
Proceedings on Privacy Enhancing Technologies ; 2018 (2):27–46

Florentin Rochet* and Olivier Pereira

Dropping on the Edge: Flexibility and Traffic
Confirmation in Onion Routing Protocols
Abstract: The design of Tor includes a feature that is
common to most distributed systems: the protocol is
flexible. In particular, the Tor protocol requires nodes
to ignore messages that are not understood, in order
to guarantee the compatibility with future protocol ver-
sions. This paper shows how to exploit this flexibility
by proposing two new active attacks: one against onion
services and the other against Tor clients.
Our attack against onion services is a new low-cost side-
channel guard discovery attack that makes it possible to
retrieve the entry node used by an onion service in one
day, without injecting any relay in the network. This
attack uses the possibility to send dummy cells that are
silently dropped by onion services, in accordance with
the flexible protocol design, and the possibility to ob-
serve those cells by inspecting public bandwidth mea-
surements, which act as a side channel.
Our attack against Tor clients, called the dropmark at-
tack, is an efficient 1-bit conveying active attack that
correlates flows. Simulations performed in Shadow show
that the attack succeeds with an overwhelming prob-
ability and with no noticeable impact on user perfor-
mance.
Finally, we open the discussion regarding a trade-off be-
tween flexibility and security in anonymous communi-
cation systems, based on what we learned within the
scope of our attacks.

Keywords: Onion Routing, Tor, Traffic Confirmation,
Guard Discovery Attack, Protocol Flexibility

DOI 10.1515/popets-2018-0011
Received 2017-08-31; revised 2017-12-15; accepted 2017-12-16.

*Corresponding Author: Florentin Rochet: UCLouvain,
ICTEAM, Crypto Group, B-1348 Louvain-la-Neuve, Belgium.
E-mail: florentin.rochet@uclouvain.be
Olivier Pereira: UCLouvain, ICTEAM, Crypto
Group, B-1348 Louvain-la-Neuve, Belgium. E-mail:
olivier.pereira@uclouvain.be

1 Introduction
Onion Routing offers an application-independent com-
munication infrastructure on top of a public network,
which offers some degree of anonymity and traffic anal-
ysis resistance [28, 45, 50, 51]. These security features
are obtained by routing communications through a set
of relays called Onion Routers. As of today, Tor [22] is
the most popular Onion Routing implementation: sev-
eral millions of users communicate through Tor every
day, and it is investigated by a dynamic research com-
munity, which produced hundreds of related scientific
publications.

Tor is a low-latency network aiming to separate
identification from routing. Among other anonymizer
proposals [2, 19, 20, 38, 42, 48, 55], Tor got popular
mainly due to its ease of deployment, ease of use, high
performance, censorship circumvention and active de-
velopment. Tor is distributed, and any volunteer can
contribute by running relays. As a consequence of this
openness, it is accepted that routers running different
versions of the protocol co-exist in the network: the Tor
protocol is forward compatible, in the sense that addi-
tions to the protocol do not break old implementations:
the packets, or cells, that are not understood are just
ignored or, in practice, dropped. This forward compati-
bility offers a form of flexibility in the Tor protocol that
is present since Tor’s earliest version.

In this paper, we focus on the Tor implementation
and show how choices that have been made in order to
ensure forward compatibility enable a cheap targeted
guard discovery attack and an efficient active end-to-end
correlation attack. We show that the decision to drop
unintelligible packets may harm anonymity by opening
the way to two active attacks: a novel guard discov-
ery attack and yet another end-to-end correlation attack
that shows interesting properties, motivating our inves-
tigation. This result is demonstrated for the Tor net-
work, but the same weaknesses are likely to be found
in any anonymous communication system that routes
packets through circuits and tries to defend against end-
to-end traffic correlation attacks.



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 28

Our contributions
In this paper, we show experimentally how forward com-
patibility in anonymous communication protocols can
threaten anonymity. More precisely:

– We shed light on conflicting interactions between
two desired properties of low-latency anonymous
network protocols: flexibility and resilience against
cheap traffic confirmation.

– We design a new guard discovery method that
makes it possible to retrieve the guard relay of any
onion service in one day without running any re-
lay in the network. This guard discovery method is
a two-phase process: in the first phase, a modified
Tor client creates many circuits towards the onion
and sends cells that are dropped at the circuit layer
by the onion service. In the second phase, a side-
channel confirms the identity of the onion service’s
guard based on the public measurements of the re-
layed bandwidth. We use OnionShape [9], a tool
that we developed to analyze relay bandwidth mea-
surements. Based on our results, we discuss the ap-
propriate timing between two reported bandwidth
measurements.1

– We discover and report a design flaw in the Tor
cell counter implementation, which amplifies the ef-
fectiveness of our guard discovery attack. The Tor
project acknowledged this design flaw.

– We design and implement a new efficient active at-
tack called the dropmark attack, that supports flow
correlation in the Tor network. This attack is in-
visible to anyone running the current Tor code but
could be detected if the code were adapted. We ar-
gue that this attack is part of a new family of active
end-to-end correlation attacks that take advantage
of the flexibility of the Tor protocol. Because of the
flexibility that we would like to keep, this attack is
difficult to mitigate.

– We evaluate the effectiveness of the dropmark at-
tack using the Shadow simulator [33], and obtain
results under an ethical test-bed that would be sim-
ilar to the real Tor network. The dropmark attack
has true positive success rate of ≈ 99.86% probabil-
ity and a false positive rate of ≈ 0.03%. Compared
to passive attacks, it has some interesting proper-
ties: 1) It does not need the victim to transfer any
packet to succeed. 2) The activity of the victim at

1 Each relay reports its average relayed bandwidth each day, in
4-hour intervals

the application level does not influence the success
rate of the attack (i.e., we do not miss users what-
ever is happening in their applications).

– Based on our results, we open a discussion for
a further research direction regarding a flexibil-
ity/security trade-off in anonymous communication
systems.

Roadmap
We start by reviewing the related works on congestion
attacks and end-to-end traffic correlation in Section 2.
We provide the necessary background on the Tor proto-
col in Section 3 and we detail how the packet dropping
behavior of the Tor protocol can jeopardize anonymity
in Section 3.4. We exploit this feature to create a new
guard discovery attack in Section 4 and a new active
traffic confirmation attack in Section 5. Based on those
new attack channels, we discuss the risks of flexibility
in Section 6. Section 7 points to the code and data that
we make available to support the replication of our ex-
periments, and Section 8 concludes.

