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Abstract: The ability to track users’ activities across
different websites and visits is a key tool in advertis-
ing and surveillance. The HTML5 DeviceMotion inter-
face creates a new opportunity for such tracking via
fingerprinting of smartphone motion sensors. We study
the feasibility of carrying out such fingerprinting under
real-world constraints and on a large scale. In particular,
we collect measurements from several hundred users un-
der realistic scenarios and show that the state-of-the-art
techniques provide very low accuracy in these settings.
We then improve fingerprinting accuracy by changing
the classifier as well as incorporating auxiliary infor-
mation. We also show how to perform fingerprinting in
an open-world scenario where one must distinguish be-
tween known and previously unseen users.
We next consider the problem of developing fingerprint-
ing countermeasures; we evaluate the usability of a pre-
viously proposed obfuscation technique and a newly de-
veloped quantization technique via a large-scale user
study. We find that both techniques are able to dras-
tically reduce fingerprinting accuracy without signifi-
cantly impacting the utility of the sensors in web ap-
plications.
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1 Introduction
We are in the middle of a war over user privacy on the
web. After the failure of the “Do Not Track” proposal,
users are increasingly turning to tools such as ad- and
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tracker-blocking extensions, as well as private brows-
ing modes, to protect their privacy. In turn, advertisers
have started using browser fingerprinting [9, 19, 29] to
track users across the web without the use of cookies.
As the battleground shifts to mobile platforms, which
are quickly becoming the dominant mode for web brows-
ing [1, 5, 6, 8], existing fingerprinting techniques become
less effective [22, 36]; at the same time, new threats
emerge: mobile browsers give web pages access to inter-
nal motion sensors (accelerometers and gyroscopes) and
researchers have showed that imperfections in these sen-
sors can be used to fingerprint smartphones [16, 18, 22],
boosting the accuracy of a weakened browser finger-
print.

We seek to answer two important questions. First,
how effective is mobile sensor fingerprinting in practice,
once some of the unrealistic assumptions from previ-
ous studies are removed? Second, are there practical
defenses to motion sensor fingerprinting that can be ap-
plied without compromising the utility of the sensors?

The evaluation of the state-of-the-art fingerprinting
techniques [16] studied phones placed on a desk. This
usage scenario is almost certainly less common than in-
hand phone usage. Moreover, it is prone to overfitting,
as a model may pick up artifacts of the precise position-
ing of a phone on a desk. Indeed, after collecting data
from several hundred devices, we find that when a phone
is repositioned between training and testing, the accu-
racy of the state-of-the-art classifier drops markedly; the
accuracy is further degraded when the phone is held
in hand. We next investigate several improvements to
the classification technique, including using different in-
formation streams and combining results from multiple
classifiers. With these improvements, the classification
performance is moderately accurate in the on-desk sce-
nario (≈ 73%), but unlikely to be usable as a sole source
of fingerprinting; the in-hand results are worse still.

In practice, however, fingerprinting combines a
number of input sources; we develop a new classifier
that identifies the top k choices of possible fingerprints,
which can then be resolved using log2 k bits of auxil-
iary fingerprinting data. We show that even a few bits
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of extra data can dramatically improve the accuracy of
classification in both the on-desk and in-hand scenarios.
We also extend this model to perform open-world clas-
sification, where a test phone may not be in the training
set, and show that it is possible to distinguish known de-
vices from previously unseen ones with high accuracy.

These results suggest that motion sensor finger-
printing is a realistic privacy threat. We therefore
wanted to understand the feasibility of defending
against fingerprinting through browser- or OS-based
techniques. Although several defenses have been previ-
ously proposed, they reduce the potential utility of the
sensor data by adding noise or other transformations.
We wanted to understand how this trade-off between
privacy and utility plays out for the likely uses of the
device motion API. To do this, we implement a game
that uses motion sensors for controls—a relatively de-
manding application. We then carry out a large-scale
user study to investigate the impact of privacy protec-
tions on the game difficulty. We evaluate an obfuscation
method proposed by Das et al. [16] and develop a new
quantization-based protection method. Encouragingly,
we find that neither method creates a statistically sig-
nificant impact on motion sensor utility, as measured by
both subjective and objective measures. This suggests
that user privacy may be preserved without sacrificing
much utility.

In summary, we make the following contributions:
– We evaluate the state-of-the-art fingerprinting tech-

niques [16] on a larger data set and in more realistic
settings, and find that their accuracy degrades sig-
nificantly. (§4.1)

– We improve the classification performance by in-
troducing new data streams, incorporating a voting
scheme among multiple classifiers, and incorporating
external information. (§4.2–§4.4)

– We develop a method for open-world classification
that distinguishes known and unknown devices and
show its performance and trade-offs. (§4.6)

– We develop a new fingerprinting countermeasure
that uses quantization of data in polar coordinates.
(§5.1)

– We carry out the first large-scale user study to eval-
uate the trade-off between privacy and utility of fin-
gerprinting countermeasures. We evalute both our
proposed countermeasure as well as the obfuscation
technique proposed by Das et al. [16] and find that
users experience no significant ill effects from the
countermeasures. (§5.3)

Roadmap. The remainder of this paper is organized
as follows. We present background information and re-
lated work in Section 2. In Section 3, we briefly describe
our data collection and feature extraction process along
with the classification algorithms and metrics used in
our evaluation. Section 4, describes how we improve
the state-of-the-art motion fingerprinting scheme under
real-world settings. Section 5 evaluates the usability
of our countermeasure through a large-scale online user
study. Finally, we conclude in Section 6.

2 Related Work
Fingerprinting devices has been an active research area
for many decades. Early work looked at fingerprinting
wireless devices by analyzing the spectral characteris-
tics of wireless transmitters, producing a rich body of
research [26, 34, 35]. Researchers then moved onto fin-
gerprinting computers by exploiting their clock skew
rate [28]. Later on, as computers got connected to the
Internet, researchers were able to exploit such skew
rates to distinguish connected devices through TCP and
ICMP timestamps [23]. Installed software has also been
used to track devices, as different devices usually have
a different software base installed on them. Researchers
have utilized such strategy to uniquely distinguish sub-
tle differences in the firmwares and device drivers [20].
Moreover, there are open-source toolkits like Nmap [27]
and Xprobe [37] that can fingerprint the underlying
operating system remotely by analyzing the responses
from the TCP/IP stack. The latest trend in fingerprint-
ing devices is through the web browser. We will now
describe some of the most recent and well-known stud-
ies in this field.

2.1 Browser Fingerprinting

The primary application of browser fingerprinting is
to uniquely track a user across multiple websites for
advertising purpose. Traditionally this has been done
through the injection of cookies. However, privacy con-
cerns have pushed browser developers to provide ways
to clear cookies, and also provide options to develop pri-
vate browsing modes which do not store cookies long-
term. This has forced publishers and advertisers to come
up with new ways to uniquely identify and track users.
The Panopticlick project was one of the first studies that
looked into exploiting easily accessible browser proper-
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ties such as installed fonts and plug-ins to fingerprint
browsers [19]. In recent years, researchers have come
up with a more advanced technique that uses HTML5
canvas elements to fingerprint the fonts and rendering
engines used by the browser [29]. The HTML5 battery
status API can also be exploited to track web users;
specially old or used batteries with reduced capacities
have been shown to potentially serve as tracking iden-
tifiers [32]. Moreover, users can be profiled and tracked
by their browsing history [33]. Many studies have shown
that all of these techniques are actually used in the
wild [9, 10, 30]. Researchers have also looked at coun-
termeasures that typically disable or limit the ability of
a web publisher to probe particular browser character-
istics. Privaricator [31] is one such approach that adds
noise to the fingerprint to break linkability across mul-
tiple visits.

