“Extended Triple Diffie-Hellman” (X3DH) [75] that im-
proves forward secrecy but regresses to the deniability
properties of OTR’s DAKE. Consequently, real-world
deployments of “deniable” secure messaging protocols
still lack strong deniability.

While RSDAKE and Spawn represent the state of
the art in terms of deniability for secure messaging pro-
tocols, they lack some key properties that prevent their
adoption by the designers of OTR and Signal:
1. the protocols are too slow to use in real-world secure

messaging settings like smartphone applications;



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 23

2. the protocols cannot provide forward secrecy against
active adversaries in non-interactive settings;

3. the protocols do not provide forward secrecy against
future quantum adversaries; and

4. the protocols make users susceptible to key compro-
mise impersonation (KCI) attacks;

5. the protocols are not contributory—shared secrets
are unilaterally determined by one party, which per-
mits sophisticated attacks against key secrecy.

Our key exchanges match the deniability of RSDAKE
and Spawn while overcoming these limitations.

3 Design Overview
3.1 General Approach
Our three new protocols, DAKEZ (“DAKE with Zero-
knowledge”), ZDH (“Zero-knowledge Diffie-Hellman”),
and XZDH (“Extended ZDH”), are meant to be used
in common secure messaging scenarios. DAKEZ is de-
signed for use in interactive settings such as instant mes-
saging applications, while ZDH and XZDH are designed
to be used in non-interactive settings such as text mes-
saging. ZDH is the most efficient, but XZDH provides
stronger forward secrecy than ZDH. Our DAKEs share
many design similarities with the RSDAKE and Spawn
protocols that we introduced in UG15 [93], but our new
protocols are 4000–5000 times more efficient in practice.
We achieve this significant efficiency advantage by con-
structing and using cryptographic primitives that rely
on the random oracle model (ROM) for security proofs.

We construct DAKEZ by adopting RSDAKE’s ap-
proach to authentication, but using several new instanti-
ations of cryptographic primitives in the random oracle
model. For comparison purposes, we also adapt Spawn
to the random oracle model using our primitives. We
then show how recognizing the partial online deniabil-
ity of Spawn can be leveraged to dramatically improve
performance in non-interactive settings, leading to our
design of ZDH. Finally, we describe XZDH, a variant of
ZDH that adopts X3DH’s forward secrecy technique.

3.2 Proof Technique
There are two general approaches to proving the secu-
rity of key exchanges: security by indistinguishability,
where security properties are expressed in terms of in-
distinguishable adversarial games [10]; and security by
emulation, where a protocol is shown to be indistin-
guishable from an idealized protocol with access to se-
cure channels and a trusted third party [25]. Our pro-

tocols are designed to be proven secure using the em-
ulation method through the generalized universal com-
posability (GUC) framework [42], which was also used
in UG15. GUC-based security proofs are generally more
convincing of real-world security, more resistant to inse-
cure composition, and able to naturally express denia-
bility properties. On the other hand, GUC-based proofs
are often overly restrictive and more complex.

While UG15 also sketched GUC-based security
proofs for RSDAKE and Spawn, UG15 used the stan-
dard model with obscure hardness assumptions. Our
protocols can be proven secure using random oracles and
widely accepted standard assumptions. While the use of
random oracles in security proofs has historically caused
debate among theorists [65], it remains to be shown that
instantiation of random oracles using appropriate cryp-
tographic hash functions in real-world protocols intro-
duces any actual security flaws.

Our DAKEs are designed to provide many security
properties and features. However, proof of these proper-
ties within the GUC framework requires the definition
of an ideal functionality and proof showing that the real
key exchanges behave indistinguishably from the ideal-
ized version. Formal definitions of these ideal function-
alities, explanations for how they exhibit desirable prop-
erties, and expression of the resulting security theorems,
are long and complex. For ease of presentation, we for-
mally define our ideal functionalities, security theorems,
and proof sketches in the appendices, beginning in Ap-
pendix D. We refer readers interested in the technical
details of the formal security properties to the appen-
dices. The main body of this paper focuses on practical
issues surrounding the deployment of DAKEs. Nonethe-
less, to facilitate design discussion and comparison with
prior schemes, we define our high-level security objec-
tives in the next section, and provide simplified security
propositions in the main body of this paper.

3.3 Protocol Properties
Our protocols provide the following properties:
1. Universally composable AKE [25]: Our proto-

cols emulate idealized authenticated key exchanges
facilitated by a trusted third party (without requir-
ing one in practice), and continue to do so even when
composed within arbitrary protocols. This property
includes the traditional notions of mutual authenti-
cation, key secrecy, and key freshness [10, 25].

2. Offline deniability [37]: Anyone can forge a
DAKEZ, ZDH, or XZDH transcript between any two
parties using only their long-term public keys. Con-



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 24

sequently, no transcript provides evidence of a past
key exchange, because it could have been forged.
This is similar to the deniability offered by 3DH [78].

3. Online deniability [42]: Participants in a DAKEZ
exchange cannot provide proof of participation to
third parties without making themselves vulnerable
to KCI attacks, even if they perform arbitrary pro-
tocols with these third parties during the exchange.
ZDH and XZDH provide this property for one party.

4. Contributiveness: Our DAKEs are initiator-
resilient [59] in the same sense as traditional Diffie-
Hellman [39] key exchanges—the initiator of the pro-
tocol cannot force the shared secret to take on a
specific value. In practice, it is also computationally
infeasible for the responder to select a specific shared
secret, although it may attempt to select one with
some desirable characteristic through a brute-force
search. The initiator (and, in practice, the respon-
der) cannot force the shared secret to be a value
known to a third party before the exchange begins.
Without contributiveness, an adversary can specify
a secret, coerce a participant into forcing that shared
secret, and then decrypt the subsequent conversation
without access to the key exchange transcript [59].
A non-contributory protocol also permits a partici-
pant to force a shared secret known to an innocent
third party, enabling that third party to decrypt the
conversation without their consent.

5. Forward secrecy [14]: A classical adversary that
compromises the long-term secret keys of both par-
ties cannot retroactively compromise past session
keys. DAKEZ offers strong forward secrecy—it pro-
tects the session key when at least one party com-
pletes the exchange. ZDH offers weak forward se-
crecy [14]—it protects the session key only when
both parties complete the exchange. XZDH protects
completed sessions and incomplete sessions that stall
long enough to be invalidated by a participant. We
discuss this distinction in more detail in Section 7.

6. (Optional) quantum resistance [88]: Our
DAKEs can optionally be combined with a quantum-
resistant key encapsulation mechanism (KEM) to
maintain forward secrecy against future quantum
adversaries, at the expense of performance. We make
this property optional because the secure messag-
ing community is still debating the importance of
quantum resistance and which primitives are likely
to resist quantum cryptanalysis, while the computa-
tional or transmission costs to use these primitives
is higher than classical Diffie-Hellman exchanges.

7. Post-specified peer [24]: Participants in DAKEZ
exchanges learn the identities of their partners dur-
ing the exchange. For ZDH and XZDH exchanges,
only one party begins the protocol with knowledge
of the other’s claimed identity.

In all configurations, our protocols are universally com-
posable AKEs with offline deniability, contributiveness,
and post-specified peers. Given these baseline proper-
ties, we present configurations that offer different trade-
offs between online deniability, forms of forward secrecy,
computational efficiency,1 and quantum resistance; the
best configuration to use depends on the secure messag-
ing environment in question.

3.4 Quantum Transitional Security
With our DAKEs, we address the problem of forward
secrecy against quantum adversaries. The purpose of
forward secrecy in key exchange protocols is to pre-
vent future adversaries from retroactively compromis-
ing recorded sessions. This property is extremely im-
portant because it minimizes the impact of compro-
mised long-term keys. However, current deployments
of key exchanges with forward secrecy are believed to
be vulnerable to quantum cryptanalysis. This leads to
the worrying possibility that all communications that
are currently protected by “secure” protocols like Signal
might be retroactively decrypted by a passive adversary
that gains access to a quantum computer in the future;
such an event could be potentially devastating to many
real users. As quantum computation continues to ap-
pear more feasible, it is becoming increasingly clear that
we must defend against this potential threat as quickly
as possible. However, implementing protocols that are
fully resistant to all quantum attacks remains challeng-
ing and expensive. Moreover, the security (even clas-
sically) of “quantum-resistant” cryptosystems remains
suspect, relative to our confidence in classical schemes
based on widely examined hardness assumptions.

An interesting class of key exchanges are those pro-
viding quantum transitional security—classical authen-
tication and quantum-resistant confidentiality [88]. As-
suming that the quantum resistance assumptions hold,
these schemes preserve forward secrecy against future
quantum adversaries. Additionally, these hybrid proto-
cols maintain classical security in the event that the
quantum resistance assumptions fail. The downside of
these schemes is that they must be replaced with fully

1 We preferentially optimize our constructions based on compu-
tational efficiency rather than other performance metrics, such
as network transmission size.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 25

quantum-resistant schemes after quantum adversaries
appear. Google recently tested the deployment of a
quantum transitionally secure key exchange in TLS [68].

DAKEZ, ZDH, and XZDH optionally provide quan-
tum transitional security by incorporating a passively
secure (IND-CPA) quantum-resistant KEM. Because
there are many different quantum-resistant KEMs with
varying security properties, performance, and usage
restrictions, we provide generic “placeholders” in our
DAKEs. An implementer is free to incorporate the KEM
of their choice when using our schemes. We return to the
practical issues surrounding this choice in Section 8.1.

4 Cryptographic Primitives
The primary barrier to adoption of strongly deniable
DAKEs like Φdre, RSDAKE, and Spawn is poor per-
formance caused by the use of inefficient dual-receiver
encryption (DRE) and ring signatures in the standard
model. Dual-receiver encryption [38] is similar to ordi-
nary public-key encryption, except that messages are
encrypted for two recipient public keys. The message
can be decrypted by either corresponding private key,
and it is verifiable that decrypting with either key pro-
duces the same result. DRE is similar to the more well-
known notion of broadcast encryption [47], except that
DRE does not require centralized generation of private
keys, and broadcast encryption does not provide any
verifiability guarantees. Ring signatures [85] are similar
to ordinary digital signatures, except that messages are
signed by a set of potential signers called a ring. Anyone
with knowledge of a private key corresponding to any
public key in this ring can produce the ring signature,
and it is not possible to determine which key was used.

These two primitives are very useful in deniable key
exchanges; ring signatures provide deniable authentica-
tion, and DRE can assist with online transcript forgery.
Ring signatures with a carefully selected ring can con-
vince a verifier of the authenticity of a message (due
to a non-transferable belief that the signer cannot know
certain keys) while allowing the signer to plausibly deny
authorship (because the signature could have been pro-
duced using other keys in the ring). DRE can be used to
allow a simulator to recover the shared secret and use
it to forge subsequent messages even when outsourcing
the generation of ephemeral secrets to an adversary; this
technique enables online deniability by eliminating a po-
tential protocol for producing evidence of an exchange.

The best known constructions of DRE and ring sig-
natures with the appropriate security properties in the
standard model are very inefficient. Additionally, these

schemes are constructed using complex primitives such
as cryptographic pairings. Pairing-based schemes rely
on relatively obscure security assumptions that are the
subject of recently discovered attacks [64], and lack effi-
cient and rigorous implementations.2 In this section, we
specify DRE and ring signature primitives, the security
properties that we require for our DAKEs, and efficient
ROM-based constructions of these primitives.

4.1 Notation
All of our definitions are implicitly given with respect
to a security parameter λ. As a notational convenience,
we write r $

←Ð {0, 1}λ to denote that r is set to a random
value with the appropriate form and length for the con-
text. The length of r is set to some linear function of λ,
as needed. When defining concrete two-party protocols,
we denote the initiator and the responder as I and R,
respectively. We write “P” (with quotes) to denote an
implementation-defined identifier for the party P.

4.2 Dual-Receiver Encryption with
Associated Data

While it is possible to construct our protocols using tra-
ditional DRE [38], we can reduce transmission sizes by
incorporating Rogaway’s notion of associated authen-
ticated data [86] in the primitive. We define a dual-
receiver encryption with associated data (DREAD)
cryptosystem to consist of the following functions:
– DRGen(s): a key generation function. DRGen pro-

duces a key pair (pk, sk) for use with the scheme. s
represents the seed used to generate the key pair and
may be omitted to imply s $

←Ð {0, 1}λ.
– DREnc(pk1, pk2,m,Φ, r): an encryption function.

DREnc encrypts a message m with associated data
Φ under two public keys pk1 and pk2. If pk1 and pk2
are valid public keys, then DREnc produces a cipher-
text γ. Otherwise, DREnc returns the special value �.
The output of DREnc is consistent across invocations
with the same (pk1, pk2,m,Φ, r) as input and varies
when r is changed. Omitting r implies r $

←Ð {0, 1}λ.
– DRDec(pk1, pk2, sk,Φ, γ): a decryption function. If

(pk1, sk) or (pk2, sk) was generated by DRGen, γ =

DREnc(pk1, pk2,m,Φ, r) for some r andm, and γ ≠ �,
then DRDec returns m. In all other cases, DRDec
returns � with overwhelming probability.

2 The most popular pairing libraries, the PBC library [73] and
RELIC [7], have published warnings against their use in produc-
tion. The MIRACL [27] library offers support for Type-I and
Type-III pairings that is described as experimental.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 26

ElGamal
(key pk1):
K

ElGamal
(key pk2):
K

NIZKPK:
ElGamal plain-
text equality

AES-OCB
(key K, AD Φ):

m

IND-CPA IND-CPA Sim-sound [46] IND-CCA2

IND-CCA2 [46]

IND-CCA2 [34]

Fig. 1. Our DREAD construction is a hybrid encryption of mes-
sage m for keys pk1 and pk2 with associated data Φ.

The associated data Φ is information that is not trans-
mitted with the ciphertext, but is nonetheless authenti-
cated; the same value must be provided to both DREnc
and DRDec in order for the decryption of m to succeed.

Note that the definitions of DREnc and DRDec im-
plicitly rely on the ability to verify that a public key is
valid and corresponds to a unique secret key. A scheme
satisfying this property is called admissible [30], and we
restrict our attention to such schemes. Additionally, our
key exchange protocols require DREAD instantiations
to satisfy two security properties that are naturally ex-
tended from the DRE security definitions introduced
by Chow et al. [30] by incorporating the Φ parameter
where necessary. We require only soundness (decryp-
tion always produces the same value for both secret
keys) and indistinguishability under adaptive chosen ci-
phertext attack (IND-CCA2) from our DREAD scheme.
Appendix B details the necessary modifications to the
definitions from Chow et al. [30], which merely involve
allowing the adversary to select Φ in the security games.

The few explicit constructions of DRE in the liter-
ature are almost all designed for the standard model.
Since we permit random oracles, we can produce an ex-
tremely efficient DREAD scheme based on the Naor-
Yung paradigm [77] within a hybrid cryptosystem.
Figure 1 depicts our scheme. The ciphertext consists
of a symmetric key K encrypted twice with ElGa-
mal [45] (once to each recipient), a non-interactive zero-
knowledge proof of knowledge (NIZKPK) proving that
the ElGamal ciphertexts contain the same plaintext,
and an authenticated encryption with associated data
(AEAD) of the message m. This approach is known to
generate a sound DRE system [30]. We select ElGamal
because it is a very efficient scheme with the desired
security properties, and it can be instantiated with-
out adding new security assumptions to our DAKEs.
Our NIZKPK is formed using the Fiat-Shamir trans-
form [48]. When used in the Naor-Yung paradigm, Faust
et al. [46] proved that such NIZKPKs are simulation-
sound and thus yield IND-CCA2 security when com-
bined with IND-CPA encryption schemes like ElGamal.

Since an AEAD must be IND-CCA2 secure, the overall
combination of schemes is also IND-CCA2 secure us-
ing the proof from Cramer and Shoup [34, Th. 7.2].3 In
practice, the AEAD may be instantiated using AES-256
in OCB or an equivalent unpatented mode [58] using the
NIZKPK to derive the nonce. Appendix B shows that
the soundness of the NIZKPK proof implies soundness
of the DREAD construction.

Our complete DREAD scheme is as follows:
– Setup: all users share a group description, (G, q, g),

for use in the ElGamal scheme [45]. g is a generator
for the group G of prime order q. All hash functions
used in this paper output values in Zq.

– DRGen(s): keys are generated as in the ElGamal
scheme [45]. The resulting public key for a user is
h = gs, and the secret key is s.

– DREnc(pk1, pk2,m,Φ, r): r is interpreted as r =

K∥k1∥k2∥t1∥t2. k1 and k2 are used to encrypt K for
each recipient using ElGamal [45], and t1 and t2 are
used later in the NIZKPK. If pk1 or pk2 are outside of
G or are the identity element, DREnc returns �. Oth-
erwise, the resulting ciphertexts consist of c1i = gki

and c2i = pkki

i ⋅ K for i ∈ {1, 2}. The message m is
encrypted using the AEAD scheme with key K and
associated data Φ, denoted by Θ = AEnc(K,m,Φ).
The result also includes a NIZKPK of the following
statement, proving that the ciphertext is well formed,
given in Camenisch-Stadler notation [22]:

PK{(k1, k2) ∶ c11 = g
k1
∧ c12 = g

k2
∧
c21
c22

=

pkk1
1

pkk2
2

}

The party calling DREnc acts as the prover P for
the NIZKPK. P uses the random values ti ∈ Zq for
i ∈ {1, 2} to compute T11 = gt1 , T12 = gt2 , and T2 =

pk
t1
1 /pk

t2
2 . Next, P computes the hash:

L = H(g∥q∥pk1∥pk2∥c11∥c21∥c12∥c22∥T11∥T12∥T2∥Φ)

where H is a cryptographic hash function modeled
by a random oracle.4 P then computes ni = ti − L ⋅

ki (mod q) for i ∈ {1, 2}. DREnc returns the encryp-
tion of m, γ = (c11, c21, c12, c22, L, n1, n2,Θ).

3 When expressing the ElGamal encryptions of K and the
NIZKPK as the key encapsulation mechanism, AES-OCB as the
one-time symmetric key encryption scheme, and the IND-CCA2
security game as in Appendix B, the proof directly applies.
4 If H is instantiated with a concrete hash function that suffers
from length-extension or padding attacks [91] (e.g., SHA-2), Φ
should be hashed before it is passed as input to H, thereby
ensuring that the input is of fixed length. This additional hash
is unnecessary if Φ is unused, is already of fixed length, or when
using an appropriate hash function (e.g., SHA-3).



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 27

– DRDec(pk1, pk2, ski,Φ, γ): the recipient parses γ to
retrieve its components. If either public key is outside
of G or is the identity element, or if γ is not of the
correct form, then DRDec returns �. Otherwise, the
recipient computes the following three values:

T ′11 = g
n1

(c11)
L T ′12 = g

n2
(c12)

L T ′2 =
pkn1

1
pkn2

2
(
c21
c22

)
L

The recipient then computes L′ using the same hash
operation described in DREnc:

L′ = H(g∥q∥pk1∥pk2∥c11∥c21∥c12∥c22∥T
′
11∥T

′
12∥T

′
2∥Φ)

If L ≠ L′, DRDec returns �. Otherwise, the recipient
recovers the secret key K = c2i/c

ski
1i . The recipient can

then recover the message m by decrypting the AEAD
ciphertext Θ with key K and associated data Φ, de-
noted by m = ADec(K,Θ,Φ). If ADec fails, DRDec
returns �. Otherwise, it returns m.

4.3 Efficient Ring Signatures in the ROM
One way to achieve strong deniability in a DAKE is
to use ring signatures, as in RSDAKE and Spawn [93].
Unfortunately, the literature lacks an explicit ring sig-
nature construction that provably provides the security
properties we require while also being efficient, even
though the techniques to do so are known. Schemes in-
troduced prior to the publication of the security def-
initions from Bender et al. [15] lack the appropriate
proofs [1], require unusual primitives that are difficult
to use in practice [18, 41, 102], or reduce to a generic
form of our approach [2]. Schemes published after the
definitions from Bender et al. [15] either focus on adding
new features, or offering strong standard model security
proofs (at the expense of practicality) [98]. Addition-
ally, “efficient” ring signature schemes typically focus
on scalability with respect to ring size [41]. Our DAKEs
use small rings with only three potential signers, so scal-
able schemes are usually not optimized for our setting.
There are also a variety of well-known ring signature
schemes that operate in slightly different scenarios, at
the cost of performance [21, 29, 71, 96].

RSDAKE and Spawn use ring signatures to prove
that the signer knows one of three private keys. We can
construct an efficient ROM-based ring signature scheme
to accomplish this by issuing a signature of knowledge
(SoK) of one out of three discrete logarithms [22]. An
SoK is a non-interactive zero-knowledge proof system
demonstrating knowledge of a value. We construct the
SoK in our ring signature based on the Schnorr signa-
ture scheme [89] and the “OR proof” technique intro-

duced by Cramer et al. [35].5 The Fiat-Shamir trans-
form [48] makes this proof non-interactive. This ap-
proach is far more efficient than the ring signature
scheme used in RSDAKE and Spawn [90].

Assume that each public key is of the form Ai = g
ai ,

as in a typical Diffie-Hellman key exchange (where g
is the generator for a group G of prime order q). The
SoK over keys (A1,A2,A3) is a proof of the following
statement, given in Camenisch-Stadler notation [22]:

SKREP{(a) ∶ ga = A1 ∨ g
a
= A2 ∨ g

a
= A3}(m)

Assuming without loss of generality that the signer
knows a1, the proof proceeds as follows:
1. Generate random values t1, c2, c3, r2, r3 ∈ Zq.
2. Compute T1 = g

t1 .
3. Compute T2 = g

r2Ac22 and T3 = g
r3Ac33 .

4. Compute c = H(g∥q∥A1∥A2∥A3∥T1∥T2∥T3∥m), where
H is a hash function modeled by a random oracle and
m is the message to “sign”.

5. Compute c1 = c − c2 − c3 (mod q).
6. Compute r1 = t1 − c1a1 (mod q).
The resulting proof consists of (c1, r1, c2, r2, c3, r3). To
verify the proof, the verifier begins by computing c′ =
H(g∥q∥A1∥A2∥A3∥g

r1Ac11 ∥gr2Ac22 ∥gr3Ac33 ∥m). The veri-
fier then checks whether c′ ?

= c1 + c2 + c3 (mod q).
In the general case where the prover knows a secret

ai, they select ti randomly, compute Ti = gti , and com-
pute Tj = grjA

cj

j for j ≠ i, proceeding as normal and
ultimately computing ci and ri. The order of elements
passed to H and sent to the verifier must not depend
on the secret known the prover (otherwise, the key used
to produce the proof can be inferred in practice).

We use these processes to define our ring signature
scheme, which consists of the following functions:
– RSig(A,a, S,m, r): RSig produces an SoK σ, bound

to the message m, that demonstrates knowledge of a
private key corresponding to one of three public keys.
S is the ring of public keys {A1,A2,A3} that could
possibly have produced the proof. It is required that
(A,a) is a Diffie-Hellman keypair in the appropriate
group, and A ∈ S. r controls the randomization of
the output. The SoK is computed as described above,
with r interpreted as r = ti∥cj∥ck∥rj∥rk, where i is the
index of A in S, and j and k are the values in {1, 2, 3}
such that i, j, and k are distinct and j < k. If r is
omitted, it is assumed that r $

←Ð {0, 1}λ is used.

5 This technique was subsequently extended [31, 32]; however,
the later results are not useful for our application because the
statement to prove is fully known when the proof commences.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 28

– RVrf(S,σ,m): a verification function. RVrf returns
TRUE if the SoK σ is valid, and FALSE other-
wise. Correctness requires that RVrf(S,σ,m) = TRUE
when σ = RSig(A,a, S,m, r) for any valid inputs.
Bender et al. [15] defined several security properties

for ring signature schemes. Our DAKEs require RSig
and RVrf to exhibit anonymity against full key exposure
(the signer remains anonymous within the ring even if
all signing keys are subsequently compromised) and un-
forgeability with respect to insider corruption (signatures
are unforgeable even if signing keys outside of the ring
are adversarially generated). Appendix C includes the
definitions of these properties and the security proofs
for the RSig/RVrf ring signature scheme.

4.4 Quantum-Resistant KEM
As described in Section 3.4, our protocols provide quan-
tum transitional security against future quantum ad-
versaries. We accomplish this by using a black-box pas-
sively secure quantum-resistant KEM modeled by the
following functions:
– QRGenI(s): a key generation function for initiators.

QRGenI produces a key pair (PQI , SQI) for use with
the scheme. s represents the seed used to generate the
key pair and may be omitted to denote s $

←Ð {0, 1}λ.
– QRGenR(PQI , s): an encapsulation function used

by responders. QRGenR takes an initiator public key
as input and produces a response message QR and
a shared secret Qk. s is a random seed that may be
omitted to denote s $

←Ð {0, 1}λ.
– QRKeyI(SQI ,QR): a decapsulation function

used by initiators to derive the shared key.
If (PQI , SQI) ← QRGenI() and (QR,Q

′
k) ←

QRGenR(PQI), then QRKeyI(SQI ,QR) produces
Qk = Q

′
k.

This model permits a variety of quantum-resistant
KEMs to be used in our DAKEs. For contributory
schemes, QRGenR uses PQI to derive Qk, and QR
is a public contribution from the responder. For non-
contributory (key transport) schemes, the responder
unilaterally determines Qk, and QR securely delivers Qk
to the initiator.

Our protocols perform both a black-box quantum-
resistant KEM and a traditional Diffie-Hellman key
exchange, then input both shared secrets to a key
derivation function. A similar technique is used by
CECPQ1 [68]. Key secrecy and freshness is immediately
implied by the security of either underlying scheme.