2 Related work

2.1 Congestion attacks

Congestion attacks are a well-known technique to per-
form guard discovery of Tor users and onion services.
The general idea is to play a two-step attack. The first
step consists in applying a clogging attack [16] variant:
sending lots of data to saturate a relay. The second one
resides in observing whether the effect of this clogging
is visible on the channel between the adversary and the
target (a Tor circuit in our case). If the effect can be ob-
served, then the adversary knows that this relay is part
of the target’s Tor circuit. Murdoch and Danezis [40]
provided experimental proofs on the 2005 Tor network
that it is possible to reconstruct a Tor user’s circuit
without directly observing network links.

Later, Evans et al. [24] showed that this deanony-
mization method is not achievable anymore given that
the network has grown with more relays and users. They
proposed an improved variant of Murdoch and Danezis’s
clogging attack based on the observation that the Tor
protocol does not prevent the creation of circuits of
infinite length. Pappas et al. [43] presented a similar
congestion attack creating looping circuits where the
malicious relay is not involved in cryptographic oper-



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 29

ation and spins continuously the same packets. In the
meantime, Hopper et al. [29] used an estimation of link-
latency and node-latency of Tor circuits, in combination
with the Murdoch and Danezis clogging approach. Their
approach allows them to determine the Tor client’s net-
work location with increased precision as the victim in-
teracts with the adversary’s web server. Instead of la-
tency estimation, Chakravarty et al. [21] used a single-
end controlled available bandwidth estimation tool to
observe the effect of a perturbation performed by a col-
luding relay.

Our congestion attack, described in Section 4.1, can
also be considered as a variant of the original clogging
attack of Murdoch and Danezis and aims at overloading
one relay. We use our congestion strategy along with the
observation of its effect over a side-channel in order to
identify the guard relay of an onion service.

2.2 End-to-end correlation

End-to-end timing [37, 52] and traffic analysis attacks
such as packet counting [47] are part of the few un-
resolved issues listed in AlSabah and Goldberg’s sur-
vey [15], that impact low-latency anonymizers such
as the Tor network. Different models of realistic at-
tackers have been extensively studied in the litera-
ture. Local passive adversaries that control a part of
the network, like Autonomous Systems (ASes) or In-
ternet Exchange Points (IXPs), can circumvent Tor’s
anonymity [17, 23, 25, 41].

Apart from these passive attacks, adversaries can
also increase the confidence in their correlation attack
by becoming active. Active adversaries induce pertur-
bations of a traffic flow: they make a particular flow dif-
ferent from the inherent pattern of other network flows,
which highly decreases the risk of false positives when
correlating flows. These techniques are usually referred
to as watermarking [30, 32, 53, 54]. A watermark en-
codes only one bit of information, which prevents the
distinction between several watermarks that would be
observed at the same time. Biryukov et al. [18] use a
watermark technique during the circuit construction to
reveal the onion service’s IP. Houmansadr and Borisov
[31] push the concept of watermarking further and de-
fine the notion of flow fingerprint as a set of techniques
that can be used to encode and decode a sequence of
watermarks (carrying multiple bits of information).

To reduce these threats, two types of approaches are
often considered. The first approach consists in design-
ing counter-measures that hide the traffic characteristic

used to match streams [39, 49], while the second ap-
proach aims at increasing the diversity in the Tor net-
work [17, 46].

Regarding Tor, watermarking and flow fingerprint
require to relay a sufficient amount of data to embed
the watermark(s). In practice, the adversary must care-
fully choose the timing interval in the watermark encod-
ing, in order to avoid the Tor user to induce a circuit
rotation when he detects latency issues. Naturally, an
adversary would be interested in attacks that are not
subject to those limiting requirements. A previous (un-
published) study, documented as the relay-early traffic
confirmation attack [3] achieved that by injecting (in-
stead of delaying) a crafted sequence of special cells.
Then, the sequence can be decoded on the path by a
colluding relay as it flows through the circuit. This at-
tack was stronger than previous active attacks because
it would be performed without information loss, and
because it eliminated the latency issue inherent to the
delaying approach. When the relay-early confirmation
attack has been used in practice to deanonymize Tor
users, the Tor project reacted by detecting and remov-
ing the Sybil relays from the network and produced a
software update preventing relay-early cells to be used
in this way.

In Section 5, we present a new watermarking scheme
that bears some similarities with the relay-early confir-
mation attack, and takes advantage of the flexibility in
the Tor protocol.

3 More Background on Tor
In this section, we depict a high-level explanation of the
innermost Tor security design: the Tor protocol [1]. We
focus on the interaction between Tor nodes, on the way
communication is structured, and on the way circuits
are built and destroyed.

3.1 Components and interaction overview

Tor is a distributed overlay network with the same code
base for all of its components, namely: clients, relays, di-
rectories and hidden services. All of these components
can be seen as event-driven network daemons that are
tied together by circuits. Those circuits are established
with public-key cryptography and handle cells, the unit
of communication of the Tor network. Those fixed-size
cells are forwarded along the circuits carrying layers of



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 30

encryption. Each component of the circuit is responsi-
ble for peeling one layer (unwrapping by a symmetric
cipher) or adding one, depending on the direction of the
cells within the circuit. An outgoing direction causes a
component of the circuit to peel a layer and forward the
cell. Conversely, an incoming direction causes a compo-
nent to add a layer before it forwards the cell. This be-
havior is called Onion Routing. In the Tor protocol, each
cell is addressed to an edge relay, which is by definition,
the relay able to recognize the cell. Every component of
a circuit is an edge relay for some cells, at some points
(e.g., during the construction of the circuit). Most of the
time, cells are recognized at the endpoints of Tor circuits
because it is the intended behavior when carrying ap-
plication data. We call those cells, the circuit-level cells.
The remaining cells are used for peer-to-peer manage-
ment such as initializing connections, creating circuits
or destroying them. These are called link-level cells.

3.2 Communication unit: cells

Link-level cells and circuit-level cells have two differ-
ent formats (Figure 1). The fields CircID and Cmd
are not encrypted while the remaining bytes might be
encrypted several times, depending on the number of
relays in the circuit. All circuit-level cells have the same
Cmd value (set to "Relay") but not the same Rel cmd
value (the second Cmd field in Figure 1), defining the
subtype of circuit-level cell. There are many subtypes
of circuit-level cells, but they are not distinguishable by
any other than the edge node. If circuit-level cells had
different possible value in the Cmd field, the anonymity
provided by Tor could be trivially broken. Indeed, an
attacker could encode any message with an alternative
composition of circuit-level cells of different Cmd value
(e.g., binary encoding of an ascii message). Such a prob-
lem arose when the relay-early cell was designed in or-
der to avoid the possibility to build infinite-length Tor
circuits and to constrain them to a reasonable maxi-
mum size [3]. This particular circuit-level cell had a
Cmd value different from other circuit-level cells, al-
lowing high-confidence correlation.

