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Abstract: Methods for privacy-preserving data publish-
ing and analysis trade off privacy risks for individu-
als against the quality of output data. In this article,
we present a data publishing algorithm that satisfies
the differential privacy model. The transformations per-
formed are truthful, which means that the algorithm
does not perturb input data or generate synthetic out-
put data. Instead, records are randomly drawn from the
input dataset and the uniqueness of their features is re-
duced. This also offers an intuitive notion of privacy pro-
tection. Moreover, the approach is generic, as it can be
parameterized with different objective functions to opti-
mize its output towards different applications. We show
this by integrating six well-known data quality mod-
els. We present an extensive analytical and experimen-
tal evaluation and a comparison with prior work. The
results show that our algorithm is the first practical im-
plementation of the described approach and that it can
be used with reasonable privacy parameters resulting
in high degrees of protection. Moreover, when parame-
terizing the generic method with an objective function
quantifying the suitability of data for building statisti-
cal classifiers, we measured prediction accuracies that
compare very well with results obtained using state-of-
the-art differentially private classification algorithms.
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1 Introduction
There is a strong tension between opportunities to lever-
age ever-growing collections of sensitive personal data
for business or research on one hand, and potential dan-
gers to the privacy of individuals on the other. Meth-
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ods for privacy-preserving data publishing and analysis
aim to find a balance between these conflicting goals by
trading privacy risks off against the quality of data [2].

Data published by statistical agencies usually de-
scribes a sample from a specific population. The sam-
pling process performed during data acquisition, as well
as additional random sampling sometimes performed
before data is released, provides an intuitive but weak
notion of privacy protection [53]. In addition, statisti-
cal data is typically sanitized using methods of disclo-
sure control which includes modifying, summarizing, or
perturbing (i.e. randomizing) the data. In this process,
“principles-based” approaches defined by experts and
rules of thumb are typically used [50].

An additional line of research, which we will call
data anonymization, has formulated syntactic require-
ments for mitigating risks in the form of privacy models.
The most well-known model is k-anonymity, which re-
quires that each record in a dataset is indistinguishable
from at least k − 1 other records regarding attributes
which could be used for re-identification attacks [52].
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Fig. 1. Common components of data anonymization algorithms.

Based on such formal requirements, privacy pro-
tection can be implemented with anonymization algo-
rithms which transform data to ensure that the require-
ments are met while reductions in data quality are quan-
tified and minimized [2]. As is sketched in Figure 1,
anonymization algorithms can be modelled as a process
in which a set of available data transformations is be-
ing searched, while an anonymization operator is used
to make sure that privacy requirements are satisfied and
quality is assessed to guide the search process. We em-
phasize that this is a very high-level overview and that
the design of concrete algorithms often depends on the
privacy models, quality models, and, most importantly,
the types of data transformation implemented.

Differential privacy [10] takes a different approach
to privacy protection, as it is not a property of a dataset,
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but a property of a data processing method. Informally,
it guarantees that the probability of any possible output
of a probabilistic algorithm (calledmechanism) does not
change “by much” if data of an individual is added to or
removed from input data. Implementing differential pri-
vacy does not require making strong assumptions about
the background knowledge of attackers, e.g. about which
attributes could be used for re-identification. Moreover,
differential privacy provides strong protection, while
syntactic models are much less reliable [9].

Differential privacy, however, has also been criti-
cized for various reasons. First, implementations are of-
ten non-truthful, i.e. perturbative, as they rely on noise
addition [5, 6]. Truthfulness can be a desirable prop-
erty in many fields [3]. Examples include governmen-
tal or industrial applications [21] and the medical do-
main, in which implausible data created by perturba-
tion (e.g. combinations or dosages of drugs which are
harmful for a patient) have led to challenges for intro-
ducing noise-based mechanisms [6]. Second, the seman-
tics of differential privacy are complex and it has been
argued that the approach is much more difficult to ex-
plain to decision makers, e.g. to ethics committees and
policy makers, than the idea of hiding in a crowd often
implemented by syntactic models [6]. Finally, differen-
tially private mechanisms are typically special-purpose
algorithms developed for specific applications, see e.g.
[17, 31, 32]. Many of them serve the interactive scenario,
i.e. they provide perturbed answers to (limited sets of)
queries. In contrast, microdata publishing methods aim
to release a sanitized dataset that supports a variety
of use cases. The development of such non-interactive
methods which satisfy differential privacy while retain-
ing sufficient data quality has remained challenging.

1.1 Contributions and Outline
Previous work has shown that algorithms which draw a
random sample of data followed by k-anonymization can
fulfill differential privacy [26, 39, 40]. These results are
notable, as they combine statistical disclosure control,
data anonymization and differential privacy.

In this article, we build upon this approach to imple-
ment a traditional data anonymization algorithm (see
Figure 1) with differentially private components. The re-
sult is a practical method for non-interactive microdata
publishing that fulfills differential privacy. The method
is truthful, as randomization is implemented via sam-
pling only and attribute values are transformed with
truthful methods. Moreover, it is intuitive, as privacy is
protected by sampling records and reducing the unique-
ness of their features. Finally, the approach employs a

flexible search strategy which can be parameterized with
a wide variety of data quality models to optimize its out-
put towards different applications. While developing the
approach, we had to overcome multiple challenges.

On the theoretical level, we have completed and
extended the proofs presented in [39] and [40] to de-
velop a method for obtaining the exact privacy guar-
antees obtained by the approach instead of loose up-
per bounds. This enabled us to strengthen a theorem
about the privacy guarantees provided, to study the re-
lationships between random sampling, k-anonymization
and differential privacy in more detail and to show that
the approach can be used with reasonable parameteri-
zations providing strong privacy protection. Moreover,
we have transformed six common data quality models
into a form suitable for integration into the approach.

On the practical level, we have performed an ex-
tensive experimental evaluation and a comparison with
related work. We have evaluated general-purpose data
quality and, as an application example, performed ex-
periments with statistical classification. Our evaluation
shows that the approach is practical in terms of run-
time complexity and output quality. Moreover, when
our generic method is parameterized with an according
data quality model, it can be used to create classifiers
which are en-par with, and sometimes significantly out-
perform, state-of-the-art approaches. This is notable, as
these competitors are pertubative special-purpose im-
plementations of the differential privacy model.

The remainder of this paper is structured as fol-
lows: We provide background information in Section 2.
Then, we give a high-level overview of the method in
Section 3. The anonymization operator is presented in
Section 4. Section 5 describes the objective functions.
In Section 6 we introduce the search strategy. Section 7
presents analytical evaluations of the method. In Sec-
tion 8 we present results of experimental analyses, in-
cluding comparisons with related approaches. Section 9
reviews related work. Section 10 concludes and summa-
rizes this article and Section 11 discusses future work.

2 Background and Preliminaries
2.1 Dataset
For an arbitrary dataset D with m attributes we will
denote the domains of attribute 1 to m by Ω1, ...,Ωm.
Then, we can regard D to be a multiset D ⊆ Ω1 × ...×
Ωm, and we will denote the universe of all datasets D ⊆
Ω1× ...×Ωm with Dm. Analogously to other articles we
will assume that each individual who contributed data
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to a dataset is represented by exactly one record r =
(r1, ..., rm) ∈ D and refer to such datasets as microdata.

2.2 Transformation Models
Data anonymization is typically performed by reducing
the distinguishability of records. Common methods for
doing so are clustering and aggregation of data items
[28], the introduction of noise and the generalization
and suppression of attribute values [2].

In this paper we focus on attribute generalization
through user-specified hierarchies, which describe rules
for replacing values with more general but semantically
consistent values on increasing levels of generalization.
Figure 2 shows two examples.

*

≥ 80

≥ 80

100805940191

≤ 19 [40, 60[

7960

[60, 80[

3920

[20, 40[

≤ 19 [20, 80[

Level 0

Level 1

Level 2

Level 3

, … , , … , , … , , … , , … ,FemaleMale

*

Λi

Ωi

Fig. 2. Example generalization hierarchies.

Without loss of generality we will assume that a
generalization hierarchy is provided for each attribute
i = 1, ...,m so that the values on level 0 form the domain
Ωi while we denote the set of values on levels greater
than 0 by Λi. For a given value r′i ∈ Ωi ∪ Λi we will
call each value on level 0 which is an element of the
subtree rooted at r′i a leaf node of r′i. For example, the
leaf nodes of “[20, 80[” in Figure 2 are “20”, ..., “79”. We
will indicate the removal of a record by replacing it with
the placeholder ∗ = (∗, ..., ∗). Since generalizing a value
to the highest level effectively suppresses the value we
will also denote the root values of all hierarchies with ∗.

2.3 Solution Spaces and Search Strategies
Most anonymization algorithms can be described as
search algorithms through all possible outputs defined
by the data transformation model. While they are ob-
viously not always implemented this way (e.g. cluster-
ing algorithms typically use heuristics to guide the clus-
tering process [28]) search algorithms are often imple-
mented in combination with generalization hierarchies.
The exact nature of the search space then depends on
the generalization method.

For example, full-domain generalization generalizes
all values of an attribute to the same level. With sub-
tree generalization different values of an attribute can
be generalized to different levels [2]. In this article we
will focus on full-domain generalization, which results
in search spaces that can be described with generaliza-

tion lattices. An example is shown in Figure 3. An arrow
denotes that a transformation is a direct successor of a
more specialized transformation, i.e. it can be derived
from its predecessor by incrementing the generalization
level of exactly one attribute. The number of transfor-
mations in a generalization lattice grows exponentially
with the number of attributes [15] and a wide variety
of globally-optimal and heuristic search algorithms for
generalization lattices have been proposed [15, 33–35].
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Fig. 3. Example generalization lattice and output datasets.

In this article we will use the following notion. A
generalization scheme is a function g : Ω1 × ...× Ωm →
(Ω1 ∪ Λ1)× ...× (Ωm ∪ Λm) mapping records to (possi-
bly) generalized records. Obviously, every transforma-
tion which performs full-domain generalization can be
formalized as a generalization scheme. Unless otherwise
noted, we define the solution space Gm to be the set of
all full-domain generalization schemes which is deter-
mined by the generalization hierarchies of all attributes
of a given dataset.

2.4 Anonymization Operators
An anonymization operator implements a privacy
model. It determines whether or not a record or dataset
satisfies the privacy requirements and may also mod-
ify the data. For example, in clustering algorithms,
the anonymization operator may merge the records
within a cluster into an equivalence class that satisfies
k-anonymity, which we define as follows:

Definition 1 (k-Anonymity [52]). For a given dataset
D ⊆ (Ω1 ∪ Λ1) × ... × (Ωm ∪ Λm), we define an equiva-
lence class E ⊆ D to be the multiset of all records in
D which share a given combination of attribute values.
An equivalence class E satisfies k-anonymity if |E| ≥ k

holds. D satisfies k-anonymity if each record r ∈ D can-
not be distinguished from at least k − 1 other records,
i.e. if all equivalence classes E ⊆ D are k-anonymous.

As a part of algorithms implementing full-domain gen-
eralization, the anonymization operator typically sup-
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presses records which do not satisfy the privacy require-
ments [52]. This principle can not only be implemented
for k-anonymity but also for further privacy models,
including l-diversity [1], t-closeness [28] and δ-presence
[47], which have been proposed for protecting data from
threats that go beyond re-identification.

2.5 Quality Assessment
Measuring reductions in data quality due to anonymiza-
tion is non-trivial as usefulness depends on the use case.

When it is unknown in advance how the data will be
used, general-purpose quality models can be employed.
They typically estimate data quality by quantifying the
amount of information loss, e.g. by measuring similari-
ties between the input and the output dataset [2]. Mod-
els can roughly be classified as measuring information
loss on the attribute-level, cell-level or record-level. Typ-
ical examples for changes on these levels are differences
in the distributions of attribute values (attribute-level),
reductions in the granularity of data (cell-level) and dif-
ferences in the sizes of equivalence classes (record-level).

Special-purpose (or workload-aware) quality models
quantify data quality for a specific application scenario,
e.g. statistical classification. Thereby the task is to pre-
dict the value of a predefined class attribute from a given
set of values of feature attributes. This is implemented
with supervised learning where a model is created from
a training set [54]. Specific quality models have been
developed for optimizing data for this purpose [25, 37].