5 DAKEZ
Given the cryptographic primitives defined in Section 4,
we can now define our new three-flow DAKE, DAKEZ.
Figure 2 depicts the protocol. KDF refers to a secure
key derivation function.

Initially, the developer selects a common group G
generated by g with prime order q. The CDH problem
should be hard within G. All parties select long-term
public keys and distribute them. Initiator I chooses
long-term secret key I and public key gI . Responder
R chooses long-term secret key R and public key gR.

A DAKEZ session normally takes place within a
higher-level protocol (e.g., XMPP or HTTP). To pre-
vent attacks that rebind the DAKEZ transcript into dif-
ferent contexts, it is prudent to ensure that the DAKEZ
session authenticates its context. Given state informa-
tion Φ associated with the higher-level context, DAKEZ
authenticates that both parties share the same value for
Φ. Section 8 discusses the contents of this state informa-
tion in practice. A DAKEZ session proceeds as follows:
1. I selects ephemeral secrets i ∈ Zq and (PQI , SQI)←

QRGenI(). I sends “I”, gi, and PQI to R.
2. R selects ephemeral secrets r ∈ Zq and (QR,Qk)

← QRGenR(PQI). R sends “R”, gr, QR, and
RSig(gR,R,{gI , gR, gi}, t) to I, where the tag t is
t = “0”∥“I”∥“R”∥gi∥gr∥PQI∥QR∥Φ. R computes k =
KDF((gi)r∥Qk) and securely erases r and Qk.

3. I verifies the proof sent by R. I computes and sends
the proof RSig(gI , I,{gI , gR, gr}, t) to R, where the
tag t is t = “1”∥“I”∥“R”∥gi∥gr∥PQI∥QR∥Φ. I com-
putes Qk = QRKeyI(SQI ,QR) and uses it to com-
pute the shared secret k = KDF((gr)i∥Qk), then se-
curely erases i, SQI , and Qk.

4. R verifies the proof sent by I.
The algebraic description of DAKEZ given above

omits several important practical considerations that
must be handled correctly to produce a secure imple-
mentation. We discuss these considerations in Section 8.

Proposition 1 states a simplified security theorem
for DAKEZ. A formal theorem and proof sketch appear
in Appendix E.

Proposition 1 (DAKEZ security)
If the RSig/RVrf scheme is anonymous against full
key exposure and unforgeable with respect to insider
corruption, and the CDH assumption holds in G, then
DAKEZ provides the security properties listed in Sec-
tion 3.3 against adaptive corruptions.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 29

I R

“I” ∥ gi ∥ PQIChoose i $←Ð Zq

(PQI , SQI)← QRGenI()
“R”∥gr∥QR

RSig(gR,R,{gI , gR, gi}, “0”∥“I”∥“R”∥gi∥gr∥PQI∥QR∥Φ)
Choose r $←Ð Zq

(QR,Qk)← QRGenR(PQI)
Compute k
Erase r and Qk

Verify proof from R
Compute Qk = QRKeyI(SQI ,QR)

Compute k
Erase i, SQI , and Qk

RSig(gI , I,{gI , gR, gr}, “1”∥“I”∥“R”∥gi∥gr∥PQI∥QR∥Φ)
Verify proof from I

Fig. 2. The DAKEZ protocol. Φ is shared session state. The shared secret is k = KDF(gir ∥ Qk).

6 ZDH
Spawn [93] is a two-flow DAKE with a single post-
specified peer [24] (i.e., the initiator I does not know
the identity of its partner a priori, but the responder R
does). In an interactive setting, Spawn provides online
deniability for both parties. In non-interactive settings
where the adversary is able to guarantee that the first
message is honestly generated by the true I, Spawn does
not provide online deniability for R [93]. In these set-
tings, explicitly sacrificing online deniability for R re-
sults in a more efficient protocol, ZDH.

6.1 Efficient Spawn in the ROM
Before introducing the construction of ZDH, we first
show how to use our DREAD and ring signature
schemes from Section 4 to instantiate Spawn far more
efficiently than the original construction [93]. While im-
proving the performance of Spawn is not a primary goal
of this work, doing so is important for three reasons: it
allows us to precisely characterize the design improve-
ments in ZDH, it simplifies the security proof of ZDH,
and it provides a baseline performance comparison for
ZDH. Figure 3 depicts Spawn+, a contributory instan-
tiation of Spawn using our ROM-based primitives. Un-
like DAKEZ, which is secure in the same model as RS-
DAKE, the contributiveness of Spawn+ makes it prov-
ably secure against stronger adversaries than Spawn.

Initially, the developer selects a common group G
generated by g with prime order q in which the CDH
problem is hard. All parties select long-term ElGamal
public keys and distribute them. Initiator I and respon-
der R generate long-term key pairs (gI , I) and (gR,R),
respectively, as described in Section 4. A Spawn+ ses-
sion between I and R within a higher-level protocol
with shared session state Φ proceeds as follows:
1. I selects ephemeral secrets i ∈ Zq and (PQI , SQI)←

QRGenI(). I sends (“I”, gi, PQI) to R. An un-
trusted server may cache this “prekey” message.

2. R selects ephemeral secrets r ∈ Zq and (QR,Qk) ←

QRGenR(PQI). R then computes the ciphertext
γ = DREnc(gI , gR, gr∥QR, t), where the tag t is
given by t = “I”∥“R”∥gi∥PQI . R computes σ =

RSig(gR,R,{gI , gR, gi}, t∥γ∥Φ). R sends (“R”, γ, σ)
to I. R computes k = KDF((gi)r∥Qk) and securely
erases r and Qk. Note that R can attach an initial
message m to this flow by immediately encrypting it
with a symmetric cryptosystem keyed with k.

3. I verifies the proof σ and decrypts γ using I. I veri-
fies that the decrypted message is of the correct form
(e.g., the fields are of the expected length) and that
the prekey (gi, PQI) that I previously sent remains
unused. I computes Qk = QRKeyI(SQI ,QR) and
the shared secret k = KDF((gr)i∥Qk), then securely
erases i, SQI , and Qk. If an initial message was at-
tached, I can decrypt the message using k.
Developers should incorporate the safeguards dis-

cussed in Section 8 to securely implement Spawn+.
Proposition 2 states a simplified security theorem

for Spawn+. A formal theorem and proof sketch appear
in Appendix F.

Proposition 2 (Spawn+ security)
If the DREAD scheme is sound and IND-CCA2 se-
cure, the RSig/RVrf scheme is anonymous against full
key exposure and unforgeable with respect to insider
corruption, and the CDH assumption holds in G, then
Spawn+ provides the security properties listed in Sec-
tion 3.3 against adaptive corruptions.

6.2 The ZDH Protocol
Given the definition of Spawn+, we can now easily dis-
cuss the construction of ZDH, a variant that improves
performance in non-interactive settings primarily by
avoiding the use of DREAD operations to facilitate on-
line deniability for R. ZDH is depicted in the unshaded
portions of Figure 4 (the shaded values are used only in
XZDH, which we introduce in Section 7).



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 30

I R

“I” ∥ gi ∥ PQIChoose i $←Ð Zq

(PQI , SQI)← QRGenI()
“R”∥DREnc(gI , gR, gr∥QR, “I”∥“R”∥gi∥PQI)
RSig(gR,R,{gI , gR, gi}, “I”∥“R”∥gi∥PQI∥γ∥Φ)

Choose r $←Ð Zq

(QR,Qk)← QRGenR(PQI)
Compute k
Erase r and Qk

Verify proof from R
Compute Qk = QRKeyI(SQI ,QR)

Compute k
Erase i, SQI , and Qk

Fig. 3. A Spawn+ exchange. Φ is shared session state. γ is the DREnc output. The shared secret is k = KDF(gir∥Qk).

I R

“I” ∥ gi ∥ PQI ∥ gΓ
∥ Sig(gI , I, gΓ

)Choose i $←Ð Zq

(PQI , SQI)← QRGenI() “R” ∥ gr ∥ QR ∥ MAC(Mk, “I”∥“R”∥gi∥gr∥PQI∥QR ∥gΓ
∥Φ)

RSig(gR,R,{gI , gR, gi}, “I”∥“R”∥gi∥gr∥PQI∥QR ∥gΓ
∥Φ)

Verify gΓ signature

Choose r $←Ð Zq

(QR,Qk)← QRGenR(PQI)
Compute k and Mk

Erase r and Qk

Verify proof from R
Compute Qk = QRKeyI(SQI ,QR)

Compute k and Mk

Verify MAC
Erase i, SQI , and Qk

Fig. 4. A ZDH/XZDH exchange. Φ is shared session state. κ = KDF1(gir ∥gΓr
∥gIr∥Qk), Mk = KDF2(κ) and the shared secret is

k = KDF3(κ). Shaded terms are used in XZDH only, and omitted for ZDH. In XZDH, gΓ is a reusable signed prekey.

The initial ZDH setup is the same as for Spawn+;
parties generate and distribute long-term ElGamal pub-
lic keys in a group G generated by g with prime order
q in which the CDH problem is hard. Within a higher-
level protocol with shared session state Φ, a ZDH session
between initiator I and responderR with respective key
pairs (gI , I) and (gR,R) proceeds as follows:
1. I selects ephemeral secrets i ∈ Zq and (PQI , SQI)←

QRGenI(). I sends (“I”, gi, PQI) to R. An un-
trusted server may cache this “prekey” message.

2. R selects ephemeral secrets r ∈ Zq and (QR,Qk) ←

QRGenR(PQI). R then derives the shared keys
κ = KDF1((g

i
)
r
∥ (gI)r ∥ Qk), Mk = KDF2(κ), and

k = KDF3(κ), where KDF1, KDF2, and KDF3 are
key derivation functions modeled by a random or-
acle. R securely erases r and Qk. Let the tag t be
defined by t = “I”∥“R”∥gi∥gr∥PQI∥QR∥Φ. R com-
putes mac = MAC(Mk, t), where MAC(key,msg)

refers to a key-only unforgeable [49] message authen-
tication code function for messagemsg with key key.
R computes σ = RSig(gR,R,{gI , gR, gi}, t). R sends
(“R”, gr,QR,mac, σ) to I. Note that R can attach
a message m to this flow by immediately encrypting
it with a symmetric cryptosystem keyed with k.

3. I verifies σ. I verifies that (gi, PQI) is an un-
used prekey previously sent by I. I computes Qk =
QRKeyI(SQI ,QR), κ = KDF1((g

r
)
i
∥ (gr)I ∥ Qk),

Mk = KDF2(κ), and k = KDF3(κ). I verifies the
MAC and securely erases i, SQI , and Qk. If a mes-
sage was attached, I can decrypt it using k.

Developers should incorporate the safeguards discussed
in Section 8 to securely implement ZDH.

Proposition 3 states a simplified security theorem
for ZDH. A formal theorem and proof sketch appear in
Appendix G.
Proposition 3 (ZDH security)

If the MAC is weakly unforgeable under chosen mes-
sage attack [13], the RSig/RVrf scheme is anonymous
against full key exposure and unforgeable with re-
spect to insider corruption, and the CDH assumption
holds in G, then ZDH provides the security proper-
ties listed in Section 3.3 against adaptive corruptions
when the response is sent by an honest party.

6.3 Design Discussion
The primary difference between ZDH and Spawn+ is
that ZDH does not use DREAD to enable R to de-
rive the shared secret during online deniability attacks.
ZDH also uses a MAC to achieve full key confirmation
for I [49]. Without this MAC, ZDH would be vulnerable
to an identity misbinding attack [67]; an active adver-
sary P that replaced the ring signature with one for the
ring {gI , gP , gi} would cause I to believe that it was
communicating with P while sharing a key with R.

In order to derive the shared secret for Spawn+ from
the exchanged information, a party must either know
R’s ephemeral secret, or I’s ephemeral secret and either
of the long-term secrets. In order to derive the shared
secret for ZDH from the exchanged information, a party
must know eitherR’s ephemeral secret, or I’s ephemeral
and long-term secrets. The important difference is that
in ZDH, a party that knows R’s long-term secret and
I’s ephemeral secret cannot derive the key. This is pre-



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 31

cisely the knowledge available to R when it is trying to
simulate I for an interactive third party. For this rea-
son, the protocol explicitly lacks online deniability for
R, just like non-interactive Spawn and Spawn+. This
concession causes the prohibition of corrupt responders
in Proposition 3, but also enables ZDH’s efficient design.

ZDH’s derivation of κ is similar to the derivation
of the shared secret in 3DH [78]. However, 3DH also in-
cludes giR as input to its KDF. The purpose of this term
in 3DH is to authenticateR, but ZDH accomplishes this
using a ring signature instead. Moreover, including this
term in ZDH would break online deniability for I, as
it does in 3DH, because an interactive third party that
chooses i and coerces I into sending gi can derive the
shared secret while preventing I from doing so.

7 XZDH
Spawn, 3DH, Spawn+, and ZDH all share a similar
weakness: they are two-flow protocols with weak for-
ward secrecy. This makes them vulnerable to an attack
where an active adversary modifies the first flow from
I to use an adversarially controlled ephemeral key, cap-
tures and drops the response from R, and then com-
promises I’s long-term secret key [14]. I will never see
the message, and the adversary will be able to decrypt
it. Moreover, since long-term keys are usually meant to
last for years, a long time may pass between R sending
the message and the adversary compromising I’s key.
In practice, this attack requires a powerful adversary.

Signal’s X3DH protocol [75] somewhat mitigates
this weakness in 3DH by introducing the notion of
signed prekeys. In contrast to the one-time prekeys used
by 3DH, signed prekeys are signed by long-term se-
cret keys and are reusable. Each user maintains one
signed prekey on the prekey server, which is changed
on a roughly weekly basis [75]. The combination of a
one-time prekey and a signed prekey is called a prekey
bundle. X3DH incorporates a Diffie-Hellman exchange
between I’s signed prekey and R’s ephemeral key, and
makes one-time prekeys optional. The benefit is that the
aforementioned attack is thwarted if I changes its signed
prekey and erases the old one before being corrupted by
the adversary. Because the prekey is signed, it cannot be
adversarially altered, and I controls the timing of key
erasure. However, the use of signed prekeys in X3DH
severely harms its offline deniability: transcripts can be
forged only by one of the alleged participants, since
the forger must complete a Diffie-Hellman exchange be-
tween I’s signed prekey and R’s long-term key.

XZDH is a variant of ZDH incorporating signed
prekeys. I’s signed prekey is gΓ, with correspond-
ing secret key Γ ∈ Zq. I uploads gΓ to the prekey
server alongside an existentially unforgeable digital sig-
nature [55] for gΓ created using I as the signing key, de-
noted by Sig(gI , I, gΓ

). The public verification function
SVerif(gI ,m, ξ) returns TRUE if ξ is a valid signature
for message m created using I, and FALSE otherwise.

XZDH is identical to ZDH, except that it modifies
the derivation of κ to be κ = KDF1(g

ir
∥gΓr

∥gIr∥Qk)

and includes gΓ in its MAC and RSig messages, as de-
picted in Figure 4. The first flow in Figure 4 represents
the complete prekey bundle that R downloads from the
server. gΓ is reused across sessions, but I replaces it
regularly (e.g., once a week). XZDH provides online
deniability, the same forward secrecy characteristics as
X3DH, and the same offline deniability as ZDH—anyone
can forge an XZDH transcript between I and R given
only gI , gR, and a prekey bundle containing gΓ and
Sig(gI , I, gΓ

). These values are all publicly distributed.
Proposition 4 states a simplified security theorem

for XZDH.
Proposition 4 (XZDH security)

If the MAC is weakly unforgeable under chosen mes-
sage attack [13], the RSig/RVrf scheme is anonymous
against full key exposure and unforgeable with re-
spect to insider corruption, and the CDH assumption
holds in G, then XZDH provides the security proper-
ties listed in Section 3.3 against adaptive corruptions
when the response is sent by an honest party.

A formal theorem and proof sketch appear in Ap-
pendix H.

8 Secure Messaging Integration
This section covers several practical considerations
involved in securely implementing DAKEZ, Spawn+,
ZDH, and XZDH for use in secure messaging tools.

All elements in the ciphertexts must be of fixed
length to prevent potentially exploitable parsing confu-
sion. The identifiers for the parties (e.g., “I” and “R”)
may be cryptographic hashes of usernames, or they may
be the long-term public keys. Identifiers can also include
device codes to differentiate between devices owned by a
user. In general, the problem of supporting multi-device
conversations is difficult and mostly orthogonal. Any
multi-device technique that works for 3DH or X3DH
should also be applicable to our DAKEs; the most com-
mon techniques in practice—replicating one key or gen-
erating per-device keys [9]—are directly applicable.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 32

While we used generic groups in our definitions, the
primitives should be implemented using elliptic curve
cryptography for maximum performance. Parties must
also ensure that the Diffie-Hellman contributions they
receive are in the expected group and are not the iden-
tity element. Otherwise, the implementation may be
vulnerable to identity-element [40], small-subgroup [69],
or invalid-curve [6] attacks.

As discussed in Section 6, interactive DAKEZ and
Spawn+ provide online deniability for both I and R,
while ZDH and XZDH do not. Consequently, develop-
ers should consider a hybrid approach where interactive
DAKEZ is attempted first, and non-interactive ZDH or
XZDH is used as a fallback option. This hybrid ap-
proach enables non-interactive messaging and minimizes
the use of one-time prekeys, but sacrifices online denia-
bility for R when I is willing to use the fallback option.

Using our DAKEs non-interactively requires an un-
trusted central server to store prekeys. If prekey sub-
missions are not authenticated, then malicious users can
perform denial-of-service attacks. To preserve the deni-
ability of the overall protocol, one-time prekeys should
never be digitally signed. The best approach is to au-
thenticate prekey uploads using a DAKEZ exchange be-
tween the uploader and the server, which preserves de-
niability. As an added safeguard, the server can require
a ZKPK of the private keys associated with the prekeys.

All of our DAKEs permit authenticating the shared
session state Φ as part of the exchange. Theoretically,
this ensures that the DAKE is “bound” to a session
of the messaging protocol. The higher-level protocol
should always include its implicit or explicit session
identifier in Φ to perform this binding. In practice, Φ
also allows both sides to cryptographically verify some
beliefs they have about the session. For example, in an
application that assigns some attribute to users before
a conversation (e.g., a networked game in which play-
ers take on specific roles), the expected attributes (ex-
pressed in fixed length) should be included in Φ. If the
DAKE succeeds, then the participants know that they
agree about the attribute values.

Implementations of our DAKEs should follow stan-
dard secure coding practices for cryptographic software.
Cryptographic operations with secret data should be
performed in constant time. Secret values, including in-
termediaries, should be stored in locked private memory
pages, and ephemeral keys should be securely erased in
a manner guaranteed to persist through compiler opti-
mizations. All hash functions should be domain sepa-
rated using protocol-specific null-terminated prefixes.

Deployments of our DAKEs should always include
tools to forge key exchanges; this improves plausible
deniability in practice. Specifically, implementations of
RSig from Section 4.3 should use the same code for
honest and forged authentication. To accomplish this
in constant time, developers can use conditional move
operations to copy the appropriate keys into memory re-
gions for the calculations, and again to move the results
into the appropriate positions in the proof.

8.1 Incorporating Quantum Resistance
Selecting a quantum-resistant KEM to use in an im-
plementation is challenging. There is not yet a scheme
that indisputably dominates the others in terms of se-
curity, efficiency, and deployability. Additionally, many
schemes are covered by actively enforced patents, which
may further restrict the available options.

Two of the most prominent schemes are the su-
persingular isogeny Diffie-Hellman (SIDH) [60] and the
“New Hope” [4] protocols. New Hope has faster imple-
mentations, and relies on older hardness assumptions.
However, there is disagreement about the vulnerability
of lattice-based cryptography to quantum cryptanaly-
sis [28]. SIDH relies on newer hardness assumptions, but
has a lower communication cost. SIDH also has a very
simple parameter selection process to achieve a chosen
security level. Due to its relative novelty, attacks against
SIDH are still being discovered [52].6 In Section 10, we
evaluate the performance of SIDH and New Hope in
relation to the core DAKEs.

Developers should consider all of these factors when
selecting a quantum-resistant KEM. Note that aside
from their effect on message sizes, the choice of KEM is
independent of other design choices, and the KEM can
be changed as a protocol evolves.

9 Implementation
Although many DAKEs have been described in the lit-
erature, very few of them have ever been implemented.
If a DAKE is designed with the intention of protect-
ing real users, then producing a proof-of-concept imple-
mentation has several benefits. In addition to enabling
experiments to quantify real-world performance, the im-
plementation process often reveals practical hurdles lim-
iting deployability that cannot be identified from a de-
tached security analysis, necessitating improved designs.
For these reasons, we developed a prototype implemen-

6 The attack described by Galbraith et al. [52] does not apply
here because we use SIDH for ephemeral-ephemeral exchanges.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 33

tation of our DAKEs in C using production-ready cryp-
tographic libraries targeting a 128-bit security level.
Our implementation employs all of the secure coding
techniques mentioned in Section 8, and supports both
New Hope and SIDH as instantiations of the generalized
KEM functions in Section 4.4.

The remainder of this section provides implementa-
tion details. Section 9.1 lists the third-party libraries we
used, Section 9.2 describes our additions to the elliptic
curve library, and Section 9.3 lists our chosen primitives.

9.1 Libraries
We used version 1.1.0e of the OpenSSL library in our
implementation for its cryptographic randomness source
and its AEAD primitives. We used the New Hope imple-
mentation with AVX2 extensions from Alkim et al. [4],
and the AMD64 SIDH library from Costello et al. [33].
Our implementation uses the twisted Edwards curve as-
sociated with Ed25519 [17] for our group operations.
We used the ed25519-donna library [76] with SSE2
extensions due to its speed and portability. We pack
curve points generated by the library into 32 bytes,
which includes the y-coordinate and a parity bit of the
x-coordinate, for transmission and storage. When un-
packed, the points can be multiplied by the subgroup or-
der and compared to the identity element to ensure that
they are in the correct subgroup and not on the twist,
although this is not required for the security of Ed25519
signatures [17]. We used the Keccak Code Package [8]
for its SHA-3 implementation. To hash curve points, we
hash the packed 32 bytes with SHA-3.

9.2 Ed25519-donna Additions
Although Curve25519 [16] is used in Signal [79] and is
generally well-regarded in the secure messaging com-
munity, existing libraries cannot be used to implement
our DAKEs without modification. X25519 [16] libraries
typically store points in Montgomery form, which dis-
cards the sign and complicates ElGamal implementa-
tions. Ed25519 [17] libraries store points on a bira-
tionally equivalent twisted Edwards curve, but do not
provide independent point addition or scalar multiplica-
tion functions. Consequently, we made several additions
to ed25519-donna to implement our prototype.

We implemented constant-time scalar multiplica-
tion with variable bases using the windowed double-and-
add-always algorithm. We select random scalars using
the X25519 secret generation procedure [16]. We also
adapted existing code to produce constant-time imple-

mentations of point negation, scalar subtraction, condi-
tional memory copies, and scalar equality tests.

9.3 Primitive Instantiations
To instantiate our DREAD scheme from Section 4.2, we
used OpenSSL’s implementation of AES256-OCB with
a 16-byte tag and a 15-byte nonce. We use the first
15 bytes of the L hash derived in the NIZKPK as the
nonce for OCB mode, since its probability of repeating
is negligible. We select K by multiplying the Ed25519
base point by a random scalar.7 To derive the AEAD key
fromK, we pack the point into its 32-byte representation
and use SHA3-256 as a KDF. We also use SHA3-256 as
the hash H used to compute c in RSig.

Our implementations support arbitrary caller-
defined user identifiers and shared session state Φ. Our
ZDH and XZDH implementations use KMAC256 [63] as
the MAC, since it is based on SHA-3. Although all of
our fields are of fixed length, we implemented the com-
plete KMAC256 padding scheme to reflect the overhead
of general-purpose KMAC libraries.

10 Performance Evaluation
When deciding whether or not to include a DAKE in
a secure messaging application, one of the most impor-
tant considerations for developers is the expected per-
formance impact on both users and infrastructure. We
performed an analysis of our implementation to pre-
cisely quantify this impact by answering the following
questions for DAKEZ, Spawn+, ZDH, and XZDH:
– What is the computational overhead for generating

long-term keys and participating in key exchanges?
– How large are the long-term public keys?
– How large are the prekeys (where applicable)?
– How much data is transferred during a key exchange?
– How does the performance of our DAKEs compare to

other state-of-the-art AKEs?
– What is the overhead of quantum resistance?

We compared the performance of our DAKEs to
four AKEs with weaker security properties—ECDH,
3DH [78], X3DH [75], and SIGMA-R [67]—and the three
existing DAKEs with the same properties—Φidre, RS-
DAKE, and Spawn [93]. (Φidre [93] is a more efficient
instantiation of Φdre [42].)