3.3 Circuit construction

A Tor software in client mode constructs and destroys
circuits in the same way: incrementally. It does the con-
struction incrementally in order to protect its identity
while negotiating symmetric keys with each relay, using

Fig. 1. Link-level cells and circuit-level cells structure. Image from
[22].

a one-way authenticated key-exchange protocol called
NTor [27], in which only relays are authenticated. The
Tor client and each hop exchange a few cells to estab-
lish the circuit. The Tor client (let us call it Alice) starts
by sending a link-level create cell towards the first re-
lay (let us call it OR1). OR1 responds with a created
cell, and the crypto material contained in both cells are
used to derive the symmetric keys (one for each direc-
tion). At this point, the established circuit contains one
hop. To extend the circuit, Alice sends a circuit-level
extend cell symmetrically encrypted towards OR1 with
the necessary information to contact the next relay (let
us call it OR2). Then, OR1 proceeds like Alice in the
first step: it sends a create cell towards OR2 with the
crypto material from Alice. NTor prevents OR1 from
reconstructing the shared key and also prevents an ac-
tive man-in-the-middle attack. In order to extend the
circuit towards a third relay or further, Alice plays the
same game with the edge relay of the circuit: telling it
where to send a create cell and waiting for the extended
cell going backward. The main difference with the third
relay extension is the fact that OR1 does not recognize
the cell. Instead, the cell is wrapped with OR1 ’s key
material and forwarded.

In order to destroy a circuit, Alice sends a link-level
destroy cell towards the first hop, which will be echoed
along the circuit. This process can be seen as an incre-
mental destruction starting from the beginning of the
circuit. Alice can also destroy part of the circuit using
a circuit-level truncate cell encrypted with a number of
layers according to the receiver (2 for the second, 3 for
the third, etc.). Upon reception of a truncate cell, the
relay sends a destroy cell to the next relay and answers
with a truncated cell.

3.4 Tor Routing Protocol: if I do not get
it, I drop it

Tor separates identification from routing by creating cir-
cuits of 4 nodes, including the Tor client and three re-
lays. More generally speaking, circuits can have different



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 31

sizes depending on their purpose. Most of the time, Tor
uses a circuit of 4 nodes to reach well-known network
services, such as web servers. Sometimes, Tor builds cir-
cuits of 5 nodes to fetch a descriptor or to meet the
requirement of an internal Tor behavior. For any cir-
cuit construction permitted by the Tor protocol, we can
differentiate two types of nodes at the protocol level:
edge nodes and non-edge nodes. This difference matters
for one of the main functionalities of Tor: handling cells
when they arrive. We want to understand how Tor deals
with the difference in cell types, positions of the Tor in-
stance on the circuit (edge or non-edge) and directions
(inbound or outbound) of the cell.

Function circuit_receive_relay_cell() [14] shows
two separate behaviors depending on the Tor instance
position in the circuit. If the Tor component is not on
the edge of a circuit, either it forwards the cell or it
recognizes it (meaning that it is a link-level cell and
that the decryption succeeded). If the Tor component
recognizes a cell in a non-edge position but it does not
know what to do about it, the Tor protocol drops it. The
same behavior happens when an unwanted circuit-level
cell is received at an edge position. Except for corner-
cases which induce a tear-down, most of the unwanted
cells are dropped. This feature is also explicitly autho-
rized, with the relay drop cell type. This is a circuit
level padding cell currently used to self-test relay band-
width. The edge node always drops such cells without
further investigation. A third and last case of ignored
cells happens when an unknown subtype of relay data
cell is received at the edge of a circuit. Tor could tear
down the circuit but does not, to enforce forward com-
patibility.

Dropping unwanted packets is a typical behavior in
network protocols. Tor does the same but does not start
any further investigation to preserve its security prop-
erties. Past attacks have been known to rely on this
behavior. The best example so far is the CMU-FBI at-
tack [3] where the attacker injects a signal from an edge
node and then, the relays on the path read the signal
(Figure 2). In this case, the signal was a sequence of
relay data versus relay-early in the inbound direction
allowing the attacker to encode any wanted message in
binary mode. The intended behavior was that a relay-
early cell type was not meant to be received in the in-
bound direction (towards the client) but not explicitly
unauthorized. At the end of the path, the Tor client
drops the unwanted relay-early cell without further in-
vestigation, leading to the deanonymization exploit as
the binary signal can be read along the circuit by col-
luding relays.

Fig. 2. Relay versus relay-early signal attack

In the following sections, we show how to exploit the
dropping behavior to conduct new attacks which impact
anonymity of onion services and may deanonymize Tor
users.

4 Side-channel guard discovery of
onion service

All the anonymity exploits introduced in this paper rely
on the dropping behavior of the Tor routing protocol.
Our first attack aims to discover the entry node used
by any onion service in no more than a few days and
without running any relay in the network. This method
does not reveal the location of a hidden service directly
but gives the relay on which the hidden service is always
connected, which considerably narrows down the work
needed towards a full deanonymization.

4.1 Attack overview

In order to create Tor circuits towards an onion service
on-demand, we need its onion address and a modified
Tor client [9]. Figure 3 shows how the attack proceeds.
The objective is to put the HS Guard at saturation long
enough to be noticeable in the reported relay bandwidth
statistics. Currently, reported relay bandwidth statistics
are an average of the relay consumption every 4 hours.
Therefore, we have to perform at least 8 hours of con-
stant data flow to be sure of having a 4-hours interval
under our saturation flow.

In this view, we create many circuits towards the
onion address with our client having the option UseEn-
tryGuards set to false. By design of the hidden service
protocol and the path construction, all the circuits go
through the HS Guard. Then, we send relay drop cells
or any other cell type that would be dropped in the
other edge (the onion service). We used relay drop cells



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 32

Fig. 3. Guard discovery technique: relay drop attack against an
onion service. Black links are built by the adversary. Red links are
built by the onion service.

because they do not raise any log message. We could
use any other cell that is dropped without a tear-down
of the circuit, however all the others create a [Warn] log
message. Using these cells might raise the suspicion of
the onion service’s operator but might also be a problem
for low-storage onion services: we can fill the memory
with log messages at the cell rate we send.