2.6 Differential Privacy
Differential privacy requires that any output of a mech-
anism is almost as likely, independent of whether or
not a record is present in the input dataset [10].
(ε, δ)-Differential privacy can be formally defined with
respect to two datasetsD1 andD2 satisfying |D1⊕D2| =
1, which means that D2 can be obtained from D1 by ei-
ther adding or removing one record:

Definition 2 ((ε, δ)-differential privacy [6]). A ran-
domized function K provides (ε, δ)-differential privacy
if for all datasets D1, D2 ∈ Dm with |D1 ⊕D2| = 1, and
all measurable S ⊆ Range(K),

P [K(D1) ∈ S] ≤ exp(ε) · P [K(D2) ∈ S] (1)

holds with a probability of at least 1− δ.

(ε, 0)-Differential privacy is usually just called ε-dif-
ferential privacy. For δ > 0, (ε, δ)-differential privacy
is then a relaxation of ε-differential privacy.

Sequences of differentially private computations are
also differentially private:

Theorem 1. For i = 1, ..., n, let the mechanism
Mi provide εi-differential privacy. Then the sequence
Mr1

1 (D), ...,Mrn
n (D), whereMri

i denotes mechnismMi

supplied with the outcomes of M1, ...,Mi−1, satisfies(∑n
i=1 εi

)
-differential privacy [45].

A common method to achieve differentially privacy is
the exponential mechanism [44]. It ranks all potential
outputs r ∈ R for a given input dataset D using a real-
valued score function s. It then randomly chooses one
according to a specific probability distribution which as-
signs higher probabilities to outputs with higher scores:

Definition 3 (Exponential mechanism [44]). For any
function s : (Dm × R) → R, the exponential mecha-
nism Eεs(D,R) chooses and outputs an element r ∈ R
with probability proportional to exp

(
s(D,r)ε

2∆s

)
, where

the sensitivity ∆s of the function s is defined as

∆s := max
r∈R

max
D1,D2∈Dm:|D1⊕D2|=1

|s(D1, r)− s(D2, r)|.

It can be seen that it is important to use score func-
tions which assign higher scores to outputs with higher
quality while having a low sensitivity. The privacy guar-
antees provided are as follows:

Theorem 2. For any function s : (Dm × R) → R,
Eεs(D,R) satisfies ε-differential privacy [44].

3 Overview of the Approach
Prior work has shown that randomization via sam-
pling can be used to achieve (ε, δ)-differentially pri-
vacy [26, 39, 40]. We build upon and extend these
results to implement the SafePub algorithm. It com-
prises a search strategy, an anonymization operator
and various methods for quality assessment, similar
to many anonymization algorithms. The overall pri-
vacy budget ε is split up into two parts εanon , which
is used by the anonymization operator, and εsearch ,
which is used by the search strategy. SafePub satisfies
(εanon + εsearch , δ)-differential privacy, where δ and the
number of iterations performed by the search strategy
(steps) can also be specified.

Figure 4 shows the high-level design of the ap-
proach. It also indicates the parameters which are rele-
vant for the individual steps. First, SafePub performs
pre-processing by random sampling, selecting each
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Input: Dataset D, Parameters εanon , εsearch , δ, steps
Output: Dataset S
1: Draw a random sample Ds from D . (εanon)
2: Initialize set of transformations G
3: for (Int i← 1, ..., steps) do
4: Update G
5: for (g ∈ G) do
6: Anonymize Ds using g . (εanon , δ)
7: Assess quality of resulting data
8: end for
9: Probabilistically select solution g ∈ G . (εsearch)

10: end for
11: return Dataset Ds anonymized using . (εanon , δ)

the best solution selected in Line 9

Fig. 4. High-level design of the SafePub mechanism. The search
strategy is implemented by the loop in lines 3 to 10.

record independently with probability β = 1− e−εanon .
This leads to provable privacy guarantees as we will see
in the next section. Then, a search through the space
of all full-domain generalization schemes is performed.
It comprises multiple iterations which are implemented
by the for-loop in lines 3 to 10. In each iteration the
sample is anonymized using every full-domain general-
ization scheme in the set G. The quality of the result-
ing data is assessed and a good solution is selected in
a probabilistic manner. Finally, the mechanism returns
the best transformation which has been selected during
all iterations. In the following sections we will describe
each component in greater detail.

4 Anonymization Operator
An overview of the anonymization operator is shown
in Figure 5. It builds upon prior work by Li et al. [39]
which we have extended with a parameter calculation so
that the operator satisfies (ε, δ)-differential privacy for
arbitrary user-specified parameters. The operator first
generalizes the (sampled) input dataset using the gen-
eralization scheme g, and then suppresses every record
which appears less than k times. Thereby the integer k
is derived from the privacy parameters δ and εanon . We
will simply denote εanon with ε in this section.

Every output of the operator obviously satisfies
k-anonymity. Moreover, Li et al. have shown that:

Theorem 3. Random sampling with probability β fol-
lowed by attribute generalization and the suppression of
every record which appears less than k times satisfies

Privacy parameters
 ε

Protected 
output data

Input data Generalization scheme

Reduction of 
uniqueness

Attribute
generalization

Record 
suppression

gδ

Calculate 
parameter

for data
transformation

Fig. 5. Overview of the anonymization operator.

(ε, δ)-differential privacy for every ε ≥ − ln(1− β) with

δ = d(k, β, ε) := max
n:n≥nm

n∑
j>γn

f(j;n, β) (2)

where nm :=
⌈
k
γ − 1

⌉
, γ := eε−1+β

eε and f(j;n, β) :=(
n
j

)
βj(1− β)n−j , which is the probability mass function

of the binomial distribution [39].

It can be seen that the calculation of β described in
Section 3 follows from Theorem 3:

ε ≥ − ln(1− β)⇒ β ≤ 1− e−ε := βmax

We will explain why we set β = βmax in Section 8.2.
To derive a practical anonymization operator from

Theorem 3, it is necessary to calculate a value for k
from given values of ε, δ and β. This is not trivial since
Equation (2) requires to find the maximum of an infi-
nite non-monotonic sequence. In the following we will
show how this is implemented in SafePub. To do so, we
will first introduce some definitions for notational con-
venience and recapitulate some important prior results.

For ease of notation we define the sequence:

an :=
n∑

j>γn

f(j;n, β). (3)

It follows that d(k, β, ε) = maxn:n≥nm an. Furthermore,
we will use the following sequence:

cn := e−n(γ ln( γβ )−(γ−β)). (4)

Li et al. have shown in [40] that cn is strictly mono-
tonically decreasing with lim

n→∞
cn = 0 and that it is an

upper bound for an, i.e. it satisfies:

∀n ∈ N : an ≤ cn. (5)

From these results we can conclude:

δ = d(k, β, ε) = max
n:n≥nm

an ≤
(5)

max
n:n≥nm

cn ≤ cnm . (6)
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The sequence an consists of sums which are, except
for multiplicative factors, partial sums of a row in Pas-
cal’s triangle. For such sums no closed-form expressions
are known [23]. However, we will show that the function
d can still be evaluated by using the following simplified
representation:

Theorem 4. The function d has the representation

d(k, β, ε) = max {anm , ..., añ}

where ñ := min {N ≥ nm : cN ≤ anm}.

Proof. From lim
n→∞

cn = 0 and anm > 0 we can conclude:

∀ξ > 0 ∃N ≥ nm ∀n ≥ N : cn ≤ ξ
⇒ ∃N ≥ nm ∀n ≥ N : cn ≤ anm
⇒ ∃N ≥ nm : cN ≤ anm .

Hence ñ exists. Since the sequence cn is monotonically
decreasing with increasing n it follows that:

∀n > ñ : an ≤
(5)

cn ≤ cñ ≤ anm ≤ max {anm , ..., añ} .

We can conclude:

max {anm , ..., añ} = max
n:n≥nm

an = d(k, β, ε) .

Theorem 4 allows to derive δ from k, β and ε by calcu-
lating both an and cn for increasing values of n ≥ nm
until an index ñ satisfying cñ ≤ anm is reached. δ is
then the maximum of the finite sequence anm , ..., añ.
This strategy is schematically illustrated in Figure 6.

nm nm+1 nm+2 nm+3 nm+4 n

1
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0.001

0.0001
~
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m
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δ=max(an)

Upper bound for an

Maximum must be in this range

Fig. 6. Schematic plot of an and cn in the range nm to ñ.

For fixed values of β and ε we obtain the function
d(·, β, ε) : N → [0, 1]. In order to use this function to
compute a value of k so that (ε, δ)-differential privacy
is provably satisfied, we will first prove that d(·, β, ε)
converges:

Theorem 5. For arbitrary ε > 0 and 0 < β < 1,
lim
k→∞

d(k, β, ε) = 0 is satisfied.

Proof. Note that nm is a function of k which satisfies:

nm = nm(k) =
⌈
k

γ
− 1
⌉
→∞, k →∞ .

Using the strict monotonicity of cn we can conclude:

0 ≤ d(k, β, ε) = max
{
anm(k), ..., añ

}
≤
(5)

max
{
cnm(k), ..., cñ

}
= cnm(k) → 0, k →∞.

The claim follows according to the squeeze theorem.

From this result we can conclude:

∀δ > 0 ∃k ∈ N : d(k, β, ε) ≤ δ.

In order to find the smallest such k for a given value
of δ, we can evaluate d(k, β, ε) as described above for
increasing values of k ∈ N until d(k, β, ε) ≤ δ is satisfied.
More formally, k can be computed using the function:

d′(δ, β, ε) := min{k ∈ N : d(k, β, ε) ≤ δ}.

We denote the output of the operator with S(D) :=
suppress(g(D), k), where g(D) :=

⋃
r∈D{g(r)} and

suppress denotes a function that suppresses every record
which appears less than k times.

5 Quality Assessment
The output of the anonymization operator must be as-
sessed to determine a good solution. For this purpose
the search strategy employs the exponential mecha-
nism. In this section we will present implementations of
common quality models as score functions and discuss
their sensitivities. They comprise five general-purpose
models which are frequently used in the literature
[28, 56] and which have been recommended in cur-
rent data de-identification guidelines [11] as well as a
special-purpose model for building statistical classifiers.
For proofs we refer to Appendix B.

5.1 Granularity and Intensity
Data Granularity is a cell-level, general-purpose model.
It measures the extent to which the values in a dataset
cover the domains of the respective attributes [25]. Since
the model already has a low sensitivity, we can multi-
ply its results with −1 to obtain a score function which
measures data quality rather than information loss:

Definition 4. For i = 1, ...,m, let leavesi : Ωi ∪Λi → N
denote the function which returns the number of leaf
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nodes for each value r′i within the generalization hierar-
chy of the i-th attribute. For every k ∈ N, we define the
score function grank : (Dm × Gm)→ R as follows:

grank(D, g) := −
∑

(r′1,...,r′m)∈S(D)

m∑
i=1

leavesi(r′i)
|Ωi|

.

The sensitivity of grank is as follows (see Appendix B.1):

Theorem 6. For every k ∈ N, the following holds:

∆grank ≤
{

(k − 1)m, if k > 1
m, if k = 1

.

Generalization Intensity is another cell-level, gen-
eral-purpose model which sums up the relative gener-
alization level of values in all cells [52]. A score function
intensityk : (Dm × Gm) → R which is tailored to this
model, and which has the same sensitivity as grank, can
be constructed analogously.

5.2 Discernibility
Discernibility is a record-level, general-purpose model
which penalizes records depending on the size of the
equivalence class they belong to [3]. Let EQ(D) denote
the set of all equivalence classes of D, except of {∗ ∈ D},
which contains the suppressed records in D. We first
define the following normalized variant of the model:

φ(D) :=

 ∑
E∈EQ(D)

|E|2

|D|

+ |{∗ ∈ D}|. (7)

We note that suppressed records are considered sep-
arately from the other records in Equation (7) as this
improves the sensitivity of the function. The score func-
tion disck : (Dm × Gm)→ R is defined as follows:

Definition 5. disck(D, g) := −φ(S(D)).

The sensitivity of disck is as follows (see Appendix B.2):

Theorem 7. For every k ∈ N, the following holds:

∀k ∈ N : ∆disck ≤

{
5, if k = 1

k2

k−1 + 1, if k > 1
.