With the rapid growth in popularity of smartphones
and tablets, the focus shifted to adapting existing fin-
gerprinting techniques to mobile browsing. Similar to
cookies, app developers have looked at using device IDs
such as Unique Device Identifier (UDID) or Interna-
tional Mobile Station Equipment Identity (IMEI) to
track users across multiple applications. However, Ap-
ple ceased the use of UDID since iOS 6 [4] and for
Android accessing IMEI requires explicit user permis-
sion [3]. Moreover, due to constrained hardware and
software environments, existing methods often lack in
precision for smartphones, as shown by recent stud-
ies [22, 36]. However, Laperdrix et al. have shown that
it is in fact possible to fingerprint smartphones effec-
tively through the user-agent string which is becoming
richer every day due to the numerous vendors deploy-
ing different firmware versions [25]. Others have looked
at fingerprinting smartphones by exploiting the personal
configuration settings which are often accessible to third
party apps [24].

2.2 Sensor Fingerprinting

Today’s smartphones come with a wide range of sen-
sors, providing various different functions. However,
such sensors can also create side channels that can
be exploited by an adversary to uniquely fingerprint
smartphones. Recent studies have looked at exploit-
ing microphones and speakers to fingerprint smart-
phones [12, 14, 38]. Others have looked at utilizing mo-
tion sensors like accelerometer to uniquely distinguish
smartphones [12, 18]. And most recently, Das et al. have

shown that they can improve the fingerprinting accu-
racy by combining gyroscope with inaudible sound [16].

Our approach builds on the work done by Das et
al. [16]. However, our work provides a real-world per-
spective on the problem. We not only show that the
state-of-the-art classifier suffers greatly when a phone is
repositioned across two different web sessions, but also
show how existing techniques can benefit from the intro-
duction of new data streams and a voting scheme among
different classifiers. We also introduce a new counter-
measure technique where we quantize sensor data to
lower the resolution of motion sensors and elaborately
study the privacy–utility trade-off of our proposed coun-
termeasure by performing a large-scale user study.

3 Features and Evaluation
Metrics

In this section we briefly describe the data collection and
data preprocessing step. We also discuss the classifiers
and evaluation metrics used in our evaluation.

3.1 Data Collection

To collect sensor data from smartphones we develop a
web page1 containing a JavaScript that accesses data
from motion sensors (i.e., accelerometer and gyroscope)
and sends those data periodically to a backend server.
Users in our study were asked to visit our web page while
placing their smartphone either on a flat surface or in
their hand while sitting down, thus emulating real-world
web browsing settings. Our web page directs each user
through four different sessions, where in the first session
we ask the user to place the phone on a flat surface. In
the second session we ask the user to hold the phone in
their hand. The third and fourth sessions repeat the on-
desk and in-hand scenarios, for a total of two sessions
of each type. Under each session we collect 5 samples,
where each sample is 5 seconds worth of sensor data,
and the break between consecutive sessions is around 10
seconds. Thus, total participation time is approximately
2 minutes.

1 http://datarepo.cs.illinois.edu/DataCollectionHowPlaced.
html. We received an exemption from our IRB office for
collecting sensor data.

http://datarepo.cs.illinois.edu/DataCollectionHowPlaced.html
http://datarepo.cs.illinois.edu/DataCollectionHowPlaced.html
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We found that popular mobile web browsers such
as Chrome, Safari and Opera all have similar sampling
rates in the range of 100–120 Hz (the only exception
being Firefox which provided a sampling rate close to
180 Hz) for motion sensors.2 However, the sample rate
available at any instance of time depends on multiple
factors such as the current battery life and the number
of applications running in the background. As a result
we received data from participants at various sampling
rates ranging from 20 Hz to 120 Hz. We recruited partic-
ipants through Amazon Mechanical Turk [2] and in total
obtained responses from 300 participants over a period
of one week. However, some users did not follow all the
steps and dropped out in the middle, as a result we
were not able to obtain data from all 300 participants.
We ended up with data from 294 devices for the on-
desk scenario and 256 devices for the in-hand scenario.
Our data set contained data from 45 different brands of
smartphones with different models of iPhone compris-
ing majority of the total devices (the exact device-model
distributions are provided in Appendix D).3 Each Me-
chanical Turk user was only allowed to participate once
so we can be reasonably certain that each of the partic-
ipants represents a different device.

3.2 Processed Data Streams

We process the accelerometer and gyroscope data into
multiple time-series data streams, some of which have
not been previously studied. At any given timestamp, t,
we have the following three data vectors: i) acceleration
including gravity, ~ag(t) = (agx, agy, agz), ii) acceleration
without gravity, ~a(t) = (ax, ay, az) and iii) rotational
rate, ~ω(t) = (ωx, ωy, ωz). Acceleration without gravity
(~a(t)) was not used in previous work; we use it as it
eliminates the influence of gravity on any small hand
motion and makes readings more robust to axis tilt, thus
making it useful for fingerprinting small hand motions
by users. From the three time-series data we generate
16 different data streams, 9 of which represent the indi-
vidual data streams from each axis and 3 represent the
magnitude (| ~ag|, |~a|, |~ω|) of the 3 data vectors. We com-
pute the orientation of the device like inclination (θg,
θ) and azimuth (ψg, ψ) as two additional data streams

2 Computed the average time to obtain 100 samples. http://
datarepo.cs.illinois.edu/SamplingFreq.html
3 We used https://web.wurfl.io/#learnmore to obtain the make
and model of a smartphone.

from both ~ag(t) and ~a(t) to give us a total of 16 different
data streams. Table 1 summarizes the 16 data streams
computed from the smartphone’s accelerometer and gy-
roscope. To obtain frequency domain characteristics we
adopt the approach described by Das et al. [16] where
we interpolate the non-equally spaced data stream into
equally-spaced time-series data by using cubic-spline in-
terpolation at 8kHz frequency.4

Table 1. Data streams used in generating a device fingerprint

# Stream Description
1–3 agx, agy, agz x-, y-, and z-axis streams of acceleration-including-gravity
4 | ~ag|

√
a2

gx + a2
gy + a2

gz magnitude of acceleration-including-gravity
5–7 ax, ay, az x-, y-, and z-axis stream of acceleration-without-gravity
8 |~a|

√
a2

x + a2
y + a2

z magnitude of acceleration-without-gravity
9–11 ωx, ωy, ωz x-, y-, and z-axis streams of rotational-rate
12 |~ω|

√
ω2

x + ω2
y + ω2

z magnitude of rotational-rate
13 ψg azimuth tan−1(agy/agx) of acceleration-including-gravity
14 ψ azimuth tan−1(ay/ax) of acceleration-without-gravity
15 θg inclination cos−1(agz/| ~ag|) of acceleration-including-gravity
16 θ inclination cos−1(az/|~a|) of acceleration-without-gravity

3.3 Features

Following previous work by Das et al. [16], we extract
the same set of 25 features from each data stream, using
the same codebase to process the data. Out of these 25
features, 10 are temporal features and the remaining 15
are spectral features.5 However, as we introduced new
data streams, we ended up with a total of 400 features
to summarize the unique characteristics of the motion
sensors. To understand how different features contribute
to generating a device fingerprint we compute the mu-
tual information per feature. Figure 1 shows the amount
of mutual information (MI) obtained from each feature
under both on-desk and in-hand settings. We can see
that for the on-desk setting features from the inclination
(θ) and azimuth (ψg) streams dominate, which indicates
that different users place their smartphones on desks at
different orientations.6 Similarly, for the in-hand sce-
nario we see that features from agy, agz, θg and θ dom-
inate which implies that there are some unique hand
orientations by users while holding their smartphone in
hand. This implication becomes more evident when we
sort the features using the JMI (joint mutual informa-

4 Up-sampling the signal from around 100 Hz to 8 kHz does
not increase the accuracy of the signal, it only facilitates direct
application of standard signal processing tools.
5 A detailed description of each feature is available in the tech-
nical report provided by Das et al. [15]
6 Users could also be using different phone covers contributing
to different inclinations.

http://datarepo.cs.illinois.edu/SamplingFreq.html
http://datarepo.cs.illinois.edu/SamplingFreq.html
https://web.wurfl.io/#learnmore
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Fig. 1. Comparing mutual information (MI) for different data streams. MI per feature for (a) on-desk setting (b) in-hand setting.
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Fig. 2. Scatter plot of 10 samples from random 50 phones along the top two features determined by JMI criterion.

tion) criterion [13] (ranking of the top 20 features is
provided in Appendix B). Figure 2 shows a scatter plot
of 50 random smartphones from our data set along the
dimension of the top two features. We can see that in
general data points from the same device (here each
color represents a unique device) are clustered close to-
gether.