Our cells are sent in a round robin fashion through
all opened circuits to split the load over all relays. After
24 hours, all routers should have reported their extra-
info descriptor with the relay bandwidth history. The
one router (normally having the guard flag) that reaches
a peak of saturation within the 8 hours interval would
be, in theory, the HS Guard. But in practice, some other
guards might saturate during the same time frame and
lead to false positives for the following reasons:

– The consensus weight is computed from over evalu-
ated bandwidth measurements, which makes a par-
ticular relay more heavily loaded due to the higher
weight received.

– The relay operator lies about the advertised band-
width and since the consensus weight takes into ac-
count the advertised bandwidth, it is possible to
induce a high consensus weight [36].

– The guard is overloaded due to its length of service,
since each time a new Tor user appears, he poten-
tially selects that relay and keeps it as his guard.

– The guard is overloaded due to the high traffic gen-
erated by the particular hidden service it serves.

– The guard is overloaded due to the natural vari-
ance: sometimes, relays can saturate due to loud
circuits. However, the longer the attack, the smaller

the chance that the natural variance could account
for false positives.

Evaluating how many false positives we get and engi-
neering some parameters of the attack to retrieve the HS
Guard with few false positives is the result of the anal-
ysis presented in Section 4.4. The likelihood of success-
fully retrieving the HS Guard is intuitively related to the
spare resources of the entry position. Due to the follow-
ing reasons, we believe that the spare resources needed
are usually available (this is verified in Section 4.4):

– The Tor network runs at an average of 50% of exit
capacity.

– The bandwidth capacity of the entry position, even
after bandwidth-weights computation [46], is higher
than the bandwidth capacity of the exit position.
Therefore, even if the exit nodes were constantly
used at 100%, the guard nodes would not saturate
on average.

– The onion space traffic represents less than 1% [6]
of the total traffic. Therefore, they cannot consume
all spare resources in guard and middle positions.

Even if, on average, the entry position has spare re-
sources, some guards may fall short. That would not
allow us to detect their increased consumption of band-
width due to the attack. Evaluating the chance to miss
the HS Guard and engineering some parameters to re-
trieve it is also part of our work detailed in Section 4.4.

4.2 Ethical considerations

Since we wanted to test our attack on the real Tor net-
work, we thought of a responsible way to carry on the
research. To that end:

– Our guard discovery attack was applied to a dummy
onion service that we created.

– We ran the entry node used by our onion service.
– We did not overload our relay too much (Figure 5),

making sure that Tor users passing by this relay
at the same time would not be disturbed by our
attack. Characteristics of our relay are detailed in
Section 4.3.2.

– We did not overload other relays by design (Fig-
ure 3).



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 33

– We did not inject any modified relay into the net-
work.

4.3 Attack experimentation

We developed a modified Tor client [9] and extended the
Tor control protocol to interface our functionalities with
a python script to obtain a simple, yet powerful tool to
schedule the attack on onion services of our choice. The
main options are the bandwidth we want to inject, the
number of circuits we want to maintain connected to
the onion service and the onion address of the target.

First, we discovered a weakness in the Tor coun-
ters implementation that we could exploit to make this
guard discovery method easier. A general behavior of
Tor is to increment the counters before adding the cell
to the output buffer. This choice makes the counters not
quite accurate in the normal use of circuits since a cir-
cuit might be killed while some cells are in this buffer,
“ready” to be relayed. But it is worse in our scenario.
With the set-up in Figure 3, we can create an asym-
metry between read/written bandwidth statistics if a
condition is fulfilled. If the bandwidth of the onion ser-
vice is smaller than the bandwidth of the HS Guard,
then we can fill the output queue of the HS Guard with
our cells until the function circuits_handle_oom() is
called. This function would kill the circuits and remove
the cells from the queue, which creates a unique asym-
metry between read and written bytes in the reported
bandwidth statistics. We re-create a circuit when one is
killed and re-fill the HS Guard output queue to generate
the asymmetry. This bug can be exploited by combining
several issues: 1) Protocol issue: we can massively send
cells that are not constrained by any flow control (nei-
ther at the circuit level or the stream level). 2) Counter
issue: read/write counters are synchronized only when
the protocol behaves as it should behave and nothing
prevents their de-synchronization.

This bug was reported to and acknowledged by the
Tor project.

4.3.1 Interaction between the HS guard capacity and
the onion service capacity

Currently, if we apply our attack against an onion ser-
vice with a capacity inferior to the spare resources of
its guard, the bug described above is triggered. That is,
if we inject more than the onion service network capac-
ity, the HS guard buffers at TCP level first. Then, once

the TCP send buffer is full, the HS guard buffers at
the circuit level queue. This buffering fills the memory
until circuit_handle_oom() is called to kill the circuits
and recover the memory from its queues. In the mean-
time, the cell payload is counted in the read statistics
and ignored in the write statistics. As a result, a unique
asymmetry between read and write can be observed in
the bandwidth history. The size of this asymmetry is
directly dependent on the bandwidth injected by the
malicious Tor client (the rate in which we fill the HS
guard queues and induce the oom killer).

If the capacity of the onion service is superior to its
guard, then we can make the guard saturating as de-
scribed in Section 4.1. In our experiments, we explore
in details this situation since the outcome is less triv-
ially identifiable than the counter-exploitation. We show
that the identity of the HS Guard can still be easily re-
trieved by saturating it. Our method is the same: we
send relay drops, or any other cells that are dropped by
the onion service and that are not constrained by the
circuit/stream level flow control.

4.3.2 Proof of concept

Using Chutney
Ethically speaking, we cannot reproduce the bug de-
scribed above in the real Tor network since the OOM
killer of Tor on the targeted guard might kill circuits
from legitimate clients to recover its memory. We used
Chutney [44], a tool to set-up a local and private Tor
network and ran an experiment over it. Figure 4 shows
one of the relays having a large discrepancy between
read and write values during the attack, giving a unique
pattern to the relay. This relay was indeed the primary
guard selected by the onion service.

On the real Tor network
We can experiment the second situation on the real Tor
network, when the onion service has the highest capac-
ity, since the only impact would be an increased con-
sumption of available bandwidth in our relay.