5.3 Non-Uniform Entropy
Non-Uniform Entropy is an attribute-level, general-pur-
pose model which quantifies the amount of information
that can be obtained about the input dataset by ob-
serving the output dataset [7]. According to this model

information loss increases with increasing homogeneity
of attribute values in the output dataset. Hence we will
base the score function on a measure of homogeneity.

Let pi(D) denote the projection of D to its i-th at-
tribute. We can then measure the homogeneity of at-
tribute values in D using the function φ (see Equa-
tion (7)) by calculating

∑m
i=1 φ(pi(D)) and thus define:

Definition 6. For every k ∈ N, the score function entk :
(Dm × Gm)→ R is defined as:

entk(D, g) := −
m∑
i=1

φ(pi(S(D))).

The sensitivity of entk is as follows (see Appendix B.3):

Theorem 8. For every k ∈ N, we have

∆entk ≤

{
5m, if k = 1

( k2

k−1 + 1)m, if k > 1
.

5.4 Group Size
Group Size is a record-level, general-purpose model
which measures the average size of equivalence classes
[36]. We derive a score function which is inversely cor-
related to this model as follows:

Definition 7. For every k ∈ N, the score function
groupsk : (Dm × Gm)→ R is defined as:

groupsk(D, g) := |EQS(D)|.

Since the addition of a single record can lead to at most
one additional equivalence class, it is easy to see that
∀k ∈ N : ∆groupsk ≤ 1 holds.

5.5 Statistical Classification
Iyengar has proposed a special-purpose model which
measures the suitability of data as a training set for
statistical classifiers [25]. It penalizes records which do
not contain the most frequent combination of feature
and class attribute values. Since the model already has
a low sensitivity, we can derive a practical score function
by giving weights to records which are not penalized:

Definition 8. For every k ∈ N, the score function
classk : (Dm × Gm)→ R is defined as follows:

classk(D, g) :=
∑

r′∈S(D)

w(S(D), r′) .

Let fv(r′) denote the the sub-vector of a record r′ which
consists of the feature attribute values in r′. The record
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r′ is given a weight by the function w if fv(r′) is not
suppressed and if the class attribute value cv(r′) of r′ is
equal to the most frequent class value cvmaj(S(D), r′)
among all records in S(D) which share the same com-
bination of feature values. More precisely, we define:

w(S(D), r′) :=


1, if fv(r′) is not suppressed and

cv(r′) = cvmaj(S(D), r′) holds
0, otherwise

.

The sensitivity of classk is as follows (see Appendix B.4):

Theorem 9. For every k ∈ N, ∆classk ≤ k holds.

6 Search Strategy
The search strategy implements a (randomized)
top-down search through the generalization lattice using
the scores which are calculated according to the given
quality model. Traversal is implemented by iterative ap-
plications of the exponential mechanism which exponen-
tially favors transformations with high scores, and thus
likely returns transformations resulting in good output
data quality (see Section 2.6). For ease of notation we
will denote εsearch with ε in this section.

Input: Dataset D ∈ Dm, Real ε, Integer steps,
1: ScoreFunction s : (Dm × Gm)→ R
Output: Scheme g ∈ Gm
2: Real ε̃← ε/steps
3: Scheme pivot ← >
4: Scheme optimum ← >
5: SchemeSet candidates ← {>}
6: for (Int i← 1, ..., steps) do
7: candidates ← candidates ∪ predecessors(pivot)
8: candidates ← candidates \ {pivot}
9: pivot← E ε̃s(D, candidates)

10: if (s(D, pivot) > s(D, optimum)) then
11: optimum ← pivot

12: end if
13: end for
14: return optimum

Fig. 7. Detailed presentation of the search strategy.

Figure 7 shows a more detailed presentation of the
search strategy which is also outlined in the high-level
overview in Figure 4 (the loop in lines 6 to 13 of Fig-
ure 7 corresponds to the loop in lines 3 to 10 of Fig-
ure 4). The function predecessors maps a transformation
to the set of its direct predecessors. The search starts
with the transformation > ∈ Gm which generalizes ev-

ery attribute to the highest level available. The scores
of all direct predecessors of > are calculated and the
transformations are put into the set candidates. In each
iteration a pivot element is selected from the set us-
ing the exponential mechanism with a privacy budget
of ε̃ = ε/steps, the scores of all its direct predecessors
are calculated, and the predecessors are being added to
candidates. The pivot element is then removed from the
set. After a predefined number of steps the method re-
turns the pivot element with the best score.

We note that using steps = 0 is possible but imprac-
tical, as this results in the deterministic selection of the
transformation > that suppresses all data.

Pivot

1

3 5

2

4

7

Expanded

6

Top

Fig. 8. Schematic illustration of the search strategy.

Figure 8 schematically illustrates the method. A
black circle represents a pivot element and the gray tri-
angle below it represents its direct predecessors. The
method is likely to perform a best-first search, follow-
ing a path of transformations with increasing score val-
ues (e.g. the path from transformation no. 1 to no. 4).
We note that it is not likely that the algorithm will be
trapped in a local minimum, i.e. that it continues fol-
lowing a path of elements with non-optimal score values.
The reason is that the predecessors of all previously se-
lected pivot elements are left in the set candidates. For
example, if all predecessors of pivot element no. 4 have
a lower score than transformation no. 5, then transfor-
mation no. 5 will likely be selected as the next pivot
element. Moreover, following a non-optimal path is un-
likely to negatively affect the quality of the overall out-
put, as the final solution is selected deterministically.
The privacy guarantees provided are as follows:

Theorem 10. For every parameter steps ∈ N0 and ε >
0, the search strategy satisfies ε-differential privacy.

Proof. If steps = 0 holds the search strategy returns
> in a deterministic manner and hence trivially satis-
fies ε-differential privacy. In the following we will as-
sume that steps > 0 holds. We note that the only in-
structions which modify the content of the variables
pivot and candidates are located in lines seven to nine.
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For every iteration i ∈ {1, ..., steps} of the enclosing
loop, let Mri

i (D) denote the sequence of operations
performed by these three lines during the i-th itera-
tion. Let ri = (pivoti, candidatesi) denote the content
of the variables pivot and candidates before the i-th
iteration of the loop. Then each ri is determined by
Mr1

1 (D), ...,Mri−1
i−1 (D) and supplied to Mri

i (D) which
outputs ri+1 in a manner that satisfies ε̃-differential pri-
vacy according to Theorem 2. We can conclude from
Theorem 1 that the sequence Mr1

1 (D), ..., Mrsteps
steps(D)

satisfies ε-differential privacy since
∑steps
i=1 ε̃ = ε holds.

Finally, the algorithm returns the generalization scheme
with the highest score value amongst all pivot elements
selected by the differentially private operationsMr1

1 (D),
...,Mrsteps

steps(D) in a deterministic manner. Hence the al-
gorithm satisfies ε-differential privacy.

7 Analytical Evaluation

7.1 Complexity Analysis
Let n = |D| denote the number of records, each consist-
ing of m attributes. Each basic operation, i.e. drawing a
random sample, executing the anonymization operator
and evaluating a score function, has a runtime complex-
ity of O(n ·m). In each step of the search process, the
anonymization operator and the score function are be-
ing evaluated once for at most m predecessors of the
current pivot element. Hence each step has a time com-
plexity of O(n ·m2). The number of steps performed is
a user-defined parameter and we will derive recommen-
dations experimentally in Section 8.

We note that the method for calculating the pa-
rameters of the algorithm described in Section 4 is
of non-trivial runtime complexity. Unfortunately a de-
tailed analysis is complex and out of the scope of this
work. We have, however, performed experimental eval-
uations using a wide variety of common parameteriza-
tions which showed that the approach is practical. We
will present the results in the next section.

7.2 Parameter Analysis
In this section we analyze dependencies between param-
eters of SafePub. We will focus on εanon and δ since they
determine k and β in a non-trivial manner. For ease of
of notation, we will denote εanon with ε.

Figure 9 shows the values of β and k obtained for
various values of ε and δ as described in Section 4. We
focus on common values of ε [6]. Later we will set δ to
10−m with m ∈ N such that δ < 1/n, where n is the

size of the dataset, and at least δ ≤ 10−4 holds. This
is a recommended parameterization [38, 40]. We focus
on ranges of δ relevant to our evaluation datasets (see
Section 8.1).
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5 DEPENDENCIES BETWEEN PARAMETERS

In the following, we present an analysis of dependencies
between parameters of SafePub. For that, we have investi-
gated the correlation between the sampling probability βmax
and the uniqueness threshold k which SafePub derives from
realistic privacy parameters ε and δ. Thereby, smaller values
for ε and δ guarantee higher levels of privacy protection,
while smaller values of βmax and higher values of k result in
a potential decrease of data quality.
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Fig. 6. Overview of k and βmax values derived from ε and δ.

Figure 6 shows the values of βmax and k we obtained
for various values of ε and δ. We focused on common
values of ε listed in [8]. It has been recommended to define
δ to be strictly smaller than 1/n, where n is the size of
the dataset [20]. Since SafePub satisfies the smoothness
property and hence provides stronger privacy guarantees
than (ε, δ)-differential privacy, we defined δ as 10−m with
m ∈ N such that δ is strictly smaller than 1/n. We focused on
ranges relevant to our evaluation datasets (see Section 6.1).

As can be seen, for fixed values of ε, smaller values of δ
resulted in higher values of k and thus potentially reduced
data quality. Decreasing ε, however, had two consequences
with possibly opposing impacts on data quality: On one
hand, βmax decreased, but on the other hand, for fixed values
of δ, k decreased as well, which might actually result in
improved data quality. Thereby, βmax decreased rapidly for
smaller values of ε, which means that the approach is not
feasible for small values of ε. When ε increased, the increase
of βmax flattened, while k increased substantially.
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Fig. 7. Semi-log plot showing the smoothness property for ε = 1 and
various values of δ. As can be seen, the probability of exceeding ε
decreases exponentially with increasing degrees of exceedance.

Figure 7 illustrates the smoothness property for ε = 1
and various values of δ. As can be seen, the probability of
exceeding the privacy parameter ε decreased exponentially
for linearly increasing degrees of exceedance. The smaller

δ was, the steeper were the curves, which means that the
smoothness effect was stronger. Hence, when δ is chosen
based on the dataset size as described above, the strength of
the smoothness property increases with the size of datasets.

Moreover, it can be seen that d(k, βmax, ε) was slightly
lower than each corresponding value of δ. This observation
can be explained by the fact that Algorithm 3 iteratively
increases k until the smallest value satisfying d(k, βmax, ε) ≤
δ is reached. Because of the discrete nature of the integer
k, it is to be expected that thereby actually d(k, βmax, ε) <
δ holds. This means that our approach typically provides
slightly stronger privacy guarantees than specified.

When calculating βmax and k for every relevant combi-
nation of ε and δ on a desktop PC with a quad-core 3.1 GHz
Intel Core i5 CPU, we measured execution times between
41 ms and 21 s with an average of 1.6 s. This shows that
the algorithms presented in Section 4 terminate quickly for
realistic privacy parameters.

6 ANALYSIS OF DATA QUALITY

6.1 Setup
We have performed experiments with four different real
world datasets [25]: 1) Census, an excerpt of records from the
1994 US census database which is commonly used in eval-
uations of anonymization algorithms, 2) FARS, which con-
tains records about fatal traffic accidents from the NHTSA
Fatality Analysis Reporting System, 3) ATUS, consisting of
responses to the American Time Use Survey, and 4) IHIS, a
set of records from the Integrated Health Interview Series.
The datasets have increasing volumes, ranging from about
30, 000 to more than a million records. All include poten-
tially identifying and sensitive data such as demographics
(e.g. sex, age), insurance coverage information, social pa-
rameters (e.g. education), and health data.

TABLE 1
Evaluation Datasets: Basic Properties Including the Number of

Attributes, the Number of Records and Privacy Parameters

ε = 1 ε′ = 2

Label No. Attributes No. Records δ δ′

Census 9 30, 162 10−5 1.1 · 10−9

FARS 8 100, 937 10−6 1.5 · 10−11

ATUS 9 539, 253 10−6 1.5 · 10−11

IHIS 8 1, 193, 504 10−7 4.4 · 10−14

Table 1 provides an overview of the properties of the
evaluation datasets, including the values of δ obtained
with the strategy described in Section 5, which we used
throughout our evaluations. It also shows results of the
smoothness property, in this case the probability δ′ with
which 2-differential privacy may be violated.