3.4 Classification Algorithms and
Evaluation Metrics

Classifiers: We first explore different classifiers avail-
able in python’s scikit-learn machine learning library
with the intuition that different classifiers may be ca-

pable of capturing different aspects of the fingerprint.7

Table 2 highlights the different classifiers explored along
with their non-default parametric values. The different
parametric values are empirically tuned using an em-
pirical data set (a random selection of 25% of devices).
However, we will later on show that by combining multi-
ple classifiers we can obtain better classification results.
All 400 features are used to classify devices.
Evaluation metrics: In general we use accuracy as
our evaluation metric defined as follows:

Accuracy, Acc = # of samples correctly classified
Total test samples (1)

7 http://scikit-learn.org/stable/

http://scikit-learn.org/stable/
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Table 2. Different classifiers and their parameters

Classifier Parameter values∗ Acronym
Support Vector Machine C = 0.1,decision_function_shape =‘ovr’, gamma = 10−10 SVM

Random Forest n_estimators = 200 RF
Extra Trees n_estimators = 200 ExTree

Logistic Regression max_iter = 500 LR
Gaussian Naive Bayes default values GNB

Stochastic Gradient Descent loss =‘modified_huber’, penalty =‘l2’ SGD
k-nearest neighbors n_neighbors = 3, weights =‘distance’ k-NN
Bagging classifier base_estimator=KNeighborsClassifier(3), n_estimators = 100, max_samples = 0.5 Bag-kNN

Linear Discriminant Analysis default values LDA

Multi-layer Perceptron Classifier hidden_layer_sizes = (400, 300), activation =‘relu’, solver =‘adam’, MLP
learning_rate =‘adaptive’, max_iter = 200, batch_size = 50

∗ We only provide values for parameters for which we do not use the default values

All our accuracies report the average over 10 runs where
in each run we randomly select 25% of the devices for
tuning parameters. We also compute the 95% confidence
interval for the classification accuracy. In terms of sys-
tem performance, we found that on average it takes
around 100–200ms to match a new fingerprint to an ex-
isting fingerprint. All our experiments were conducted
using a desktop machine with an Intel i7-2600 3.4GHz
processor with 12GB RAM.
Distinguishing on-desk samples from in-hand
samples: Since different features dominate the on-
desk and in-hand scenarios, it is best to use a differ-
ent classifier in each case. We therefore studied whether
an attacker can reliably distinguish between these two
scenarios. We used a random forest classifier where we
used data from the first two sessions as training data,
labeled with the session type, and data from the third
and fourth sessions as testing data. We found that the
classifier was able to distinguish between the two sce-
narios with 100% accuracy. Therefore we will consider
the in-hand and on-desk scenarios separately in the re-
mainder of the paper.

4 Fingerprinting Smartphones
In this section, we examine how fingerprinting can be
carried out in practice to track users. The first issue
we tackle is one of overfitting: previous methodology
was susceptible to fingerprinting the position of a phone
rather than its device characteristics; our data set allows
us to eliminate such overfitting. We then improve the
classifier to address issues resulting from our more com-
plex scenarios as well as larger data set. An additional
real-world constraint is that it is necessary to distin-

guish between devices that are in the training set and
devices that have never been seen before; we modify the
machine learning algorithms to operate in this so-called
open-world scenario and evaluate their performance. We
also highlight how auxiliary information can be used to
improve fingerprinting accuracy.

4.1 Overfitting

We first address a concern not considered by previous
work: does a motion sensor fingerprint capture the char-
acteristics of the sensor, or is it affected by the precise
positioning of a phone at a given moment? Our col-
lection methodology allows us to distinguish between
these two possibilities, as it requires a phone to be
repositioned between the two on-desk sessions. We first
use data from the same session to both train and test
the classifier, using three randomly selected samples for
training and the remaining two for testing. We then
switch to using all five samples from one session for
training and the five samples from the other session for
testing. In both cases, we report the average classifica-
tion accuracy after 10 runs.8

Table 3 shows the results of our experiments. We
can see a significant difference in classification perfor-
mance. Using data from the same session for testing
and training produces high accuracy, comparable to the
results from Das et al. [16]. Using different sessions for
training and testing, however, results in markedly lower
accuracy, despite using a larger training set. Interest-
ingly, we saw a similar effect for the in-hand scenario; it

8 In each of the 10 runs we vary the random selection of training
samples (in the same session case) as well as the random choices
made in classifier training.
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appears that users hold their phones in a relatively sta-
ble position for the duration of the session, but change it
when the phone is set down and then picked up again for
the next session. Our results show that previous work
significantly overestimated the accuracy of their classi-
fier, and significant improvements are needed to work
in the more realistic setting without overfitting.

Table 3. Average accuracy using less data streams

Classifier

Avg. accuracy (%)∗

On desk (294 phns) In hand (256 phns)
Same Across Same Across
Session Session Session Session

SVM 34 19 26 13
RF 80 57 67 45

ExTree 86 56 68 45
LR 47 27 37 25
GNB 40 32 32 27
SGD 26 18 21 15
k-NN 42 23 28 18

Bag-kNN 36 23 27 17
LDA 68 44 66 46
MLP 50 30 38 25

∗ using only four data streams (| ~ag |, ωx, ωy , ωz) as pro-
posed by Das et. al [16]. 95% confidence interval was in
the range of 1–2%.

4.2 More Data Streams

In this section we evaluate what value our extra data
streams (i.e., extra features) provide to the classifiers.
To evaluate this we re-run the previous experiment but
this time we use all 400 features to generate device fin-
gerprint. Table 4 highlights our findings. We can see
a significant improvement in the classification accuracy
for all classifiers when all 400 features are used. This
signifies the importance of the added features that pre-
vious studies are lacking in the context of generating
unique device fingerprints.

4.3 Voting Classifier

Even with more features we see that the accuracy of
device fingerprinting across different web sessions is
mediocre at best. We therefore attempt to improve clas-
sification performance by combining results from mul-
tiple classifiers. We explore two off-the-shelf ways of
combining classifiers, as well as develop a custom ap-
proach based on filtering redundant classifiers and using
a weighted Borda count [11, 17]. Our custom approach is

Table 4. Average accuracy using more data streams

Classifier

Avg. accuracy (%)∗

On desk (294 phns) In hand (256 phns)
Same Across Same Across
Session Session Session Session

SVM 52 31 50 23
RF 95 68 87 53

ExTree 98 69 93 52
LR 82 56 71 49
GNB 68 36 46 16
SGD 65 44 54 34
k-NN 78 50 66 39

Bag-kNN 68 49 59 36
LDA 95 60 65 51
MLP 86 53 74 45

∗ using all data streams described in Table 1. 95% confi-
dence interval was in the range of 1–2%.

particularly suited to identifying the top k likely values,
as discussed in the following section.

The scikit-learn package has two types of voting
classifiers [7]. The first one, called a hard voting clas-
sifier, uses the top predicted class from each classifier
and selects the class that appears most frequently in
this list (i.e., plurality voting). A weighted version of
hard voting can be obtained by weighting each classifier
according to its performance; in our case, we use 25%
of the training data to compute the accuracy of each
classifier and use the accuracy metric as the weight. A
soft voting approach selects among the classifiers based
on the posterior probability that each classifier assigns
to their predictions; the result with the highest average
predicted probability is used. A weighted average can
once again be used to give more importance to some
classifiers.