Figure 5 shows the results of an injection of 720
KB/s split into 70 circuits during 8 hours. The average
utilization of our targeted entry relay was about 300
KB/s with an advertised bandwidth of 1 MB/s. During
the attack, the relay recorded a peak of 964 KB/s of
utilization during 4 hours, which is the average legiti-
mate use of our relay plus our attack bandwidth. This
experiment is a proof of concept, and we could main-



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 34

Fig. 4. Proof of concept of the guard discovery attack using relay drop cells and exploiting the counter weakness. The private network
was composed of 5 authorities, 50 non-exit relays, 3 exit relays and 1 onion service. 015r was used as the HS entry guard during the
attack by the onion service and shows a large discrepancy between public read and write counters.

tain the load a few 4-hours intervals more to facilitate
the extraction of the right relay from the history in a
case of real guard discovery attack. We investigate this
in Section 4.4.1.

It might be possible to overload the HS guard with-
out using our modified Tor client but using some le-
gitimate clients and trying to generate enough traffic
while acting normally. However, it would depend on
the application running on the top of the onion service.
That might be easy for a file sharing application such
as OnionShare [11] but more difficult for other types
of application, like Ricochet [10], an instant messaging
software.

Our method has three advantages compared to over-
loading the HS Guard using the onion service’s running
application (1 and 2) and previous attacks (3): 1) It is
application-independent, meaning that there is no inter-
action with the application layer and the extra load due
to the attack would not be visible to an application-level
statistics observer. 2) It uses the downstream bandwidth
of the onion service instead of the upstream bandwidth
when creating an overload by, for example, download-
ing files. The downstream bandwidth of network links is
higher in some scenario (e.g., an onion service at home
not connected with optical fiber). 3) It does not require
injecting any relays into the network (compared to the
known guard discovery through a Sybil attack).

4.3.3 Vanguards’ proposal

This attack is not the only way to perform an efficient
guard discovery of onion service. Proposal #247 called
Vanguards [8] solves the known Sybil attack in which
someone signs up a bunch of middle nodes and makes

Fig. 5. Proof of concept of our relay drop guard discovery attack
on the real Tor network on December 18. 720 KB/s of relay drop
type cell, split into 70 circuits, have been pushed during 8 hours.
This guaranteed to include a full attack window of 4 hours (1
observation) since we assume that we do not know when each in-
terval starts as it is different for each relay. Image from Atlas [4].

client connections towards the onion service, until one
of his middle nodes is used in the onion service circuit,
next to the HS Guard. This proposal suggests using a
restrictive set of relays in the second and third positions
of HS circuits. Doing so, it mitigates our attack in some
scenarios. If the cumulative bandwidth of the second set
of relays (or the third set) is smaller than the bandwidth
of the HS guard, then the HS guard might not saturate,
or they might all saturate. When the HS guard does not
saturate, the attack is somewhat mitigated since we now
rely only on observing value peaks, which would also
be visible on the second (or third) set of guards. But,
this is unlikely since those nodes are also guard-flagged
and spread the load of the attack between themselves.
Moreover, the proposal suggests skewing(even more) the
selection distribution of such nodes towards top relays,
which would probably reduce the chance to mitigate



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 35

Fig. 6. Abstract view of OnionShape’s measurement windows

the attack. Finally, if we do not manage to extract only
one relay (the HS guard), it will succeed due to the
fast rotation of those relays. Each time a rotation is
performed, we can try again.

4.4 Going further with the descriptors
history

So far, we demonstrated that it is possible to overload
the guard of an onion service, whatever application is
running on top of it. In a real attack scenario, we need
to recognize the correct guard among all the relays run-
ning on the network. We developed OnionShape [9], a
program able to crawl the history of relay descriptors [7]
and to look for such attack pattern. OnionShape pro-
ceeds by sliding, side by side, three windows containing
measurements, for each relay in the network (Figure 6).
These windows slide during the period we consider and
apply a test to flag any relay that matches a distribution
matching the one described in Figure 6. Our objective
is to find the suitable value of parameters for which we
can retrieve our relay. The chosen parameters are the
threshold overhead (compared to the previous history
of bandwidth), the duration of the attack (in a number
of reported measurements) and the statistical tools used
to compare the middle window to the others.

4.4.1 Methodology

We ran OnionShape over an entire month of descrip-
tors with different values for the parameters. Each re-
lay flagged positive by OnionShape within the attack-
ing window time (e.g., when an attack is supposed in
progress) is a false positive. Considering the characteris-
tics of the Tor network, we want to identify what would
be the impact of our parameters on the success rate,

such as the attack duration. Doing so, we would increase
our chance of success if we were about to launch a relay
drop attack. We would like to prevent a false negative
and minimize the false positives. False positives are eas-
ier to deal with, as we can extract the right relay from
them by replaying the attack and getting the intersec-
tion within the false positive sets obtained, until only
one relay remains (details in Section 4.4.4).

In this analysis, we want to answer the following
questions:

– How can we be sure to extract the right guard?
– What it the impact of having an onion service’s

spare resources smaller than its guard spare re-
sources? (considering that the bug described in Sec-
tion 4.3 is solved).

– Would it help to modify the current interval of 4
hours between two reported bandwidth measure-
ments?

– How exactly does our confidence increase if we use
multiple observations?

First, we start with the simplest statistical tool we could
use: the mean. We compare the average value in the
attacking window to the average value in the previous
and next windows. If we obtain too many false positives,
we can move to higher distribution moments.

Assumption 4.1. The average bandwidth relayed by
the HS Guard is always higher during a relay drop at-
tack than the previous and next considered windows.

Justification. The bandwidth induced by the relay drop
attack fills the spare resources of the HS Guard. This
assumption is always valid unless the guard operator
reduces its relay’s token bucket during the attack win-
dows, starts hibernating, goes offline, etc.

Assumption 4.2. The variance computed over the
measurements in the attacking window is always smaller
than the variance in the previous and next considered
windows.

Justification. When filling the spare resources of the
guard, the relay drop attack should inject enough band-
width to make the guard reaching its token bucket limit.
The guard should then provide constant measurement
values (i.e., values at saturation) in the history. Again,
this assumption becomes false if the HS Guard operator



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 36

modifies its token bucket limit during the attack, starts
hibernating, goes offline, etc.

Our analysis is divided into three parts: 1) we evaluate
how the parameters of our classification influence false
positives and false negatives considering that the onion
service’s capacity is higher than the spare resources of
its guard. 2) We consider that the onion service’s capac-
ity might not be higher than the one from its guard and
we evaluate its impact on our attack, considering that
the counter weakness is solved (i.e., we assess our attack
for different onion service’s bandwidths). 3) We discuss
higher intervals and how several observations help to
extract the right relay.