7 This is not a safe method for selecting a random point in
general, since the discrete log of the point is known. The method
is safe here because the result is only input into a KDF.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 34

Table 1. Comparison of DAKE features, computational performance, and size requirements

ECDH 3DH X3DH SIGMA-R Φidre RSDAKE Spawn DAKEZ Spawn+ ZDH XZDH
Offline Deniable
Online Deniable - - -
Authenticated -

Non-Interactive - - - -
Forward Secrecy - - - - -

Proof Model SM ROM ROM ROM SM SM SM ROM ROM ROM ROM
Public Key

Generation [ms] - 0.0228
(0.0012)

0.0240
(0.0013)

0.0240
(0.0012)

0.40
(0.01)

206
(8)

206
(4)

0.0440
(0.0016)

0.0429
(0.0016)

0.0441
(0.0018)

0.0444
(0.0017)

Exchange [ms] 0.1733
(0.0033)

0.4229
(0.0050)

0.5533
(0.0056)

0.3478
(0.0048)

13
(2)

6 630
(50)

3 390
(20)

1.094
(0.014)

1.3683
(0.0082)

0.778
(0.013)

0.9217
(0.0069)

Flows 2 2 2 4 9 3 2 3 2 2 2
Public Key [B] - 32 32 32 415 395 992 32 32 32 32

Prekey [B] - 32 32+96 - - - 938 - 32 32 32+96
Exchange [B] 64 80 80 272 5 140 7 598 73 763 464 512 304 304

= provides property; = partially provides property; - = does not provide property / not applicable;
SM = standard model; ROM = random oracle model. Standard deviations are in parentheses. “Forward secrecy”
is the strong variant [14] (all schemes have weak forward secrecy). Prekeys are listed as (one-time)+(signed) sizes.

3DH, X3DH, ZDH, and XZDH are all designed
for non-interactive messaging (e.g., text messaging).
Our ZDH and XZDH schemes use ROM-based ring
signatures to achieve strong deniability, which 3DH
and X3DH lack. Φidre, RSDAKE, Spawn, and DAKEZ
are all designed for interactive communication. Our
DAKEZ scheme is similar to RSDAKE, except that it
avoids the need for digital signatures, and uses ROM-
based ring signatures. Φidre provides strong deniability
using DRE in the standard model, but it requires an
excessive number of network round trips to do so.

In order to fairly compare the high-level designs,
we implemented ECDH, 3DH, X3DH, and SIGMA-R
using the primitives described in Section 9: group oper-
ations over the Ed25519 twisted Edwards curve, SHA3-
256 for hashing and key derivation, and KMAC256 for
message authentication. We used EdDSA to sign X3DH
and XZDH prekeys. We implemented SIGMA-R as de-
scribed by Di Raimondo et al. [36] using EdDSA for
signatures, and without the identity protection mecha-
nism in the OTR protocol [3]. For Φidre, RSDAKE, and
Spawn, we used the primitives selected in UG15 [93],
which are secure in the standard model. Our experi-
ments use 8-byte identifiers for users, and no higher-
level shared session data. We include identifiers in the
transmission costs for non-interactive protocols.

We performed key exchanges using all 11 protocols
on one Intel Skylake core pinned to 4.0GHz with 8MB
of L3 cache and Intel Turbo Boost disabled. For each
protocol, we measured the thread-specific CPU time re-
quired to perform a key exchange and, independently,
to generate a long-term public key. We gathered 100,000

measurements for each protocol except for Φidre, RS-
DAKE, and Spawn, where the computational costs re-
stricted us to 1,000 measurements each. We also mea-
sured the size of the long-term public keys, prekeys
(where applicable), and the total key exchange traffic
(including one-time prekeys) for each protocol. Table 1
compares the schemes and presents our results. The
“partial” forward secrecy for X3DH and XZDH in the
table denotes the characteristics described in Section 7.

Table 1 shows the dramatic difference between the
protocol classes. The schemes without authentication
and strong deniability (left) require less than 1ms to
generate long-term keys or complete key exchanges. In
contrast, the strongly deniable schemes from UG15 [93]
(middle) are prohibitively more expensive: RSDAKE
and Spawn require several seconds for exchanges and re-
quire kilobytes of transmission, while Φidre requires over
four network round trips. Despite the computational ef-
ficiency of Φidre, it is often the slowest protocol in prac-
tice due to network round-trip time dominating all other
costs in typical networks. DAKEZ, Spawn+, ZDH, and
XZDH (right) provide authentication and strong denia-
bility while nearly matching the weaker schemes’ perfor-
mance: our DAKEs require roughly 1ms of CPU time
and only slightly more communication than SIGMA-R.
The one-time prekeys are 32 bytes for all non-interactive
schemes except Spawn, which uses 938 bytes. The signed
prekeys for X3DH and XZDH are 96 bytes.

Our results show that DAKEZ, ZDH, and XZDH
are the first schemes to offer strong deniability with only
slightly more overhead than AKEs used in popular se-
cure messaging protocols. While comparing Spawn to



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 35

Table 2. Quantum resistance performance overhead

Scheme ∆ Time [ms] PQI [bytes] QR [bytes]
New Hope +0.0542 (0.0041) +1824 +2048

SIDH +63.8 (1.5) +768 +768

Spawn+ demonstrates the value of ROM-based primi-
tives, DAKEZ, ZDH, and XZDH are all more efficient.
For non-interactive settings, XZDH provides better for-
ward secrecy than ZDH with very small overhead.

To quantify the overhead of quantum-resistant ex-
changes, we used the same experimental setup to mea-
sure SIDH [33] and New Hope [4]. Table 2 shows the
cost to use the schemes in our DAKEs in terms of the
added key exchange time and the sizes of PQI and QR.
New Hope requires less computation than the DAKEs
themselves, but it also adds almost 4KiB of data trans-
mission to the overall exchange. SIDH requires under
2KiB of extra data, but it adds over 60ms of compu-
tation. In real secure messaging deployments, the in-
frequency of DAKE operations (compared to message
deliveries) likely makes the overhead of either scheme
negligible. In XZDH, using a scheme for which static-
ephemeral exchanges are safe enables reuse of PQI as
part of the signed prekey, which further reduces costs.

11 KCI Attacks
One aspect of online deniability that is often overlooked
in the literature is the relationship between strongly
deniable key exchange protocols and key compromise
impersonation attacks. A KCI attack begins when the
long-term secret key of a user of a vulnerable DAKE
is compromised. With this secret key, an adversary
can impersonate other users to the owner of the key.
DAKEs offering online deniability, such as Φidre, RS-
DAKE, Spawn, DAKEZ, Spawn+, ZDH, and XZDH, are
inherently vulnerable to key compromise impersonation
attacks. Moreover, “vulnerability” in this context is ac-
tually a desirable property.

In theory, a user who claims to cooperate with a
judge may justifiably refuse to reveal their long-term
secret key because it would make them vulnerable to
a KCI attack. The design of strongly deniable DAKEs
makes it impossible for the user to provide proof of com-
munication to the judge without also revealing their
long-term secret key. This is the primary benefit and
motivation of this class of key exchanges: they prevent
a judge and informant from devising a protocol wherein
the judge is given cryptographic proof of communication
while the informant suffers no repercussions.

However, this scenario may be mostly theoretical.
The more common case in practice may be the one in
which the judge has access to the user’s long-term se-
cret keys. A typical real-world example is when a user is
forced to surrender and unlock their mobile device with
a secure messaging application installed; American and
Canadian border agents currently exercise this power
over travelers [56, 57]. In this situation, the KCI “vulner-
ability” also becomes an asset. We use non-interactive
Spawn+ as an example in the following discussion, but
the ideas can be extended to the other DAKEs.

11.1 KCI Attacks Against Spawn+

The security of Spawn+ does not require trusting the
central server used to distribute prekeys. However, if
we allow a scenario in which the user’s keys have been
compromised but the central server has not, then we can
achieve better plausible deniability. The user may ask
the central server in advance to assist with a forged con-
versation, casting doubt on all conversations conducted
by the judge using the compromised device.

If the judge attempts to act as I in a conversa-
tion using the compromised device, then the user (or a
trusted accomplice with access to the long-term secret
I) can impersonate R by executing RSig with gI and
I instead of gR and R. In practice, the user (or accom-
plice) simply needs to run the protocol honestly, but
pretend to be R in their response to the prekey.

If the judge attempts to act as the responder R of
a conversation using the compromised device, then we
can somewhat improve the situation, but we cannot of-
fer full deniability. The user must ask the central server
to return a false prekey for I that was generated by
the user or their trusted accomplice, and to redirect all
traffic to the associated forging device. This false prekey
must be returned to the judge when they request one.
The user can derive the shared secret k by decrypting
the DREAD ciphertext using I instead of R. In prac-
tice, the judge can always bypass this forgery attempt
by obtaining a legitimate prekey for I and using this
to respond using R. This is a fundamental limitation of
Spawn+ that also applies to Spawn, and is conjectured
to be insurmountable by a two-flow non-interactive pro-
tocol [93]. The design of ZDH in Section 6.2 explicitly
acknowledges this limitation to improve performance.

11.2 Limiting or Preventing KCI Attacks
If the KCI vulnerability is undesirable, it is possi-
ble to make all of our DAKEs more resilient to it
while maintaining their deniability properties. To do



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 36

so, a protocol like Spawn+ can be altered to include
long-term “forger” keys for all participants. For ex-
ample, initiator I would distribute both gI and gFI

as its public key, where gFI is I’s public forging key,
and FI is the associated secret key. The second flow
in the Spawn+ key exchange is then altered so that
the ciphertext and proof are computed as follows:
γ = DREnc(gI , gFR , gr∥QR, “I”∥“R”∥gi∥PQI), and σ =

RSig(gR,R,{gFI , gR, gi}, “I”∥“R”∥gi∥PQI∥γ∥Φ).
In general, this transformation changes all long-

term public keys in the protocol that are not used in
the “honest” case to reference the forging keys instead.
This alteration allows the forging keys to be stored more
securely than the “honest” public keys; since the forging
keys are not needed for normal operation, they may be
stored offline (e.g., on paper in a vault). Alternatively, if
a user (or developer) is more concerned about prevent-
ing KCI attacks than providing online deniability, the
forging secret keys can be destroyed immediately after
generation; this will sacrifice online deniability for the
user, but also prevent KCI attacks against them.

Counterintuitively, implementing this option for
users can actually provide both benefits in practice.
Consider a secure messaging application that asks users
whether or not they would like to save forging keys dur-
ing setup. Even if most users select the default option to
securely erase the forging keys, thereby preventing them
from performing the online forgery techniques described
above, a judge does not generally know the choice of a
particular user. Consequently, a judge that engages in
a conversation using a compromised device is given two
explanations: either the conversation is genuine, or the
owner of the device was one of the users that elected
to store the forgery keys and they are using those keys
to forge the conversation. The result is that a degree
of plausible deniability is preserved, even though most
users in this scenario become immune to KCI attacks.

The same general transformation works for the
other DAKEs described in this paper. Note that trust
establishment (e.g., physical exchange of key finger-
prints) must cover both keys in this scheme.

12 Conclusion
Due to practical weaknesses with existing DAKEs, the
most popular “deniable” secure messaging protocols
still lack the strongest deniability notions considered
by cryptographers. In this work, we proposed DAKEZ,
ZDH, and XZDH as a means to bridge this gap. Our
DAKEs retain the most important security and de-
ployability properties for modern secure messaging en-

vironments while providing provably strong deniabil-
ity. We presented concrete instantiations that overcome
the limitations preventing previous DAKEs from being
widely used. With networks growing increasingly hos-
tile and security breaches becoming commonplace, our
need to maintain control over our information has never
been more important. It is our hope that the substan-
tially improved DAKEs presented here will eventually
be deployed in popular messaging protocols, and subse-
quently provide strong deniability for real-world users.

Acknowledgments
The authors would like to thank Makulf Kohlweiss and
the anonymous reviewers for their insightful comments
and feedback, Alfredo Rial Duran for his exception-
ally detailed verification of our security proofs, Peter
Schwabe for his comments on contributiveness and New
Hope, and David Jao for his comments on SIDH. We
gratefully acknowledge the support of NSERC for grants
RGPIN-2017-03858 and STPGP-463324-14.

References
[1] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-

out-of-n Signatures from a Variety of Keys. In International
Conference on the Theory and Application of Cryptology
and Information Security, pages 415–432. Springer, 2002.

[2] Ben Adida, Susan Hohenberger, and Ronald L Rivest. Ad-
Hoc-Group Signatures from Hijacked Keypairs. In in DI-
MACS Workshop on Theft in E-Commerce, 2005.

[3] Chris Alexander and Ian Goldberg. Improved User Au-
thentication in Off-The-Record Messaging. In Workshop
on Privacy in the Electronic Society, pages 41–47. ACM,
2007.

[4] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter
Schwabe. Post-quantum Key Exchange—A New Hope. In
25th USENIX Security Symposium (USENIX Security 16),
pages 327–343. USENIX Association, 2016.

[5] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent
Scarlata. Innovative Technology for CPU Based Attestation
and Sealing. In 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy, vol-
ume 13, 2013.

[6] Adrian Antipa, Daniel Brown, Alfred Menezes, René Struik,
and Scott Vanstone. Validation of Elliptic Curve Public
Keys. In Public Key Cryptography—PKC 2003, pages 211–
223. Springer, 2003.

[7] Diego de Freitas Aranha and Conrado Porto Lopes Gouvêa.
RELIC is an Efficient LIbrary for Cryptography, 2009. URL
https://github.com/relic-toolkit/relic. Accessed 2017-08-
11.

[8] Gilles Van Assche. Keccak Code Package, 2013. URL
https://github.com/gvanas/KeccakCodePackage. Accessed
2017-08-11.

https://github.com/relic-toolkit/relic
https://github.com/gvanas/KeccakCodePackage


Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 37

[9] Erinn Atwater and Urs Hengartner. Shatter: Using Thresh-
old Cryptography to Protect Single Users with Multiple
Devices. In Proceedings of the 9th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, pages
91–102. ACM, 2016.

[10] Mihir Bellare and Phillip Rogaway. Entity Authentica-
tion and Key Distribution. In Advances in Cryptology–
CRYPTO’93, pages 232–249. Springer, 1993.

[11] Mihir Bellare and Phillip Rogaway. Random Oracles are
Practical: A Paradigm for Designing Efficient Protocols. In
Proceedings of the 1st ACM conference on Computer and
communications security, pages 62–73. ACM, 1993.

[12] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip
Rogaway. Relations Among Notions of Security for Public-
Key Encryption Schemes. In Annual International Cryptol-
ogy Conference, pages 26–45. Springer, 1998.

[13] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Secu-
rity of the Cipher Block Chaining Message Authentication
Code. Journal of Computer and System Sciences, 61(3):
362–399, 2000.

[14] Mihir Bellare, David Pointcheval, and Phillip Rogaway.
Authenticated Key Exchange Secure Against Dictionary
Attacks. In Advances in Cryptology–EUROCRYPT, pages
139–155. Springer, 2000.

[15] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring
Signatures: Stronger Definitions, and Constructions without
Random Oracles. In Theory of Cryptography, pages 60–79.
Springer, 2006.

[16] Daniel J Bernstein. Curve25519: new Diffie-Hellman speed
records. In Public Key Cryptography—PKC 2006, pages
207–228. Springer, 2006.

[17] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter
Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. Journal of Cryptographic Engineering, 2(2):
77–89, 2012.

[18] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham.
Aggregate and Verifiably Encrypted Signatures from Bilin-
ear Maps. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 416–432.
Springer, 2003.

[19] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-
Record Communication, or, Why Not To Use PGP. In
Workshop on Privacy in the Electronic Society, pages 77–
84. ACM, 2004.

[20] Colin Boyd, Wenbo Mao, and Kenneth G Paterson. Key
Agreement using Statically Keyed Authenticators. In Ap-
plied Cryptography and Network Security, pages 248–262.
Springer, 2004.

[21] Emmanuel Bresson, Jacques Stern, and Michael Szydlo.
Threshold Ring Signatures and Applications to Ad-hoc
Groups. In Annual International Cryptology Conference,
pages 465–480. Springer, 2002.

[22] Jan Camenisch and Markus Stadler. Efficient Group Sig-
nature Schemes for Large Groups. In Annual International
Cryptology Conference, pages 410–424. Springer, 1997.

[23] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Foundations of
Computer Science, 2001. Proceedings. 42nd IEEE Sympo-
sium on, pages 136–145. IEEE, 2001.

[24] Ran Canetti and Hugo Krawczyk. Security Analysis of
IKE’s Signature-based Key-Exchange Protocol. In Advances
in Cryptology–CRYPTO’02, pages 143–161. Springer,
2002.

[25] Ran Canetti and Hugo Krawczyk. Universally Compos-
able Notions of Key Exchange and Secure Channels. In
International Conference on the Theory and Applications of
Cryptographic Techniques, pages 337–351. Springer, 2002.

[26] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi
Walfish. Universally Composable Security with Global
Setup. In Theory of Cryptography Conference, pages 61–
85. Springer, 2007.

[27] CertiVox. MIRACL Cryptographic SDK, 2012. URL https:
//github.com/miracl/MIRACL. Accessed 2017-08-11.

[28] Sanjit Chatterjee, Neal Koblitz, Alfred Menezes, and Palash
Sarkar. Another Look at Tightness II: Practical Issues in
Cryptography. IACR Cryptology ePrint Archive, 2016:360,
2016.

[29] Sherman SM Chow, Siu-Ming Yiu, and Lucas CK Hui.
Efficient Identity Based Ring Signature. In International
Conference on Applied Cryptography and Network Security,
pages 499–512. Springer, 2005.

[30] Sherman SM Chow, Matthew Franklin, and Haibin Zhang.
Practical Dual-Receiver Encryption. In Cryptographers’
Track at the RSA Conference, pages 85–105. Springer,
2014.

[31] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro,
Luisa Siniscalchi, and Ivan Visconti. Improved OR Com-
position of Sigma-Protocols. In Theory of Cryptography
Conference, pages 112–141. Springer, 2016.

[32] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro,
Luisa Siniscalchi, and Ivan Visconti. Online/Offline OR
Composition of Sigma Protocols. In Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 63–92. Springer, 2016.

[33] Craig Costello, Patrick Longa, and Michael Naehrig. Effi-
cient algorithms for supersingular isogeny Diffie-Hellman.
In Advances in Cryptology. Springer, 2016.

[34] Ronald Cramer and Victor Shoup. Design and Analysis of
Practical Public-Key Encryption Schemes Secure against
Adaptive Chosen Ciphertext Attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

[35] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers.
Proofs of Partial Knowledge and Simplified Design of Wit-
ness Hiding Protocols. In Annual International Cryptology
Conference, pages 174–187. Springer, 1994.

[36] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk.
Secure Off-the-Record Messaging. In Proceedings of the
2005 ACM Workshop on Privacy in the Electronic Society,
pages 81–89. ACM, 2005.

[37] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk.
Deniable Authentication and Key Exchange. In Conference
on Computer and Communications Security, pages 400–
409. ACM, 2006.

[38] Theodore Diament, Homin K Lee, Angelos D Keromytis,
and Moti Yung. The Dual Receiver Cryptosystem and Its
Applications. In Proceedings of the 11th ACM Conference
on Computer and Communications Security, pages 330–
343. ACM, 2004.

https://github.com/miracl/MIRACL
https://github.com/miracl/MIRACL


Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 38

[39] Whitfield Diffie and Martin Hellman. New Directions in
Cryptography. IEEE transactions on Information Theory,
22(6):644–654, 1976.

[40] Roger Dingledine. Tor security advisory: DH handshake
flaw, 2005. URL http://archives.seul.org/or/announce/
Aug-2005/msg00002.html. Accessed 2017-08-11.

[41] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and
Victor Shoup. Anonymous Identification in Ad Hoc Groups.
In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 609–626. Springer,
2004.

[42] Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi
Walfish. Composability and On-Line Deniability of Au-
thentication. In Theory of Cryptography, pages 146–162.
Springer, 2009.

[43] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-
Malleable Cryptography. In SIAM Journal on Computing,
pages 542–552, 1998.

[44] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent
Zero-Knowledge. In Symposium on Theory of Computing,
pages 409–418. ACM, 1998.

[45] Taher ElGamal. A Public Key Cryptosystem and a Signa-
ture Scheme Based on Discrete Logarithms. IEEE Transac-
tions on Information Theory, 31(4):469–472, 1985.

[46] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Mar-
son, and Daniele Venturi. On the Non-malleability of the
Fiat-Shamir Transform. In International Conference on
Cryptology in India, pages 60–79. Springer, 2012.

[47] Amos Fiat and Moni Naor. Broadcast Encryption. In
Annual International Cryptology Conference, pages 480–
491. Springer, 1993.

[48] Amos Fiat and Adi Shamir. How To Prove Yourself: Prac-
tical Solutions to Identification and Signature Problems.
In Advances in Cryptology–CRYPTO’86, pages 186–194.
Springer, 1987.

[49] M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi.
Key Confirmation in Key Exchange: A Formal Treatment
and Implications for TLS 1.3. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 452–469, 2016.

[50] Marc Fischlin and Sogol Mazaheri. Notions of Deniable
Message Authentication. In Proceedings of the 14th ACM
Workshop on Privacy in the Electronic Society, WPES
’15, pages 55–64. ACM, 2015. ISBN 978-1-4503-3820-2.
10.1145/2808138.2808143.

[51] Marc Fischlin and Cristina Onete. Relaxed Security Notions
for Signatures of Knowledge. In International Conference
on Applied Cryptography and Network Security, pages
309–326. Springer, 2011.

[52] Steven D Galbraith, Christophe Petit, Barak Shani, and
Yan Bo Ti. On the security of supersingular isogeny cryp-
tosystems. In Advances in Cryptology–ASIACRYPT, pages
63–91. Springer, 2016.

[53] Juan A Garay, Philip MacKenzie, and Ke Yang. Strength-
ening Zero-Knowledge Protocols Using Signatures. In
Eurocrypt, volume 2656, pages 177–194. Springer, 2003.

[54] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and
Tal Rabin. Secure Distributed Key Generation for Discrete-
Log Based Cryptosystems. In Advances in Cryptology–
EUROCRYPT, pages 295–310. Springer, 1999.

[55] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A
Digital Signature Scheme Secure Against Adaptive Chosen-
Message Attacks. SIAM Journal on Computing, 17(2):
281–308, 1988.

[56] Mark Gollom. Alain Philippon phone password case:
Powers of border agents and police differ, 2015. URL
http://www.cbc.ca/news/1.2983841. Accessed 2017-08-11.

[57] Loren Grush. A US-born NASA scientist was detained at
the border until he unlocked his phone, 2017. URL https:
//www.theverge.com/2017/2/12/14583124/. Accessed
2017-08-11.

[58] Viet Tung Hoang, Jonathan Katz, and Alex J Maloze-
moff. Automated Analysis and Synthesis of Authenticated
Encryption Schemes. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, pages 84–95. ACM, 2015.

[59] Dennis Hofheinz, Jörn Müller-Quade, and Rainer Stein-
wandt. Initiator-Resilient Universally Composable Key Ex-
change. In European Symposium on Research in Computer
Security, pages 61–84. Springer, 2003.

[60] David Jao and Luca De Feo. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. In
International Workshop on Post-Quantum Cryptography,
pages 19–34. Springer, 2011.

[61] Shaoquan Jiang and Reihaneh Safavi-Naini. An Efficient
Fully Deniable Key Exchange Protocol. In Financial Cryp-
tography and Data Security. Springer, 2008.

[62] Jonathan Katz. Efficient and Non-Malleable Proofs of
Plaintext Knowledge and Applications. In Advances in
Cryptology–EUROCRYPT, pages 211–228. Springer, 2003.

[63] John Kelsey, Shu-jen Chang, and Ray Perlner. SHA-3
Derived Functions. NIST Special Publication, 800:185,
2016.

[64] Taechan Kim and Razvan Barbulescu. Extended Tower
Number Field Sieve: A New Complexity for the Medium
Prime Case. In Advances in Cryptology–CRYPTO’16,
pages 543–571. Springer, 2016.

[65] Neal Koblitz and Alfred J Menezes. The random oracle
model: a twenty-year retrospective. Designs, Codes and
Cryptography, 77(2-3):587–610, 2015.

[66] Hugo Krawczyk. SKEME: A Versatile Secure Key Exchange
Mechanism for Internet. In Network and Distributed Sys-
tem Security Symposium, pages 114–127. IEEE, 1996.

[67] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach
to authenticated Diffie-Hellman and its use in the IKE
protocols. In Annual International Cryptology Conference,
pages 400–425. Springer, 2003.

[68] Adam Langley. Intent to Implement and Ship: CECPQ1 for
TLS, 2016. URL https://groups.google.com/a/chromium.
org/forum/#!topic/security-dev/DS9pp2U0SAc. Accessed
2017-08-11.

[69] Chae Hoon Lim and Pil Joong Lee. A Key Recovery Attack
on Discrete Log-based Schemes Using a Prime Order Sub-
group. In Advances in Cryptology—CRYPTO ’97, pages
249–263. Springer-Verlag, 1997.

[70] Yehuda Lindell. General Composition and Universal Com-
posability in Secure Multi-Party Computation. In Founda-
tions of Computer Science, 2003. Proceedings. 44th Annual
IEEE Symposium on, pages 394–403. IEEE, 2003.

http://archives.seul.org/or/announce/Aug-2005/msg00002.html
http://archives.seul.org/or/announce/Aug-2005/msg00002.html
http://dx.doi.org/10.1145/2808138.2808143
http://www.cbc.ca/news/1.2983841
https://www.theverge.com/2017/2/12/14583124/
https://www.theverge.com/2017/2/12/14583124/
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/DS9pp2U0SAc
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/DS9pp2U0SAc


Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 39

[71] Joseph K Liu, Victor K Wei, and Duncan S Wong. Link-
able Spontaneous Anonymous Group Signature for Ad Hoc
Groups. In Australasian Conference on Information Security
and Privacy, pages 325–335. Springer, 2004.

[72] Luke Rosiak. Here’s Cryptographic Proof That Donna
Brazile Is Wrong, WikiLeaks Emails Are Real, 2016. URL
http://dailycaller.com/2016/10/21/heres-cryptographic-
proof-that-donna-brazile-is-wrong-wikileaks-emails-are-
real/. Accessed 2017-08-11.