For each dataset, we defined three data-independent
generalization schemes with different degrees of general-
ization: Low, Medium, and High. Each scheme specifies a
relative generalization level (regarding the height of the
hierarchy) for each attribute. Table 2 shows how many
attributes have been generalized to which relative level. We
note that our generalization schemes never suppress any at-
tribute completely. Hence, attributes with small hierarchies,
i.e. binary attributes, have not been generalized at all in any
generalization scheme.
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Fig. 9. Overview of values for k and β derived from ε and δ.

As can be seen, for fixed values of ε, decreasing δ

increases k and thus potentially reduces data quality.
Decreasing ε, however, has two consequences with pos-
sibly opposing impacts: On one hand, β decreases, but
on the other hand, for fixed values of δ, k decreases as
well. The value of β decreases rapidly for smaller values
of ε which indicates that our approach is not practi-
cal with such parameterizations. When ε increases, the
increase of β flattens, while k increases further.

We also measured the time required to calculate
βmax and k for every ε discussed here and 10−4 ≤ δ ≤
10−20 on a desktop PC with a quad-core 3.1 GHz In-
tel Core i5 CPU. We measured between 0.1s and 37s
with an average of 4.5s. This shows that the method
presented in Section 4 terminates quickly for realistic
privacy parameters.

7.3 Smooth Privacy
While the (ε, δ)-differential privacy model guarantees
that the bound exp(ε) in Inequation (1) may be ex-
ceeded with a probability of at most δ, it does not re-
strict the permitted degree of exceedance.

Li et al. have suggested that the mechanism stud-
ied here has the property that the higher such an
exceedance is, the more unlikely it is to occur [40].
However, their results just provide upper bounds for
these probabilities based on Inequation (6) which are
very conservative: For example, for the values ε = 1,
β = 0.632 and k = 75, they overestimate δ by more than
four orders of magnitude (3.7 · 10−2 vs. 10−6). Based on
our results, we can calculate the exact probabilities:

Theorem 11 (Smoothness property). For arbitrary
parameters ε = εanon > 0 and δ > 0, let β and k be the
parameters derived as described in Section 4. Then the
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combination of random sampling with probability β and
the anonymization operator satisfies (ε′, d(k, β, ε′))-dif-
ferential privacy simultaneously for every ε′ ≥ ε while
d(k, β, ε′) is monotonically decreasing when ε′ increases.

The proof can be found in Appendix A.
Figure 10 illustrates the smoothness property for

ε = 1 and various values of δ. As can be seen, the proba-
bility of exceeding ε decreases exponentially for increas-
ing degrees of exceedance. The smaller δ, the steeper
are the curves, which means that the smoothness effect
is stronger. Hence, when δ is set based on the size of
the dataset as described in Section 7.2, the degree of
protection increases with increasing size of the dataset.
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Fig. 10. Semi-log plot showing the smoothness property for ε = 1
and various values of δ.

8 Experimental Evaluation
We have implemented our method using the open source
ARX Data Anonymization Tool1. In this section we
present experimental analyses of each individual com-
ponent of SafePub and develop recommendations for
parameterizations. Furthermore, we present results of
comparisons with related methods.

8.1 Datasets and Setup
We used four different datasets (see [48]) in our experi-
ments: 1) US Census (USC), an excerpt of records from
the 1994 U.S. Census database which is often used for
evaluating anonymization algorithms, 2) Crash statis-
tics (CS), a database about fatal traffic accidents, 3)
Time use survey (TUS), a dataset consisting of re-
sponses to a survey on individual time use in the U.S.

Label No. of No. of Size of ε = 1 ε′ = 2
Attributes Records Lattice δ δ′

USC 9 30, 162 19, 440 10−5 1 × 10−9

CS 8 100, 937 15, 552 10−6 2 × 10−11

TUS 9 539, 253 34, 992 10−6 2 × 10−11

HI 8 1, 193, 504 14, 580 10−7 4 × 10−14

Table 1. Overview of the evaluation datasets.

1 http://arx.deidentifier.org/

and 4) Health interviews (HI), a database of records
from a survey on the health of the U.S. population.

The datasets have increasing volumes, ranging from
about 30, 000 to more than a million records. All include
sensitive data such as demographics (e.g. sex, age) or
health-related data. Table 1 provides an overview of the
datasets and parameterizations we used in our experi-
ments. It also shows results of the smoothness property,
i.e. the probability δ′ of violating 2-differential privacy.

8.2 Analysis of the Anonymization
Operator

First we examine the amount of records preserved (i.e.
not removed by random sampling or record suppression)
by the anonymization operator, which is a generic utility
estimate. We set εsearch = 0 and used three full-domain
generalization schemes defining low, medium or high
relative generalization levels for the attributes in the
datasets. We note that the parameter ε determines the
degree of privacy provided together with δ while the rel-
ative generalization level balances the loss of informa-
tion resulting from generalization against the loss of in-
formation resulting from record suppression – the higher
the degree of generalization is, the more records are
likely to become indistinguishable, and hence the fewer
records have to be removed for violating k-anonymity.
We focus on the parameters also investigated in Sec-
tion 7.2. Figure 11 shows averages of 10 executions. All
standard deviations were less than 1%.

21 s with an average of 1.6 s. This shows that the parameter
calculation presented in Section IV terminates quickly when
realistic privacy parameters are being used.

VI. ANALYSIS OF DATA QUALITY

A. Setup

We performed experiments with four datasets [11]: 1) Cen-
sus, an excerpt of records from the 1994 US census database
which is commonly used in evaluations of anonymization
algorithms, 2) FARS, which contains records about fatal traffic
accidents from the NHTSA Fatality Analysis Reporting Sys-
tem, 3) ATUS, consisting of responses to the American Time
Use Survey, and 4) IHIS, a set of records from the Integrated
Health Interview Series. The datasets have increasing volumes,
ranging from about 30, 000 to more than a million records.
All include potentially identifying and sensitive data such as
demographics (e.g. sex, age) and health data.

Table I provides an overview of our datasets, including the
values of δ obtained with the strategy described in Section V,
which we used throughout our evaluations. It also shows
results of the smoothness property, in this case the probability
δ′ with which 2-differential privacy may be violated.

TABLE I
EVALUATION DATASETS: PROPERTIES AND PRIVACY PARAMETERS

ε = 1 ε′ = 2

Label No. Attributes No. Records δ δ′

Census 9 30, 162 10−5 1.1 · 10−9

FARS 8 100, 937 10−6 1.5 · 10−11

ATUS 9 539, 253 10−6 1.5 · 10−11

IHIS 8 1, 193, 504 10−7 4.4 · 10−14

For each dataset, we defined three data-independent gen-
eralization schemes with different degrees of generalization:
Low, Medium, and High. Each scheme specifies a relative
generalization level (regarding the height of the hierarchy) for
each attribute. Table II shows how many attributes have been
generalized to which relative level.

TABLE II
GENERALIZATION SCHEMES FOR THE EVALUATION DATASETS

Dataset Generalization degree

Census
Low: [5×50%, 1×33%, 1×25%, 2×0%]

Medium: [1×67%, 6×50%, 2×0%]
High: [1×75%, 1×67%, 5×50%, 2×0%]

FARS
Low: [4×50%, 2×33%, 1×20%, 1×0%]

Medium: [2×67%, 1×60%, 4×50%, 1×0%]
High: [1×80%, 2×67%, 4×50%, 1×0%]

ATUS
Low: [6×50%, 1×33%, 1×20%, 1×0%]

Medium: [1×67%, 1×60%, 6×50%, 1×0%]
High: [1×80%, 1×67%, 6×50%, 1×0%]

IHIS
Low: [5×50%, 1×25%, 1×20%, 1×0%]

Medium: [1×60%, 6×50%, 1×0%]
High: [1×80%, 1×75%, 5×50%, 1×0%]

B. Preservation of Individual-Level Data

In this section, we examine the amount of individual-level
data which is being preserved for various realistic privacy
parameters. We measured the number of preserved records
for each dataset, generalization scheme, and value of ε in-
vestigated in Section V using the values of δ from Table I.
Figure 6 shows the arithmetic means of 10 runs of SafePub
using the highest possible sampling probability βmax for each
configuration. All standard deviations were smaller than 1%.
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Fig. 6. Average number of records preserved by SafePub for each general-
ization scheme using various values of ε.

As can be seen, lower values of ε tendentially led to fewer
records being preserved. Only for small datasets, low degrees
of generalization, and high values of ε, the decrease of k
did outweigh the decrease of βmax so that more records were
preserved (see ”US Census” and ”Crash statistics” datasets
when ε decreases from 2 to 1.5). In all other cases, the lower
sampling probability dominated, especially for ε ≤ 1.5. For
this reason, we decided to always use the highest possible
sampling probability βmax in order to retain as much records
as possible for realistic privacy parameters. In the following
sections, we will use ε = 1, which is a common parameteri-
zation [12], [13], and which provides a good balance between
data privacy and data quality for our approach.

As can also be seen in Figure 6, higher degrees of gen-
eralization allowed for the preservation of a larger number
of records, in particular for smaller datasets. This means that
the loss of information resulting from generalization can be
balanced against the loss of information resulting from sup-
pression. As a rule of thumb, higher degrees of generalization
should be used for smaller datasets.

C. Preservation of Information Content

In this section, we evaluate the loss of information content
induced by SafePub using several information loss models
which cover distinct aspects of information loss: Loss [14],
which is a cell-oriented model, Non-Uniform Entropy [15],
which is a column-oriented model, and Kullback-Leibler Di-
vergence, which is a row-oriented model [16]. We have also
performed the experiments with Discernibility [17], Precision
[2], and Ambiguity [18] and we obtained comparable results.

To create a baseline, we also computed results for data
which has been k-anonymized using the parameter k = 11
which has been recommended by the European Medicines
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Fig. 11. Average number of records preserved by SafePub for
each generalization scheme using various values of ε.

As can be seen, lower values of ε, and the resulting
reduction of β and k (see Section 7.2), tendentially led to
fewer records being preserved. Only for small datasets,
low degrees of generalization and high values of ε the
decrease of k did outweigh the decrease of β so that
more records were preserved (see the “US Census” and
“Crash statistics” datasets for ε = 2 and ε = 1.5). In all
other cases the lower sampling probability dominated,
especially for realistic values of ε ≤ 1.5.
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Figure 1: (a) Distribution of data quality for different score functions. (b) Probability mass functions
obtained with varying values of ε̃. (c) Distributions of the results of 100 executions of the exponential
mechanism using various values of ε̃.
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Fig. 12. (a) Distribution of data quality for different score functions. (b) Probability mass functions obtained with varying values of ε̃.
(c) Distributions of the quality of results of 100 executions of the exponential mechanism using various values of ε̃.

We note that SafePub uses the highest possible
value of β (see Section 3) for a given privacy budget
(see Theorem 3). The results presented here justify this
choice. They also indicate that values of εanon in the
order of one are a good choice. Unless noted otherwise,
we will use an overall budget of ε = 1 in the following
sections, which is a common setup [10, 46] and, as we
will show, a good parameterization for our method as
well.

8.3 Analysis of the Optimization Functions
We now investigate the effectiveness of the score func-
tions and the quality of transformations selected by the
exponential mechanism. We focus on Non-Uniform En-
tropy and Group Size, because the results obtained for
the other score functions lied in between. We further fo-
cus on “US Census” and point out differences obtained
using the larger datasets where applicable.

Figure 12a shows the distribution of (normalized)
scores within the solution space. We note that the y-axis
represents the probability of selecting a transformation
with a score value in a given range when drawing from
the uniform distribution. For the other datasets, the
fraction of transformations with higher scores increased
with growing volume, because the more records are con-
tained, the less records are likely to be suppressed be-
cause they appear less than k times.

Figure 12b shows the probability mass functions
used by the exponential mechanism when drawing a so-
lution from the whole solution space using εanon = 1 and
various values of ε̃ between 10−1 and 10−4. We focus on
relatively small values since the search strategy executes
the exponential mechanism several times so that higher
budgets for each execution would add up to an unusably
high overall budget. For ε̃ = 0.1 the resulting probability
distributions were significantly better than the distribu-
tions obtained when drawing from the uniform distribu-
tion (see Figure 12a). The improvements decreased with

decreasing ε̃ and increased significantly with increasing
data volumes. The main reason is that larger datasets
often lead to broader ranges of score values in the so-
lution space so that the application of the exponential
function according to Definition 3 yields higher differ-
ences between probabilities for good and bad solutions.