As shown in Figure 3, these classifiers produce min-
imal improvement over the random forest and extra
trees classifiers for the in-hand scenario, and under-
perform these classifiers in the on-desk scenarios. We
therefore investigate an alternative approach for com-
bining classifiers that uses the rankings of each class,
combined using a Borda count. Our approach consists
of three steps:

1: Eliminate redundant classifiers. Some classifiers
contribute little to no useful information to the process,
and we opt to eliminate them from the consideration
to improve the quality and speed of the classification.
We follow the approach outlined by Ho et al. [21]. They
introduce the notion of a union of thresholds, defined as
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follows:9 given a set of N classifiers andM test samples,
we define ri,j to be the rank that classifier i assigns to
the true class on test sample j. We can define a set of
thresholds t1, . . . , tN such that for each sample j, there
exists a classifier i such that ri,j ≤ ti. In other words,
if we take the union of the top ti predictions from each
classifier, this union will always contain the true class for
all test samples. Such a set of thresholds is not unique,
so we therefore find t∗1, . . . , t

∗
n that minimizes

∑N
i=1 ti

under these conditions (i.e., produce the smallest-sized
union). Ho et al. present an algorithm for finding such
a minimum based on enumerating all possible combina-
tions of classifiers.

A classifier is considered redundant if t∗i = 0. Intu-
itively, this happens when either a classifier i is dom-
inated by other classifiers—i.e., ri,j ≥ ri′,j for all j—
or it is occasionally finds a lower rank but not fre-
quently enough to add value. We eliminate all such clas-
sifiers from the calculations below. For example, Gaus-
sian Naive Bayes classifier was always eliminated.
2: Finding a consensus set. Having eliminated re-
dundant classifiers, we can have voting among the re-
maining classifiers for the top prediction, as in hard vot-
ing. However, there are cases when all classifiers disagree
on the top prediction. Often, however, the top predicted
class of one classifier might be ranked as the second best
prediction by another. We therefore first define a con-
sensus set as the set of classes that occur at lesat twice
among the top-ranked predictions returned by the clas-
sifiers. If the set is empty, we consider two top-ranked
predictions from each classifier and once again look for
classes that occur at least twice; we keep expanding the
number of predictions taken from each classifier until
the consensus set is non-empty.
3. Weighted Borda count. We then pick a class out
of the consensus set based on the Borda count. Given
a ranking of classes, the Borda count of a class is the
number of classes that are ranked below it. The score of
a class is then the weighted average of the Borda counts
coming from each classifier. The class with the highest
Borda count is then returned as the top prediction.
Returning multiple results. The algorithm is easily
modified to return the top k predictions, as required in
the next section. In step 2, we iterate until we find a
consensus set that contains at least k members; in step
3, we pick the top k elements of the consensus set as

9 Our presentation here is somewhat paraphrased and formal-
ized from the original presentation by Ho et al.

ordered by the Borda count. A Python implementation
of this algorithm can be found in Appendix A.
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Fig. 3. Comparing our voting scheme with other classifiers.

Evaluation. To showcase what benefit the voting
scheme gains over both individual classifiers and off-
the-shelf voting classifiers [7] we re-run the classification
problem for the across-session scenario. To filter redun-
dant classifiers and to obtain weight for each classifier
we randomly select 25% of the devices as our parameter-
tuning data set. Once we determine the relevant classi-
fiers we then compute classification accuracy on the re-
maining 75% devices. This whole process is automated
using the algorithms described previously. Figure 3 com-
pares our voting scheme with the other classifiers, as
well as with off-the-shelf classifiers in scikit-learn.

As we can see from Figure 3, we are able to im-
prove on the performance of our best classifiers (ran-
dom forest and extra trees) by using voting. We also
show the results of an Oracle classifier, which selects
the correct class when any classifier returns it as a top
prediction. The Oracle classifier shows that there may
be room for improving classification accuracy by better
choosing which classifier to use for each sample; whether
such a choice can be made in practice without an Oracle,
however, remains a question for further research.

4.4 Combining Auxiliary Information

In practice, a device fingerprint may not be used in iso-
lation, but combined with other attributes that identify
the user; e.g., the user-agent string has been shown to
provide high degree of entropy among smartphones [25].
These other attributes are not likely to uniquely iden-
tify a phone, yet they can improve the accuracy of device
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fingerprinting. To emulate such a scenario, we consider
an auxiliary fingerprint that has log2 k bits of entropy;
i.e., it would allow us to distinguish between k differ-
ent phones. We then modify the classifier to output k
most likely devices and consider a test, a success if any
of the top k outputs are correct. We perform this ex-
periment for the scenario where classifiers are trained
and tested across different web sessions. As can be seen
in Figure 4, our voting scheme outperforms competing
classifiers. Figure 4 also highlights the baseline accuracy
achieved from the log2 k bits of auxiliary information
alone.
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Fig. 4. Accuracy while generating top k predictions. The x axis
shows the corresponding number of auxiliary bits (i.e., log2 k).
Our voting scheme provide improvements over other classifiers.

4.5 Focusing on a Single Phone Model

The ability to distinguish sensor readings from differ-
ent devices may arise either as a result of process vari-
ation in manufacturing an individual device, or from
design differences in different sensor implementations.
Our data set covers a large variety of smartphone mod-
els (listed in Appendix D), a large number coming from
the iPhone 6. We can therefore analyze our ability to
create fingerprints based on process variation alone for
the same device model. Our results of classifying only
iPhone 6 models are shown in Figure 5. We achieve sim-
ilar accuracy to the situation with multiple device mod-

els, suggesting that most of the distinguishing power
comes from process variation.
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Fig. 5. Fingerprinting only iPhone 6 smartphones. The average
accuracy remains similar to when all models are considered.

4.6 Open-World Setting

Our previous experiments, and indeed previous work on
motion sensor fingerprinting, evaluated a classifier in the
setting where all test samples correspond to devices that
are included in the training set. In reality, this will not
always be the case, as new visitors will generate unseen
test samples. An open-world classifier must distinguish
between previously unseen cases and ones that are in the
training set. To do this, we modify our classifier to use
the probability of the predicted class as a threshold to
decide whether this is a previously known or a new de-
vice. For this experiment, we again consider the scenario
where classifiers are trained and tested across different
web sessions. We then randomly assign 50% of the de-
vices to the known set (samples from these devices are
used in training the classifier) and the remaining 50%
to the unknown set (these devices are never seen by
the classifier). Next, we compute true positive (TP, the
number of known-device samples that are classified as
known) and false positive (FP, the number of unknown-
device samples that are classified as known) rates for dif-
ferent thresholds of classification probability. Figure 6a
shows the ROC curve under such setting. The area un-
der the curve (AUC) is ≥ 0.94 which indicates that our
classifier can effectively distinguish known devices from
unknown devices. The dotted circles in the plot repre-
sent the points that minimize the bigger of false positive
and false negative errors, which we found to be a thresh-
old of around 0.15 for both on-desk and in-hand settings.
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Fig. 7. Precision and recall for the selected threshold under different base rate.

Figure 6b also highlights that both threshold (in terms
of classification probability) and AUC remains more or
less stable for varying number of unknown smartphones.

Next, we look at how precision-recall curve evolves
as we change the base rate (i.e., fraction of known de-
vices). Figure 7a highlights the precision-recall curve for
the base rate of 0.5, i.e., when 50% of the devices are
randomly assigned to be known to the classifier while
the remaining 50% devices are unknown to the classi-
fier. From Figure 7a we can see that compared to the
in-hand setting, the on-desk setting achieves a better
precision-recall trade-off. The dotted circles in the figure
represent the points that maximize the sum of precision
and recall, which we found to be a threshold of around
0.15 for both the on-desk and in-hand settings. Next,
we explore how the base rate impacts the precision and
recall for the selected threshold. To evaluate this we

vary the fraction of known and unknown devices, and
compute precision and recall under such settings. Fig-
ure 7b shows how the precision and recall rate vary as
we change the base rate from 0.1 to 0.9. We can see that
the selected thresholds (i.e., thresholds that maximize
the sum of precision and recall) for both the on-desk
and in-hand settings remain more or less stable in the
range of 0.15 to 0.2, except for the two extreme base
rates (namely when the base rate is 0.1 and 0.9). We
also see that both precision and recall have a tendency
to decrease as the fraction of known devices decreases.
However, compared to recall, precision decreases at a
larger rate (determined from the slope of the trend-line)
which is somewhat expected due to the lack of training
data for the classifiers.