[73] Ben Lynn. The Pairing-Based Cryptography Library, 2006.
URL https://crypto.stanford.edu/pbc/. Accessed 2017-08-
11.

[74] Marry Madden. Americans’ Attitudes About Privacy, Secu-
rity and Surveillance, 2015. URL http://www.pewinternet.
org/2015/05/20/americans-attitudes-about-privacy-
security-and-surveillance/. Accessed 2017-08-11.

[75] Moxie Marlinspike and Trevor Perrin. The X3DH Key
Agreement Protocol, 2016. URL https://whispersystems.
org/docs/specifications/x3dh/. Accessed 2017-08-11.

[76] Andrew Moon. Implementations of a fast Elliptic-curve
Digital Signature Algorithm, 2012. URL https://github.
com/floodyberry/ed25519-donna. Accessed 2017-08-11.

[77] Moni Naor and Moti Yung. Public-key Cryptosystems
Provably Secure against Chosen Ciphertext Attacks. In
Proceedings of 22nd Annual ACM Symposium on Theory
of Computing, pages 427–437. ACM, 1990.

[78] Open Whisper Systems. Simplifying OTR deniability, 2013.
URL https://www.whispersystems.org/blog/simplifying-
otr-deniability. Accessed 2017-08-11.

[79] Open Whisper Systems. Open Whisper Systems, 2013.
URL https://www.whispersystems.org/. Accessed 2017-08-
11.

[80] Open Whisper Systems. Open Whisper Systems partners
with WhatsApp to provide end-to-end encryption, 2014.
URL https://www.whispersystems.org/blog/whatsapp/.
Accessed 2017-08-11.

[81] Open Whisper Systems. Open Whisper Systems partners
with Google on end-to-end encryption for Allo, 2016. URL
https://whispersystems.org/blog/allo/. Accessed 2017-08-
11.

[82] Open Whisper Systems. Facebook Messenger deploys
Signal Protocol for end to end encryption, 2016. URL
https://whispersystems.org/blog/facebook-messenger/.
Accessed 2017-08-11.

[83] OTR Development Team. Off-the-Record Messaging Pro-
tocol version 3, 2016. URL https://otr.cypherpunks.ca/
Protocol-v3-4.1.1.html. Accessed 2017-08-11.

[84] Trevor Perrin and Moxie Marlinspike. The Double Ratchet
Algorithm, 2016. URL https://whispersystems.org/docs/
specifications/doubleratchet/. Accessed 2017-08-11.

[85] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to
Leak a Secret. In International Conference on the Theory
and Application of Cryptology and Information Security,
pages 552–565. Springer, 2001.

[86] Phillip Rogaway. Authenticated-Encryption with
Associated-Data. In Proceedings of the 9th ACM con-
ference on Computer and communications security, pages
98–107. ACM, 2002.

[87] Sven Schäge. TOPAS: 2-Pass Key Exchange with Full
Perfect Forward Secrecy and Optimal Communication

Complexity. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
pages 1224–1235. ACM, 2015.

[88] John M Schanck, William Whyte, and Zhenfei Zhang.
Circuit-extension handshakes for Tor achieving forward
secrecy in a quantum world. Proceedings on Privacy En-
hancing Technologies, 2016(4):219–236, 2016.

[89] Claus-Peter Schnorr. Efficient Signature Generation by
Smart Cards. Journal of Cryptology, 4(3):161–174, 1991.

[90] Hovav Shacham and Brent Waters. Efficient Ring Signa-
tures without Random Oracles. In Public Key Cryptogra-
phy, pages 166–180. Springer, 2007.

[91] Gene Tsudik. Message Authentication with One-Way Hash
Functions. ACM SIGCOMM Computer Communication
Review, 22(5):29–38, 1992.

[92] Nik Unger. Deniable Key Exchanges for Secure Messaging.
PhD thesis, University of Waterloo, 2015.

[93] Nik Unger and Ian Goldberg. Deniable Key Exchanges
for Secure Messaging. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, pages 1211–1223. ACM, 2015.

[94] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl,
Henning Perl, Ian Goldberg, and Matthew Smith. SoK:
Secure Messaging. In 2015 IEEE Symposium on Security
and Privacy, pages 232–249, 2015.

[95] Shabsi Walfish. Enhanced Security Models for Network
Protocols. PhD thesis, New York University, 2008.

[96] Shangping Wang, Rui Ma, Yaling Zhang, and Xiaofeng
Wang. Ring signature scheme based on multivariate pub-
lic key cryptosystems. Computers & Mathematics with
Applications, 62(10):3973–3979, 2011.

[97] Weiqiang Wen, Libin Wang, and Min Xie. One-Round
Deniable Key Exchange with Perfect Forward Security.
Technical Report 2014/904, Cryptology ePrint Archive,
2014. URL https://eprint.iacr.org/2014/661.

[98] Hu Xiong, Zhiguang Qin, and Fagen Li. A Taxonomy of
Ring Signature Schemes: Theory and Applications. IETE
Journal of Research, 59(4):376–382, 2013.

[99] Andrew Chi-Chih Yao and Yunlei Zhao. OAKE: A New
Family of Implicitly Authenticated Diffie-Hellman Proto-
cols. In Conference on Computer and Communications
Security, pages 1113–1128. ACM, 2013.

[100] Kazuki Yoneyama and Kazuo Ohta. Ring Signatures: Uni-
versally Composable Definitions and Constructions. Infor-
mation and Media Technologies, 2(4):1038–1051, 2007.

[101] Taek-Young Youn, Changhoon Lee, and Young-Ho Park.
An efficient non-interactive deniable authentication scheme
based on trapdoor commitment schemes. Computer Com-
munications, 34(3):353–357, 2011.

[102] Fangguo Zhang and Kwangjo Kim. ID-Based Blind Sig-
nature and Ring Signature from Pairings. In International
Conference on the Theory and Application of Cryptology
and Information Security, pages 533–547. Springer, 2002.

http://dailycaller.com/2016/10/21/heres-cryptographic-proof-that-donna-brazile-is-wrong-wikileaks-emails-are-real/
http://dailycaller.com/2016/10/21/heres-cryptographic-proof-that-donna-brazile-is-wrong-wikileaks-emails-are-real/
http://dailycaller.com/2016/10/21/heres-cryptographic-proof-that-donna-brazile-is-wrong-wikileaks-emails-are-real/
https://crypto.stanford.edu/pbc/
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
https://whispersystems.org/docs/specifications/x3dh/
https://whispersystems.org/docs/specifications/x3dh/
https://github.com/floodyberry/ed25519-donna
https://github.com/floodyberry/ed25519-donna
https://www.whispersystems.org/blog/simplifying-otr-deniability
https://www.whispersystems.org/blog/simplifying-otr-deniability
https://www.whispersystems.org/
https://www.whispersystems.org/blog/whatsapp/
https://whispersystems.org/blog/allo/
https://whispersystems.org/blog/facebook-messenger/
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html
https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/doubleratchet/
https://eprint.iacr.org/2014/661


Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 40

A Online Deniability Attacks
In this work, online deniability is generally discussed
in an abstract manner that can obscure the implica-
tions. This appendix describes two illustrative types of
attacks—coercive judges and malicious participants—
against two popular secure messaging protocols lacking
online deniability—OTRv3 and Signal. Our DAKEs are
immune to these attacks because the coerced or ma-
licious participant can simulate the victim; this inval-
idates the trustworthiness of any transcript that they
help to generate, since they may be secretly imperson-
ating the other user in the conversation.

Because the purpose of this appendix is to present
technical details, we assume that the reader is fa-
miliar with the OTRv3 [83], X3DH [75], and double
ratchet [84] specifications. The examples adopt the no-
tation of the relevant specifications. For simplicity, the
examples omit irrelevant protocol and verification steps.

A.1 Coercive Judges
In this attack, an online judge coerces a protocol par-
ticipant into interactively proving that messages were
authored by a victim, without compromising long-term
secrets. The participant shares a secure channel with
the judge. Deviations from the protocol are detectable.
The same approach works for both OTRv3 and Signal:
1. The AKE is completed between the victim and the

judge. The coerced participant provides the authen-
ticating information necessary to cause the victim
to believe they are communicating with the partici-
pant, rather than the judge.

2. The judge conducts the resulting conversation nor-
mally, with no need for the participant other than
relaying ciphertexts. The judge can be certain that
all messages they exchange are with the victim.

A.1.1 OTRv3
In this example, Judson is the judge, Alice is the victim,
and Bob is the coerced participant. Alice and Bob are
the entities described in the OTRv3 specification [83].
1. Bob establishes a connection to Alice.
2. Judson picks random values r and x.
3. Judson sends AESr(gx) and HASH(gx) to Alice

through Bob.
4. Alice replies with gy.
5. Judson computes MB normally, forces Bob to pro-

duce sigB(MB), and verifies the signature.

6. Judson continues normally and sends r, AESc(XB),
and MACm2(AESc(XB)) to Alice through Bob.

7. Alice sends AESc′(XA) and MACm2′(AESc′(XA)).
8. Judson now shares s = gxy with Alice and continues

the OTR session, relaying ciphertexts through Bob.
The reverse attack, where Judson coerces Alice into es-
tablishing a session with Bob, is nearly identical.

A.1.2 Signal
In this example, Judson is the judge, Alice is the coerced
participant, and Bob is the victim. Alice, Bob, and the
server are the entities in the X3DH specification [75].
1. Alice contacts the server and receives Bob’s prekey

bundle: IKB , SPKB , Sig(IKB ,Encode(SPKB)),
and (without loss of generality) OPKB .

2. Judson generates a key pair with public key EKA.
3. Judson forces Alice to compute and reveal DH1 =

DH(IKA, SPKB). Optionally, Judson may ask for a
zero-knowledge proof of correctness for DH1.

4. Judson sends EKA to Bob through Alice.
5. Judson computes DH2, DH3, and DH4 using

the secret for EKA. Judson then computes SK =

KDF(DH1∥DH2∥DH3∥DH4), which is also known
by Bob. Judson now continues the Signal session nor-
mally, relaying ciphertexts through Alice.

Note that while this attack does not reveal IKA to Jud-
son, it does slightly weaken the security of future ex-
changes with IKA and SPKB ; this is alleviated when
SPKB is replaced or one-time prekeys are used by Bob.

The reverse attack, where Judson coerces Bob into
communicating with Alice, is more complex because
Judson must generate the prekeys. In that case, the
risks to Bob can be mitigated by using a distributed key
generation scheme [54] to jointly generate the prekeys.
When Alice selects a bundle, Bob sends the associated
shares to Judson, who reconstructs the secrets. For bun-
dles selected by non-victims, Judson sends the associ-
ated shares to Bob, who proceeds unmonitored.

A.2 Malicious Users
In this attack, a malicious participant interacts with a
purpose-built third-party service during a conversation
with a victim. Assuming that the public keys of the par-
ticipant, victim, and service are known and validated,
the participant and service did not collude to forge the
transcript, and the service does not have direct access
to the connection for the conversation, the participant
is able to produce non-repudiable proof of message au-
thorship by the victim. It is possible to do this while



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 41

protecting the participant’s long-term keys, preventing
the service from reading or modifying the conversation,
preventing forgery by any individual party or outsider,
allowing the participant to selectively disclose only a
portion of the conversation, and preventing a forward
secrecy breach when only the service is compromised.

The overall attack involves using the service to pro-
duce a trustworthy log of the protocol transcript (the
exact network data transmitted to and from the partic-
ipant), and enabling the participant to selectively pub-
lish ephemeral keys for ciphertexts to reveal portions
of the conversation transcript (the plaintext messages
exchanged in the session).

The basic approach is the same for both OTRv3
and Signal: the service maintains the keys for the ses-
sion and otherwise behaves honestly, while the partic-
ipant handles sending and receiving ciphertexts. Both
the participant and service digitally sign protocol mes-
sages and, when necessary, they use secure multiparty
computation (SMC) to allow the participant to conduct
the conversation. Alternatively, a different trustworthy
logging mechanism, like Intel SGX secure enclaves [5],
can be used instead.

The protocol begins by performing the attack
against the AKE from Section A.1 in such a way that
the participant is given proof of the victim’s identity and
the service cannot select a specific ephemeral secret.
When the participant receives a message:
1. The participant signs the protocol message.
2. The participant and service perform SMC to verify

the authenticity of the protocol message and decrypt
the message for the participant (but not the service).

3. The service signs the participant’s signature and as
much of the protocol message as possible without
being given enough data to decrypt it.

When the participant wants to send a message:
1. The participant and service use SMC to generate the

encrypted and authenticated protocol message.
2. The participant signs the protocol message.
3. The service signs the participant’s signature and as

much of the protocol message as possible.
While the conversation is ongoing, before erasing
ephemeral keys needed to decrypt messages, the ser-
vice encrypts them under a public key generated by the
participant at the start of the protocol, and stores them.
When the participant wants to incriminate the victim:
1. The participant asks the service to terminate.
2. The service sends the encrypted ephemeral keys it

has stored, and any currently active keys, to the par-
ticipant. The service then terminates the session.

3. The participant publishes the signatures, proving
that the protocol transcript is real and unmodified.

4. The participant can selectively reveal messages by
decrypting and publishing the old ephemeral keys
needed to decrypt and authenticate target messages.

A.2.1 Protocol Specifics
When the service performs the attack from Section A.1
on either OTRv3 or Signal, the ephemeral key is pro-
duced using distributed key generation [54] and the par-
ticipant’s share is revealed to the service.

For OTRv3, the service reveals r, m1, c′, and m1′

to the participant to verify the victim. For Signal, the
participant uses the signed prekey to verify the victim.

When receiving a message in OTRv3, SMC is used
to check the MAC; the victim keeps the ciphertext and
received MAC secret, and the service keeps mk secret.
To decrypt, the service verifiably reveals the AES-CTR
keystream for the received ctr using SMC, and the par-
ticipant uses it to privately decrypt the ciphertext. In
Signal, the service simply reveals the message key. In
both cases, the service only assists with decryption af-
ter signing the participant’s signature on the protocol
message. It is not necessary for the service to verify the
participant’s signature, since cheating will be detected
during verification of the incriminating transcript.

When sending a message in OTRv3 or Signal, the
participant generates a symmetric key. The parties then
use SMC to encrypt and authenticate a message (known
to the participant) with the message key (known to the
service), with the resulting ciphertext being encrypted
under the participant’s symmetric key.

Because the service reveals message keys for Sig-
nal, it is not necessary for it to store encrypted versions
for later release; this is only needed for expired Diffie-
Hellman secrets in OTRv3.

B DREAD Security
In Section 4.2, we defined DREAD schemes and the
security properties that we require from them. These
properties can be easily derived from those given by
Chow et al. [30] by incorporating the associated data
parameter Φ where needed:
– Soundness8: ciphertexts decrypt to the same value

(including �) even when the keys used by DREnc are
not honestly generated, or the ciphertext is not pro-

8 Chow et al. [30] refer to the analogous property for DRE as
strong soundness.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 42

duced by DREnc at all. Concretely, any probabilistic
polynomial time (PPT) adversary has negligible ad-
vantage in the following game:
1. The adversary produces a ciphertext γ, associated

data Φ, and two public keys pk1 and pk2.
2. Let sk1 and sk2 be the unique secret keys associ-

ated with pk1 and pk2.
3. The adversary wins if DRDec(pk1, pk2, sk1,Φ, γ) ≠

DRDec(pk1, pk2, sk2,Φ, γ).
Note that this definition requires the cryptosystem
used in the DREAD construction to be admissible, as
defined in Section 4.2. ElGamal is admissible [30].

– Dual-receiver IND-CCA2 security: any PPT ad-
versary has negligible advantage in the following game
against a sound scheme9:
1. The challenger produces (pki, ski)← DRGen() for

i ∈ {1, 2} and sends (pk1, pk2) to the adversary.
2. The adversary is given decryption oracle access for

DRDec(pk1, pk2, sk1, ⋅, ⋅). The adversary may per-
form a polynomially bounded number of DREnc
calls, oracle requests, and other operations.

3. The adversary chooses two messages, m1 and m2,
of equal length, and associated data Φ. The ad-
versary sends (m1,m2,Φ) to the challenger.

4. The challenger chooses b $
←Ð {1, 2} and sends γ ←

DREnc(pk1, pk2,mb,Φ) to the adversary.
5. The adversary may perform a polynomially

bounded number of calls to DREnc, oracle re-
quests, and other operations.

6. The adversary outputs a guess bit b′.
7. The adversary wins if b = b′ and it did not query

the oracle for DRDec(pk1, pk2, sk1,Φ, γ) in step 5.
It is easy to see that the DREAD construction in Sec-
tion 4.2 satisfies the soundness property. If the NIZKPK
verifies, then except with negligible probability, both El-
Gamal ciphertexts must encode the same value K due
to the soundness of the NIZKPK scheme. Consequently,
both sk1 and sk2 must cause ADec to return the same
value. Otherwise, decryption with either key returns �.

The proof of dual-receiver IND-CCA2 security for
the DREAD construction in Section 4.2 can be derived
from the proofs given by Faust et al. [46] and by Cramer
and Shoup [34] as described in Section 4.2.

9 The soundness property simplifies the definition of the game
by eliminating the need for two decryption oracles [30].

C Ring Signature Security
In Section 4.3 we defined a ROM-based ring signature
scheme based on an SoK of one out of three discrete
logarithms. We require this RSig/RVrf scheme to satisfy
two security properties defined by Bender et al. [15]:
– Anonymity against full key exposure [15, Def. 4]:

it is not possible to determine which secret key was
used to produce the ring signature, even if all secret
keys are revealed. Concretely, any PPT adversary has
negligible advantage in the following game:
1. The challenger generates n key pairs (PKi, SKi)

where n is a polynomial of the security parameter.
Let PK be the set of all public keys, and SK be
the set of all secret keys.

2. The adversary is given PK and access to an or-
acle ORSig(⋅, ⋅, ⋅) such that ORSig(S̄, m̄, ī) returns
RSig(PKī, SKī, S̄, m̄) where we require PKī ∈ S̄.

3. The adversary outputs a message m, distinct in-
dices i and j, and a ring S for which PKi, PKj ∈ S.
The adversary is given SK.

4. The challenger chooses b $
←Ð {i, j} and sends σ ←

RSig(PKb, SKb, S,m) to the adversary.
5. The adversary outputs b′ and wins if b = b′.

– Unforgeability with respect to insider corrup-
tion [15, Def. 7]: it is not possible to produce an il-
legitimate ring signature, even with access to legiti-
mate signatures that were produced using adversar-
ially controlled keys in their rings. Concretely, any
PPT adversary wins the following game with negligi-
ble probability:
1. The challenger generates n key pairs (PKi, SKi)

where n is a polynomial of the security parameter.
Let PK be the set of all public keys, SK be the
set of all secret keys, and C ← ∅ be the set of
corrupted users.

2. The adversary is given PK.
3. The adversary is given access to an ora-

cle ORSig(⋅, ⋅, ⋅) such that ORSig(S̄, m̄, ī) returns
RSig(PKī, SKī, S̄, m̄) where we require PKī ∈ S̄.

4. The adversary is given access to a corruption or-
acle Ocorr(⋅) such that Ocorr(̄i) returns SKī and
sets C ← C ∪ {PKī}.

5. The adversary outputs (S,σ,m) and wins if
RVrf(S,σ,m) = TRUE, the adversary never
queried ORSig(S,m, ⋅), and S ⊆ PK ∖C.

Some previous work has been done on proving the
security of ring signatures in the universal composabil-
ity framework. Fischlin and Onete [51] presented ideal



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 43

functionalities for SoKs, and Yoneyama and Ohta [100]
defined a ring signature functionality that is provably
equivalent to Bender’s security properties [15]. However,
neither of these schemes is defined for recent frameworks
with more accurate modeling of cross-session state (e.g.,
long-lived public keys). Defining ring signature func-
tionalities for more realistic frameworks is a substantial
task that is beyond the scope of this work. The remain-
der of this appendix presents security theorems for the
RSig/RVrf scheme following the game-based definitions.

Theorem 1 (Anonymity of RSig/RVrf)
If the SoK produced by RSig is zero-knowledge,
then the RSig/RVrf ring signature scheme provides
anonymity against full key exposure.

The proof of Theorem 1 directly follows from the secu-
rity assumption. Since the SoK is zero-knowledge, the
adversary learns nothing from the signing oracle or from
the private keys. The construction of the SoK in Sec-
tion 4.3 is known to be zero-knowledge in the ROM [22].

In fact, the RSig/RVrf construction fulfills an even
stronger property than we require: the signer remains
anonymous even if the secret keys are revealed at the
start of the game. As far as we know, this stronger prop-
erty has no name in the ring signature literature.

Theorem 2 (Unforgeability of RSig/RVrf)
If the discrete logarithm problem is hard in G, then
the RSig/RVrf ring signature scheme provides un-
forgeability with respect to insider corruption.

It is known that SoKs produced by the Fiat-Shamir
heuristic [48] are weakly simulation-extractable [46]: for
any PPT adversary with access to a proof simulator that
can produce a valid new proof (one not retrieved from
the simulator), there is an efficient extractor that can re-
trieve a witness for that proof. Using this extractor, the
reduction for Theorem 2 becomes simple: given an ad-
versary that can forge ring signatures, include a blinded
group element in the ring, then extract a witness from
the forged proof to compute the discrete logarithm of
that group element with non-negligible probability.

D DAKE Security Proof
Techniques

In this appendix, we outline the techniques that we use
to sketch the security proofs for DAKEZ, Spawn+, ZDH,
and XZDH in Appendices E, F, G, and H, respectively.

D.1 Related Models and Frameworks
Several techniques have been suggested for modeling
and proving deniability properties of DAKEs. Di Rai-
mondo et al. first formalized the notion of DAKEs [37].
Recently, Fischlin and Mazaheri [50] proposed weaker
deniability notions that can characterize the properties
of SIGMA, 3DH, and X3DH. Dodis et al. [42], hereafter
referred to as DKSW09, pointed out that the notions
of online and offline deniability have natural parallels in
security proofs within the universal composability (UC)
framework introduced by Canetti [23]. UC is a frame-
work for instantiating security models and using them
to prove the security of protocols. A protocol that is
secure in a UC-based model is guaranteed to retain its
security properties under arbitrary compositions, even
when arbitrary protocols are run concurrently.

A UC security proof involves defining an ideal func-
tionality that describes a protocol with self-evident se-
curity properties. This ideal functionality is executed by
a trusted authority that protocol participants, and an
adversary, interact with. The functionality defines the
possible interactions between the parties and the au-
thority; in the case of the adversary, messages sent to
the authority model adversarial control over protocol
execution, and messages sent to the adversary repre-
sent information disclosures. A UC security proof in-
volves showing that any adversary attacking a partic-
ular “real” protocol (without a trusted authority) can
be used to construct an attack against the ideal func-
tionality, thereby showing that their security proper-
ties are equivalent. A protocol with this property is said
to UC-realize the functionality. To show this property,
proofs demonstrate that no external environment can
distinguish between an adversary interacting with the
real protocol and a simulator interacting with the ideal
functionality. This environment can communicate with
the adversary (or simulator), control the inputs of the
protocol participants, and read their outputs, but it can-
not directly view or interact with messages exchanged
between the participants. In contrast, the adversary is
given complete control over messages transmitted be-
tween participants. The adversary (or simulator) can
also corrupt parties, which provides complete control
over their future interactions, and reveals all memory
state that has not been erased (if memory erasure is
permitted by the model). The external environment is
notified when parties are corrupted.

Internally, the computational model of UC is de-
fined in terms of interactive Turing machines with “se-
cure” and “insecure” tapes, and the ability to invoke



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 44

other machines as subroutines. Our proof sketches are
not expressed in terms of these internal modeling de-
tails; we refer the interested reader to Canetti’s defi-
nitions for the formalization [23]. We generally assume
that the reader is familiar with the UC framework.

Canetti et al. defined the generalized universal com-
posability (GUC) framework for the purpose of proving
strong deniability properties [26]. The GUC framework
is an extension of UC in which all machines (including
the ideal functionality and the external environment)
are granted access to shared functionalities that persist
between protocol sessions. This provides a natural way
to model features like a PKI. In previous work, we
used the GUC framework to sketch security proofs for
RSDAKE and Spawn [93].

D.2 The GUC Framework
Following DKSW09 [42] and UG15 [93], we set up our
security proofs in the GUC framework. The GUC frame-
work corrects a deficiency in the basic UC framework: in
many protocols, some state information persists across
sessions (e.g., long-term public keys). This information
should be available to the external environment, be-
cause it could be used to distinguish between simulators
and real protocols. This persistent state is captured by
shared functionalities.

For maximum usefulness, we rely on traditional
game-based security proofs for the primitives that we
use within the GUC framework; this makes it easy to
substitute primitives with other well-known construc-
tions, while also providing strong composability guar-
antees for our DAKEs. Unlike UG15, we instantiate a
GUC-based security model including random oracles.

Security proofs in the GUC framework follow four
steps: define an ideal functionality with the desired se-
curity properties, define a “real” protocol, construct a
simulator S attacking the ideal functionality based on
an adversary A attacking the real protocol, and show
that the two scenarios are externally indistinguishable
given the security assumptions. The main participants
in a protocol are called the principal parties. In the real
setting, these parties use their inputs to exchange mes-
sages over a network controlled by A, then generate out-
puts. In the ideal setting, these parties are dummy par-
ties that simply forward inputs and outputs to and from
the ideal functionality over a secure channel.