Figure 12c shows the results of 100 executions of
the exponential mechanism. For each transformation se-
lected, we calculated the difference to the optimal solu-
tion in terms of data quality using the model for which
the score function has been designed. On average, we
measured very good results of less than 4% for the
Group Size model, even though solutions with a score
in the range [30%, 50%[ were selected with the highest
probability. This is because the according score func-
tion is not directly proportional to the quality model,
but rather inversely proportional. Hence data quality in-
creases significantly with increasing scores. The results
for Non-Uniform Entropy were not as good with aver-
ages ranging from 31% (ε̃ = 10−1) to 49% (ε̃ = 10−4).
The reason is that the according score function does not
resemble the corresponding quality model as closely as
the other score functions do. The results imply that a
budget which is very small compared to the one required
by the anonymization operator can suffice to achieve
good results using the exponential mechanism.

8.4 Analysis of the Search Strategy
Next we analyze the influence of the number of steps
performed by the search strategy on the quality of
output data. We executed SafePub 10 times for each
dataset and score function using varying numbers of
steps. Since the previous results imply that a budget in
the order of one is a good choice for the anonymization
operator while a significantly smaller budget is suffi-
cient for the exponential mechanism, we used an overall
budget of ε = 1 which we have split into various combi-
nations of εsearch and εanon . Figure 14 shows the results
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Figure 1: Average information loss induced by SafePub for ε = 1 and corresponding values obtained using
various baseline methods.
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Fig. 13. Average information loss induced by SafePub for ε = 1 compared with the (average) results of various baseline methods.

obtained for the “Health interviews” dataset, which are
representative for the other datasets. The results for
the Discernibility model were comparable to the results
for the Granularity model. We normalized all values so
that 0% corresponds to the input dataset and 100% to
a dataset from which all information has been removed.
All standard deviations were less than 12%.
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Fig. 14. Average information loss induced by SafePub for various
step values and various values of εsearch with εanon = 1− εsearch .
The εsearch axis and the information loss values for the Group
Size model are scaled logarithmically.

We note that increasing the number of steps per-
formed by SafePub has two consequences: The number
of executions of the exponential mechanism increases,
while the budget ε̃, which is used for each execution, de-
creases. It can be observed that the former effect tends
to outweight the latter so that increasing the number
of steps improves data quality. In all experiments the
effect flattened at around 300 steps. Decreasing εsearch
from 1 to 10−1 generally improved the results. Further
reductions decreased data quality in some experiments
and had no significant effects in the others. Hence, in
the following sections, we will use a default parameter-
ization of 300 steps, εsearch = 0.1 and εsearch = 0.9 un-
less noted otherwise. These values result in a budget of
ε̃ ≈ 10−4 which did not perform as well as higher values
when drawing from the whole solution space Gm (see
Section 8.3). However, since the search strategy draws

repeatedly out of subsets of Gm, it can still select very
good solutions as we will see in the next section.

8.5 Analysis of the Quality of Output
Here we analyze output data quality for the default
parameterization and compare it with the quality ob-
tained using various baseline methods: The optimal
quality obtained with k-anonymization, by only using
random sampling and by random sampling combined
with k-anonymization. We also measured the quality of
the theoretical optimum which can be obtained with
SafePub by deterministically selecting the optimal gen-
eralization scheme rather than using the search strategy.
Each of these methods constitutes a baseline in terms
of output quality for (combinations of) transformations
performed by SafePub, and hence illustrates their im-
pact on output data quality. We note that none of them
satisfies differential privacy but that all approaches have
been implemented such that the optimal transformation
according to a given quality model is selected. To estab-
lish a strict baseline we set k = 5, which is common in
the literature [12, 13] but less conservative than other
values, e.g. k = 11 which has been recommended by the
European Medicines Agency (EMA) [14].

The results are shown in Figure 13. Numbers for the
Group Size model are not included as we measured val-
ues of less than 2% for all approaches. It can be seen that
SafePub removed a significant amount of information
from the datasets, i.e. between 83% and 71% according
to the Non-Uniform Entropy model and between 41%
and 43% according to the Discernibility model. It can
further be observed that random sampling contributed
the most to these reductions (41%). The average dif-
ference between results of SafePub and the theoretical
optimum was very small (less than 3%). We note that,
even though SafePub produced near-optimal results, the
fraction of the solution space which has been traversed
by the search strategy was relatively small. When using
the “Crash statistics” dataset, this fraction was about
5%. In the other cases, it was about 10%. This confirms
that the search strategy performs very well using the
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default parameters. In particular, it also achieves very
good results for the Non-Uniform Entropy model, for
which the exponential mechanism alone did not perform
as well as for the other models (see Section 8.3).

8.6 Analysis of the Utility of Output
As there is not necessarily a strong correlation between
loss of information and the actual usefulness of data,
we now evaluate the performance of statistical clas-
sifiers built with the output of SafePub. This is the
most common benchmarking workload for methods of
privacy-preserving data publishing. We have used the
class attributes listed in Table 2, which resulted in both
binomial and multinomial classification problems.

Dataset Class attributes Number of instances

USC (1) Marital status 8
(2) Salary class 2

CS (1) Hispanic origin 10
(2) Race 20

TUS (1) Marital status 7
(2) Sex 3

HI (1) Marital status 10
(2) Education 26

Table 2. Overview of the class attributes used in our evaluations.

For each dataset and class attribute, we executed
100 runs of SafePub with varying numbers of steps,
varying values of εanon and εsearch = 0.1. We focused
on εanon , since the previous results showed that small
values of εsearch are sufficient and that εanon thus pri-
marily determines the overall trade-off between privacy
and utility provided by SafePub. We configured SafePub
to use the score function which optimizes output data
for training statistical classifiers (see Section 5.5). All
attributes besides the class attribute were used as fea-
tures, and we used generalization schemes which do not
generalize the class attribute.

As a classification method we used decision trees
generated with the well-known C4.5 algorithm [49] be-
cause this is the most frequently used method in our
context. We point out that it is obviously possible to
use other classification methods with our approach and
that we have obtained comparable results using logistic
regression classifiers [54]. We created the classifiers from
output data and evaluated their prediction accuracy
with input data using the approach presented in [16]
and 10-fold cross-validation. We report relative predic-
tion accuracies, which means that all values have been
normalized so that 0% represents the accuracy of the
trivial ZeroR method, which always returns the most
frequent value of the class attribute, while 100% corre-
sponds to the accuracy of C4.5 decision trees trained on
input data.

Figure 15 shows the results of varying εanon using
300 steps. As can be seen, the impact of εanon was rel-
atively small considering the strong effect on the num-
ber of preserved records (see Section 8.2). As expected,
small values of εanon often resulted in sub-optimal ac-
curacies. Values of about εanon = 0.9 generally resulted
in good performance. Further increasing the parameter
decreased the accuracies obtained. The reason is that,
although increasing εanon increases the number of pre-
served records, k also increases, which eventually causes
a high degree of generalization.

5-anonymization. In each experiment with 5-anonymization,
we have selected the optimal scheme in the solution space.

Table 2 lists the arithmetic means and standard devia-
tions we have measured on output data of the exhaustive
method with the information loss model to which each score
function has been tailored. We report the relative informa-
tion loss, which means that all values have been normalized
so that 0% is the lowest and 100% is the highest loss of infor-
mation induced by any full-domain generalization scheme.
As expected, the relative information loss and the standard
deviations tend to improve with growing dataset size. In the
case of Precision and Loss, the relative information loss is
monotonically decreasing from rather good values of 31.4%
and 25.2% for Census to very good values of 0.0% and 0.3%
for IHIS. The results obtained for AECS stick out since al-
ready for Census, a very good information loss of less than
1% has been achieved. This might seem surprising consid-
ering that according to Figure 5, generalization schemes in
the comparatively low score range of [40%, 50%[ are being
selected with the highest probability. We explain this by the
fact that in the case of AECS, the information loss model
is not directly proportional to the score function (which is
the case e.g. for Loss), but rather inversely proportional.
Hence, already for solutions with comparatively low scores,
very good information loss values are being achieved. In
the case of Non-Uniform Entropy, the results for ATUS and
IHIS are good, but not as good as the results obtained for the
other models. However, considering that the Non-Uniform
Entropy score function does not resemble the corresponding
information loss model as closely as the other score functions
do, this is not too surprising.

In the following, we will compare the results we have ob-
tained using the exhaustive and the greedy method. Increas-
ing the number of steps performed by the greedy method
has two consequences: On one hand, the number of applica-
tions of the exponential mechanism increases. On the other
hand, the parameter ε′ which is used for each execution of
the exponential mechanism decreases. We observed that the
former effect tends to outweight the latter, so that increasing
the number of steps tends to improve data quality. These
improvements were particularly strong for smaller step val-
ues while step values greater than 300 did not lead to sig-
nificant improvements anymore. Figure 7 exemplary shows
the arithmetic means and standard deviations we have ob-
tained for the AECS and the Non-Uniform Entropy model
using step values ranging from 0 to 300. As can be seen,
the greedy method can lead to results which are even bet-
ter than those of the exhaustive method for small datasets
(e.g. Census). The average difference between the values
obtained using the greedy method with 300 steps and the
exhaustive method was less than 1.4% (resp. 6.9% when
considering only the cases in which the exhaustive method
performed better). We conclude that the greedy method
can perform comparable to the exhaustive method when us-
ing 300 steps. The average standard deviation obtained in
all experiments using the greedy method was merely about
4.3% which shows that the degree of information loss in-
duced is rather stable.

Figure 6 shows the absolute information loss we obtained
using the exhaustive method, the greedy method with 300
steps, and our baseline methods. We have normalized all val-
ues so that 0% corresponds to the original input dataset and
that 100% corresponds to a dataset from which all informa-
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Figure 7: Relative information loss achieved using
the exhaustive method and the greedy method.

tion has been removed. The values for the AECS model are
not included. They were very good, with values of less than
2% achieved by DPLA using the US Census dataset, and
almost 0% in all other experiments. As the figure shows,
a large amount of information has often been removed by
DPLA (e.g. 85% when using the US Census dataset, the
exhaustive method, and the Non-Uniform Entropy model),
with a significant amount of information being removed by
the random sampling step (e.g. about 41% in case of the
US Census dataset and the Non-Uniform Entropy model).
As expected, the results we have achieved using our base-
line methods are better. However, the privacy guarantees
provided are significantly weaker, and also sampling with
5-anonymization significantly influences the distribution of
attribute values. The differences between the results ob-
tained using this method and the results for the exhaustive
method ranged from 19% in the case of US Census and the
Loss model to almost 0% when using Health interviews and
the Discernibility model.

7.4 Data Utility for Statistical Classification
As we have seen, a significant amount of information is

removed when using DPLA with realistic privacy parame-
ters. However, this loss of information happens in a con-
trolled manner, and the usefulness of data for the intended
applications does not necessarily correlate with the abso-
lute amount of information content; it rather depends on
whether the data reflects characteristics of the input dataset
which are relevant for the intended analyses or not. In the
following, we investigate the utility of data resulting from
DPLA for stastistical classification. In every experiment,
we employed the Classification score function which is tai-
lored to this use case. In Section 7.4.1, we analyze results
obtained using both the greedy and exhaustive method. In
Section 7.4.2, we compare DPLA with state-of-the-art mech-
anisms for differentially private statistical classification.

7.4.1 Data Utility achieved using DPLA
For our experiments, we used the class attributes listed

in Table 3 for each dataset, which resulted in both binomial
and multinomial classification problems.

For each dataset and class attribute, we executed 100 runs
of DPLA using the exhaustive method and using the greedy
method with step values ranging from 0 to 300. All at-
tributes besides the class attribute were used as features.

10

 0
 20
 40
 60
 80

 100

A
c
c
u
ra

c
y
 [
%

]

USC CS TUS

C
la

s
s
 a

tt
r.

 1

HI

 0
 20
 40
 60
 80

 100

0.1  0.5  1  1.5  2

A
c
c
u

ra
c
y
 [

%
]

εanon

0.1  0.5  1  1.5  2

ε
anon

0.1  0.5  1  1.5  2

ε
anon

0.1  0.5  1  1.5  2

C
la

s
s
 a

tt
r.