In an open-world setting, our classification process
would have two steps: first deciding whether a device is
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new or previously seen, and then attempting to match
the device to previosuly seen ones in the latter case.
We now evaluate the overall success of this process. We
define the overall precision as the proportion of phones
that are identified as known that are classified correctly
(Ncorrect) as a fraction of the total number of phones
that are classified as known (TP + FP ).

Poverall = Ncorrect
TP + FP

Likewise, we can define the overall recall as the fraction
of known phones (TP+FN) that are classified correctly:

Roverall = Ncorrect
TP + FN

We then use the standard F1 score metric to measure
the combined precision and recall:

F1 = 2× Poverall ×Roverall
Poverall +Roverall

Figure 8 plots the F1 score for different base rates.
We can see that in general the overall F1 score seems to
peak (dotted circle representing the highest obtained F1
scores) near thresholds in the range of 0.15 to 0.3, except
for the extreme cases when the base rate is 0.1 and 0.9,
which covers the range of the selected thresholds com-
puted from our ROC and precision-recall curves. Fig-
ure 8 also highlights the fact that the highest obtained
F1 scores under the open-world setting approaches the
average accuracy under the closed-world setting (gray
dotted lines).

This approach can also be combined with a weak
fingerprint: instead of choosing the top k candidate de-
vices, as described in the previous section, we instead
choose all devices with predicted probability above a
threshold as candidates. Figure 9 shows the average
size of the candidate set along with its 95% confidence
interval for different choices of threshold. We can see
that the number of candidates quickly reduces to just
above 1 on average, meaning that few additional bits
of auxiliary fingerprint will be needed. We also can
see how the threshold affects the prediction accuracy
in Figure 10. Each sample from a known phone is as-
signed to one of three outcomes: all candidate devices
are below the threshold (empty case); some devices are
above the threshold, but the correct one is not (non-
matching case); or the correct device is among those
predicted above a threshold. For very low threshold val-
ues, most samples are in the matching case, but this is
because the size of the candidate set includes a large
number of devices. As the candidate set decreases with
an increased threshold, we see a brief increase in the
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Fig. 8. Average F1 score under the open-world setting for
different base rate. F1 scores under the open-world setting

approaches the average accuracy under the closed-world setting
for the selected thresholds.

non-matching case, then it quickly goes down to nearly
zero. This shows that increasing the threshold elimi-
nates “marginal” matches that are likely to be incor-
rect, at the cost of increasing the false negative errors,
i.e., known phones that are incorrectly classified as pre-
viously unseen. Note that Figures 9 and 10 only use
known samples; thus we use data from all the devices
in the training and test set to get more representative
data.
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The best choice of threshold will depend on the sen-
sitivity of a tracker to different types of errors; e.g., dis-
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playing a personalized ad to a new user is likely to have
low cost; on the other hand, if the goal is to compile an
accurate profile of a user, a mistaken identification can
drastically reduce the quality of the data. Conversely, if
a sample results in a high-probability match, it could be
added to the training set to improve classification accu-
racy for future visits. The choice of threshold will also
depend on the base rate of new visits; if 99.9% of vis-
itors are previously unseen, even a small false-positive
rate will result in a large number of errors.

5 Countermeasures and Their
Usability

In this section we look at the performance and usability
of two contrary countermeasures against motion sensor
fingerprinting. We evaluate sensor obfuscation, one of
the countermeasures proposed by Das et al. [16] and sen-
sor quantization, a new approach that we propose in this
paper that is easier to implement. We first look at their
effectiveness against sensor fingerprinting. Next, we de-
sign a web-based labyrinth game to determine the us-
ability of the aforementioned countermeasures through
a large-scale user study.

5.1 Obfuscation Vs. Quantization

First, we briefly describe the operations of the coun-
termeasures. Intuitively, obfuscation tries to randomize
the sensor fingerprint by scattering the fingerprint to
different locations of the feature space. On the other

hand, quantization tries to group multiple fingerprints
into the same location and thereby making it hard for
the adversary to pinpoint the true device. The specifics
are given below:
Obfuscation. Obfuscation technique adds small
amount of noise to the raw sensor values by applying
an affine transformation to the sensor readings. Das et
al. [16] proposed this countermeasure after observing
that the mean and root mean square were the domi-
nant features in their fingerprint; by shifting the signal
by a random amount, these features can be altered. In
particular, each data stream from the accelerometer and
gyroscope is transformed as sO = sM ·gO+oO, where sM

is the original signal, and gO and oO are the obfuscation
parameters—gain and offset.

The gain and offset must be chosen randomly;
based on the study conducted by Das et al. [16], we
sample them uniformly from the ranges [-1.5,1.5] and
[0.75,1.25], respectively. In our evaluation, we use a dif-
ferent gain and offset during the training and testing
phases; this is a key requirement for this countermea-
sure and presents a significant implementation chal-
lenge, since the browser or OS must guess when an ad-
versary would switch from a training to a testing phase
and re-randomize the parameters accordingly.

For example, if a user visits two websites without
re-randomizing the obfuscation parameters, then it is
possible to link the two visits as coming from the same
device since they will generate a similar fingerprint. If,
on the other hand, we re-randomize for each website
visit, we run into a problem when two websites can link
two visits in some other way (e.g., through a parameter
embedded in a URL, or through the use of related ac-
counts). In that case, signal processing can be applied to
the two fingerprints generated by the sites with different
noise parameters to reduce the impact of the noise and
thereby lessen the impact of the countermeasure.10

Quantization. Quantization is a simpler approach
that does not require session tracking. The basic idea
behind quantization is that human brain cannot dis-
criminate minute changes in angle or magnitude. As a
result if the raw values of a sensor are altered slightly,
it should not adversely impact the functionality of the
sensor. We perform quantization in the polar coordi-
nate system as it is easy to perceive. Our first task is to
convert the accelerometer data into its equivalent polar
vector < r, θ, ψ >. Since gyroscope provides rotational

10 The Tor browser faces a similar challenge for choosing when
to use a different Tor circuit; their approach has been to define
sessions based on the web origin domains.
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rate in rads−1, we do not perform any conversion for
gyroscope data. Next we pass our sensor data through
the following quantization function:

f unc t i on quant i za t i on ( val , b in_s ize ){
// va l : raw value , b in_s ize : quant i za t i on s i z e

re turn round ( va l / b in_s ize )∗ bin_s ize ;
}

For angle related data (θ, ψ and gyroscope data) we
set binsize = 6◦ unless explicitly stated otherwise, while
for magnitude (i.e., radius) we set binsize = 1ms−2. In
other words, we place angles into 6◦ (or equivalent rad)
bins and for accelerometer magnitude we map it to the
nearest integer. We do, however, explore the effect of dif-
ferent binsize on fingerprinting accuracy in the following
section. Once performing quantization in the polar co-
ordinates (i.e., < r, θ, ψ > → < r̂, θ̂, ψ̂ >), we remap it
to cartesian coordinate system. Next, we use the trans-
formed sensor readings as the new source of sensor data.

5.2 Effectiveness of Countermeasures

First we determine how the quantization bin size affects
the classification accuracy. To evaluate this we increase
the quantization bin size in increments of 6◦, starting
from 0◦ and stopping at 30◦. Figure 11 highlights our
findings. We can see that increasing the quantization bin
size beyond 6◦ results in diminished returns. In other
words, classification accuracy is not significantly im-
pacted by bin sizes greater than 6◦. The primary reason
as to why the classifier reaches a residual accuracy is
that quantization only perturbs the temporal features
but not the spectral features, and hence the residual
accuracy is obtained predominantly from the spectral
features. We, therefore, set the quantization bin size to
6◦ in all future evaluations.
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Fig. 11. Impact of quantization bin size on classification accuracy.