To simplify the process of producing GUC secu-
rity proofs, Canetti et al. [26] introduced the external-
subroutine universal composability (EUC) framework.
EUC is equivalent to GUC, except that it constrains the

scheme to a single shared functionality Ḡ (an ideal func-
tionality meeting this definition is called Ḡ-subroutine
respecting). Moreover, in the EUC framework it is only
necessary to consider a single session of the challenge
protocol. Canetti et al. [26] proved that EUC security is
equivalent to GUC security for Ḡ-subroutine respecting
protocols [26, Th. 2.1], greatly reducing the complexity
of proofs. Notably, this surprising result means that a
Ḡ-subroutine respecting protocol that EUC-realizes an
ideal functionality also GUC-realizes that ideal func-
tionality when it is run concurrently with itself and with
arbitrary external protocols. We use this result to sketch
our proofs within the EUC framework (and therefore
extend our results to the GUC framework).

D.3 Proof Notation and Setup
We adopt standard notational conventions for inter-
active Turing machines in the EUC/GUC framework.
Ideal functionalities include F in their name. The exter-
nal environment, denoted by Z, attempts to distinguish
between a simulator S attacking the ideal functional-
ity and a real adversary A attacking a real protocol. We
denote an idealized party interacting with an ideal func-
tionality in the EUC/GUC framework as P . We denote
the corresponding party in a real protocol as P. We de-
note the corresponding party simulated by S for A as
P (s). As a notational convenience, we write P within
the context of a EUC/GUC message to denote a label
for the party. Similarly, we write P in a real protocol
message to denote the same label for the party.

The GUC framework permits more general interac-
tions between entities, but due to the aforementioned
equivalence of the frameworks, we can focus solely
on EUC interactions while effectively producing GUC
proofs. In summary, in the EUC framework, Z is per-
mitted to securely communicate with A (or S), control
the inputs of every principal party P (or P ), and read
their outputs. A is given control over the interactions
of every principal party P (in the real setting) or P (s)

(when being simulated by S), while S is permitted to
interact with the ideal functionality in the prescribed
manner. Both A and S are able to corrupt principal
parties, and these corruptions are reported to Z. The
ideal functionality, A, S, and Z are all permitted to
interact with with the shared functionality in the pre-
scribed manner.

In our security proof sketches, we define code for
interactive Turing machines in event-based C-like pseu-
docode. We use the keyword return to mean that mes-
sage processing immediately ceases; we combine return



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 45

with if to express publicly known constraints on mes-
sage values. We adopt the common notion of “delayed
messages” to mean that the ideal functionality gives S
control over the timing and success of the message de-
livery by sending a message to S, and delivering the
original message only upon receipt of a delivery instruc-
tion message from S.

The execution of a system of interactive Turing ma-
chines takes place sequentially (i.e., only one machine
is active at any point in time) [23]. Our proof sketches
follow the execution semantics defined by Canetti and
Krawczyk for real protocols [25, Fig. 1] and ideal pro-
cesses [25, Fig. 2], which unambiguously specify the ac-
tivation order of machines. We specifically note that
these semantics allow principal parties in real proto-
cols to send one message and locally output a value
in the same activation (after which Z becomes active),
and they also allow ideal functionalities to send multi-
ple messages in an activation (if the functionality sends
a message to S then S becomes active, otherwise the
previously activated party becomes active).

We write ḠF,n,G,q,gkrkro to denote the shared function-
ality depicted in Algorithm 1, which is used by all of
our proof sketches. This shared functionality models two
types of cross-session state: the registration and dis-
tribution of long-term public keys, and a collection of
domain-separated random oracles. We accomplish this
by merging together two shared functionalities that were
previously defined in the literature: ḠFkrk and Ḡro. ḠFkrk
refers to the key registration with knowledge PKI shared
functionality defined by DKSW09 [42, Fig. 2], which
distributes public keys to all parties, but reveals the
corresponding secret keys only to corrupted owners and
the ideal functionality F . Ḡro refers to the random ora-
cle shared functionality defined by Walfish [95, Fig. 2.4].
Ḡ
F,n,G,q,g
krkro essentially combines ḠFkrk with n copies of Ḡro

in order to explicitly model the notion of domain sep-
aration. It is necessary to combine these functionalities
into one so that the EUC framework applies.
Ḡ
F,n,G,q,g
krkro is parameterized with a set of interactive

Turing machines (ITMs) that are permitted to retrieve
secret keys. Corrupt parties can always retrieve their
own secret keys. In our proofs, we will permit secret
keys to be retrieved by honest parties running the real
key exchange protocol (so that they can perform the
protocol without revealing their secret keys to Z) and
by the ideal functionality. This restricts honest parties
to safe usage of their long-term secret keys. Borrowing
a notational convenience from Walfish [95, §3.3], we al-
ways implicitly parameterize ḠF,n,G,q,gkrkro with the ideal
functionality we are attempting to realize.

Algorithm 1 The shared functionality ḠF,n,G,q,gkrkro

Parameterized by an implicit security parameter λ, a set
of interactive Turing machines F , a number of random
oracles n, and a group G generated by g with prime
order q.
on (register) from P:
if (P is corrupt) return
if (there is a record (key,P, ⋅, ⋅)) return
SK

$
←Ð Zq

PK ← gSK

Record (key,P, PK,SK)

on (register, SK) from P:
if (P is not corrupt) return
if (there is a record (key,P, ⋅, ⋅)) return
PK ← gSK

Record (key,P, PK,SK)

on (retrieve,Q) from P:
if (there is a record (key,Q, PK,SK)) {

Send (pubkey,Q, PK) to P
} else {
Send (pubkey,Q,�) to P

}

on (retrievesecret,Q) from P:
if ((P is honest) ∧ (P’s code is /∈ F)) return
if ((P is corrupt) ∧ (P ≠ Q)) return
if (there is a record (key,Q, PK,SK)) {

Send (seckey,Q, PK,SK) to P
} else {
Send (seckey,Q,�,�) to P

}

on (ro, i, x) from P:
if (i ∉ [1, n]) return
if (there is a record (ro, i, x, v)) {

Send (ro, v) to P
} else {
v

$
←Ð {0, 1}λ

Record (ro, i, x, v)
Send (ro, v) to P

}

Note ḠF,n,G,q,gkrkro does not provide the ability to “re-
program” random oracle results or to extract random
oracle queries. This differs from traditional random ora-
cle models, but follows the GUC-based functionality de-
fined byWalfish [95]. The main reason for omitting these
features is that simulators in the UC (and EUC/GUC)
framework must be straight-line simulatable, since S is



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 46

given only black-box access to Z and has no control
over it [70]. This is an intuitive result, since Z effec-
tively represents concurrent protocols, and these pro-
tocols have direct access to the same random oracle.
In general, Z can perform random oracle queries on
its own, and transfer the results to A or S to hide
the queries and avoid the possibility of reprogramming.
However, indistinguishability proofs have no such re-
strictions, and reductions may rewind Z or reprogram
the random oracle, since these reductions can internally
execute Z and S. This technique can be used to employ
the Fiat-Shamir heuristic in protocols within the GUC
framework by performing the standard reduction [11] in-
volving programming the random oracle [95, Th. 5.10].
We stress that all of our simulators in Appendices E,
F, G, and H are straight-line simulatable and these
simulators do not reprogram the random oracle. Our
simulators do not require the extraction of witnesses
from NIZKPKs or SoKs, and thus our protocols do not
require straight-line extractable zero-knowledge proofs
(e.g., Ω-protocols [53]).

While we do not include explicit reductions in our
proof sketches, our indistinguishability proofs note when
indistinguishability depends on the security assump-
tions of the primitives. In these cases, it is easy to con-
struct reductions that attack the assumptions by inter-
nally executing S and a Z with distinguishing advan-
tage, programming values as necessary to insert the re-
duction question, and then using the results of Z to
complete the attack.

E Proof of DAKEZ Security
To prove the security of DAKEZ within the GUC frame-
work, we must select an ideal functionality that repre-
sents a DAKE with our desired features and security
properties. Unfortunately, the ideal functionalities de-
fined by DKSW09 (F IncProc

keia ) and UG15 (F IncProc
post−keia) do

not capture all of our desired properties, so we must
define a new functionality. We introduce and discuss
this new functionality in Section E.1. In Section E.2,
we formally define DAKEZ with an interface match-
ing the ideal functionality. We then present our security
theorem and an overview of our proof strategy in Sec-
tion E.3. Section E.4 relates the protocol properties in
Section 3.3 to the ideal functionality definition. Finally,
we describe our actual proof sketch in Section E.5 and
subsequent sections of this appendix.

E.1 Ideal Functionality for DAKEZ
E.1.1 Contributiveness
In their original analysis of universally composable key
exchange protocols, Canetti and Krawczyk [25] (here-
after CK02) proposed an ideal functionality, Fke, that
sends a randomly selected session key to the partici-
pants. CK02 noted that this functionality cannot be re-
alized by protocols like two-flow Diffie-Hellman, since
the simulator must “commit” to a shared secret without
knowledge of the session key selected by the ideal func-
tionality. Non-static adversarial corruptions can distin-
guish between real and ideal protocols by corrupting
ephemeral state prior to the final flow, using it to com-
pute the shared secret, and comparing the result to the
key chosen by the ideal functionality. Hofheinz et al. [59]
(hereafter HMS03) later showed that Fke can in fact
never be realized in the presence of adaptive adversaries.
There are two simple ways to overcome this problem:
modify the ideal functionality to allow the simulator to
dictate the shared secret when a party is corrupted (the
approach taken by DKSW09, HMS03, and UG15), or
move part of the simulator into a protocol-specific non-
information oracle (the approach taken by CK02).

A non-information oracle N is a probabilistic in-
teractive Turing machine that interacts with another
machineM and then produces local output. The “non-
information” property requires that the local output
of N is computationally indistinguishable from random
from the perspective ofM, and independent of all mes-
sages exchanged between N andM [25]. This construct
can be used as part of an ideal functionality to make no-
tions of key exchange realizable in the UC framework.
Specifically, a properly designed non-information oracle
can provide information to the simulator S, allowing it
to provide the “commitments” necessary to simulate a
real protocol, while using secret internal state to provide
a session key to the ideal functionality. The computa-
tional indistinguishability of the local output (which be-
comes the session key) from random guarantees that S
(and thus A) cannot compromise the shared secret key.
Since the shared secret should not be hidden from the
protocol participants, these internal secrets are exposed
to S if it corrupts one of the participating ideal par-
ties. CK02 defined a relaxed ideal functionality, FNwke,
parameterized by a non-information oracleN , that is re-
alized by a two-party Diffie-Hellman key exchange. The
security achieved by realizing this ideal functionality is
equivalent to the older notion of SK-security [23].

HMS03 later noted that non-information oracles can
be used to capture the common notion of contributive-



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 47

ness [59]. This notion, which they refer to as initiator
resilience, prevents the initiator of the key exchange
from predetermining the value of the shared secret. As
in a Diffie-Hellman key exchange, the responder can still
completely determine the value of the secret by selecting
their contribution appropriately.

E.1.2 Deniability
DKSW09 [42] noted that universal composability can
be used to prove that a key exchange protocol is deni-
able. If a protocol realizes an appropriately chosen key
exchange ideal functionality, then the resulting simu-
latability properties imply both offline and online deni-
ability; the simulator S acts as the forger (in the offline
case) or the misinformant (in the online case), and the
distinguishing environment Z acts as the judge.

DKSW09 proposed the definition of a key ex-
change functionality with an “incriminating abort”,
which can be realized by efficient DAKEs that leak
non-simulatable messages to active adversaries willing
to cause session failures. This weakness is not a signifi-
cant concern in practice, and it prevents the need to use
unrealistically expensive cryptographic primitives. The
simulator is permitted to ask the ideal functionality to
abort the exchange, which prevents the delivery of the
shared secret to at least one party. After aborting the
protocol, the simulator can obtain some non-simulatable
information that betrays involvement in the protocol by
one of the parties. The model parameterizes the func-
tionality with a protocol-specific “incriminating proce-
dure” called IncProc that generates this incriminating
information from one of the long-term secret keys. We
adopted this approach in our security proof sketches for
RSDAKE and Spawn [93].

E.1.3 Functionality Construction
Algorithm 2 depicts F+post-keia, our new ideal functional-
ity. This functionality incorporates the HMS03 model of
contributiveness [59], the DKSW09 model of deniability
with incriminating abort [42], and the UG15 model of
post-specified peers [93]. Consequently, the functional-
ity is parameterized by both a non-information oracle
N and an incrimination procedure IncProc.

The core of F+post-keia is the computation and deliv-
ery of a shared secret key. F+post-keia expects two parties
to declare participation in the protocol with initiate
and establish messages.10 These parties are thereafter

10 Walfish [95, Fig. 3.5], DKSW09 [42, Fig. 3], and UG15 [93,
Alg. 1] all make a mistake in the registration messages by requir-
ing the secret keys SKI and SKR as input. In UC/EUC/GUC,

Algorithm 2 Ideal functionality F+post-keia
F
+
post-keia proceeds as follows, running on security parameter

λ, in the ḠF,n,G,q,g
krkro

-hybrid model, with parties P1, . . . , Pn and
an adversary S. The functionality is parameterized by a non-
information oracle N , and an incrimination procedure IncProc.
When initializing, F+post-keia invokes N with fresh randomness.
on interaction with N :

Allow S to communicate with N by forwarding messages
between them. If at any point I or R is corrupted or R is
“aborted” while N has produced local output, send the com-
plete state and output of N to S.

on (initiate, sid, I,Φ, aux) from P ∈ {P1, . . . , Pn}:
if (I is defined) return
Denote P as I
Mark I as “active”
Send (initiate, sid, I,Φ) to S

on (establish, sid,R,Φ) from P ∈ {P1, . . . , Pn}:
if (an establish message was previously received) return
if ((I is undefined) ∣∣ (I is not “active”)) {
Resume processing once I is “active”

}
Denote P as R
Mark R as “active”
Send (establish, sid,R,Φ) to S

on (ok, sid, k) from S:
if (a key tuple (sid, κ) has been recorded) return
if ((I is undefined) ∣∣ (R is undefined)) return
if ((I is corrupt) && (R is corrupt)) return
if ((I is uncorrupted) && (R is uncorrupted)
↪ && (R is “active”)) { κ $

←Ð {0,1}λ }
else if ((I is corrupt) && (R is “active”)) {
↪ Let κ denote the local output of N }

else { κ← k }
Record key tuple (sid, κ)

on (deliver, sid, t, p′) from S:
if (no key tuple (sid, κ) has been recorded) return
if (a set-key message was already sent to Pt) return
if (IncProc was previously executed) return
if ((t ∉ {I,R}) ∣∣ (t is not “active”)) return
Let p ∈ {I,R} such that p ≠ t
if ((p ≠ p′) && (p′ is uncorrupted)) return
Send (set-key, sid, p′, κ) to Pt
if (two set-key messages have been sent) Halt

on (abort, sid) from S:
if (I is “active”) Send delayed (abort, sid, I) to I
if (R is “active”) {
Mark R as “aborted”
Send delayed (abort, sid,R) to R

}

on (incriminate, sid) from S:
if (IncProc was previously executed) return
if ((R is “aborted”) && (I is “active”)
↪ && (R is uncorrupted)) {
Send (retrievesecret,R) to ḠF,n,G,q,g

krkro
, retrieving SKR

Execute IncProc(sid, I,R,PKI , PKR, SKR)
}



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 48

referred to as the initiator I and responder R, respec-
tively. Like DKSW09 [42, Fig. 3], we assume that all
parties in the protocol have registered secret keys with
the shared functionality before beginning a protocol ses-
sion. F+post-keia ensures that the initiator is always de-
fined first by delaying the processing of an establish
message until a initiate message is seen. This simpli-
fies simulator construction. Once both roles are defined,
the simulator S is permitted to control delivery of the
shared secret to I and R. S sends a ok message to indi-
cate that the shared key has become fixed. S can then
individually choose to deliver the key to the ideal parties
by sending deliver messages. We model post-specified
peers by allowing S to specify the identity of the re-
mote party in deliver messages. S may only specify
“incorrect” remote identities if it has corrupted the cor-
responding parties. As in CK02 [24], the aux parame-
ter in the initiate and establish messages contains
auxiliary routing information. Real protocols use this
information to deliver messages to the other party even
though their logical identity is not known at the start
of the protocol. The ideal functionality simply ignores
aux. The protocol-specific details of the message routing
(e.g., local broadcasts, message pools, or central servers)
are independent of the security analysis [24]. When both
parties receive the key, F+post-keia halts.

Contributiveness is provided by placing restrictions
on S’s ability to set the value of the session key. If S does
not corrupt either party before fixing the session key
with an ok message, F+post-keia selects a key completely
at random. However, if S corrupts only I, its influence
over the key is still restricted. In this case, F+post-keia
draws the value of the session key from N . Although
S is granted unrestricted interaction with N , the non-
information property of N prevents S from learning or
controlling the key. Only if S corrupts R before send-
ing an ok message is it given complete control over the
session key. In all cases, corruption of either party pro-
vides knowledge of the session key; F+post-keia transmits
the internal state and output of N to S upon corruption
of either participant.

ideal functionalities are executed with dummy parties that sim-
ply pass inputs received from Z to the functionality. Since one
purpose of using a shared functionality to model the PKI is to
hide honest parties’ secret keys from Z, this prevents Z from
starting the protocols. The correct solution, as we noted in Sec-
tion D.3, is to give the ideal functionality access to the secret
keys for the purpose of invoking IncProc. Walfish and DKSW09
both do this, but superfluously and erroneously also require SKI
and SKR as inputs from the principal parties.

To permit realization of the functionality, F+post-keia
also provides an incriminating abort procedure through
IncProc. If S sends an abort message to F+post-keia
before the functionality halts, the key exchange can
no longer fully complete. F+post-keia models this by
internally labeling I and R (when defined) as “ac-
tive” or “aborted”. The session key cannot be deliv-
ered to an “aborted” party using a deliver message.
For F+post-keia, only R is guaranteed to be aborted; it
is still possible for I to output a result. When abort-
ing the protocol, S can choose to deliver notifications of
the abort to active parties independently. If both par-
ties have been defined, R remains uncorrupted, and S
has aborted the protocol, S can send an incriminate
message to trigger invocation of IncProc, allowing it to
receive protocol-specific incriminating messages.

One subtle interaction between the features is that
we must allow S to derive the session key when the
protocol is aborted. This case models the real-world sit-
uation in which the adversary has altered a message
flow to incorporate adversarially controlled ephemeral
state. While an authenticated key exchange must detect
this alteration and prevent completion of the protocol
(modeled in F+post-keia by the abort procedure), the at-
tack may allow the adversary to derive the shared secret
after it has become fixed, but before verification occurs.

E.2 DAKEZ in the GUC Framework
We originally defined DAKEZ in Section 5. However,
to prove the security of DAKEZ in the GUC frame-
work, it is necessary to define the DAKEZ program in
terms of the F+post-keia interface. Specifically, we must
define an interactive Turing machine that completes a
DAKEZ key exchange in a way that is indistinguish-
able from dummy parties forwarding the same inputs
to F+post-keia. The details of the protocol are the same
as in Figure 2, but we must change the interface. Algo-
rithm 3 contains the adapted program. The program is
implicitly parameterized with the group G, q, and g.

After receiving its input, the DAKEZ program in
Algorithm 3 determines whether it is playing the role
of the initiator or the responder. We write “on (m) to
P” to mean that the given function is executed when
a message of the form m is received, and the party is
playing the role of P. When evaluating the form of a
message, group elements are checked to ensure that they
are in G and are not the identity element. All variables
shown in Algorithm 3 are scoped to their containing
function unless they are explicitly persisted using the



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 49

Algorithm 3 Real protocol DAKEZ
on activation with input (initiate, sid,I,Φ, aux):
Record that we are the initiator, I
Retrieve PKI and SKI from shared functionality
Record PKI , SKI , sid, and Φ
Record i $

←Ð Zq and (PQI , SQI)← QRGenI()
Broadcast ψ1 = I∥g

i
∥PQI using aux for routing

on activation with input (establish, sid,R,Φ):
Record that we are the responder, R
Retrieve PKR and SKR from shared functionality
Record PKR, SKR, sid, and Φ
Set state to await-ψ1

on (P∥gp∥PQP ) to R in state await-ψ1:
Record r $

←Ð Zq and (QR,Qk)← QRGenR(PQP )

Record P, gp, PQP , gr, and QR
Retrieve PKP from shared functionality
Let t = “0”∥P∥R∥gp∥gr∥PQP ∥QR∥Φ
Compute σ = RSig(PKR, SKR,{PKP , PKR, gp}, t)
Record k = KDF((gp)r∥Qk)
Erase r and Qk
Send ψ2 =R∥gr∥QR∥σ to P
Set state to await-ψ2

on (P∥gp∥QP ∥σ) to I:
Retrieve PKP from shared functionality
Let t1 = “0”∥I∥P∥gi∥gp∥PQI∥QP ∥Φ
if (¬(RVrf({PKI , PKP , gi}, σ, t1))) {
Locally output (abort, sid,I) and halt

}
Compute Qk = QRKeyI(SQI ,QP )

Compute k = KDF((gp)i∥Qk)
Erase i, SQI , and Qk
Let t2 = “1”∥I∥P∥gi∥gp∥PQI∥QP ∥Φ
Send ψ3 = RSig(PKI , SKI ,{PKI , PKP , gp}, t2) to P
Locally output (set-key, sid,P, k) and halt

on (σ) to R in state await-ψ2:
Let t = “1”∥P∥R∥gp∥gr∥PQP ∥QR∥Φ
if (¬(RVrf({PKP , PKR, gr}, σ, t1))) {

Locally output (abort, sid,R) and halt
}
Locally output (set-key, sid,P, k) and halt

on unknown or invalid message:
Let P be our activated role (I or R)
Locally output (abort, sid,P) and halt

Algorithm 4 IncProcDAKEZ(sid, I,R,PKI , PKR, SKR)

on (inc, sid,G, g, q, I,R, “I”, “R”,Φ, gi, PQI) from S:
Generate r $

←Ð Zq and (QR,Qk)← QRGenR(PQI)

Let t = “0”∥“I”∥“R”∥gi∥gr∥PQI∥QR∥Φ
Compute σ = RSig(PKR, SKR,{PKI , PKR, gi}, t)
Compute ψ = “R”∥gr∥QR∥σ

Send (inc, sid, I,R,ψ, gr, r,QR,Qk) to S

“Record” statement (e.g., the variable t in one function
is not the same as the t in another function).

We define the shared functionality for DAKEZ,
Ḡ

DAKEZ
krkro , to be ḠDAKEZ,3,G,q,g

krkro . All calls to the key
derivation function KDF(x) are modeled by the first
random oracle; a message (ro, 1, x) is sent to ḠDAKEZ

krkro ,
which then replies with the result. In a similar manner,
the random oracles needed to model the hash functions
within the RSig and DREAD schemes (thereby making
their security proofs applicable) are provided by the sec-
ond and third random oracles in ḠDAKEZ

krkro , respectively.

E.3 Proof Strategy
In this section, we describe a strategy for proving
the security of DAKEZ by showing that it GUC-
realizes F+post-keia. We denote the three message flows
of DAKEZ, as shown in Algorithm 3, as ψ1, ψ2, and ψ3.
Since F+post-keia is parameterized by additional proce-
dures, we must define an incrimination procedure and
non-information oracle for DAKEZ. Algorithm 4 de-
picts the DAKEZ incrimination procedure, which sim-
ply computes ψ2 as an honest responder would. In prac-
tice, the presence of IncProc allows an adversary to
prove that a party is willing to respond to a key ex-
change request from an entity with a particular claimed
(but unauthenticated) identity. For most applications,
this has no real-world impact on the security or privacy
of the protocol.

Algorithm 5 depicts the non-information oracle for
DAKEZ. The general construction of this oracle fol-
lows the approach of HMS03 [59] for Diffie-Hellman
based protocols. NQRDH internally generates both
ephemeral keys and sends the public parts to M. M
can then accept or reject the proposed keys by sending
a complete message. If the keys are accepted (by send-
ing a complete message with ok = TRUE), NQRDH

completes the exchange and locally outputs the shared
secret. If M rejects the keys, NQRDH discards them
and accepts one half of the ephemeral key exchange
from M (in the α and β parameters). The local out-
put of NQRDH in this case is the shared secret of



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 50

Algorithm 5 A non-information oracle NQRDH

on (setup,G, q, g) fromM:
if (a setup message was already received) return
Read (G, q, g) as group G, prime order q, generator g
Generate i $

←Ð Zq and r $
←Ð Zq

Generate (PQI , SQI)← QRGenI()
Generate (QR,Qk)← QRGenR(PQI)

Record G, q, g, i, r, SQI , and Qk
Send (exchange, gi, gr, PQI ,QR) toM

on (complete, ok, α, β) fromM:
if (no setup message has been received) return
if (already output a key) return
if (ok is TRUE) {
Compute k = KDF((gi)r ∥ Qk)

} else {
if ((α /∈ G) ∣∣ (α is identity element)) return
if (β not generated by QRGenI) return
Generate new r

$
←Ð Zq

Generate new (QR,Qk)← QRGenR(β)

Compute k = KDF(αr ∥ Qk)

}
Locally output k

on (prove, p, S,m) fromM:
if (no setup message has been received) return
if (a complete message has been received) return
if (p /∈ {1, 2}) return
if (p = 1) { Let x← i } else { Let x← r }
if (gx /∈ S) return
Compute σ = RSig(gx, x, S,m)

Send (proof, σ) toM

an exchange with M. This option is necessary in the
event that the adversary corrupts the initiator in the ex-
change; N grants the simulator the ability to complete
the exchange on behalf of the remaining honest simu-
lated party. N also provides a facility to generate RSig
messages using either ephemeral key held by NQRDH .