 2

εanon

Fig. 15. Relative classification accuracies obtained using various
values of εanon , εsearch = 0.1 and 300 steps.

Figure 16 shows results obtained for varying num-
bers of steps and εanon = 0.9. As can be seen, the per-
formance of the classifiers improved with an increasing
number of steps. The average accuracies obtained using
300 steps ranged from 82% when predicting the second
class attribute of “US Census” to about 99% when pre-
dicting the class attributes of “Crash statistics”. Results
were rather stable (standard deviations of about 5%).

5-anonymization. In each experiment with 5-anonymization,
we have selected the optimal scheme in the solution space.

Table 2 lists the arithmetic means and standard devia-
tions we have measured on output data of the exhaustive
method with the information loss model to which each score
function has been tailored. We report the relative informa-
tion loss, which means that all values have been normalized
so that 0% is the lowest and 100% is the highest loss of infor-
mation induced by any full-domain generalization scheme.
As expected, the relative information loss and the standard
deviations tend to improve with growing dataset size. In the
case of Precision and Loss, the relative information loss is
monotonically decreasing from rather good values of 31.4%
and 25.2% for Census to very good values of 0.0% and 0.3%
for IHIS. The results obtained for AECS stick out since al-
ready for Census, a very good information loss of less than
1% has been achieved. This might seem surprising consid-
ering that according to Figure 5, generalization schemes in
the comparatively low score range of [40%, 50%[ are being
selected with the highest probability. We explain this by the
fact that in the case of AECS, the information loss model
is not directly proportional to the score function (which is
the case e.g. for Loss), but rather inversely proportional.
Hence, already for solutions with comparatively low scores,
very good information loss values are being achieved. In
the case of Non-Uniform Entropy, the results for ATUS and
IHIS are good, but not as good as the results obtained for the
other models. However, considering that the Non-Uniform
Entropy score function does not resemble the corresponding
information loss model as closely as the other score functions
do, this is not too surprising.

In the following, we will compare the results we have ob-
tained using the exhaustive and the greedy method. Increas-
ing the number of steps performed by the greedy method
has two consequences: On one hand, the number of applica-
tions of the exponential mechanism increases. On the other
hand, the parameter ε′ which is used for each execution of
the exponential mechanism decreases. We observed that the
former effect tends to outweight the latter, so that increasing
the number of steps tends to improve data quality. These
improvements were particularly strong for smaller step val-
ues while step values greater than 300 did not lead to sig-
nificant improvements anymore. Figure 7 exemplary shows
the arithmetic means and standard deviations we have ob-
tained for the AECS and the Non-Uniform Entropy model
using step values ranging from 0 to 300. As can be seen,
the greedy method can lead to results which are even bet-
ter than those of the exhaustive method for small datasets
(e.g. Census). The average difference between the values
obtained using the greedy method with 300 steps and the
exhaustive method was less than 1.4% (resp. 6.9% when
considering only the cases in which the exhaustive method
performed better). We conclude that the greedy method
can perform comparable to the exhaustive method when us-
ing 300 steps. The average standard deviation obtained in
all experiments using the greedy method was merely about
4.3% which shows that the degree of information loss in-
duced is rather stable.

Figure 6 shows the absolute information loss we obtained
using the exhaustive method, the greedy method with 300
steps, and our baseline methods. We have normalized all val-
ues so that 0% corresponds to the original input dataset and
that 100% corresponds to a dataset from which all informa-

Average

Average + standard deviation

Exhaustive average

Greedy execution time

Average - standard deviation

Average

± Standard Deviation

Exhaustive average

Exhaustive average

Greedy execution time

10
-3

10
-2

10
-1
1

10

100

A
E

C
S

 [
%

]

Census FARS ATUS IHIS

0

20
40

60
80

100

 0  100  200  300

N
U

 E
n
tr

o
p
y
 [
%

]

Steps

 0  100 200 300

Steps

 0  100 200 300

Steps

 0  100 200 300

Steps

Figure 7: Relative information loss achieved using
the exhaustive method and the greedy method.

tion has been removed. The values for the AECS model are
not included. They were very good, with values of less than
2% achieved by DPLA using the US Census dataset, and
almost 0% in all other experiments. As the figure shows,
a large amount of information has often been removed by
DPLA (e.g. 85% when using the US Census dataset, the
exhaustive method, and the Non-Uniform Entropy model),
with a significant amount of information being removed by
the random sampling step (e.g. about 41% in case of the
US Census dataset and the Non-Uniform Entropy model).
As expected, the results we have achieved using our base-
line methods are better. However, the privacy guarantees
provided are significantly weaker, and also sampling with
5-anonymization significantly influences the distribution of
attribute values. The differences between the results ob-
tained using this method and the results for the exhaustive
method ranged from 19% in the case of US Census and the
Loss model to almost 0% when using Health interviews and
the Discernibility model.

7.4 Data Utility for Statistical Classification
As we have seen, a significant amount of information is

removed when using DPLA with realistic privacy parame-
ters. However, this loss of information happens in a con-
trolled manner, and the usefulness of data for the intended
applications does not necessarily correlate with the abso-
lute amount of information content; it rather depends on
whether the data reflects characteristics of the input dataset
which are relevant for the intended analyses or not. In the
following, we investigate the utility of data resulting from
DPLA for stastistical classification. In every experiment,
we employed the Classification score function which is tai-
lored to this use case. In Section 7.4.1, we analyze results
obtained using both the greedy and exhaustive method. In
Section 7.4.2, we compare DPLA with state-of-the-art mech-
anisms for differentially private statistical classification.

7.4.1 Data Utility achieved using DPLA
For our experiments, we used the class attributes listed

in Table 3 for each dataset, which resulted in both binomial
and multinomial classification problems.

For each dataset and class attribute, we executed 100 runs
of DPLA using the exhaustive method and using the greedy
method with step values ranging from 0 to 300. All at-
tributes besides the class attribute were used as features.
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Fig. 16. Relative classification accuracies obtained using various
numbers of steps, εanon = 0.9 and εsearch = 0.1.

Using the same setup, we also evaluated classifica-
tion accuracies obtained using the output of the base-
line methods discussed in Section 8.5 (sampling only,
k-anonymization only), also optimized for building clas-
sifiers. All accuracies achieved were at least 97%.

In summary, these experiments justify our default
parameterization, and we conclude that the differences
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between the performance of classifiers trained with un-
modified input or the output of baseline methods and
classifiers trained with the output of SafePub are small.
This indicates that although SafePub removes a signif-
icant amount of information, it does so in a controlled
manner which preserves frequent patterns hidden in the
data.

8.7 Comparison With Prior Work
In this section we will put our method into perspective
by experimentally comparing it to related approaches.
We have performed all experiments using the default
configuration (300 steps, ε = 1) and we have calculated
δ as described in Section 7. Where applicable, we used
the same hierarchies as in the previous experiments.

8.7.1 Comparison With Other Approaches for
Differentially Private Statistical Classification

We compared SafePub to the following state-of-the-art
algorithms: DiffGen [46], DiffP-C4.5 [19], LDA [55],
SDQ [57] and DPNB [29]. We have exactly replicated
the setups reported in the respective publications and
refer to them for exact specifications. All evaluations
used (variants of) the “US Census” dataset (see Sec-
tion 8.1) and the “Nursery” dataset [42]. We point
out that the other methods implement ε-differential
privacy while SafePub satisfies the slight relaxation
(ε, δ)-differential privacy, which potentially allows for
higher data quality. However, unlike the other methods
which output classifiers or synthetic microdata, SafePub
outputs truthful microdata using a less flexible but
truthful transformation technique.

Algorithm DiffP-C4.5 LDA DPNB DPNB SDQ
Dataset US Census Nursery

Competitor 82.1% 80.8% 82% 90% 79.9%
SafePub 80.9% 81.5% 81.2% 83.7% 83.8%

Table 3. Comparison of absolute prediction accuracies for ε = 1.

The results for all mechanisms except DiffGen,
which we will address below, are listed in Table 3. As
can be seen, the accuracies obtained using C4.5 and
SafePub were comparable to the results of DiffP-C4.5,
LDA and DPNB for the “US Census” dataset. For the
“Nursery” dataset, SafePub outperformed SDQ, while
DPNB outperformed SafePub by 6.3%. In all experi-
ments, we measured standard deviations of < 2%.

DiffGen is particularly closely related to SafePub
because it also produces microdata using concepts from
data anonymization (i.e. attribute transformation based
on generalization hierarchies). Hence we have performed

a more detailed analytical and experimental compar-
ison. DiffGen employs a more flexible transformation
model, subtree generalization, where values of an at-
tribute can be transformed to different generalization
levels (see Section 2.3). Analogously to SafePub, it also
selects a transformation based on a user-specified num-
ber of iterative applications of the exponential mecha-
nism (steps). However, in contrast to our approach, it
does not achieve differential privacy by random sam-
pling and k-anonymization, but rather by probabilisti-
cally generating synthetic records.

Using the implementation provided by the authors
and our evaluation datasets we compared SafePub and
DiffGen using C4.5 decision trees which were evaluated
using 2/3 of the records as training data and the re-
maining 1/3 as test data (as proposed by the authors
of DiffGen [46]). We used a privacy budget of ε = 1
for both methods and increasing numbers of steps. The
number of steps DiffGen can perform has a limit which
depends on the heights of the generalization hierarchies
and which was around 20 in our setup. For SafePub, we
used between 0 and 300 steps since higher values did
not improve the quality of results (see Section 8.4). We
performed every experiment 20 times. Table 4 lists av-
erage execution times and standard deviations for the
maximal number of steps measured on the hardware
described in Section 7.2. Moreover, we included the op-
timal accuracies obtained using any number of steps.

Label Class Execution times Max. Accuracies
Attribute SafePub DiffGen SafePub DiffGen

USC 1 4.8 ± 1.0s 16.2 ± 0.7s 92.0% 85.0%
2 5.1 ± 1.3s 21.9 ± 0.6s 87.3% 79.2%

CS 1 8.8 ± 0.7s 18.5 ± 1.6s 99.7% 97.9%
2 8.9 ± 0.6s 6.5 ± 2.5s 99.9% 98.3%

TUS 1 54.2 ± 4.5s 28.7 ± 0.7s 93.6% 91.0%
2 55.3 ± 2.0s 30.9 ± 0.6s 99.9% 99.7%

HI 1 98.0 ± 5.8s 61.1 ± 2.2s 87.7% 94%
2 103.5 ± 9.2s 65.0 ± 2.1s 99.1% 64.0%

Table 4. Comparison of absolute execution times and maximal
relative accuracies achieved for ε = 1.

SafePub outperformed DiffGen regarding maximal
accuracies in seven out of eight experiments. The accu-
racies obtained by SafePub when predicting the second
class attribute of “Health interviews” were 35% higher
than the results obtained by DiffGen. The minimal and
maximal execution times of SafePub varied from be-
tween 4s and 7s (“US Census”) to between 90s and 128s
(“Health interviews”). The corresponding times of Diff-
Gen varied from between 15s and 18s to between 62s and
70s. In summary, SafePub was faster than DiffGen for
smaller datasets while DiffGen was faster than SafePub
for larger datasets.



SafePub: A Truthful Data Anonymization Algorithm With Strong Privacy Guarantees 81

A more detailed analysis is provided in Figure 17,
which shows execution times and relative accuracies ob-
tained using different numbers of steps.
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Fig. 17. Relative classification accuracies obtained for ε = 1.

It can be seen that the accuracies achieved by
SafePub improved monotonically over time (apart from
minor fluctuations which are a result of randomization)
while no such relationship can be observed for DiffGen.
We explain this by the fact that SafePub is not likely
to be trapped in a local minimum (see Section 6) while
DiffGen can only keep on specializing a transformation
once it has been selected. This implies that SafePub
is easier to parameterize and enables trading execution
times off against data quality.

8.7.2 Comparison With the Approach by Fouad et al.

We conclude our experimental evaluation by presenting
a comparison with the approach which is most closely
related to ours. Fouad et al. have also proposed a truth-
ful (ε, δ)-differentially private microdata release mecha-
nism using random sampling and generalization [18, 43].