4.4.2 Analysis - Onion Service’s capacity higher than
its guard’s spare resources

Figure 7 shows the average number of false positives us-
ing OnionShape on December 2016 history. We flagged
a relay positive in Figure 7a’s plain lines when the fol-
lowing conditions were true:

mean(prev_win)× thresh ≤ mean(attack_win)
mean(next_win)× thresh ≤ mean(attack_win)

(1)

And when the variance is used, we add the following
conditions without any thresholds:

variance(prev_win) > variance(attack_win)
variance(next_win) > variance(attack_win)

(2)

Considering a threshold equal to 1.0 and with our
assumption 4.1, we cannot get any false negative (i.e.,
missing the targeted guard). The false negative could
happen if we increase the threshold because it depends
on the targeted guard’s spare resources. Intuitively, a
shape induced (for a given threshold) in the bandwidth
graph like in Figure 6 is less likely to be observable as
the threshold increases, since the spare bandwidth of
the guard is not infinite. However, in practice, guards
have spare resources as shown in Figure 8a displaying
the bandwidth utilization of guard relays and unflagged
relays during December 2016. We can observe that 80%
of guard relays are used below 50% of their capacity, and
nearly 100% of guard relays are used below 80% of their
capacity. Regarding unflagged relays, their utilization
is even smaller: almost 100% of them are used below
60% of their capacity. Therefore, to reduce the set of
probable guards, we might increase the threshold gently,
but relative to the average observed load on relays.

From OnionShape’s results in Figure 7a, we see
with the reduction of false positives that, as we increase
the interval (the attack window), the differentiation in-
creases: we have fewer candidates by expanding the at-
tacking window. This figure also confirms our expec-
tation over threshold variation: the false positives are
reduced when we increase the threshold. However, in-
creasing the threshold also increases the probability of
a false negative (Figure 8). This result is explained by
looking at Equation 1 and the actual load on relays in
Figure 8a: for some relays, as the threshold increases,
Equation 1 becomes false due to the lack of spare re-
sources. Finally, as we continue to increase the thresh-
old, the equation becomes false for all relays.

Plain lines in Figure 7a are testing assumption 4.1
only and show to be risky: the HS Guard must be used
under 50% of its available capacity to be detected and
distinguished from the others (prob of detection con-
sidering the probability distribution of guard relays:
≈ 66%). Dashed lines add the variance test from as-
sumption 4.2 to flag a relay positive. For an attacking
window size of 3 reported measurements (i.e., 12 hours),
a threshold of 1.6 is enough to extract the guard if it
was running below 62.5% of its advertised capacity be-
fore and after the attack (prob of detection: ≈ 83%).
Most guards are running below 50% of their advertised
capacity, hence a false negative is possible but not likely
(≈ 17%). The threshold can be reduced to 1.4 if the at-
tack duration moves to 6 reported measurements (24
hours) (prob of detection: ≈ 94%).

Figure 7b shows the results over the unflagged relays
instead of the guard-flagged relays. Due to the higher
number of relays, the number of false positives is higher
for the same threshold. These results give the wrong
intuition that an onion service would be less vulnera-
ble to our guard discovery attack if it chooses its entry
node among the unflagged relays (i.e., using EntryN-
odes option). However, a false negative is less likely
to happen with unflagged relay (Figure 8b); hence the
adversary can increase the threshold comparatively to
guard-flagged relays. Moreover, we also noticed a secu-
rity flaw [12] and using the EntryNodes option is now
discouraged.

Figure 7c shows how the number of false positives
evolves with the size of the attack window, for a thresh-
old of 1.0. Starting from 6 reported measurements, the
attacker does not gain much additional utility when in-
creasing the duration of its attack.

The variation through time of the threshold is also
studied. In Figure 9, we computed the threshold to ob-
tain at most 5 false positives at every moment of De-



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 37

(a) Guards only - Searching for an accept-
able threshold

(b) Unflagged only - Searching for an ac-
ceptable threshold

(c) Guards and Unflagged - Searching for
an acceptable attack duration

Fig. 7. OnionShape’s result over December 2016 network history. We measure the average false positives for varying parameters to
answer research questions of 4.4.1. Figure 9 complete this result by showing the variance of these measurements.

(a) Cumulative fraction of relays utilization, where the utiliza-
tion is defined by the fraction of consumed bandwidth over the
advertised bandwidth - Data from December 2016

(b) Risk of a false negative w.r.t. the chosen threshold. This
graph considers that the assumptions 4.1 and 4.2 hold and that
the onion service capacity is higher than its guard spare re-
sources.

Fig. 8. Evaluates the load on relays and computes the probability of a false negative from this evaluation (8b).

cember 2016. If the standard deviation of such obtained
distribution is high, then it would mean that choosing a
standardized value of the mean as an appropriate statis-
tical tool in a real attack scenario could be ineffective.
Given the results of Figure 9, increasing the attack-
ing window size decreases the standard deviation and
should reduce the likelihood of an unexpected outcome
for a given choice of threshold.

4.4.3 Analysis - With different onion service’s
bandwidths

In the previous section, we analyzed the efficiency of
our guard discovery attack considering that the onion
service’s bandwidth was higher than the spare resources
of its guard. Indeed, if the onion service bandwidth is

smaller, the adversary knows that she could win with
strong confidence due to the counter design flaw ex-
plained in Section 4.3. But, what if this counter issue
was not exploitable anymore? In this section, we con-
sider this issue solved by the Tor developers provided
all guards are up to date with the fix.

We computed the probability of a false negative in
Figure 8 for a given threshold by:∑

ConsWeighti

TotConsWeight
∀i : Consumed Bwi

AdvBwi
>

100
threshold

(3)
Which gives the probability of a false negative for a
given threshold if the onion service bandwidth is higher
than any guard’s spare resource.

To evaluate the same probability considering the ef-
fect of the onion service capacity, we evaluate how the
load on guards induced by different onion service capac-



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 38

Fig. 9. Variation of the threshold through time to obtain a maxi-
mum of 5 false positives, given an attack window of size 2, 4 or 6
measurements.

ities could be detected by our threshold-based classifier,
considering that the relay drop attack is trying to fill all
onion service’s available bandwidth (OSBw)

AdvBwi = max(AdvBwi, Consumed Bwi + OSBw)
(4)

Then we re-compute equation 3 for different OSBw.
Figure 10 shows our results and gives insights about
the probability to miss the extraction of the entry relay
depending on the bandwidth of the onion service. The
100MB/s line matches perfectly the probability from
Figure 8. It captures the fact that having such down-
stream bandwidth would be higher than any current
guard’s spare resource. The 10MB/s is more interest-
ing, as it is a usual downstream bandwidth when rent-
ing a small VPS or having the onion service operated at
home behind a usual 100Mb/s downstream bandwidth.
The probability of a false negative is close to a 100MB/s
set-up since 10MB/s fills a large fraction of almost any
guard’s spare resource, which will be detected by our
classifier. Finally, the more the onion service decreases
its spare capacity, the safer it is from our guard discov-
ery.