While we do not formally prove it, NQRDH is
clearly a non-information oracle for appropriately cho-
sen cryptographic groups. The only information re-
vealed toM are public Diffie-Hellman contributions and
public values produced by QRGenI and QRGenR. The
only input fromM is α and β when the initial exchange
has been rejected. In this case,M never receives enough
information to complete the exchange. The release of
RSig proofs in response to prove messages releases no
information other than the possession of a key in the
set S by design. Consequently, distinguishing the out-

put of NQRDH from random would requireM to break
the computational Diffie-Hellman assumption in G (in
order to determine the correct input to the random ora-
cle) or the zero-knowledge property of the SoK in RSig.

We now present the security theorem for DAKEZ:

Theorem 3 (Classical security of DAKEZ)
If the RSig/RVrf scheme is anonymous against full
key exposure and unforgeable with respect to insider
corruption, and the CDH assumption holds in the un-
derlying group, then DAKEZ GUC-realizes F+post-keia
within the erasure ḠDAKEZ

krkro -hybrid model with adap-
tive security for IncProcDAKEZ and non-information
oracle NQRDH .

We use the erasure model defined by DKSW09 [42],
which allows participants in the protocol to erase private
state information, preventing it from being leaked in the
event of a subsequent corruption. Since the capability
to securely erase RAM contents is generally accepted
in practice, this weakening of the model does not admit
any actual attacks. The construction of the simulator for
the proof of Theorem 3 can be used as guidance for prac-
titioners seeking to implement real-world key exchange
forgery tools (as a means to improve the plausible denia-
bility of higher level protocols). In general, the simulator
simulates both parties involved in the key exchange hon-
estly. To produce the RSig proofs, the simulator uses the
ephemeral keys of the remote party in the case when the
adversary has not corrupted either participant, or the
compromised long-term keys if a participant has been
corrupted. The simulator uses the non-information ora-
cle to simulate the calculation of the shared secret key,
and uses its access to the non-information oracle’s in-
ternal state to construct the simulated memory contents
of corrupted parties. The simulator only uses IncProc if
the first message, ψ1, is altered by the adversary.

E.4 Relationship to Security Properties
Now that we have defined the ideal functionality that
represents the features of DAKEZ and stated the asso-
ciated security theorem, we can more rigorously define
the security properties in Section 3.3 in terms of the
GUC framework and discuss how they are captured by
our proof sketch. Each property either follows from the
definition of F+post-keia, or from the proof of Theorem 3:
1. Universally composable AKE: F+post-keia pro-

vides mutual authentication, key secrecy, and key
freshness. Mutual authentication ensures that S
(and thus A) cannot cause I (resp. R) to output an
uncorrupted partner identifier other than R (resp.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 51

I). Key secrecy and freshness ensure that if I or R
is uncorrupted and outputs a key κ and a partner
identifier P , and P is uncorrupted, then Z cannot
distinguish κ from κ′

$
←Ð {0, 1}λ.

2. Offline deniability: It is possible to construct a
simulator S such that Z cannot distinguish between
S interacting with F+post-keia and A interacting with
DAKEZ after the following sequence of events: Z se-
lects a party P ∈ {I,R}, allows the key exchange to
complete unmodified, corrupts both I and R, and
asks S to reveal P ’s ephemeral keys. Such a simula-
tor can be constructed from the proof of Theorem 3
by simulating the “honest” case and then exposing
the contents of the non-information oracle to Z.

3. Online deniability: Z cannot distinguish between
S interacting with F+post-keia and A interacting with
DAKEZ, given the restrictions in Theorem 3.

4. Contributiveness / Initiator-resilience: When
R is uncorrupted, any key output by R is compu-
tationally independent of any values chosen by Z.
This property follows from the design of F+post-keia,
which either outputs a bit string chosen uniformly at
random or the local output of the non-information
oracle when R is uncorrupted.

5. Forward secrecy: In the strong form [14]: if a party
P outputs a key κ and a partner identifier P ′, then
Z can never distinguish κ from κ′

$
←Ð {0, 1}λ unless P

or P ′ was corrupted before the corresponding session
completed. In the weak form of the property, this is
only true if S also did not abort the session (and
thus A did not modify any messages).

6. Post-specified peer: The initiate and establish
messages do not identify the intended communica-
tion partner.

E.4.1 Quantum Transitional Security
Note that Theorem 3 only refers to classical security
(i.e., it ignores quantum adversaries). Transitionally se-
cure key exchanges cannot realize authenticated key
exchange functionalities like F+post-keia against quan-
tum adversaries because, by definition, they fail to pro-
vide the necessary authentication properties. However,
a more traditional analysis makes it clear that DAKEZ
is transitionally secure. Because the KDF is modeled
by a random oracle, any passive adversary that can de-
rive the session key using only long-term secret keys
and a transcript of the exchange must be able to derive
the KDF input and send it to ḠDAKEZ

krkro within an ro
message. This KDF input includes Qk, the shared se-

cret derived from the QRGenR and QRKeyI functions.
Since the adversary does not have access to ephemeral
state (I and R already erased SQI and Qk from their
memory), the adversary must be able to derive Qk us-
ing only PQI and QR (and the unrelated secrets I and
R). Therefore, this adversary can break the key secrecy
property of the quantum-resistant KEM, which we as-
sume is not possible. A similar argument holds for the
other DAKEs presented in this work.

E.5 Proof of Theorem 3
(Sketch) To show that DAKEZ GUC-realizes F+post-keia,
it suffices to show that DAKEZ EUC-realizes F+post-keia.
DAKEZ EUC-realizes F+post-keia if and only if, for any
PPT adversary A attacking DAKEZ, there exists a
PPT adversary S attacking F+post-keia such that any
Ḡ

DAKEZ
krkro -externally constrained environment Z cannot

distinguish between the real and simulated conditions.
Like most proofs in UC-based models, we will con-

struct a simulator S that executes A internally, simu-
lating the real protocol flows that A expects based on
conditions in the ideal environment. For any ideal party
P , S simulates a party P (s) for A. All parties know the
shared protocol parameters used to instantiate ḠDAKEZ

krkro :
a group G of prime order q with generator g. To achieve
the required indistinguishability property, we need to
show two things: Z can derive no useful information
from sessions other than the one under consideration,
and Z cannot distinguish between the challenge proto-
cols in the context of the current session. To guarantee
the latter condition, we must show that, irrespective of
the actions performed by A under the instruction of Z,
the outputs of the main parties of F+post-keia are equal
to those of DAKEZ, corrupted parties provide memory
consistent with all other observations, and the protocol
flows within the joint view of A and Z are consistent
with the outputs of the main parties.

Section E.6 describes the simulator construction,
and Section E.7 presents the indistinguishability proof.

E.6 Simulator Construction
E.6.1 Communications between A and Z
Any data sent to S from Z are copied to the input of
A. Likewise, any output from A is sent to Z by S.

E.6.2 General reactions to actions by A
If A sends any messages within the simulated environ-
ment that are unrelated to DAKEZ, they are ignored
(as they would be in a real network environment). If



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 52

A delays delivery of a message flow, S simply waits for
the flow to be delivered before continuing. This leaves
A with few possible actions of consequence: it can alter
any of the message flows it perceives (this is equivalent
to delaying a message and sending a different one in its
place), and it can corrupt simulated parties. Our model
allows A to corrupt parties before the protocol begins,
after ψ1 has been sent, after ψ2 has been sent, or after
ψ3 has been sent (i.e., we tolerate fully adaptive corrup-
tions). When A corrupts a simulated party, S corrupts
the corresponding ideal party in order to construct the
expected state history. IfA causes a corrupted simulated
party to output a message, S causes the corresponding
ideal party to output the same message.

E.6.3 Initialization
When S first initializes, it sends a (setup,G, q, g) mes-
sage to N through F+post-keia, and waits to receive a
(exchange, gi, gr, PQI ,QR) message in response. The
group details sent by S correspond to the protocol
instantiation attacked by A. S makes a note of the
ephemeral keys in the exchange message for later use
in the simulation.

E.6.4 Receipt of initiate message from F+post-keia

When S receives (initiate, sid, I,ΦI) from F+post-keia,
it honestly constructs a ψ1 message from I(s) with the
help of the non-information oracle N . S computes ψ1 =

“I” ∥ gi ∥ PQI using the gi and PQI values previously
received from N and sends ψ1 through A as if it were
broadcast by I(s). S also records the value ΦI for later
reference.

E.6.5 Receipt of establish message from F+post-keia

When S receives an establishment message
(establish, sid,R,ΦR) from F

+
post-keia, it checks to

see the circumstances of the simulated ψ1 message
transmission. Since F+post-keia only sends an establish
message after it has already sent an initiate message,
ψ1 is guaranteed to have been sent and received in the
simulated environment (either by S in response to an
initiate message or by A from a corrupted party).
S parses ψ1 to recover gi and PQI . If ψ1 is not of

the correct format, or it fails to validate (e.g., if “I”
is not a valid identity), then S sends (abort, sid) to
F
+
post-keia and delivers the resulting abort message to

R immediately. S withholds the abort message to I.
S records ΦR for later reference.

If ψ1 is valid, then S then constructs a message ψ2
from R(s) in response to ψ1. The mechanism for con-
structing ψ2 depends on how ψ1 was generated:
– If S previously created ψ1 in response to an

initiate message, then S uses the non-information
oracle N to construct ψ2. S requests a forged
proof under I(s)’s ephemeral keys by sending
(prove, 1,{gI , gR, gi}, t), where the tag t is given by
t = “0”∥“I”∥“R”∥gi∥gr∥PQI∥QR∥ΦR, to N and wait-
ing for a message (proof, σR) in response. S then con-
structs ψ2 = “R” ∥ gr ∥ QR ∥ σR.

– If ψ1 was sent by a corrupted I(s), then S uses its
access to corrupt I to retrieve SKI = I from ḠDAKEZ

krkro

using a rectrievesecret message. S signals to N
that its transcript has been rejected by sending a
message (complete,FALSE, gi, PQI). Since I is cor-
rupted, F+post-keia immediately sends the state of N
to S. S sends (ok, sid, 0) to F+post-keia, causing it to
record the output from N as the shared key. S uses
the newly generated values gr and QR to construct
ψ2 = “R” ∥ gr ∥ QR ∥ σR. S calculates σR as in the
previous case, except that it uses the long-term key-
pair (gI , I) to produce the proof.

– If S previously created a message ψ′1 but ψ1 ≠

ψ′1, then A has altered the message in tran-
sit. S constructs ψ2 through the use of IncProc.
S sends (abort, sid) to F

+
post-keia, but with-

holds delivery of the resulting abort messages
to I and R. It then sends (incriminate, sid)
to F+post-keia, causing an instance of IncProc to
be invoked. Using the values parsed from ψ1, S
sends (inc, sid,G, g, q, I,R, “I”, “R”,ΦR, gi, PQI) to
IncProc and receives (inc, sid, I,R,ψ2, g

r, r,QR,Qk)

in response.
S then sends ψ2 through A as if R(s) sent it to I(s).

E.6.6 Receipt of ψ2 by uncorrupted I(s)

When uncorrupted I(s) receives message ψ2 claiming
to be from P (s), S checks to see if I(s) has previously
broadcast a message ψ1. If not, then the message ψ2
is ignored. S then parses ψ2 to extract “P”, gp, QP ,
and the proof σP . If ψ2 is not of the correct form, or
if σP is not a correct proof matching ΦI and the ψ1
sent by I(s), then S sends (abort, sid) to F+post-keia and
delivers the resulting abort message to I immediately,
while withholding any abort message sent to P .

If I(s) has previously broadcast a message ψ1 and ψ2
is valid, then S constructs message ψ3 to send from I(s)

to P (s) and outputs a shared key. The private key that



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 53

S uses to construct the proof ψ3, and the shared key
that it outputs, depends on the state of the simulation:
– If A has previously corrupted P (s), then S must have

previously corrupted P (since S corrupts ideal parties
corresponding to simulated parties corrupted by A).
In this case, S retrieves SKP = P from ḠDAKEZ

krkro using
a retrievesecret message and uses this key to com-
pute ψ3 = RSig(gP , P,{gI , gP , gp}, t), where the tag t
is given by t = “1”∥“I”∥“P”∥gi∥gp∥PQI∥QP ∥ΦI .
I is expected to output a session key correspond-
ing to the one negotiated between I(s) and P (s).
If S previously simulated a ψ2 message from a
party R(s) and R(s) ≠ P (s), then S issues a
(abort, sid) message to F+post-keia and withholds the
resulting abort messages. In any case, F+post-keia
receives the internal state of N from S, allow-
ing it to acquire the ephemeral keys i and SQI
used to generate ψ1 (this occurs because either R
has been aborted, or R is corrupt). S computes
k = KDF((gp)i ∥ QRKeyI(SQI ,QP )) and sends
(ok, sid, k) to F+post-keia, causing it to record key tuple
(sid, k).

– Otherwise, P (s) is uncorrupted. Because RSig is un-
forgeable with respect to insider corruption, the only
way for σP to be valid in this situation is if the sender
of the message knows the long-term private key of one
of the parties, or the ephemeral key of I(s). Addition-
ally, σP must have been computed during this session
because its validity depends on ψ1. Due to the hard-
ness of the discrete log problem in the group (guar-
anteeing the secrecy of the keys) and the uniqueness
of ψ1, this is only possible if P (s) = R(s) and ψ2 was
previously generated by S. S forges the proof ψ3 us-
ing R(s)’s ephemeral key held by the non-information
oracle N . S sends (prove, 2,{gI , gR, gr}, t), where the
tag t is given by t = “1”∥“I”∥“R”∥gi∥gr∥PQI∥QR∥ΦI ,
to N through F+post-keia and receives (proof, ψ3) in
response. S sends (ok, sid, 0) to F+post-keia, causing it
to record a random session key.

S sends (deliver, sid, I, P ) to F+post-keia, causing I to
emit the proper shared secret.

E.6.7 Receipt of ψ3 by uncorrupted R(s)

When uncorrupted R(s) receives message ψ3 from I(s),
S first checks to ensure that R(s) has previously received
a message ψ1 from I(s) and that it sent a response ψ2. If
either of these conditions do not hold, then the message
is ignored. S then verifies the proof in ψ3.

If the proof is invalid, does not match ΦR or the
ψ2 message previously sent by R(s), or fails to verify,

then S sends (abort, sid) to F+post-keia and delivers the
resulting abort message to R immediately. S withholds
the abort message sent to I.

If the proof is valid, then S also causes R to output
a key. Since RSig is unforgeable with respect to insider
corruption, it is only possible to reach this state if I(s)

is corrupt or if the exchange has completed honestly; in
all situations, S has already caused F+post-keia to record
a shared key. S sends (deliver, sid,R, I) to F+post-keia,
causing R to emit the proper shared secret.

E.6.8 Transmission of ψ1 by corrupted I(s)

When S has not yet received an initiate message from
F
+
post-keia, but A causes a corrupted I(s) to issue mes-

sage ψ1, then S must reflect this in the ideal envi-
ronment. S causes I to send (initiate, sid, I,�,�) to
F
+
post-keia, but ignores the resulting initiate message

sent by F+post-keia.

E.6.9 Transmission of ψ2 by corrupted R(s)

When S has not yet received an establish message
from F+post-keia, but A causes a corrupted R(s) to issue
message ψ2, then S must reflect this in the ideal envi-
ronment. S causes R to send (establish, sid,R,�) to
F
+
post-keia, but ignores the resulting establish message

sent by F+post-keia.

E.6.10 Constructing state for corrupted parties
When A corrupts a party in the simulated environment,
S corrupts the corresponding party in the ideal environ-
ment. If A causes corrupted parties to output values, S
outputs these values from the corresponding ideal par-
ties. In addition, S must provide A with a simulated
historical state for corrupted parties.

If A corrupts the party known as I(s) after an
initiate message has been received, but before I(s)

has received ψ2, then S uses its access to N to provide
the random coins i, and SQI used to construct ψ1. If
I(s) already received ψ2, then S uses its corruption of I
to provide the session key k that I already output.

If A corrupts the party known as R(s) after it has
already received ψ1, then it must provide the session key
k expected to be stored in R(s)’s memory. If R(s) has
already received ψ3, then R has already output session
key k, and so S can directly provide this value. If R(s)

has not yet received ψ3, then S uses its access to N to
obtain k (in the event that ψ1 was sent by a corrupt
I(s)), or the random coins r and Qk that, together with
ψ1, can be used to compute k.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 54

E.7 Proof of Indistinguishability
We now turn to the task of proving that S acting
on F+post-keia is indistinguishable from A acting on
DAKEZ. To do this, we divide all possible behaviors
of A into several cases. For each case, we show that the
protocol flows generated by S are indistinguishable from
those generated by DAKEZ, outputs from F+post-keia are
indistinguishable from those from DAKEZ, and that the
simulated memory states of corrupted parties are indis-
tinguishable from those of real parties.

E.7.1 The honest case
This case occurs when A does not alter any messages or
corrupt I(s) or R(s) until after the session concludes.

All three messages are generated by the combina-
tion of S and N honestly (i.e., exactly how they would
be generated by the parties in a real DAKEZ session),
with the exception of the proofs. The proofs are not
signed by the long-term secret keys of the parties, as
in a real interaction. Instead, they are produced by N
using the ephemeral key of the opposite party. However,
because RSig is anonymous against full key exposure, Z
cannot distinguish the proofs produced by S from those
produced in a real interaction, even when it corrupts
the long-term keys of I(s) and R(s) after the session.

If the shared session state provided to the parties
by Z differs (i.e., ΦI ≠ ΦR), then I(s) will immediately
abort when ψ2 is delivered. This output is the same as
in the real protocol because the SoK in ψ2 will be bound
to the wrong message.

When ΦI = ΦR, the output from I and R in the ideal
environment includes the correct identity of the conver-
sation partner, as well as a shared secret k randomly
generated by F+post-keia. These are the expected party
identities from the real interaction, so the only possi-
ble way for Z to distinguish between real and simulated
outputs is by examining k. Since i and r are erased by
real parties before they return output, A cannot access
these values, even when corrupting I(s) and R(s) after
the protocol concludes. Therefore, any ability to distin-
guish between challenge protocols based on the choice of
k would mean that Z could distinguish between k and
KDF(gir). Since KDF is modeled by the random ora-
cle in ḠDAKEZ

krkro , this is only possible if Z can break the
CDH assumption in G and send the message (ro, 1, gir)
to ḠDAKEZ

krkro , which we assume is not possible.

E.7.2 Alteration of ψ1

This situation occurs when ψ1 generated by S is altered
by A in transit, but neither I(s) nor R(s) are corrupted
when ψ1 is delivered.

When ψ1 is altered, S generates ψ2 from R(s) us-
ing IncProc. The definition of IncProc involves honestly
generating ψ2 using the long-term secret key of R, so
this flow is indistinguishable from a real message. Like-
wise, the memory state of R(s) is indistinguishable from
the real situation because IncProc provides S with the
random coins used to generate the ephemeral keys in ψ2
and the session key k.
S causes the protocol to abort, but does not deliver

abort messages to either party. If A allows ψ2 to be
delivered to I(s), then I(s) will abort. This matches the
output of real interactions because I(s) expects ψ2 to
include a proof incorporating the true gi and PQI values
sent by I(s) in ψ1. The only way for the simulated and
real situations to differ is if A somehow alters ψ2 so
that it is a valid response. Since RSig is unforgeable
with respect to insider corruption, this is not possible.

E.7.3 Alteration of ψ2

This situation occurs when ψ2 generated by S is altered
by A in transit, but neither I(s) nor R(s) are corrupted
when ψ2 is delivered. S causes I(s) to immediately abort
when it receives an altered ψ2. As mentioned previously,
I(s) will always abort because the proof in the altered
ψ2 message cannot be correct due to RSig being un-
forgeable with respect to insider corruption.

E.7.4 Indistinguishability under corruptions
This situation occurs when either party is corrupted at
a time before the times covered by the previous cases.

The only difference between the normal operation
of S and this case is the secret key used to compute
the proofs in messages generated by S, and the mech-
anism for generating the shared secret keys. Whereas
S normally uses the ephemeral signing keys i and r

stored in N to produce the proofs in the messages, the
keys generated by N might not be used when a party
is corrupted before sending its first message. In these
cases, S instead makes use of the long-term secret key
of the corrupted party to produce the proofs. Again,
these message flows are indistinguishable from real flows
due to the anonymity against full key exposure property
of RSig. To output the correct session keys, S extracts
the internal state of N to complete key exchanges with
corrupted parties. In all cases, the outputs of the proto-



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 55

col are indistinguishable because the uncorrupted party
effectively completes the key exchange honestly.

If both simulated parties are corrupted, then in-
distinguishability is trivial. S never generates any mes-
sages, and so they cannot be used by Z to detect sim-
ulation. The outputs of corrupted parties are copied to
the outputs of the corresponding ideal parties, so this is
also not useful to Z.

In all cases of corruption, S provides the expected
memory state for the corrupted party—the set of ran-
dom coins used to generate ephemeral signing keys, and
possibly some shared secret keys (depending on which
party is corrupted and when). In all cases, these val-
ues are indistinguishable from real values because the
parties are effectively simulated honestly.

E.7.5 Data from other sessions
Since we are considering the security of DAKEZ in the
EUC model, we must also consider the usefulness of in-
formation collected by Z from other protocol sessions.
No information from other sessions can be used to as-
sist A with the generation of false message flows: ψ1
is generated using no long-term information, and both
ψ2 and ψ3 require computation of an SoK bound to the
contents of ψ1. Since RSig is unforgeable with respect to
insider corruption, collecting SoKs from other sessions
does not allow A to produce proofs correctly bound to
the session under attack.

F Proof of Spawn+ Security
In this appendix, we sketch a security proof for Spawn+.
As in Appendix E, we define an ideal functionality in
Section F.1, define the real protocol in Section F.2,
present our security theorem in Section F.3, and end
with our proof sketch in Section F.4 and subsequent
sections of this appendix.

F.1 Ideal Functionality
UG15 sketched a security proof for Spawn in a GUC-
based standard model [93]. However, the ideal function-
ality used in the sketch, F IncProc

1psp−keia, suffers from the
same problems we discussed in Section E.1, and thus it
cannot be used to prove the security of Spawn+. Specifi-
cally, F IncProc

1psp−keia does not capture the notion of contribu-
tiveness. Using the same techniques as Section E.1, we
can construct a new ideal functionality that describes
a two-flow, single post-specified peer, contributory, and
strongly deniable key exchange protocol. Algorithm 6
depicts this functionality, F+1psp-keia.

Algorithm 6 Ideal functionality F+1psp-keia
F
+
1psp-keia proceeds as follows, running on security parameter

λ, in the ḠF,n,G,q,g
krkro

-hybrid model, with parties P1, . . . , Pn and
an adversary S. The functionality is parameterized by a non-
information oracle N , and an incrimination procedure IncProc.
When initializing, F+1psp-keia invokes N with fresh randomness.
on interaction with N :

Allow S to communicate with N by forwarding messages be-
tween them. If at any point I or R is corrupted while N has
produced local output, send the complete state and local out-
put of N to S.

on (solicit, sid, I,Φ, aux) from P ∈ {P1, . . . , Pn}:
if (I is defined) return
Denote P as I and mark I as “active”
Send (solicit, sid, I,Φ) to S

on (establish, sid, I,R,Φ) from P ∈ {P1, . . . , Pn}:
if (an establish message was previously received) return
if (I is undefined) Resume processing once I is defined
Denote P as R and mark R as “active”
Send (establish, sid, I,R,Φ) to S

on (set-key, sid) from S:
if (a key tuple (sid, κ) has been recorded) return
if ((I is undefined) ∣∣ (R is undefined)) return
if ((I is corrupt) && (R is corrupt)) return
if ((I is uncorrupted) && (R is uncorrupted)
↪ && (I is “active”)) { κ $

←Ð {0,1}λ }
else if (IncProc was previously executed) {
↪ Let κ denote the local output of IncProc }

else if (I is corrupt) {
↪ Let κ denote the local output of N }

else { Halt }
Send (set-key, sid, I,R, κ) to R
Record key tuple (sid, κ)

on (finish, sid, P ) from S:
if (no key tuple (sid, κ) has been recorded) return
if (I is not “active”) return
if (P is uncorrupted) {
Send (set-key, sid, I,R, κ) to I and halt

} else {
Send the state of N to S
Wait for (mismatch-key, sid, k) from S
if (k = κ) Halt
Send (set-key, sid, I, P , k) to I and halt

}

on (abort, sid) from S:
if ((I is not defined) ∨ (R is not defined)) return
Mark I as “aborted”
Send delayed (abort, sid, I) to I
Send delayed (abort, sid,R) to R

on (incriminate, sid) from S:
if (IncProc was previously executed) return
if ((I is “aborted”) && (R is “active”)
↪ && (R is uncorrupted)) {
Send (retrievesecret,R) to ḠF,n,G,q,g

krkro
, retrieving SKR

Execute IncProc(sid, I,R,PKI , PKR, SKR)
}



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 56

F
+
1psp-keia shares similarities with both F IncProc

1psp−keia
and F+post-keia. An initiating party I sends a solicit
message that is answered by a responder R with an
establish message. When both parties are defined, the
simulator S tells F+1psp-keia to generate a session key and
notify R using a set-key message. S can then send a
finish message to send the key to I. If S corrupts a
party P , it can cause I to erroneously report P (rather
than R) as a conversation partner with an arbitrary
session key. However, it is not possible for S to accom-
plish this without also causing the parties to derive dif-
ferent session keys (leading to termination if high-level
protocols incorporate implicit or explicit key confirma-
tion [49]).11

F
+
1psp-keia also includes an incriminating abort pro-

cedure. Unlike F+post-keia, where theR is forced to abort,
F
+
1psp-keia forces I to abort when IncProc is called. The

incrimination procedure in F+1psp-keia also has another
important difference: rather than sending the fixed ses-
sion key to S, it is instead designed to send it directly
to F+1psp-keia as local output on F+1psp-keia’s subrou-
tine tape. This is important for appropriately model-
ing forward secrecy, as defined in Section E.4. Because
F
+
1psp-keia can permit an uncorrupted party (specifi-

cally, R) to output a key after IncProc is invoked (un-
like F+post-keia, which prevents this possibility), IncProc
must not reveal this key to S; doing so would trivially
break forward secrecy. Instead, any attack against for-
ward secrecy must exploit the specification of the real
protocol by using leaked information fromN or IncProc.
Looking ahead, we will specify the attack that limits
Spawn+ and ZDH to weak forward secrecy, and differ-
entiate the forward secrecy of XZDH, in Section H.1.