Their algorithm replaces each record independently
with a generalized record which is t-frequent, i.e. a gen-
eralization of at least t records from the input dataset.
The authors show that the mechanism satisfies (ε, δ)-
dif-ferential privacy, however, with unknown δ. They
further show that an upper bound for δ can be calcu-
lated when t is chosen greater than a threshold bT c [43,
Theorem 4]. Knowing δ is, however, crucial for guaran-
teeing a known degree of privacy.

We analyzed bT c and the resulting values of δ for
various common input parameters. We emphasize that
we chose all parameters in such a way that bT c is as
small as possible. Figure 18 shows the results for ε = 1.
As can be seen, δ decreases very quickly for an increasing
number of attributes, while bT c increases exponentially.
For datasets with three attributes, bT c equals 76, while
for datasets with seven attributes, bT c equals 1, 217 al-

ready. Hence, a very high degree of generalization is
required to obtain known privacy guarantees.
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Fig. 18. Analysis of the approach by Fouad et al. The figure
shows bT c and corresponding values of δ for ε = 1 and h = 2.

We experimentally evaluated the method choosing
ε = 1 and t = bT c + 1 so that the approach satis-
fies (ε, δ)-differential privacy. We performed the exper-
iments ten times and report average results (standard
deviations < 1%). All information was removed from all
datasets but “Health interviews” for which some infor-
mation was preserved. However, 68% of records were re-
moved and seven out of eight attributes were completely
suppressed. With the models considered in this article,
we measured reductions in data quality of between 97%
and 99%, which renders the approach impractical.

9 Related Work
Other works have also investigated relationships be-
tween syntactic privacy models and differential privacy.
Domingo-Ferrer and Soria-Comas have shown that there
is a theoretical relationship between ε-differential pri-
vacy and a stochastic extension of t-closeness and that
satisfying t-closeness can imply ε-differential privacy un-
der certain assumptions [8]. Moreover, Soria-Comas et
al. and Jafer et al. have also combined k-anonymity and
differential privacy [27, 30]. While our approach uses
k-anonymity in order to create a differentially private
mechanism, these works employ k-anonymization to re-
duce the amount of noise that must be added.

Moreover, further differential privacy mechanisms
have been proposed that use random sampling. Fan
and Jin [17] as well as Jorgensen et al. [32] have used
non-uniform random sampling to produce aggregate
data. Hong et al. have used random sampling for pro-
tecting search logs [24]. These are all special-purpose
mechanisms while SafePub is a generic microdata re-
lease algorithm.

For further differentially private microdata release
methods see the surveys [6, 38]. Unlike SafePub, most
of them are not truthful or use methods that are very
different from those typically used in data anonymiza-
tion. We have compared our approach to the notable
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exception, i.e. the approach by Fouad et al. [18, 43], in
Section 8.7.2 and found that it is not practical.

Differentially private machine learning is also an on-
going field of research (see the surveys [31, 51]). We have
compared our approach to five different state-of-the-art
methods in Section 8.7.1. We have performed a detailed
experimental comparison with DiffGen [46] because of
its conceptual similarities to our approach. Our results
showed that our method, which is the only generic and
truthful approach in the field, achieves accuracies that
compare well to those of special-purpose mechanisms.

Gehrke et al. have also studied the approach by Li
et al. [26], albeit from a purely theoretical perspective.
They showed that it satisfies a privacy model called
crowd-blending privacy. Informally, this model guaran-
tees that every record r from the input dataset either
blends into a “crowd” of at least k records or that r is
essentially being ignored by the mechanism. Their work
also indicates that the mechanism satisfies a relaxation
of another model called zero-knowledge privacy [22].

10 Summary and Discussion
In this paper we have presented a flexible differentially
private data release mechanism that produces truthful
output data, which is important in some data publishing
scenarios [3] and domains such as medicine [6]. While it
has been argued that differential privacy is difficult to
explain to non-experts the approach offers an intuitive
notion of privacy protection: with a probability deter-
mined by ε the data of an individual will not be included
at all and even if it is included it will only be released in
a generalized form such that it cannot be distinguished
from the similarly generalized data of at least k−1 other
individuals, where k is determined by ε and δ.

Our evaluation showed that the method is prac-
tical and that values in the order of ε = 1 are a
good parameterization. The current implementation
uses full-domain generalization and the k-anonymity
privacy model, methods which have frequently been
criticized for being too inflexible and too strict to pro-
duce output data of high quality [2]. However, our ex-
periments have shown that statistical classifiers trained
with the output of the generic method parameterized
with an appropriate objective function perform as well
as non-truthful differential privacy mechanism designed
specifically for this use case. The reason is that while the
approach indeed removes a significant amount of infor-
mation it does so in a controlled manner which extracts
frequent patterns. Compared to prior work, however,
our approach provides slightly lower privacy guarantees.

While developing the score functions introduced in
Section 5, we learned that optimization functions which
have the form of sums to which every record or cell con-
tributes a non-negative summand tend to have a low
sensitivity. According score functions can often be ob-
tained easily (see score functions for Data Granularity,
Intensity and Classification). If the sensitivity is high, it
can be possible to reduce it by division through the size
of the dataset or by forming reciprocals (see score func-
tions for Discernibility and Group Size). If this is not
the case, it can be worthwhile to try to find functions
with lower sensitivities which have related properties
(see score function for Non-Uniform Entropy).

11 Future Work
An interesting line of future research is to develop score
functions tailored to further quality models which ad-
dress learning tasks such as regression or time-to-event
analysis [54]. Based on our experiences presented in the
previous section we are confident that, for example, the
workload-aware quality models presented by LeFevre et
al. in [37] can be integrated into the method.

Another potential direction for further work is to try
to consider the effects of random sampling which may
have been performed during data acquisition to reduce
the amount of explicit random sampling that needs to
be used by the mechanism.

In its current form SafePub is suited for protect-
ing dense data of low to medium dimensionality as
high-dimensional data is often sparse and hence cannot
be k-anonymized while retaining sufficient data qual-
ity. We plan to investigate methods for vertically parti-
tioning high-dimensional data, such that disassociated
subsets of correlated attributes can be processed inde-
pendently. Moreover, future work could investigate the
crowd-blending and the zero-knowledge privacy models
which provide other means of formalizing the notion of
“hiding in a group” than our implementation. We point
out that these models can also make it possible to prefer
certain records, e.g. for publishing control or test data
using random sampling which is slightly biased [26].

Finally, a variety of unified frameworks have been
proposed for comparing the trade-off between privacy
and utility provided by algorithms which implement pri-
vacy models, including syntactic ones and ε-differential
privacy [4, 20, 41]. As the mechanism presented here
is the first practical implementation of differential pri-
vacy for the release of truthful microdata, it would be
interesting to compare it to other methods using such
frameworks.
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A Proof of Theorem 11
Proof. For the purpose of this proof we will use the fol-
lowing representation of the function d which is obtained
as an intermediate result in the proof of [40, Theorem 1]:

d(k, β, ε′) = max
n∈N

∑
{j∈N | j≥k∧j>γn∧j≤n}

f(j;n, β).

Let us fix an arbitrary ε′ ≥ ε and recall that γ =
γ(ε′) is actually a function of ε′. It is easy to see that
ε′ ≥ ε implies:

γ(ε′) = eε′ − 1 + β

eε′ ≥ eε − 1 + β

eε = γ(ε).

Hence we have:

∀n ∈ N : {j ∈ N | j ≥ k ∧ j > γ(ε′)n ∧ j ≤ n} ⊆
{j ∈ N | j ≥ k ∧ j > γ(ε)n ∧ j ≤ n}.

This implies

d(k, β, ε′) = max
n∈N

∑
{j∈N | j≥k∧j>γ(ε′)n∧j≤n}

f(j;n, β)

≤ max
n∈N

∑
{j∈N | j≥k∧j>γ(ε)n∧j≤n}

f(j;n, β)

= d(k, β, ε)

which proofs the monotonicity. Furthermore, we have
ε′ ≥ ε = − ln (1− β) so that (ε′, d(k, β, ε′))-differential
privacy is indeed satisfied according to Theorem 3.

B Proofs of Sensitivities
B.1 Granularity (Theorem 6)
Proof. Let k ∈ N be an arbitrary integer, let g ∈ Gm be
an arbitrary generalization scheme and let D1, D2 ∈ Dm
be arbitrary datasets satisfying |D1⊕D2| = 1. Without
loss of generality we assume D1 = D2 ∪ {r}. We will
use the notation g(r) = (r̃1, ..., r̃m) and point out that
∀i = 1, ...,m : 0 ≤ leavesi(r̃i)

|Ωi| ≤ leavesi(∗)
|Ωi| = 1 holds.

– If g(r) = ∗ holds or g(r) 6= ∗ appears less than k times
in g(D1), then g(r) is suppressed in both S(D1) and
S(D2) with S(D1) = S(D2) ∪ {∗}. We can conclude:

|grank(D1, g)− grank(D2, g)| =∣∣∣∣∣∣∣∣
 ∑

(r′1,...,r′m)∈S(D2)

m∑
i=1

leavesi(r′i)
|Ωi|

+

m∑
i=1

leavesi(∗)
|Ωi|︸ ︷︷ ︸
=1


−

 ∑
(r′1,...,r′m)∈S(D2)

m∑
i=1

leavesi(r′i)
|Ωi|

∣∣∣∣∣∣ = m .
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– If g(r) 6= ∗ appears k times in g(D1), then it is not
suppressed in S(D1) but in S(D2) with

S(D1) = (S(D2) \ {∗, ..., ∗}︸ ︷︷ ︸
k−1−times

) ∪ {g(r), ..., g(r)}︸ ︷︷ ︸
k−times

.

We can conclude:

|grank(D1, g)− grank(D2, g)|

=

∣∣∣∣∣∣∣∣
 k∑
j=1

m∑
i=1

leavesi(r̃i)
|Ωi|

−
k−1∑
j=1

m∑
i=1

leavesi(∗)
|Ωi|︸ ︷︷ ︸
=1


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣
 k∑
j=1

m∑
i=1

leavesi(r̃i)
|Ωi|


︸ ︷︷ ︸

=:σ∈[0,km]

−(k − 1)m

∣∣∣∣∣∣∣∣∣∣∣
≤
{

(k − 1)m, if σ ∈ [0, (k − 1)m)
m, if σ ∈ [(k − 1)m, km]

.

– If g(r) 6= ∗ appears more than k times in g(D1), then
g(r) is not suppressed in both S(D1) and S(D2) with
S(D1) = S(D2) ∪ {g(r)}. We can conclude:

|grank(D1, g)− grank(D2, g)| =
m∑
i=1

leavesi(r̃i)
|Ωi|︸ ︷︷ ︸
≤1

≤ m .

In summary we have:

|grank(D1, g)− grank(D2, g)| ≤
{

(k − 1)m, if k > 1
m, if k = 1

B.2 Discernibility (Theorem 7)
In the following we will frequently employ the triangle
inequality and indicate its application with (T). In or-
der to prove the sensitivity of the Discernibility score
function we will first propose two lemmas:

Lemma 12. For all D1, D2 ⊆ (Ω1 ∪ Λ1) × ... ×
(Ωm ∪ Λm) with D1 = D2 ∪ {r′} the following holds:
|φ(D1)− φ(D2)| ≤ 5.

Proof. If D2 = ∅ holds we have D1 = {r′} and can
conclude:

|φ(D1)− φ(D2)| = |1− 0| = 1.

In the following we will assume D2 6= ∅ and define c :=
|D1|, n := |{r′ ∈ D1}|, y := |{∗ ∈ D1}| and

x :=
∑

E∈EQ(D1):r′ /∈E

|E|2 =
∑

E∈EQ(D2):r′ /∈E

|E|2.

– If r′ 6= ∗ holds we have |{r′ ∈ D2}| = n− 1 and |{∗ ∈
D2}| = y. Moreover, x + n2 =

∑
E∈EQ(D1) |E|

2 =∑
r∈D1:r 6=∗ |{r ∈ D1}| ≤

∑
r∈D1

|D1| = c2 holds. We
can conclude:

|φ(D1)− φ(D2)|

=
∣∣∣∣x+ n2 + yc

c
− x+ (n− 1)2 + y(c− 1)

c− 1

∣∣∣∣
=
∣∣∣∣−x− n2 + 2nc− c

c(c− 1)

∣∣∣∣ ≤(T )

x+ n2

c(c− 1) + 2n− 1
c− 1

≤ c2

c(c− 1) + 2c− 1
c− 1 = 3c− 1

c− 1︸ ︷︷ ︸
↘,c↗ ∧ c≥2

≤ 5.