Next, we compare the effectiveness of the differ-
ent countermeasures on fingerprinting accuracy. For this
setup we run our fingerprinting scheme under three set-
ting: baseline, obfuscation and quantization. Figure 12
summarized our findings under different settings (on-
desk vs. in-hand and using less data streams vs. more
data streams). We can see that both countermeasure
schemes significantly reduce the fingerprint accuracy
but in general obfuscation outperforms quantization,
notably more when more data streams are used to gen-
erate the device fingerprint. However, there is a signifi-
cant implementation trade-off between the two schemes
as discussed previously.
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5.3 Usability Study

The above countermeasures degrade the readings from
the motion sensors and we wanted to better understand
the impact of the countermeasures on the utility of the
sensors to web applications. Of course, motion sensors
have a wide range of uses, from simple orientation detec-
tion to activity classification, step counting, and other
health metrics. Many of these, however, are deployed
in application form, whereas we wanted to focus on the
threat of fingerprinting by web pages. We performed a
survey of web pages to identify how motions sensors are
actually used. We found that one of the most common
application of motion sensors was to detect orientation
change in order to adjust page layout; such a drastic
change in the gravity vector will be minimally impacted
by countermeasures. We did, however, find several in-
stances where web pages used the motion sensors as a
means of gesture recognition in the form of tilt-based
input controlling a video game.
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To study the impact of countermeasures on the util-
ity of such tilt-based controls, we carried out a user
study where participants were asked to play a game
using tilt control while we applied privacy countermea-
sures to their motion sensor data. We then evaluated
the impact of the countermeasures through both objec-
tive metrics of in-game performance, as well as subjec-
tive ratings given by the participants. Our study was
approved by our institutional research board (IRB).

(a) Level 2 of the game (b) Feedback form

Fig. 13. Game interface. The goal is to roll the ball to the flag
while avoiding traps by tilting the phone. User are asked to rate
the relative difficulty of each setting for all levels completed.

5.3.1 Study Design

After receiving some information about the study, our
participants were invited to play a game using their per-
sonal smartphone (Figure 13a).11 The objective of the
game is to roll a ball to its destination through a maze,
while avoiding traps (hitting a trap restarts the level
from the beginning). The game had five levels, which
the participants played in order of increasing difficulty
(Appendix C provides screen-shots of the different lev-
els). Each level was played three times with different
privacy countermeasures applied: baseline (no counter-
measures), obfuscation, and quantization. The order of
countermeasure settings was randomized for each par-
ticipant and for each level, and not revealed to the par-
ticipants. After completing a level three times, the par-
ticipants were asked to rate each of the three settings in

11 http://datarepo.cs.illinois.edu/chou/game.html

terms of difficulty of controlling the game on a scale of
1 to 5. Participants also were invited to optionally pro-
vide free-form feedback (Figure 13b). Their ratings and
feedback, along with the settings and metrics regarding
the time spent on each level, and the number of times
each level was restarted due to traps, were then sent to
our server for analysis.

After completing a level, a user is invited to play the
next level. Users were required to play levels in order of
increasing difficulty, but participants were allowed to
replay previous levels. We identified such repeat plays
by setting a cookie in a user’s browser and discarded
repeat plays in our analysis.

Table 5. Number of users that completed the first n levels
recruited through Amazon’s Mechanical Turk and other means.

Levels MTurk non-MTurk Total
completed

1 0 26 26
1–2 1 14 15
1–3 0 34 34
1–4 91 67 158
1–5 107 63 170
Total 199 204 403

5.3.2 Study Results

We recruited users through institutional mailing lists,
social media, as well as Amazon’s Mechanical Turk [2].
We collected data from 202 users via Mechanical Turk
and 206 users that were recruited through other means,
for a total of 408 users; several users’ data had to be
discarded due to irregularities in data collection. Note
that not all users played through all five levels, as shown
in Table 5. Note that Mechanical Turk users had to
complete five levels to receive their reward, but in some
cases we were not able to receive some of their data due
to network congestion at our server.

We found that, when considering the entire data set,
the choice of privacy protection method did not signif-
icantly influence the subjective ratings assigned to the
level (χ2 test, p = 0.34) nor the objective metrics of the
game duration (pairwise t-tests, p = 0.10 and 0.75 com-
paring baseline to obfuscation and quantization, respec-
tively) or the number of restarts due to traps (pairwise
t-tests, p = 0.11 and 0.47). However, as expected, all
difficulty metrics were significantly impacted by which
level the person was playing, as shown in Figure 14.

http://datarepo.cs.illinois.edu/chou/game.html
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Fig. 14. Subjective and objective difficulty metrics increase across game levels. Box plots show the median (horizontal line) and the
interquartile range (box), while whiskers show the range between the 5th and 95th percentile, with the outliers being individually

represented. The notch in the box denotes the 95% confidence interval around the median. Note: level 1 has no traps.

Fig. 15. Reduced game durations and number of restarts, as each level is played three times. A large training effect is observed between
the first and second attempt, with a smaller effect between the second and third. Restarts on levels 1 and 2 are not shown.

Fig. 16. Subjective and objective ratings, when considering second and third attempts only. Shown are the histogram of subjective
ratings and CDFs of game durations and number of restarts on level 3. No significant difference is observed in any of the metrics.

Furthermore, we observed a significant training ef-
fect between the first and second time a user played a
level (each level is played a total of 3 times using dif-
ferent privacy methods), as seen in Figure 15. Interest-
ingly, this was not reflected in the subjective ratings (as
verified by a χ2 test for each level), suggesting that par-
ticipants corrected for the training effect during their
reporting of relative difficulty of the different settings.
There was a smaller training effect between the second

and third time a level was played; the improved perfor-
mance was statistically significant only for durations of
levels 4 and 5 and for the number of restarts on level 5;
which makes sense given the difficulty of these levels.

We therefore compared the difficulty of metrics for
different privacy methods across only the second and
third attempts at a level, discarding the first attempt
as training. For reasons of space, we show the results
for level 3 only in Figure 16. Results for other levels are
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similar (as shown in Appendix C). Significance tests fail
to detect any differences between the difficulty metrics
when privacy methods are applied on any level.12

Limitations: Although the study failed to detect a sig-
nificant impact of privacy methods on utility, it does not
definitively show that no impact exists—failure to reject
a null hypothesis does not demonstrate that the null hy-
pothesis is true. In particular, given the large variance
in game performance across users, as seen in, e.g., Fig-
ure 14, we would like to compare how different privacy
methods change a single user’s performance; however,
given the low impact of privacy protection we have ob-
served so far, we would need to modify our study to
reduce or eliminate the training effect. Additionally, we
tested our privacy methods in a short game, and per-
haps in games with a longer duration some effects would
materialize. However, we feel our results are promising
in showing that users may not have to lose much utility
to employ privacy protection methods.

6 Conclusion
We demonstrated that sensor fingerprinting works well
under real-world settings only in the presence of addi-
tional features and external auxiliary information. Also
we found that combining multiple classifiers provides
better fingerprinting accuracy over existing techniques.
Thus, based on our real-world large-scale data collec-
tion we conclude that motion sensor fingerprinting is a
realistic threat to mobile users’ privacy.

We also evaluated the trade-off between privacy and
utility as realized by two different fingerprinting mitiga-
tion strategies. Our measurement study suggests that
many applications of sensor data are unlikely to be af-
fected. Our user study shows that even for sensitive ap-
plications that use motion sensors as control input, there
is no significant impact of privacy mitigation techniques
on the usability of motion sensors in this context, ac-
cording to both subjective and objective metrics.