4.4.4 Analysis - Interval size and effect of multiple
observations

We simulated a larger interval by merging 4-hours re-
ports when analysing the load and computing the prob-
ability of a false negative from it. Figure 11 shows that
increasing the interval gives a smaller probability for a
false negative. This result can be intuitively explained

by understanding why we could obtain a false negative:
when the guard is already too much overloaded by le-
gitimate use during our attack. This event is less likely
to happen as we increase the time of the reported mea-
surement (and the duration of the attack).

Changing the interval size impacts the false positive
computation exactly as the attack window size impacts
the false positive in Figure 6 and Figure 9 (i.e., it reduces
false positives as the interval increases). Therefore, in-
creasing the interval does not help more than increasing
the time needed to extract the right relay. That is, in-
creasing the interval costs more time to the adversary
but makes her more confident at each observation.

The second question we try to answer in this section
is to investigate how our confidence about the extraction
of the right relay increases with multiple observations.
The idea is to compute the intersection between the set
of relays obtained at each observation. If the threshold
used is low enough, we should obtain only one relay af-
ter several observations with the probability of success
being Ps = (1−p)n with p the probability of a false neg-
ative and n the number of observations. Figure 12 gives
some insights for an attacker performing an attack per
day during 12 hours. We can observe how typically the
size of the set of candidates is reduced at each observa-
tion. This Figure is plotted from the output of Onion-
Shape for a few days of observation in December 2016.
Choosing other days in the history would give differ-
ent values for #false positives but would show the same
steep decrease as the number of observations increases.

Finally, the attacker would choose her threshold
with respect to the probability of a false negative he
is willing to accept. If the attacker is able to obtain a
precise measurement of the onion service’s bandwidth,
she can speed up the process to recover the HS Guard
by potentially selecting a higher threshold if the band-
width measured is large enough. If she is not, choosing a
low threshold such as 1.1 would still allow her to retrieve
the right entry guard in a few days with a probability
of success ≈ 96% against a few MB/s onion service.

4.5 Countermeasures

Fixing the counter weakness
A fix involving discounting bytes when
circuit_handle_oom() is called (one of the possible
options) is currently (mid-2017) under discussion at the
Tor project. While it fixes the trivial guard discovery
attack presented in Figure 4, it does not solve all the
problems.



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 39

(a) Assuming that the onion service entry relay is a guard-
flagged relay (default behavior)

(b) Against unflagged relays: If the onion service uses the option
EntryNodes and configures a relay without a guard flag for its
entry position.

Fig. 10. Gives the probability of a false negative that our OnionShape’s classification outputs depending on the bandwidth of the onion
service.

Fig. 11. Gives the probability of a false negative that our Onion-
Shape’s classification outputs depending on the length of the
reported interval. The probability for the current 4 hours interval
was given in Figure 8b

Volume analysis
Given that the attack needs a high throughput to suc-
ceed, the onion service might count dropped cells and
rate limit them by killing circuits once the limit is ex-
ceeded. This volume analysis does not preclude the ad-
versary to legitimately use the application on the top of
it and generate the same overload. Moreover, this idea
has to be carefully put in perspective with the forward
compatibility currently designed in the protocol. More
details in Section 6.

Fig. 12. Confidence of the adversary on multiple observations

Increasing the interval size
Currently being 4 hours, increasing it to 8, 12 or 18
hours does not help more than slightly increasing the
cost of the attack. Expanding it to more than 18 hours
would generate more problems to tackle: 1) extra info
descriptors in which measurements should be included
are uploaded every 18 hours; hence some descriptors
would miss measurement values and Tor-related ap-
plications using descriptors would be impacted. 2)If
Tor crashes/restarts, it loses the current bandwidth ac-
counting value meaning we would potentially lose more
counted bytes if the interval increases, impacting the
reliability of these reports.



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 40

Removing public bandwidth report
We may also remove the side-channel by not allowing
guard relays to publish their measurements and replac-
ing them by a network-wide aggregation using Priv-
Count [34]. However, eliminating public bandwidth re-
port would cause many issues to Tor-related applica-
tions that use them.

User-side countermeasure
One appealing countermeasure for an onion service op-
erator who deeply care about the "hidden" property
of his service would be to configure a bandwidth rate
limitation (i.e., using BandwidthRate option) as close
as possible to the average bandwidth consumption of
his service. The onion service operator could use an
application-level statistics observer over a time frame
to estimate the right BandwithRate value. This would
impact the performance of the service, though.

Discussion
Among the possible countermeasures, we believe that
removing the side-channel and educating end-users to
properly configure their hidden service are the most ap-
pealing ones. Some recommendations about configuring
an Onion Service would be to: 1) Configure the band-
width as close as possible to an average estimation of the
legitimate use. 2) Avoid using the option EntryNodes
to set up an unflagged relay as an entry node. Along-
side the basic reasons for not using unflagged relays as
an entry node (stability, bandwidth, etc.), our analy-
sis showed that the relay discovery would still be easy.
3) Avoid running an onion service as well as a Tor re-
lay on the same instance. This would induce a trivial
deanonymization of the onion service by an adversary
sending cells that are dropped by the onion service be-
cause a large discrepancy between read and write bytes
could be observed in reported measurements of the re-
lay.

4.6 Conclusion

As soon as the counter weakness is fixed, this 1-day
guard discovery attack moves to a few-days guard dis-
covery attack with a high probability of success. Some
limitations exist in our analysis. First, the precision of
our attack success depends itself on the precision of
the self-advertised bandwidth measurements of each re-
lay. Secondly, we assume a graceful behavior of relay

and relay operator in overloaded conditions. Finally, the
classification method that we used is elementary but
proves to be sufficient to demonstrate the effectiveness
of our attack. An attacker could run more advanced ma-
chine learning training methods on the real Tor network,
which is likely to lead to even more efficient classifica-
tion techniques. We did not explore this avenue due to
the ethical concerns that such kind of training raises.
We also think that a training method would be com-
plex on a private Tor network given the fact that it must
look like the real one or we would obtain a classifier that
works well against a private network but might not work
against the real one. OnionShape achieves good results
with a safer and simpler analysis.