– If r′ = ∗ holds we have |{∗ ∈ D2}| = y − 1
and we can conclude using x =

∑
E∈EQ(D1) |E|

2 =∑
r∈D1:r 6=∗ |{r ∈ D1}| ≤

∑
r∈D1\{∗} |D1| ≤ c(c− 1):

|φ(D1)− φ(D2)| =
∣∣∣∣x+ yc

c
− x+ (y − 1)(c− 1)

c− 1

∣∣∣∣
=
∣∣∣∣−x+ c2 − c

c(c− 1)

∣∣∣∣ ≤(T )

x

c(c− 1) + 1 ≤ 2.

In summary we have |φ(D1)− φ(D2)| ≤ 5.

Lemma 13. For every integer k ≥ 2 and all D1, D2 ⊆
(Ω1 ∪ Λ1)× ...× (Ωm ∪ Λm) satisfying

D1 = (D2 \ {∗, ..., ∗}︸ ︷︷ ︸
k−1−times

) ∪ {r′, ..., r′}︸ ︷︷ ︸
k−times

with r′ 6= ∗ the following holds:

|φ(D1)− φ(D2)| ≤ k2

k − 1 + 1.

Proof. With the definitions

c := |D1|,
n := |{r′ ∈ D1}| = |{r′ ∈ D2}|+ k,

y := |{∗ ∈ D1}| = |{∗ ∈ D2}| − k + 1,

x :=
∑

E∈EQ(D1):r′ /∈E

|E|2 =
∑

E∈EQ(D2):r′ /∈E

|E|2

and using x+ n2 ≤
∑
r∈D1

|D1| = c2 we have:

|φ(D1)− φ(D2)|

=
∣∣∣∣x+ n2 + yc

c
− x+ (n− k)2 + (y + k − 1)(c− 1)

c− 1

∣∣∣∣
=
∣∣∣∣−x− n2 + 2knc− k2c− kc2 + kc+ c2 − c

c(c− 1)

∣∣∣∣
≤

(T )

∣∣∣∣−x− n2

c(c− 1)

∣∣∣∣+ k

∣∣∣∣2n− k − c+ 1
c− 1

∣∣∣∣+ 1

≤ c

c− 1 + k

∣∣∣∣2n+ 1− (k + c)
c− 1

∣∣∣∣+ 1. (8)
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– If 2n+ 1 ≥ k + c holds we can conclude:∣∣∣∣2n+ 1− (k + c)
c− 1

∣∣∣∣ = 2n+ 1− (k + c)
c− 1

≤
n≤c

2c+ 1− (k + c)
c− 1 = c+ 1− k

c− 1 ≤
k≥2

1.

– Otherwise we have:∣∣∣∣2n+ 1− (k + c)
c− 1

∣∣∣∣ = k + c− (2n+ 1)
c− 1

≤
n≥k

k + c− (2k + 1)
c− 1 = c− 1− k

c− 1 ≤ 1.

We can conclude from Inequation (8):

|φ(D1)− φ(D2)| ≤ c

c− 1︸ ︷︷ ︸
↘,c↗ ∧ c≥k

+k + 1 = k2

k − 1 + 1.

We can now prove Theorem 7 as follows:

Proof. Let k ∈ N be an arbitrary integer, let g ∈ Gm be
an arbitrary generalization scheme and let D1, D2 ∈ Dm
be arbitrary datasets satisfying |D1⊕D2| = 1. Without
loss of generality we assume D1 = D2 ∪ {r}.

– If S(D1) = S(D2) ∪ {∗} or S(D1) = S(D2) ∪ {g(r)}
holds (which is always satisfied in the case of g(r) = ∗
or k = 1) we can conclude using Lemma 12:

|disck(D1, g)− disck(D2, g)| ≤ 5.

– If k ≥ 2 and g(r) 6= ∗ hold and g(r) is suppressed in
S(D2) but not in S(D1) we have

S(D1) = (S(D2) \ {∗, ..., ∗}︸ ︷︷ ︸
k−1−times

) ∪ {g(r), ..., g(r)}︸ ︷︷ ︸
k−times

and can conclude using Lemma 13:

|disck(D1, g)− disck(D2, g)| ≤ k2

k − 1 + 1.

In summary we can conclude:

|disck(D1, g)− disck(D2, g)| ≤

{
5, if k = 1

k2

k−1 + 1, if k > 1

B.3 Non-Uniform Entropy (Theorem 8)
We can prove Theorem 8 using the two lemmas proposed
in Appendix B.2 as follows:

Proof. Let k ∈ N be an arbitrary integer, let g ∈ Gm be
an arbitrary generalization scheme and let D1, D2 ∈ Dm
be arbitrary datasets satisfying |D1⊕D2| = 1. Without

loss of generality we assume D1 = D2 ∪ {r}. Then we
have:

|entk(D1, g)− entk(D2, g)|

=

∣∣∣∣∣
m∑
i=1

φ(pi(S(D1)))− φ(pi(S(D2)))

∣∣∣∣∣
≤

(T )

m∑
i=1
|φ(pi(S(D1)))− φ(pi(S(D2)))| . (9)

Let us fix an arbitrary i = 1, ...m, define g(r) =:
(r′1, ..., r′m) and regard pi(S(D1)) and pi(S(D2)) as
datasets with one attribute.

– If pi(S(D1)) = pi(S(D2)) ∪ {∗} or pi(S(D1)) =
pi(S(D2)) ∪ {r′i} holds (which is always satisfied in
the case of r′i = ∗ or k = 1) we can conclude using
Lemma 12:

|φ(pi(S(D1)))− φ(pi(S(D2)))| ≤ 5.

– If k ≥ 2 and r′i 6= ∗ hold and g(r) is suppressed in
S(D2) but not in S(D1) we have

pi(S(D1)) = (pi(S(D2)) \ {∗, ..., ∗}︸ ︷︷ ︸
k−1−times

) ∪ {r′i, ..., r′i}︸ ︷︷ ︸
k−times

and can conclude using Lemma 13:

|φ(pi(S(D1)))− φ(pi(S(D2)))| ≤ k2

k − 1 + 1.

In summary we have

|φ(pi(S(D1)))− φ(pi(S(D2)))| ≤

{
5, if k = 1

k2

k−1 + 1, if k > 1

and can conclude from Inequation (9):

|entk(D1, g)− entk(D2, g)| ≤

{
5m, if k = 1

( k2

k−1 + 1)m, if k > 1

B.4 Statistical Classification (Theorem 9)
Proof. Let k ∈ N be an arbitrary integer, let g ∈ Gm be
an arbitrary generalization scheme and let D1, D2 ∈ Dm
be arbitrary datasets satisfying |D1 ⊕ D2| = 1. With-
out loss of generality we assume D1 = D2 ∪ {r}. For
ease of notation we define w1(·) := w(S(D1), ·) and
w2(·) := w(S(D2), ·). Moreover, we define FV to be
the subset of all records in S(D2) which have the same
combination of feature attribute values as g(r), i.e.
FV := {r′ ∈ S(D2) | fv(r′) = fv(g(r))}.

If fv(g(r)) is suppressed as a consequence of gener-
alization then S(D1) and S(D2) differ only in records
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with a weight of zero in either set, i.e. we have C :=
{r′ ∈ S(D1) : w1(r′) = 1} = {r′ ∈ S(D2) : w2(r′) = 1}
which implies:

classk(D1, g) =
∑

r′∈S(D1)

w1(r′) =
∑
r′∈C

w1(r′)

=
∑
r′∈C

w2(r′) =
∑

r′∈S(D2)

w2(r′) = classk(D2, g).

In the following we will regard the case that fv(g(r))
is not suppressed, which implies g(r) 6= ∗.

– If g(r) appears less than k times in g(D1) then it is
suppressed in S(D1) with S(D1) = S(D2) ∪ {∗}. We
can argue as above: classk(D1, g) = classk(D2, g).

– If g(r) appears k times in g(D1) then it is not sup-
pressed in S(D1) while we have g(r) /∈ S(D2), in par-
ticular g(r) /∈ FV , and

S(D1) = (S(D2) \ {∗, ..., ∗}︸ ︷︷ ︸
k−1−times

) ∪̇ {g(r), ..., g(r)}︸ ︷︷ ︸
k−times

.

Moreover, all records in S(D2) which have the same
feature values as g(r) are also contained in S(D1),
i.e. FV ⊆ S(D1) ∩ S(D2) holds, and these are the
only records contained in both S(D1) and S(D2)
which may have different weights in these sets, i.e.
∀r′ ∈ (S(D1) ∩ S(D2)) \ FV : w1(r′) = w2(r′) holds.
We can conclude:

|classk(D1, g)− classk(D2, g)| =∣∣∣∣∣∣
k · w1(g(r)) +

∑
r′∈S(D1)∩S(D2)

w1(r′)

−
(k − 1) · w2(∗)︸ ︷︷ ︸

=0

+
∑

r′∈S(D1)∩S(D2)

w2(r′)

∣∣∣∣∣∣ =

∣∣∣∣∣k · w1(g(r)) +
∑
r′∈FV

(
w1(r′)− w2(r′)

)∣∣∣∣∣ . (10)

Let r′maj denote the record with the most frequent
class attribute value among all records in S(D1) which
have the same feature values as g(r).
If r′maj 6= g(r) holds we have w1(g(r)) = 0 and r′maj is
also the record with the most frequent class attribute
value in FV with

∀r′ ∈ FV : w1(r′) = w2(r′) =
{

1, if r′ = r′maj
0, otherwise

.

Using Equation (10) we can conclude:

|classk(D1, g)− classk(D2, g)| = 0.

If r′maj = g(r) holds we have w1(g(r)) = 1 and ∀r′ ∈
FV : w1(r′) = 0. Moreover, the record r̃maj with the
most frequent class value in FV can appear at most k
times in FV (because otherwise, r̃maj ∈ FV ⊆ S(D1)
would have a class value more frequent than the one of
g(r) in S(D1), which contradicts r′maj = g(r)). Hence,
we have:

0 ≤
∑
r′∈FV

w2(r′)︸ ︷︷ ︸
=1 iff r′=r̃maj

≤ k.

We can conclude using Equation (10):

|classk(D1, g)− classk(D2, g)| = k −
∑
r′∈FV

w2(r′) ≤ k.

– If g(r) appears l > k times in g(D1), then it ap-
pears l − 1 ≥ k times in g(D2). It follows that g(r)
is not suppressed in both S(D1) and S(D2) with
S(D1) = S(D2) ∪ {g(r)}. Moreover, g(r) ∈ FV ⊆
S(D2) ⊆ S(D1) holds, and the records in FV are the
only ones which may have a different weight in S(D1)
and S(D2), i.e. ∀r′ ∈ S(D2) \ FV : w1(r′) = w2(r′)
holds. We can conclude:

|classk(D1, g)− classk(D2, g)| =∣∣∣∣∣∣w1(g(r)) +
∑

r′∈S(D2)

w1(r′)−
∑

r′∈S(D2)

w2(r′)

∣∣∣∣∣∣ =

∣∣∣∣∣w1(g(r)) +
∑
r′∈FV

(
w1(r′)− w2(r′)

)∣∣∣∣∣ . (11)

If r′maj 6= g(r) holds we can argue similar as above:

|classk(D1, g)− classk(D2, g)| = 0.

If r′maj = g(r) holds we have

∀r′ ∈ FV : w1(r′) =
{

1, if r′ = g(r)
0, otherwise

,

|{g(r) ∈ FV }| = l − 1 (so that the record with the
most frequent class value appears at least l− 1 times
in FV ) and ∀r′ ∈ FV , r′ 6= g(r) : |{r′ ∈ S(D2)}| ≤ l

(because otherwise, there would exist a record r̃maj ∈
FV ⊆ S(D1), r̃maj 6= g(r) with a class value which is
more frequent than the one of g(r) in S(D1), which
contradicts r′maj = g(r)). Hence we have:

l − 1 ≤
∑
r′∈FV

w2(r′) ≤ l.

We can conclude using Equation (11):

|classk(D1, g)− classk(D2, g)| = l −
∑
r′∈FV

w2(r′) ≤ 1.

In summary we can conclude:

|classk(D1, g)− classk(D2, g)| ≤ k
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