12 The raw p-value comparing the number of restarts on level
5 between baseline and obfuscated cases is 0.025 but note that
this is not significant at a p < 0.05 level after the Bonferroni
correction is applied.
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A Implementation of Voting Algorithm

def top_k_choices ( c l a s s i f i e r s , c l a s s e s , weights , sample , k ) :
# Input : c l a s s i f i e r s , c l a s s e s , weights , sample , k
# Output : top k p r e d i c t i o n s
# c l a s s i f i e r s : l i s t o f c l a s s i f i e r s
# each has a predrank func t i on t h a t t a k e s a sample and re turns an ordered l i s t o f c l a s s e s
# c l a s s e s : l i s t s o f c l a s s e s
# weigh t s : a mapping from c l a s s i f i e r to i t s weight ( f l o a t )
# sample : one t e s t sample v e c t or
# k : number o f top cho i ce s to p r e d i c t

rank ings = { c : c . predrank ( sample ) in for c in c l a s s i f i e r s }

# d i c t o f d i c t s ( one per c l a s s i f i e r ) t h a t map a c l a s s to i t s borda count
borda = { c f r : {c : len ( c l a s s e s )− i for i , c in enumerate( rank )}

for c f r , rank in rank ings . i tems ( ) }

# we are l o o k i n g at making top k g l o b a l p r e d i c t i o n s , and we
# w i l l cons ider the top_n p r e d i c t i o n s from each c l a s s i f i e r
top_n = k
while top_n <= len ( c l a s s e s ) :

c l a s s l i s t = [ c for c in r [ : top_n ] for r in rank ings . va lue s ( ) ]
h i s t = Counter ( c l a s s l i s t )
consensus_set = { c for c in c l a s s l i s t i f h i s t [ c ] > 1 }
i f len ( consensus_set ) >= k :

return s e l e c t_be s t ( consensus_set , borda , weights , k )
break

else :
top_n += 1

def weighted_borda ( c , borda , weights ) :
return sum( rank [ c ] ∗ weights [ c f r ] for c f r , rank in borda . i tems ( ) )

def s e l e c t_be s t ( consensus_set , borda , weights , k ) :
c on s en su s_ l i s t = [ ( weighted_borda ( c , borda , weights ) , c ) for c in consensus_set ]
c on s en su s_ l i s t . s o r t ( r e v e r s e=True )
return con s en su s_ l i s t [ : k ]
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B Feature Ranking
Table 6a highlights the feature numbers generated from the 16 data streams (see Table 1 for detail). Each data
stream generates 25 features. For brevity Table 6b highlights the top 20 features determined by JMI (joint-mutual-
information) criterion [13] under both settings.

Table 6. Feature ranking

(a) Feature number per data stream

# Stream Feature No.
1 agx 1–25
2 agy 26–50
3 agz 51–75
4 | ~ag| 76–100
5 ax 101–125
6 ay 126–150
7 az 151–175
8 |~a| 176–200
9 ωx 201–225
10 ωy 226–250
11 ωz 251–275
12 |~ω| 276–300
13 ψg 301–325
14 ψ 326–350
15 θg 351–375
16 θ 376–400

(b) Top 20 features

Rank Feature Number
On desk In hand

1 301 26
2 376 376
3 10 85
4 306 31
5 307 398
6 381 358
7 198 301
8 308 160
9 134 32
10 173 381
11 210 351
12 323 10
13 398 135
14 234 356
15 377 185
16 35 387
17 259 357
18 162 378
19 387 56
20 109 285

C Different Game Levels and Their Impact on Usability
Figure 17 highlights the instruction page and the different levels that each user encounters while participating in
our study. Most users did not provide any free-form feedback, but among the limited feedback that we received
Table 7 highlights some of the interesting comments.

Table 7. Some interesting comments from participants in our user study

User Comment
Honestly they all seem just as easy to me.
I felt no difference.
First I had to learn the trick of balancing then it became easier.
They all seemed very similar, with very little speed difference.
It took me a while to figure out how to move the ball, but once I did it it was easy.
It looked more challenging than it actually was.
Did not realize much difference between 3 settings. Setting A took some time to understand how to play. Rest is easy.

Figure 18 shows the objective and subjective ratings of all levels other than level 3 (level 3 ratings are available
in Figure 16). We can see from the figure that there is no significant difference in any of the metrics across any of
the levels.
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Instruction Level 1 Level 3 Level 4 Level 5

Fig. 17. Game interface. Illustration of instruction page and different levels (level 2 and feedback form already shown in Figure 13).

L1

L2

L4

L5

Fig. 18. Impact of privacy method on subjective and objective ratings, when considering second and third attempts only. Shown are the
histogram of subjective ratings and CDFs of game durations and number of restarts for different levels (abbreviated with ‘L’).
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D Device Make and Model of Participants
Following tables highlight the distribution of the different make and model of devices that participated in our
study. We can see from the tables that our data set not only covers a diverse set of smartphones but also a large
number of same make and model smartphones.

Table 8. Different smartphone models that participated in our on-desk data collection study (294 smartphones in total)

Phone model Count Phone model Count Phone model Count Phone model Count

Apple iPhone 6 99 Samsung SM-G900A (Samsung Galaxy S5) 3 Samsung SM-G900V (Galaxy S5) 1 Samsung SM-N900 (Galaxy Note 3) 1
Apple iPhone 6 Plus 36 Generic Android 5.0 2 Samsung SM-G860P (Galaxy S5 Active) 1 Samsung SM-S975L (Galaxy S4) 1
Apple iPhone 5S 36 Samsung SM-G900T (Galaxy S5) 2 Samsung SM-G925T (Galaxy S6 Edge) 1 Samsung GT-N7100 (Galaxy Note II) 1
Apple iPhone 5 22 Samsung SM-G900A (Galaxy S5) 2 Samsung SM-N920V 4G (Galaxy Note 5) 1 Samsung SM-N900V (Galaxy Note 3) 1
Apple iPhone 22 Samsung SPH-L720 (Galaxy S4) 2 Samsung SM-G925P (Galaxy S6 Edge) 1 Samsung SM-G730A (Samsung Galaxy S III Mini) 1

Generic Android 5.1 9 Apple iPhone 4 2 Samsung SM-G870A (Galaxy S5 Active) 1 Samsung SM-G925F (Galaxy S6 Edge) 1
Unknown 7 Samsung SGH-I337 (Galaxy S4) 2 HTC M8 (One M8) 1 HTC One dual Sim 1

Samsung SCH i545 (Galaxy S4) 6 Samsung SPH-L710 (Galaxy S III) 1 Samsung SM-G870A (Samsung Galaxy S5 Active) 1 Samsung SCH-I747 (Galaxy S III) 1
Samsung SGH-I337 (Samsung Galaxy S4) 5 Google Nexus 6 1 Samsung SM-N900A (Galaxy Note 3) 1 Samsung SM-G850A (Samsung Galaxy Alpha) 1

Samsung SM-G920P (Galaxy S6) 4 Google Nexus 5 1 Samsung GT-I9082 (Galaxy Grand Duos) 1
Samsung SM-G900P (Galaxy S5) 4 Samsung SM-N910C (Galaxy Note 4) 1 Motorola XT1080 (Droid Ultra) 1

Apple iPhone 4S 3 LG US990 (G3) 1 HTC One M7 1

Table 9. Different smartphone models that participated in our in-hand data collection study (256 smartphones in total)

Phone model Count Phone model Count Phone model Count Phone model Count

Apple iPhone 6 85 Samsung SM-G900T (Galaxy S5) 2 LG US990 (G3) 1 HTC One M7 1
Apple iPhone 5S 28 Samsung SM-G900A (Galaxy S5) 2 Samsung SM-G900V (Galaxy S5) 1 Generic Android 6.0 1

Apple iPhone 6 Plus 27 Apple iPhone 4 2 Samsung SM-G860P (Galaxy S5 Active) 1 LG D850 (G3) 1
Apple iPhone 5 19 Apple iPhone 4S 2 Samsung SM-G925T (Galaxy S6 Edge) 1 Samsung GT-N7100 (Galaxy Note II) 1
Apple iPhone 18 Samsung SPH-L720 (Galaxy S4) 2 Samsung SM-N920V 4G (Galaxy Note 5) 1 Samsung SM-G730A (Samsung Galaxy S III Mini) 1

Generic Android 5.1 10 Samsung SGH-I337 (Galaxy S4) 2 Samsung SM-G925P (Galaxy S6 Edge) 1 HTC One dual Sim 1
Samsung SCH i545 (Galaxy S4) 7 Samsung SM-G900A (Samsung Galaxy S5) 2 Samsung SM-G870A (Galaxy S5 Active) 1 BLU Studio 5.0 HD LTE 1
Samsung SM-G900P (Galaxy S5) 6 Samsung SPH-L710 (Galaxy S III) 1 Samsung GT-I9300 (Galaxy S III) 1 Samsung SCH-I747 (Galaxy S III) 1