F.2 Spawn+ in the GUC Framework
We originally defined Spawn+ in Section 6.1. Algo-
rithm 7 redefines Spawn+ in terms of the F+1psp-keia in-
terface. The program is implicitly parameterized with
the group G, q, and g. The adaptation is very similar to
the approach we used for DAKEZ in Algorithm 3: the
parties retrieve the necessary long-term keys from the
shared functionality, the initiator broadcasts its initial
message using the routing information in aux, and the
responder replies in the usual manner.

We define the shared functionality for the proof,
Ḡ

Spawn+
krkro , to be ḠSpawn+,3,G,q,g

krkro . We model the key deriva-
tion function KDF(x) using the first random oracle in

11 This attack also applies to Spawn. The original security
proof sketch given by Unger [92, Section 3.8.4.2] erroneously
excludes this possibility.

Algorithm 7 Real protocol Spawn+

on activation with input (solicit, sid,I,Φ, aux):
Record that we are the initiator, I
Retrieve PKI and SKI from shared functionality
Record PKI , SKI , sid, and Φ
Record i $

←Ð Zq and (PQI , SQI)← QRGenI()
Broadcast ψ1 = I∥g

i
∥PQI using aux for routing

on activation with input (establish, sid,I,R,Φ):
Record that we are the responder, R
Retrieve PKR and SKR from shared functionality
Retrieve PKI from shared functionality
Record I, PKI , PKR, SKR, sid, and Φ

on (P∥gi∥PQI) to R:
if (P ≠ I) Locally output (abort, sid,R) and halt
Generate r $

←Ð Zq and (QR,Qk)← QRGenR(PQI)

Let t1 = I∥R∥gi∥PQI
Compute γ = DREnc(PKI , PKR, gr∥QR, t1)
Let t2 = t1∥γ∥Φ
Compute σ = RSig(PKR, SKR,{PKI , PKR, gi}, t2)
Compute k = KDF((gi)r∥Qk)
Erase r and Qk
Send ψ2 =R∥γ∥σ to I
Locally output (set-key, sid,I,R, k) and halt

on (P∥γ∥σ) to I:
Retrieve PKP from shared functionality
Let t = I∥P∥gi∥PQI
if (¬(RVrf({PKI , PKP , gi}, σ, t∥γ∥Φ))) {
Locally output (abort, sid,I) and halt

}
Compute gp∥QP ← DRDec(PKI , PKP , SKI ,Φ, γ)
Compute Qk = QRKeyI(SQI ,QP )

Compute k = KDF((gp)i∥Qk)
Erase i, SQI , and Qk
Locally output (set-key, sid,I,P, k) and halt

on unknown or invalid message:
Let P be our activated role (I or R)
Locally output (abort, sid,P) and halt



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 57

Ḡ
Spawn+
krkro , and use the second and third random oracles

to model the hashes in the RSig and DREAD schemes.

F.3 Proof Strategy
Theorem 4 states the security theorem for Spawn+.

Theorem 4 (Classical security of Spawn+)
If the DREAD scheme is sound and IND-CCA2 se-
cure, the RSig/RVrf scheme is anonymous against full
key exposure and unforgeable with respect to insider
corruption, and the CDH assumption holds in the un-
derlying group, then Spawn+ GUC-realizes F+1psp-keia
within the erasure ḠSpawn+

krkro -hybrid model with adap-
tive security for IncProcSpawn+ and non-information
oracle NQRDH .

Note that Theorem 4 allows for fully adaptive ad-
versaries due to the use of a non-information oracle,
whereas the proof for Spawn only defended against semi-
adaptive adversaries [93].

The core idea of our proof for Theorem 4 is nearly
identical to the security proof for DAKEZ. The in-
criminating procedure that we use within F+1psp-keia,
IncProcSpawn+ , is shown in Algorithm 8. IncProcSpawn+

simply honestly calculates the second message flow from
R, using SKR to produce the authenticating proof. The
non-information oracle NQRDH can be directly reused
in the proof, since Spawn+ uses the same ephemeral key
structure as DAKEZ. Where the details of the sketch are
identical to the proof for DAKEZ, we refer the reader
to the DAKEZ proof sketch in Appendix E.

F.4 Proof of Theorem 4
(Sketch) The general simulator setup is the same as in
Appendix E. Specifically, we construct a simulator S
that executes A internally and simulates parties for A
while interacting with F+1psp-keia. We refer to the first
flow of Spawn+, as shown in Algorithm 7, as ψ1, and to
the second flow as ψ2.

Section F.5 describes the simulator construction,
and Section F.6 presents the indistinguishability proof.

F.5 Simulator Construction
F.5.1 General handling of A
As in Section E.6, S allows A and Z to communicate,
delays messages delayed by A, corrupts ideal parties
when A corrupts the corresponding simulated parties,
and replicates output from corrupted parties.

Algorithm 8 IncProcSpawn+(sid, I,R,PKI , PKR, SKR)

on (inc, sid,G, g, q, I,R, “I”, “R”,Φ, gi, PQI) from S:
Generate r $

←Ð Zq and (QR,Qk)← QRGenR(PQI)

Let t1 = “I”∥“R”∥gi∥PQI
Compute γ = DREnc(PKI , PKR, gr∥QR, t1)
Let t2 = t1∥γ∥Φ
Compute σ = RSig(PKR, SKR,{PKI , PKR, gi}, t2)
Compute k = KDF((gi)r∥Qk)
Compute ψ = “R”∥γ∥σ
Send (inc, sid, I,R,ψ) to S
Locally output k
Halt

F.5.2 Initialization
When S first initializes, it sends a (setup,G, q, g) mes-
sage to N through F+post-keia, and waits to receive a
(exchange, gi, gr, PQI ,QR) message in response. The
group details sent by S correspond to the protocol
instantiation attacked by A. S makes a note of the
ephemeral keys in the exchange message for later use
in the simulation.

F.5.3 Receipt of solicit message from F+1psp-keia

When S receives (solicit, sid, I,ΦI) from F+1psp-keia,
it honestly constructs a ψ1 message from I(s) with the
help of the non-information oracle N . S computes ψ1 =

“I” ∥ gi ∥ PQI using the gi and PQI values previously
received from N and sends ψ1 through A as if it were
broadcast by I(s). S records the value ΦI for later use.

F.5.4 Receipt of establish message from F+1psp-keia

When S receives an establishment message
(establish, sid, I,R,ΦR) from F+1psp-keia, it checks to
see the circumstances of the simulated ψ1 message
transmission. S parses ψ1 to recover gi and PQI . If ψ1
is not of the correct format, or if the asserted identity
is not I(s), then S sends (abort, sid) to F+1psp-keia,
delivers the resulting abort to R immediately, and
withholds the abort message to I. Otherwise, S
constructs a message ψ2 from R(s) in response to ψ1
and causes F+1psp-keia to record a shared secret key.
The mechanism for constructing ψ2 depends on how
ψ1 was generated:
– If I(s) is not corrupt and S previously created a

message ψ′1, but ψ1 ≠ ψ′1, then A has altered the
message in transit. S constructs ψ2 through the
use of IncProc. S sends (abort, sid) to F+1psp-keia,
but withholds delivery of the resulting abort mes-



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 58

sages to I and R. It then sends (incriminate, sid)
to F+1psp-keia, causing an instance of IncProc to
be invoked. Using the values parsed from ψ1,
S sends (inc, sid,G, g, q, I,R, “I”, “R”,ΦR, gi, PQI)
to IncProc, causing IncProc to send the message
(inc, sid, I,R,ψ2) in response. IncProc will then pri-
vately send the session key to F+1psp-keia.

– Otherwise, S constructs the message ψ2 by produc-
ing a ciphertext and forged proof. The method for
choosing the ephemeral keys contained within the ci-
phertext and the keys used to forge the proof de-
pends on the environment in a manner that we
will discuss shortly. Given a choice of ephemeral
keys for R(s), gr and QR, S produces a ciphertext
γ = DREnc(PKI , PKR, gr∥QR, “I”∥“R”∥gi∥PQI).
S then produces a proof σR with tag t =

“I”∥“R”∥gi∥PQI∥γ∥ΦR. S selects ephemeral keys and
produces the proof in the following way:
– If S previously created ψ1 in response to a

solicit message, then S uses the values of
gr and QR retrieved from the non-information
oracle N to produce γ. S requests a forged
proof under I(s)’s ephemeral keys by sending
(prove, 1,{PKI , PKR, gi}, t) to N and waiting for
a message (proof, σR) in response.

– If ψ1 was sent by a corrupted I(s), then S sig-
nals to N that its transcript has been rejected by
sending a message (complete,FALSE, gi, PQI) to
N . Since I is corrupted, F+1psp-keia immediately
sends the state of N to S. S uses the newly gen-
erated values gr and QR as the ephemeral keys
to be contained within γ. S uses its access to
corrupt I to retrieve SKI from Ḡ

Spawn+
krkro with a

retrievesecret message. S then forges the proof
using σR = RSig(PKI , SKI ,{PKI , PKR, gi}, t).

Given γ and σR, S constructs ψ2 = “R” ∥ γ ∥ σR.
S then sends ψ2 through A as if R(s) sent it to I(s). S
sends (set-key, sid) to F+1psp-keia, causing F

+
1psp-keia to

record a shared secret key and causing R to output that
key. If IncProc was used, F+1psp-keia will use its output as
the key. Otherwise, F+1psp-keia will use the output from
N if I(s) is corrupted, or a fresh random value if I(s) is
uncorrupted.

F.5.5 Receipt of ψ2 by uncorrupted I(s)

When uncorrupted I(s) receives message ψ2 claiming
to be from P (s), S checks to see if I(s) has previously
broadcast a message ψ1. If not, then the message ψ2 is
ignored. S then parses ψ2 to extract “P”, the ciphertext
γ, and the proof σP . If ψ2 is not of the correct form, or

if σP is not a correct proof matching ΦI and the ψ1
sent by I(s), then S sends (abort, sid) to F+1psp-keia,
delivers the resulting abort message to I immediately,
and withholds the abort message to R.

If I(s) has previously broadcast a message ψ1 and
ψ2 is valid, then S must cause I to output a session key
corresponding to the one negotiated between I(s) and
P (s). The key depends on the state of the simulation:
– If A has previously corrupted P (s), then S must have

previously corrupted P (since S corrupts ideal par-
ties corresponding to simulated parties corrupted by
A). S issues a (finish, sid, P ) message to F+1psp-keia.
Since P is corrupted, F+1psp-keia sends the state of
N to S. S recovers the ephemeral keys i and SQI
used to generate ψ1 from N . S retrieves SKP from
Ḡ

Spawn+
krkro using a retrievesecret message, then uses

this key to decrypt γ, recovering gp and QP . S
computes k = KDF((gp)i ∥ QRKeyI(SQI ,QP )) and
sends (mismatch-key, sid, k) to F+1psp-keia, causing I
to output key k and partner identity P with over-
whelming probability.

– Otherwise, P (s) is uncorrupted. Because RSig is un-
forgeable with respect to insider corruption, the only
way for σP to be valid in this situation is if the sender
of the message knows the long-term private key of one
of the parties, or the ephemeral key of I(s). Addition-
ally, σP must have been computed during this session
because its validity depends on ψ1. Due to the hard-
ness of the discrete log problem in the group (guar-
anteeing the secrecy of the keys) and the uniqueness
of ψ1, this is only possible if P (s) = R(s) and ψ2 was
previously generated by S. S sends (finish, sid,R) to
F
+
1psp-keia, causing I to emit an appropriate session

key that is shared with R.

F.5.6 Transmission of ψ1 by corrupted I(s)

When S has not yet received a solicit message from
F
+
1psp-keia, but A causes a corrupted I(s) to issue mes-

sage ψ1, then S must reflect this in the ideal envi-
ronment. S causes I to send (solicit, sid, I,�,�) to
F
+
1psp-keia, but ignores the resulting solicit message

sent by F+1psp-keia.

F.5.7 Transmission of ψ2 by corrupted R(s)

When S has not yet received an establish message
from F+1psp-keia, but A causes a corrupted R(s) to issue
message ψ2, then S must reflect this in the ideal envi-
ronment. S causes R to send (establish, sid, I,R,�) to
F
+
1psp-keia, but ignores the resulting establish message

sent by F+1psp-keia.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 59

F.5.8 Constructing state for corrupted parties
When A corrupts a party in the simulated environment,
S corrupts the corresponding party in the ideal environ-
ment. If A causes corrupted parties to output values, S
outputs these values from the corresponding ideal par-
ties. In addition, S must provide A with a simulated
historical state for corrupted parties.

If A corrupts the party known as I(s) after a
solicit message has been received, but before I(s) has
received ψ2, then S uses its access to N to provide the
random coins i, and SQI used to construct ψ1. If I(s)

already received ψ2, then S uses its corruption of I to
provide the session key k that I already output.

If A corrupts the party known as R(s) after it has
already received ψ1, then S uses its corruption of R to
provide the session key k that R already output.

F.6 Proof of Indistinguishability
The proof of indistinguishability is similar to the proof
described in Section E.7. We show that flows and mem-
ory states are indistinguishable in all cases.

F.6.1 The honest case
This situation occurs when A does not corrupt I(s) or
R(s) until after the session concludes, or alter any mes-
sage flows. The proof of this case is the same as the
honest case in Section E.7; since the protocol is ex-
ecuted honestly (with the exception of proof genera-
tion), Z would need to break the anonymity against
full key exposure of RSig to identify that the proofs
were forged, or Z would need to break the computa-
tional Diffie-Hellman assumption within G to identify
that the shared session key was randomly generated.

F.6.2 Alteration of ψ1

This situation occurs when ψ1 generated by S is altered
by A in transit, but neither I(s) nor R(s) is corrupted
when ψ1 is delivered. The proof of this case is the same
as in Section E.7, except that Z is given even less infor-
mation when subsequently corrupting R(s); both the ψ2
message and session key generated by IncProc are effec-
tively generated honestly, so the messages and output
from R(s) are indistinguishable from a real protocol ex-
ecution. I(s) aborts as expected if ψ2 is delivered, since
RSig is unforgeable with respect to insider corruption.

F.6.3 Alteration of ψ2

This situation occurs when ψ2 generated by S is altered
by A in transit, but neither I(s) nor P (s) (the party

named as the communication partner in ψ2) are cor-
rupted when ψ2 is delivered. S causes I(s) to immedi-
ately abort when it receives an altered ψ2. As mentioned
previously, I(s) will always abort because the proof in
the altered ψ2 message cannot be correct due to the un-
forgeability with respect to insider corruption of RSig.

F.6.4 Indistinguishability under corruptions
This situation occurs when either party is corrupted at
a time before the times covered by the previous cases.
The proof of this case is nearly the same as in Sec-
tion E.7. When both I(s) and R(s) are corrupted, in-
distinguishability is trivial because S can directly repli-
cate the behavior of A. With only a single corrupted
party, the other effectively performs the protocol hon-
estly. The exception is when I(s) is corrupted but R(s)

is not, in which case S forges the proof in ψ2 using
the long-term key of I. This forgery is undetectable by
Z due to the anonymity against full key exposure of
RSig, even if A corrupts all parties after the session. All
memory states are consistent with honest execution, as
mentioned above.

The only major difference with Section E.7 is that
A can cause I(s) to accept the wrong communication
partner without aborting the protocol by leaving I(s)

and R(s) uncorrupted, corrupting P (s), and replacing
R(s)’s ψ2 message with an honestly generated message
from P (s).12 In this case, F+1psp-keia grants S access to
the internal state of N . S uses this state to compute I’s
output honestly, with the exception of using P ’s long-
term secret key to decrypt the DREAD ciphertext. Due
to the soundness of the DREAD scheme, this process
results in the same key that would have been computed
by an honestly behaving I(s), so the key must be the
one that Z expects. Revealing the state of N and al-
lowing S to completely dictate the output of I is not a
problem in this case, since A effectively controls one of
the conversation partners from the perspective of I(s).
Leaking N ’s state to S models that the adversary has
access to the key shared with I, and it has full control
over the value of the key (since it controls the second
ephemeral key contribution).

F.6.5 Data from other sessions
As in Section E.7, no information from other sessions
can be used to assist A with the generation of false
message flows: ψ1 is generated using no long-term infor-

12 As we mentioned in Section F.1, key confirmation can be
used in higher-level protocols to alleviate this weakness.



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 60

mation, and ψ2 requires computation of an SoK bound
to the contents of ψ1. Since RSig is unforgeable with re-
spect to insider corruption, collecting SoKs from other
sessions does not allow A to produce proofs correctly
bound to the session under attack. Additionally, the
IND-CCA2 security of the DREAD scheme implies that
it is also non-malleable [12]. This non-malleability pre-
vents A from modifying DREAD ciphertexts from other
sessions to bind them to the session under attack with-
out corrupting one of the parties capable of decrypting
the ciphertext.

G Proof of ZDH Security
It is possible to prove the security of ZDH in nearly the
same environment as Spawn+, since the protocols share
most properties. In fact, ZDH can GUC-realize the same
ideal functionality F+1psp-keia that is GUC-realized by
Spawn+. Algorithm 9 defines ZDH (previously defined
in Section 6) in terms of the F+1psp-keia interface. The
security theorem for ZDH is as follows:

Theorem 5 (Classical security of ZDH)
If the MAC is weakly unforgeable under chosen mes-
sage attack [13], the RSig/RVrf scheme is anony-
mous against full key exposure and unforgeable with
respect to insider corruption, and the CDH as-
sumption holds in the underlying group, then ZDH
GUC-realizes F+1psp-keia within the erasure ḠZDH

krkro-
hybrid model with partially adaptive security for
IncProcZDH and non-information oracle NZDH .

There are a few key differences between Theorem 5 and
Theorem 4. ZDH uses a protocol-specific incrimination
procedure, IncProcZDH, that simply provides an honest
generation of the second message flow using R’s long-
term secret key. NZDH is similar to NQRDH , but also
enables calls to MAC with the shared key Mk, and sup-
ports adding extra Diffie-Hellman secrets into the KDF.
We define the phrase “partially adaptive” in Theorem 5
to mean that S may corrupt I at any time, but S may
only corrupt R after a finish message has been received
by F+1psp-keia. In the ideal setting, this means that S
may not send an establish message from a corrupted
party. In the real setting, this means that A cannot
transmit a response message ψ2 from a corrupted party.
This restriction intentionally prevents the protocol from
achieving online deniability for R in order to allow ZDH
to GUC-realize F+1psp-keia. We define the shared func-
tionality for the proof, ḠZDH

krkro, to be ḠZDH,5,G,q,g
krkro . The

first three random oracles in ḠZDH
krkro are used to model

Algorithm 9 Real protocol ZDH
on activation with input (solicit, sid,I,Φ, aux):
Record that we are the initiator, I
Retrieve PKI and SKI from shared functionality
Record PKI , SKI , sid, and Φ
Record i $

←Ð Zq and (PQI , SQI)← QRGenI()
Broadcast ψ1 = I∥g

i
∥PQI using aux for routing

on activation with input (establish, sid,I,R,Φ):
Record that we are the responder, R
Retrieve PKR and SKR from shared functionality
Retrieve PKI from shared functionality
Record I, PKI , PKR, SKR, sid, and Φ

on (P∥gi∥PQI) to R:
if (P ≠ I) Locally output (abort, sid,R) and halt
Generate r $

←Ð Zq and (QR,Qk)← QRGenR(PQI)

Compute κ = KDF1((g
i
)
r
∥(PKI)

r
∥Qk)

Compute Mk = KDF2(κ) and k = KDF3(κ)

Let t = I∥R∥gi∥gr∥PQI∥QR∥Φ
Compute mac =MAC(Mk, t)

Compute σ = RSig(PKR, SKR,{PKI , PKR, gi}, t)
Erase r, Qk, κ, and Mk

Send ψ2 =R∥gr∥QR∥mac∥σ to I
Locally output (set-key, sid,I,R, k) and halt

on (P∥gp∥QP ∥mac∥σ) to I:
Retrieve PKP from shared functionality
Let t = I∥P∥gi∥gp∥PQI∥QP ∥Φ
if (¬(RVrf({PKI , PKP , gi}, σ, t))) {
Locally output (abort, sid,I) and halt

}
Compute Qk = QRKeyI(SQI ,QP )

Compute κ = KDF1((g
p
)
i
∥(gp)SKI

∥Qk)

Compute Mk = KDF2(κ) and k = KDF3(κ)

Compute mac′ =MAC(Mk, t)

if (mac ≠mac′) {
Locally output (abort, sid,I) and halt

}
Erase i, SQI , Qk, κ, and Mk

Locally output (set-key, sid,I,P, k) and halt

on unknown or invalid message:
Let P be our activated role (I or R)
Locally output (abort, sid,P) and halt



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 61

Algorithm 10 IncProcZDH(sid, I,R,PKI , PKR, SKR)

on (inc, sid,G, g, q, I,R, “I”, “R”,Φ, gi, PQI) from S:
Generate r $

←Ð Zq and (QR,Qk)← QRGenR(PQI)

Compute κ = KDF1((g
i
)
r
∥(PKI)

r
∥Qk)

Compute Mk = KDF2(κ) and k = KDF3(κ)

Let t = “I”∥“R”∥gi∥gr∥PQI∥QR∥Φ
Compute mac =MAC(Mk, t)

Compute σ = RSig(PKR, SKR,{PKI , PKR, gi}, t)
Compute ψ = “R”∥gr∥QR∥mac∥σ

Send (inc, sid, I,R,ψ) to S
Locally output k
Halt

KDF1, KDF2, and KDF3. The last two random oracles
model the hashes in the RSig and DREAD schemes.

The proof sketch of Theorem 5 is nearly identical
to the one for Spawn+, since the protocols behave sim-
ilarly in all applicable scenarios. While F+1psp-keia pro-
vides some additional features that are not necessary
for the proof of Theorem 5, we avoid defining a new
ideal functionality in order to clearly show the security
relationship between Spawn+ and ZDH.

Algorithm 10 shows the incrimination procedure for
ZDH, which is simply an honest generation of a response
ψ2 using R’s long-term secret key to produce the proof.
Algorithm 11 shows the non-information oracle used for
the proof. NZDH is similar to NQRDH , except that it
also adds a facility for the simulator to generate and
verify a MAC using the shared key derived from the
exchange. NZDH also permits the callerM to pass in a
set of additional Diffie-Hellman public contributions, C,
that are combined with the responder’s ephemeral key,
r, as part of the input to KDF1. For ZDH, C contains
only the initiator’s long-term public key, PKI .

It is clear that NZDH is still a non-information or-
acle, despite the addition of the new MAC methods and
the introduction of the C parameter. As in NQRDH ,
M is never given enough information to compute gir

(when ok is TRUE) or αr (when ok is FALSE). M is
also not given enough information to compute Qk. Be-
cause KDF1 is modeled by a random oracle, the local
output from complete is indistinguishable from random
without access to these values, which are used as input
to KDF1 in KDF-Val. This holds true even ifM is able
to compute the other values concatenated into γ using
knowledge of the secrets associated with keys in C, since
it cannot compute the entire input to KDF1. For the
same reason, the outputs of KDF1 and KDF2 that are
passed to MAC in the authenticate and verify han-

Algorithm 11 A non-information oracle NZDH

NZDH copies the setup and prove commands from
NQRDH (Algorithm 5), slightly modifies its complete
command, and introduces two new commands.
function KDF-Val(C, r, Qk)
γ ← ∅

for all (c ∈ C) do {
if ((c /∈ G) ∣∣ (c is identity element)) Halt
γ ← γ∥cr

}
return KDF1(γ ∥ Qk)

}
on (setup,G, q, g) fromM:
Handle the message as in NQRDH

on (prove, p, S,m) fromM:
Handle the message as in NQRDH

on (complete, ok, α, β,C) fromM:
if (no setup message has been received) return
if (already output a key) return
if (ok is TRUE) {

Compute k = KDF-Val({gi} ∪C, r, Qk)
} else {
Generate new r

$
←Ð Zq

Generate new (QR,Qk)← QRGenR(β)

Compute k = KDF-Val({α} ∪C, r, Qk)
}
Locally output k

on (authenticate, C,m) fromM:
if (no setup message has been received) return
if (a complete message has been received) return
Compute k = KDF-Val({gi} ∪C, r, Qk)
Compute mac =MAC(KDF2(k),m)

Send (authentication,mac) toM

on (verify, C,m,mac) fromM:
if (no setup message has been received) return
if (a complete message has been received) return
Compute k = KDF-Val({gi} ∪C, r, Qk)
Compute mac′ =MAC(KDF2(k),m)

if (mac′ =mac) { Send (verified,TRUE) toM }
else { Send (verified,FALSE) toM }

dlers is independent of i, r, and Qk. Note that the non-
information property does not depend on the security
of MAC, since the MAC key is already computationally
independent of the secrets andM knows m.