Unknown 5 Samsung SM-N900V (Galaxy Note 3) 1 LG D851 (G3) 1 Samsung SM-G850A (Samsung Galaxy Alpha) 1
Samsung SGH-I337 (Samsung Galaxy S4) 5 Samsung SM-N900A (Galaxy Note 3) 1 LG D855 (G3) 1

Samsung SM-G920P (Galaxy S6) 4 Samsung SM-G920V (Galaxy S6) 1 Motorola XT1060 (Moto X) 1
Generic Android 5.0 2 Samsung SM-N910V (Galaxy Note 4) 1 Apple iPhone 3GS 1

Table 10. Different smartphone models that participated in our usability study (408 smartphones in total)

Phone model Count Phone model Count Phone model Count Phone model Count

Apple iPhone 6 64 Motorola XT1095 (Moto X (2nd Gen)) 2 LG LS740 (Volt) 1 Asus Z00A (ZenFone 2) 1
Apple iPhone 6S 24 Samsung SM-G925V (Galaxy S6 Edge) 2 Sony D6708 (Xperia Z3) 1 Samsung SM-G531M (Galaxy Grand Prime) 1
Apple iPhone 5 20 Samsung SM-N9005 (Galaxy Note 3) 2 LG H443 (Escape2) 1 LG VS450PP (Optimus Exceed 2) 1
Apple iPhone 5S 20 Generic Android 4.3 2 Sony C6903 (Xperia Z1) 1 Samsung SM-G360T (Galaxy Core Prime TD-LTE) 1

Apple iPhone 6 Plus 16 Samsung SM-N915V (Galaxy Note Edge) 2 LG VS980 (G2) 1 BLU Studio X 1
Google Nexus 5 9 Asus ASUS-Z00AD (ZenFone 2) 2 Samsung SGH-T399N (Galaxy Light) 1 Samsung SM-G386T (Galaxy Avant) 1

Samsung SM-G900V (Galaxy S5) 9 Samsung SM-G920T (Galaxy S6) 2 RCA RCT6773W22 1 LG L16C (Sunrise) 1
Apple iPhone 4S 8 Samsung SCH i545 (Galaxy S4) 2 Samsung GT-I8552 (Galaxy Grand Quattro) 1 Samsung SM-S975L (Galaxy S4) 1

Apple iPhone 6S Plus 8 Samsung SM-G935F (Galaxy S7 Edge) 2 Nokia Lumia 630 1 Samsung SM-G900H (Galaxy S5) 1
Google Nexus 5X 8 Samsung SGH-I337 (Galaxy S4) 2 Samsung SM-N920V 4G (Galaxy Note 5) 1 LG H634 1

Samsung SM-G920V (Galaxy S6) 7 LG LS990 (G3) 2 LG D802T (G2) 1 Amazon KFARWI (Fire HD 6 (4th Gen)) 1
Mozilla Firefox for Android 7 Samsung SM-G925A (Galaxy S6 Edge) 2 Motorola XT1505 (Moto E (2nd Gen)) 1 Alcatel 5054N (One Touch Fierce XL) 1

Samsung SM-G900P (Galaxy S5) 5 HTC Desire 626s 2 Motorola XT1096 (Moto X) 1 Samsung SM-G900F (Galaxy S5) 1
Google Nexus 6P 5 Samsung SCH-M919 (Galaxy S4) 2 Sony Xperia D6653 (Xperia Z3) 1 Motorola XT1575 (Moto X Style/Pure) 1
Apple iPhone 5C 5 Samsung SM-G900T (Galaxy S5) 2 LG H810 (G4) 1 Motorola XT1058 (Moto X) 1

Samsung SM-G870A (Galaxy S5 Active) 5 Samsung SM-N910A (Galaxy Note 4) 2 Motorola XT1097 (Moto X (2nd Gen)) 1 BlackBerry STV100-1 (Priv) 1
Google Nexus 6 4 Samsung SM-N920V (Galaxy Note 5) 2 Samsung SM-G928A (Galaxy S6 Edge Plus) 1 Samsung SM-N900A (Galaxy Note 3) 1
Google Nexus 7 4 Samsung SM-G930T (Galaxy S7) 2 Samsung SPH-L710T (Galaxy S3) 1 HTC 6525LVW (HTC One M8) 1
Google Nexus 4 4 Generic Android 6.0 2 LG H811 (G4) 1 Samsung SM-T320 (Galaxy Tab Pro 8.4) 1

Samsung SM-G900A (Galaxy S5) 4 LG H345 (Leon) 2 LG D631 (G Pro2 Lite) 1 Motorola XT1565 (Droid Maxx 2) 1
Samsung SM-G920A (Galaxy S6) 4 Motorola XT1080 (Droid Ultra) 2 Samsung SM-G7102 (Galaxy Grand 2) 1 SonyEricsson C6602 (Xperia Z) 1
Motorola XT1254 (Droid Turbo) 4 Samsung SM-N920P (Galaxy Note 5) 1 Samsung SGH-I257M (Galaxy S4 Mini) 1 Samsung SCH-I747 (Galaxy S3) 1
Samsung SHV-E330S (Galaxy S4) 3 Alcatel 6045O (One Touch Idol 3 Dual SIM) 1 Samsung SGH-I317M (Galaxy Note 2) 1 LG D851 (G3) 1

Apple iPad Air 3 Samsung SM-N900V (Galaxy Note 3) 1 Samsung SGH-T999 (Galaxy S3) 1 Motorola XT1526 (Moto E (2nd Gen)) 1
Samsung SM-N910V (Galaxy Note 4) 3 HTC 0PAJ5 (One E8) 1 Samsung SHV-E300S (Galaxy S4) 1 LG VS920 4G (Revolution 2) 1

Generic Android 5.0 3 LG LGL21G (Destiny) 1 Samsung SM-T520 (Galaxy Tab Pro 10.1) 1 Motorola XT1045 (Moto G LTE) 1
Motorola XT1064 (Moto G (2nd Gen)) 3 Apple iPad Air 2 1 Sony Xperia D6633 (Xperia Z3 Dual) 1 Amazon KFTHWI (Kindle Fire HDX 7 3rd Gen) 1
Samsung SM-N910T (Galaxy Note 4) 3 LG F320L (G2) 1 Asus ASUS-Z008D (ZenFone 2) 1 Asus Z002 (ZenFone 6) 1

OnePlus A0001 (One) 2 Samsung SGH-T399 (Galaxy Light) 1 LG V495 (G Pad F 7.0) 1 Samsung SM-G935T (Galaxy S7 Edge) 1
OnePlus One A2005 (2) 2 Samsung SM-N910C (Galaxy Note 4) 1 ZTE Z958 1 LG LS665 (Tribute 2) 1

Samsung SM-N920T (Galaxy Note 5) 2 HTC 0PM92 (Desire 626s) 1 LG D415 (Optimus L90) 1 Vodafone Smart Ultra 6 1
Apple iPad 2 2 Samsung SPH-L720 (Galaxy S4) 1 Samsung SGH-T999 (Galaxy S3) 1 Samsung SM-G531H (Galaxy Grand Prime Value Edition) 1

Samsung SM-N910P (Galaxy Note 4) 2 Apple iPhone 4 1 Motorola XT1031 (Moto G) 1 HTC 0P4E1 (Zara) 1
LG MS330 (K7) 2 HTC M7 (One) 1 Motorola XT1528 (Moto E (2nd Gen)) 1 HTC PN07120 (One) 1
Motorola MotoG3 2 LG L22C (Power) 1 HTC M9u (One M9) 1 Motorola XT1585 (Droid Turbo 2) 1

Motorola XT1030 (Droid Mini) 2 Samsung SM-G920F (Galaxy S6) 1 Apple iPod Touch Gen 6 1 Huawei MT2L03 (Ascend Mate 2) 1
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