The proof proceeds as follows:
(Sketch) The proof of Theorem 5 is nearly iden-

tical to the proof of Theorem 4 in Appendix F. For



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 62

this reason, we only highlight the differences in simula-
tor construction between the two sketches. Section G.1
constructs the simulator and Section G.2 demonstrates
indistinguishability.

G.1 Simulator Construction
The simulator S behaves exactly as in Section F.5 ex-
cept that in the proof for Theorem 5, all references to
Ḡ

Spawn+
krkro are replaced by references to ḠZDH

krkro.

G.1.1 Receipt of establish message from F+1psp-keia

This case is identical to the case from Section F.5, except
for the mechanism for constructing ψ2:
– If I(s) is not corrupt and S previously created a mes-

sage ψ′1, but ψ1 ≠ ψ
′
1, then S behaves as in Section F.5.

The only difference is that IncProc returns a properly
constructed ψ2 message for ZDH.

– Otherwise, S constructs the message ψ2 by
producing a forged proof σR with tag t =

“I”∥“R”∥gi∥gr∥PQI∥QR∥ΦR. The method for choos-
ing the ephemeral keys (gr and QR) and the keys used
to forge the proof depends on the environment:
– If S previously created ψ1 in response to a

solicit message, then S uses the values of gr

and QR retrieved from the non-information or-
acle N . S requests a forged proof under I(s)’s
ephemeral keys by sending (prove, 1,{gI , gR, gi}, t)
to N and waiting for a message (proof, σR) in
response. S also requests a MAC by sending
(authenticate,{PKI}, t) to N and waiting for a
message (authentication,mac) in response.

– If ψ1 was sent by a corrupted I(s), then S signals to
N that its transcript has been rejected by sending a
message (complete,FALSE, gi, PQI ,{PKI}) to N .
Since I is corrupted, F+1psp-keia immediately sends
the state of N to S. S uses the newly generated val-
ues gr and QR as the ephemeral keys for ψ2. S uses
its access to corrupt I to retrieve SKI from ḠZDH

krkro

with a retrievesecret message. S forges the proof
using σR = RSig(PKI , SKI ,{gI , gR, gi}, t). S also
uses the state of N to compute mac. S computes
κ = KDF1((g

i
)
r
∥(PKI)

r
∥Qk), Mk = KDF2(κ),

and then mac =MAC(Mk, t).
Given a choice of ephemeral keys, mac, and σR, S
constructs ψ2 = “R” ∥ gr ∥ QR ∥ mac ∥ σR.

As in Section F.5, S sends ψ2 through A as if R(s) sent
it to I(s), and then sends (set-key, sid) to F+1psp-keia.

G.1.2 Receipt of ψ2 by uncorrupted I(s)

When uncorrupted I(s) receives message ψ2 claiming
to be from P (s), S checks to see if I(s) has previously
broadcast a message ψ1. If not, then the message ψ2 is
ignored. S then parses ψ2 to extract “P”, gp, QP ,macP ,
and the proof σP . If ψ2 is not of the correct form, σP
is not a correct proof matching ΦI and the ψ1 sent by
I(s), or if P (s) is corrupted, then S sends (abort, sid)
to F+1psp-keia, delivers the resulting abort message to I
immediately, and withholds the abort message to R.

If I(s) has previously broadcast a message ψ1, ψ2
is valid, and P (s) is uncorrupted, then S must cause
I to output a session key corresponding to the one
negotiated between I(s) and P (s). S proceeds under
the assumption that P (s) = R(s) (we argue later that
this must be the case). S uses N to check the va-
lidity of macP by sending (verify,{PKI}, t,macP ),
where tag t = “I”∥“R”∥gi∥gp∥PQI∥QP ∥ΦI . If S re-
ceives (verified,FALSE) in response, then it aborts
I in the same manner as above. Otherwise, S sends
(finish, sid,R) to F+1psp-keia, causing I to emit a ses-
sion key shared with R.

G.1.3 Transmission of ψ2 by corrupted R(s)

A is not permitted to transmit ψ2 messages from cor-
rupted parties, so this case is no longer needed.

G.2 Proof of Indistinguishably
The proof of indistinguishability given in Section F.6
also applies here with several changes. The proof no
longer needs to consider corruptions of the responder
before transmission of ψ2, so these cases can be ignored.
As in Section F.6, the anonymity against full key expo-
sure of RSig prevents Z from detecting forgeries of σP
in ψ2 by S, even if A corrupts all parties after the ses-
sion. Similarly, the CDH assumption on the underlying
group prevents Z from distinguishing the output key
in the honest case, and the unforgeability of RSig with
respect to insider corruption prevents Z from produc-
ing forged proofs in ψ2, even with information collected
from other sessions.

The only significant difference with the proof in Sec-
tion F.6 is indistinguishability in the case of an altered
ψ2 received by an uncorrupted I(s). Due to the unforge-
ability of RSig with respect to insider corruption, any
modification to ψ2 must include a proof σP naming
a corrupted party P (s) ≠ R(s). In this case, S always
aborts I. This procedure always matches the simulated
environment because ψ2 must be invalid. If ψ2 includes a
valid proof σP and I(s) does not abort, then this implies



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 63

that macP is also valid. Due to the weak unforgeabil-
ity under chosen message attack of MAC, this is only
possible if A knows the MAC key derived from a secret
shared between I(s) and P (s), which in turn is only pos-
sible (due to the security of the key derivation functions
and the hardness of the CDH problem in the underlying
group) if A honestly generated a response from P (s). An
honest generation of this type is not permitted due to
the “partially adaptive” constraint in Theorem 5, be-
cause it corresponds to the completion of the protocol
by a corrupted responder. Consequently, A cannot pos-
sibly cause I(s) to output a key when altering ψ2.

H Proof of XZDH Security
H.1 Forward Secrecy of DAKEZ, Spawn+,

and ZDH
We previously claimed that DAKEZ has strong forward
secrecy, and that the purpose of XZDH is to improve
the forward secrecy properties of ZDH. We can now pre-
cisely distinguish between these forward secrecy levels
from the perspective of our GUC-based proof sketches.

In Section E.4, we defined strong and weak forward
secrecy in terms of ideal GUC processes. In these terms,
the proof of Theorem 3 shows that DAKEZ offers strong
forward secrecy. Consider the simulator S interacting
with F+post-keia as sketched in Section E.6. In order to
break strong forward secrecy, Z must use S to collect
enough information from NQRDH or IncProcDAKEZ to
distinguish a key output by I or R from random with-
out corrupting the entity or its partner. The definition of
F
+
post-keia guarantees that no keys can be output when

IncProcDAKEZ is invoked, so it cannot be used to gather
information. Moreover, the only time that S sends a
deliver message when a party and its partner are un-
corrupted is when both I and R are uncorrupted, the
key was generated by NQRDH , and NQRDH ’s proposed
exchange was accepted. By the non-information prop-
erty, NQRDH yields no information about this key.

In contrast, F+1psp-keia only guarantees weak forward
secrecy, which prevents S from aborting the session.
IncProc is not useful to Z because it requires an abort
command to be invoked. By definition, N is also not
useful, even if its proposed exchange is rejected. Proving
Theorem 4 and Theorem 5 therefore shows that Spawn+

and ZDH have (at least) weak forward secrecy.
If Spawn+ and ZDH do not offer strong forward se-

crecy, then there should exist an attack in which Z can
issue instructions to S to learn information about a key
output by P with partner P ′ without corrupting either

P or P ′ during the corresponding session. Indeed, such
an attack exists when S is permitted to abort F+1psp-keia.
For simplicity, we will only examine the ZDH case—a
similar attack works against Spawn+. The attack, which
takes place in the setting of Theorem 5 and is the ide-
alized equivalent of the one discussed in Section 7, pro-
ceeds as follows:
1. Z instructs I to send a solicit message to
F
+
1psp-keia. This causes S to simulate a message ψ1

from I(s).
2. Z generates z

$
←Ð Zq and (PQZ , SQZ) ←

QRGenI(). Z then instructs S to modify ψ1 to be
“I” ∥ gz ∥ PQZ .

3. Z instructs R to send an establish message to
F
+
1psp-keia. This causes S to abort the protocol, in-

teract with IncProcZDH, and simulate the resulting
ψ2 = “R” ∥ gr ∥ QR ∥ mac ∥ σR message from R(s).
R receives a set-key message identifying partner I
with a key k generated by IncProcZDH. Note that S
does not have access to k, since IncProcZDH sends it
directly to F+1psp-keia.

4. Z instructs S to deliver ψ2 to I(s), which causes S
to issue an abort command and deliver an abort
message to I. The session has now completed.

5. Z causes I to be corrupted, revealing secret
key I. Z can now compute (gr)z, (gr)I , and
QRKeyI(SQZ ,QR), which allows it to derive k. Z
can distinguish k from random, even though neither
I nor R were corrupted during the session that R
outputted k.

After presenting a security theorem for XZDH, we define
its forward secrecy in Section H.2.1.

H.2 XZDH Security Theorem
The only difference between XZDH and ZDH is the in-
troduction of signed prekeys in XZDH. Nonetheless, the
presence of signed prekeys necessitates some changes to
the security model.

Signed prekeys persist across protocol sessions, so
they must be modeled as part of the shared functional-
ity. Algorithm 12 depicts ḠXZDH , a shared functional-
ity that combines ḠZDH

krkro with a mechanism for sharing
signed prekeys. This mechanism is essentially another
instance of a key registration with knowledge function-
ality, ḠFkrk, except with the ability for keys to be re-
placed with new ones, and distribution of digital signa-
tures produced using the long-term keys.

We originally defined XZDH in Section 7. Algo-
rithm 13 depicts the XZDH program following the



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 64

Algorithm 12 The shared functionality ḠXZDH

Ḡ
XZDH copies all behavior and commands sup-

ported by ḠZDH
krkro (i.e., it handles register, retrieve,

retrievesecret, and ro messages identically). In addi-
tion, it also supports the following commands:
on (spk-refresh) from P:
if (no tuple (P, PK,SK) is recorded) return
if (P is corrupt) return
if (tuple t = (spk,P, pk, sk, ξ) is recorded) Delete t
r

$
←Ð {0, 1}λ

Record tuple (spk,P, gr, r,Sig(PK,SK, gr))

on (spk-corrupt-refresh, r) from P:
if (no tuple (P, PK,SK) is recorded) return
if (P is uncorrupted) return
if (tuple t = (spk,P, pk, sk, ξ) is recorded) Delete t
Record tuple (spk,P, gr, r,Sig(PK,SK, gr))

on (spk-retrieve,P ′) from P:
if (tuple t = (spk,P ′, pk, sk, ξ) is recorded) {

Send (spk,P ′, pk, ξ) to P
} else {
Send (spk,P ′,�,�) to P

}

on (spk-retrievesecret,P ′) from P:
if ((P is honest) ∧ (P’s code is /∈ F)) return
if ((P is corrupt) ∧ (P ≠ P

′
)) return

if (tuple t = (spk,P ′, pk, sk, ξ) is recorded) {
Send t to P

}

F
+
1psp-keia interface. The program is nearly identical to

Algorithm 9, except that it incorporates signed prekey
distribution. Differences between Algorithm 13 and Al-
gorithm 9 are shaded in the program listing.

The security theorem for XZDH is as follows:

Theorem 6 (Classical security of XZDH)
If the MAC is weakly unforgeable under chosen mes-
sage attack [13], the RSig/RVrf scheme is anonymous
against full key exposure and unforgeable with re-
spect to insider corruption, and the CDH assump-
tion holds in the underlying group, then XZDH
GUC-realizes F+1psp-keia within the erasure ḠXZDH -
hybrid model with partially adaptive security for
IncProcXZDH and non-information oracle NZDH .

There are a few differences between Theorem 6 and
Theorem 5. The shared functionality, ḠXZDH , enables
the use of signed prekeys. The incrimination procedure
shown in Algorithm 14, IncProcXZDH, is identical to

Algorithm 13 Real protocol XZDH
on activation with input (solicit, sid,I,Φ, aux):
Record that we are the initiator, I
Retrieve PKI and SKI from shared functionality
Retrieve (spk,I, pk, sk, ξ) from shared functionality
Record PKI , SKI , pk, sid, and Φ
Record i $

←Ð Zq and (PQI , SQI)← QRGenI()
Broadcast ψ1 = I∥g

i
∥PQI∥pk∥ξ using aux for routing

on activation with input (establish, sid,I,R,Φ):
Record that we are the responder, R
Retrieve PKR and SKR from shared functionality
Retrieve PKI from shared functionality
Record I, PKI , PKR, SKR, sid, and Φ

on (P∥gi∥PQI∥pk∥ξ) to R:
if (P ≠ I) Locally output (abort, sid,R) and halt
if (¬(SVerif(PKI , pk, ξ))) {

Locally output (abort, sid,R) and halt
}
Generate r $

←Ð Zq and (QR,Qk)← QRGenR(PQI)

Compute κ = KDF1((g
i
)
r
∥pkr∥(PKI)

r
∥Qk)

Compute Mk = KDF2(κ) and k = KDF3(κ)

Let t = I∥R∥gi∥gr∥PQI∥QR∥pk∥Φ
Compute mac =MAC(Mk, t)

Compute σ = RSig(PKR, SKR,{PKI , PKR, gi}, t)
Erase r, Qk, κ, and Mk

Send ψ2 =R∥gr∥QR∥mac∥σ to I
Locally output (set-key, sid,I,R, k) and halt

on (P∥gp∥QP ∥mac∥σ) to I:
Retrieve PKP from shared functionality
Retrieve (spk,I, pk′, sk, ξ) from shared functionality
if (pk ≠ pk′ ) Locally output (abort, sid,I) and halt
Let t = I∥P∥gi∥gp∥PQI∥QP ∥pk∥Φ
if (¬(RVrf({PKI , PKP , gi}, σ, t))) {

Locally output (abort, sid,I) and halt
}
Compute Qk = QRKeyI(SQI ,QP )

Compute κ = KDF1((g
p
)
i
∥(gp)sk∥(gp)SKI

∥Qk)

Compute Mk = KDF2(κ) and k = KDF3(κ)

Compute mac′ =MAC(Mk, t)

if (mac ≠mac′) {
Locally output (abort, sid,I) and halt

}
Erase i, SQI , Qk, κ, and Mk

Locally output (set-key, sid,I,P, k) and halt

on unknown or invalid message:
Let P be our activated role (I or R)
Locally output (abort, sid,P) and halt



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 65

Algorithm 14 IncProcXZDH(sid, I,R,PKI , PKR, SKR)

on (inc, sid,G, g, q, I,R, “I”, “R”,Φ, gi, PQI , gΓ
) from S:

Generate r $
←Ð Zq and (QR,Qk)← QRGenR(PQI)

Compute κ = KDF1((g
i
)
r
∥(gΓ

)
r
∥(PKI)

r
∥Qk)

Compute Mk = KDF2(κ) and k = KDF3(κ)

Let t = “I”∥“R”∥gi∥gr∥PQI∥QR∥gΓ
∥Φ

Compute mac =MAC(Mk, t)

Compute σ = RSig(PKR, SKR,{PKI , PKR, gi}, t)
Compute ψ = “R”∥gr∥QR∥mac∥σ

Send (inc, sid, I,R,ψ) to S
Locally output k
Halt

IncProcZDH except for the addition of a signed prekey
gΓ as input, and the use of gΓ to derive the shared key.
Although NZDH serves as the non-information oracle,
the simulator for XZDH must provide it with signed
prekeys so that the correct session keys are derived.

H.2.1 Forward Secrecy of XZDH
XZDH offers forward secrecy that exists somewhere be-
tween the traditional “strong” and “weak” definitions.
In the context of Theorem 6, the property can now
be expressed precisely: if a party P outputs a key κ

and a partner identifier P ′, then Z can never distin-
guish κ from κ′

$
←Ð {0, 1}λ unless P or P ′ was cor-

rupted before the corresponding session completed, or
S aborted the session and P ′ did not subsequently issue
an spk-refresh message to ḠXZDH .

By definition, NZDH cannot assist Z with break-
ing forward secrecy. The only viable approach for Z
is to abort the session and derive information from
IncProcXZDH , similarly to the attack on strong forward
secrecy that we defined in Section H.1. The main differ-
ence with XZDH is that Z needs to compute gΓr in
order to provide the correct input to the KDF1 ran-
dom oracle. If I has not issued an spk-refresh mes-
sage since the end of the session, then Z can send
spk-retrievesecret from the corrupted I to derive
(gr)Γ. However, if the signed prekey has been refreshed,
then there is no way for Z to recover Γ from ḠXZDH ,
thereby satisfying the forward secrecy property.

H.3 Proof of Theorem 6
(Sketch) The proof of Theorem 6 is nearly identical to
the proof of Theorem 5 in Appendix G. For this reason,
we only highlight the differences in simulator construc-
tion between the two sketches. Section H.4 constructs

the simulator and Section H.5 demonstrates indistin-
guishability.

H.4 Simulator Construction
The simulator S behaves exactly as in Section G.1 ex-
cept that in the proof for Theorem 6, all references to
Ḡ

ZDH
krkro are replaced by references to ḠXZDH .

H.4.1 Receipt of solicit message from F+1psp-keia

When S receives (solicit, sid, I,ΦI) from F+1psp-keia, it
honestly constructs a ψ1 message from I(s) with the help
of the non-information oracle N . S requests the cur-
rent signed prekey for I by sending (spk-retrieve, I)
to ḠXZDH , and receiving (spk, I, gΓ, ξ) in response. S
computes ψ1 = “I” ∥ gi ∥ PQI ∥ gΓ

∥ ξ using the gi

and PQI values previously received from N and sends
ψ1 through A as if it were broadcast by I(s). S also
records the value Φ1 for later reference.

H.4.2 Receipt of establish message from F+1psp-keia

This case is mostly the same as the case from Sec-
tion G.1, with the exceptions noted below.

When checking the validity of ψ1, S also examines
the signed prekey gΓ with signature ξ from ψ1. S re-
trieves PKI = gI , the long-term public key for I, from
Ḡ
XZDH using a retrieve message. If SVerif(gI , gΓ, ξ) ≠

TRUE, then S sends (abort, sid) to F+1psp-keia, delivers
the resulting abort to R immediately, and withholds the
abort message to I.
S also acts slightly differently when constructing ψ2:

– If I(s) is not corrupt and S previously created a mes-
sage ψ′1, but ψ1 ≠ ψ

′
1, then S behaves as in Section G.1

with the exception of passing gΓ to IncProc as part
of the inc message. IncProc returns a properly con-
structed ψ2 message for XZDH.

– Otherwise, S constructs the message ψ2 by
producing a forged proof σR with tag t =

“I”∥“R”∥gi∥gr∥PQI∥QR∥gΓ
∥ΦR. The method for

choosing the ephemeral keys (gr and QR) and the
keys used to forge the proof depends on the environ-
ment:
– If S previously created ψ1 in response to a solicit

message, then S behaves as in Section G.1, except
that it sends (authenticate,{gΓ, gI}, t) toN when
requesting mac.

– If ψ1 was sent by a corrupted I(s), then S signals to
N that its transcript has been rejected by sending
a message (complete,FALSE, gi, PQI ,{gΓ, gI}) to
N . S proceeds to acquire r, SKI = I,



Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging 66

and σR as in Section G.1. S computes κ =

KDF1((g
i
)
r
∥(gΓ

)
r
∥(gI)r∥Qk), Mk = KDF2(κ),

and then mac =MAC(Mk, t).

H.4.3 Receipt of ψ2 by uncorrupted I(s)

This case is mostly the same as the case from Sec-
tion G.1, with two differences. Firstly, when check-
ing that ψ2 matches the ψ1 message sent by I(s),
S first retrieves the latest signed prekey for I by
sending (spk-retrieve, I) to ḠXZDH , and receiving
(spk, I, gΓ′ , ξ) in response. If gΓ was the signed prekey
transmitted in ψ1 and gΓ

≠ gΓ′ , then S treats ψ2 as
invalid and aborts I. Secondly, when checking the valid-
ity of macP , S sends (verify,{gΓ, gI}, t,macP ) to N ,
where tag t = “I”∥“R”∥gi∥gp∥PQI∥QP ∥gΓ

∥ΦI .

H.5 Proof of Indistinguishably
The proof of indistinguishability given in Section G.2
also applies here with several additional remarks.

The session keys produced by IncProcXZDH and
NZDH continue to be indistinguishable to Z due to the
CDH assumption for G, since the inputs to KDF1 still
include terms that Z cannot compute; the inclusion of
gΓr does not negate the computational independence of
the random oracle’s outputs.

Although ψ1 now contains long-term information—
gΓ and its signature ξ—these values do not help Z to
distinguish between S andA. S ensures that R(s) checks
the validity of the signature; if ξ is invalid, S aborts the
session in the same manner as a real responder. If Z re-
plays a signed prekey or generates one from a corrupted
I via ḠXZDH , S still effectively simulates R(s) honestly.
Replaying the signed prekey or sending a corrupted one
also does not affect the security properties of the MAC
or proof in ψ2.

Finally, S also aborts I when ψ2 includes an out-
dated gΓ value (i.e., I has refreshed the signed prekey
stored by ḠXZDH after S simulated ψ1). This is pre-
cisely the behavior of a real initiator, who always knows
which signed prekey is being distributed and who refuses
to accept responses using an old key.


	Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging
	1 Introduction
	2 Related Work
	3 Design Overview
	3.1 General Approach
	3.2 Proof Technique
	3.3 Protocol Properties
	3.4 Quantum Transitional Security

	4 Cryptographic Primitives
	4.1 Notation
	4.2 Dual-Receiver Encryption with Associated Data
	4.3 Efficient Ring Signatures in the ROM
	4.4 Quantum-Resistant KEM

	5 DAKEZ
	6 ZDH
	6.1 Efficient Spawn in the ROM
	6.2 The ZDH Protocol
	6.3 Design Discussion

	7 XZDH
	8 Secure Messaging Integration
	8.1 Incorporating Quantum Resistance

	9 Implementation
	9.1 Libraries
	9.2 Ed25519-donna Additions
	9.3 Primitive Instantiations

	10 Performance Evaluation
	11 KCI Attacks
	11.1 KCI Attacks Against Spawn+
	11.2 Limiting or Preventing KCI Attacks

	12 Conclusion
	A Online Deniability Attacks
	A.1 Coercive Judges
	A.1.1 OTRv3
	A.1.2 Signal

	A.2 Malicious Users
	A.2.1 Protocol Specifics


	B DREAD Security
	C Ring Signature Security
	D DAKE Security Proof Techniques
	D.1 Related Models and Frameworks
	D.2 The GUC Framework
	D.3 Proof Notation and Setup

	E Proof of DAKEZ Security
	E.1 Ideal Functionality for DAKEZ
	E.1.1 Contributiveness
	E.1.2 Deniability
	E.1.3 Functionality Construction

	E.2 DAKEZ in the GUC Framework
	E.3 Proof Strategy
	E.4 Relationship to Security Properties
	E.4.1 Quantum Transitional Security

	E.5 Proof of Theorem 3
	E.6 Simulator Construction
	E.6.1 Communications between A and Z
	E.6.2 General reactions to actions by A
	E.6.3 Initialization
	E.6.4 Receipt of initiate message from ideal functionality
	E.6.5 Receipt of establish message from ideal functionality
	E.6.6 Receipt of flow 2 by uncorrupted simulated I
	E.6.7 Receipt of flow 3 by uncorrupted simulated R
	E.6.8 Transmission of flow 1 by corrupted simulated I
	E.6.9 Transmission of flow 2 by corrupted simulated R
	E.6.10 Constructing state for corrupted parties

	E.7 Proof of Indistinguishability
	E.7.1 The honest case
	E.7.2 Alteration of flow 1
	E.7.3 Alteration of flow 2
	E.7.4 Indistinguishability under corruptions
	E.7.5 Data from other sessions


	F Proof of Spawn+ Security
	F.1 Ideal Functionality
	F.2 Spawn+ in the GUC Framework
	F.3 Proof Strategy
	F.4 Proof of Theorem 4
	F.5 Simulator Construction
	F.5.1 General handling of A
	F.5.2 Initialization
	F.5.3 Receipt of solicit message from ideal functionality
	F.5.4 Receipt of establish message from ideal functionality
	F.5.5 Receipt of flow 2 by uncorrupted simulated I
	F.5.6 Transmission of flow 1 by corrupted simulated I
	F.5.7 Transmission of flow 2 by corrupted simulated R
	F.5.8 Constructing state for corrupted parties

	F.6 Proof of Indistinguishability
	F.6.1 The honest case
	F.6.2 Alteration of flow 1
	F.6.3 Alteration of flow 2
	F.6.4 Indistinguishability under corruptions
	F.6.5 Data from other sessions


	G Proof of ZDH Security
	G.1 Simulator Construction
	G.1.1 Receipt of establish message from ideal functionality
	G.1.2 Receipt of flow 2 by uncorrupted simulated I
	G.1.3 Transmission of flow 2 by corrupted simulated R

	G.2 Proof of Indistinguishably

	H Proof of XZDH Security
	H.1 Forward Secrecy of DAKEZ, Spawn+, and ZDH
	H.2 XZDH Security Theorem
	H.2.1 Forward Secrecy of XZDH

	H.3 Proof of Theorem 6
	H.4 Simulator Construction
	H.4.1 Receipt of solicit message from ideal functionality
	H.4.2 Receipt of establish message from ideal functionality
	H.4.3 Receipt of flow 2 by uncorrupted simulated I

	H.5 Proof of Indistinguishably