Our congestion attack remains usable as a building
block for attacks involving other observation channels.
Solving this problem would involve re-thinking flexibil-
ity and forward compatibility in-depth. More insights
about this problem are discussed in Section 5 and Sec-
tion 6.

5 Using forward compatibility to
create the dropmark attack

The anonymity exploit described in Section 4 combines
the malleability of the protocol and a side-channel to
discover the entry node of an onion service. We may
also try to build end-to-end correlation attacks based on
the flexibility of the Tor protocol. We consider a model
where the adversary controls relays and wants to effi-
ciently spot if traffic going through one of his guards
is coming out on one of his exits. A few papers tried
this, resulting in the tagging attack [22, 26] for instance.
This attack modifies the data flow at the entry node
in the outbound direction to generate an integrity er-
ror which is detectable along the circuit by the other
compromised relay during decryption but also induces
a tear down of the circuit at the edge on non-colluding
exits. Closer to what we have designed in this section,
Biryukov et al. performed circuit construction finger-
printing [18] in order to deanonymize onion services.
This attack, like ours, uses the fact that the Tor proto-
col is gentle with most unrecognized cells. The default
behavior is to ignore them with emphasis on an archi-
tecture design promoting forward compatibility: every
cell with a Cmd (Figure 1) or an unrecognised Rel cmd
is silently dropped. In this section, we use the dropping
behavior of the Tor protocol to create a traffic confir-
mation tailored to the Tor network.



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 41

5.1 Silently dropmarking Tor flows

Given the Tor protocol, we can send from an edge node
any number of cells that would be silently dropped by
the other edge. In order to avoid adding latency to our
victim flow and easily extract the mark that we add,
which we call a dropmark, we target timing intervals
where flows are used to be idle. Considering what hap-
pens when a service is requested through Tor, such as
connecting to a particular website: a begin cell is sent
from the Tor client to the circuit, which triggers a DNS
resolution at the edge. When the DNS resolve succeeds
and the connection is set up with the desired service,
the edge relay sends a connected cell in the inbound di-
rection (towards the client). The next cells that would
be sent towards the client would be the response to the
GET request that the client has issued.

Fig. 13. Density plot of the connected cell and the first data
cell induced by 2361 web requests handled by an exit relay in
Shadow. Truncated to 0.5 sec.

Figure 13 shows a density plot of the connected
cell and the first data cell sent towards the client. This
plot results from 2361 web connections that an exit re-
lay performed in the Shadow network simulator [33].
These connections reach many different web server loca-
tions simulated to induce a lookalike response compared
to web servers on the Internet. The idle time, during
which no cell goes towards the client, corresponds to
the round-trip-time (RTT) of the Tor circuit, plus the
RTT of the edge connection. This is true only if the re-
quest is not sent optimistically before the client receives
the connected cell. If the request is sent optimistically
(this feature is even documented in Tor’s code as a way
to speed-up the HTTP protocol), then the idle time cor-
responds to the RTT of the edge connection. This win-

dow is still large enough to encode our dropmark with
relay drop cells or any other cell that would be silently
dropped by the other edge.

5.1.1 The dropmark attack

We present the dropmark attack, a way to carry along
the circuit one bit of information without adding latency
to the victim flow. This attack needs an edge-and-relay
colluding model and two characteristics within the low-
latency anonymizer:

1. The protocol should silently drop unrecognized
packets

2. The circuit must be idle at some moment (no cover
traffic)

We conjecture that the dropmark attack impacts any
low-latency anonymity network that has these two char-
acteristics and we demonstrate the effectiveness of this
attack on the Tor network.

The encoding part of the dropmark attack happens
at an edge node of a circuit. This edge node could be
an exit relay, an onion service (presumed honeypot), an
HSDir, an intro point or a rendezvous point. For simplic-
ity, we consider only the exit relay in the following part
the paper and in our experiments. As shown in Figure
13, we take advantage of the idle window that exists on
any Tor circuits each time a relay begin cell is sent to-
wards the exit relay that carries the desired IP address
or domain name to connect to. Upon the reception of
the relay begin cell, as soon as the dns_resolve() func-
tion is called, we log the IP address and we send 3 relay
drop cells towards the client (again, any other type of
relay cell that would be silently dropped is appropriate).

Figure 14 gives the intuition of the decoding func-
tion that would decide whether a dropmark is embedded
in the flow or not. The decoding function (on the guard
relay) considers the first few cells of the circuit in the
inbound direction and verifies this observation: if 3 cells
have the same timing arrival (more or less a few mil-
liseconds) within the first four cells, we flag the flow as
having a dropmark.

In order to confirm our intuition, we implemented
our dropmark attack in Tor and ran simulations in
Shadow.



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 42

(a) When no dropmark is sent by the edge relay (classical circuit
behavior)

(b) When a dropmark is sent along the circuit by the edge relay

Fig. 14. Simplified view of cell timings flowing towards the client
from the perspective of a guard. We construct a distinguisher
(the decoding function) from a timing analysis.

5.1.2 Experimentations

We simulated some web page downloads to 20 servers
from the Alexa dataset [13] in Shadow. Each web client
downloading a webpage should use a fresh new circuit.
Doing so, it captures the Tor browser behavior that uses
a new circuit for each web address. While we simulate
web traffic and test the dropmark attack against it, we
conjecture that any type of application traffic flowing
through Tor is subject to the dropmark attack. Fig-
ure 13 shows that the dropmark attack takes advantage
of the protocol used in the transport layer (TCP), hence
common to all services using TCP and independent of
the application layer. We observe our relays at the cir-
cuit level with custom logging events.

We also tested different situations where 1) No exit
sends the dropmark but all guards apply the decoding
function. 2) All exits send the dropmark and all guards
apply the decoding function. The first situation aims at
assessing the number of false positives that the decod-
ing function might raise. The second situation aims at
evaluating the number of false negatives. We test these
two situations under a light loaded network and under
a network loaded similarly to the real Tor network to
evaluate how the congestion could impact the efficiency.
To simulate a light loaded Tor network, we use 200 web
clients, 50 relays and 20 web servers based on Collec-
Tor archives [7] from March 2017. Altogether, they push
≈25% of the exit total capacity. To simulate a loaded
Tor network, we use 450 web clients, 50 relays and 20
web servers based on the same archives. Altogether, they
push ≈ 50% of the exit total capacity.

In the first situation with the light loaded network,
where no dropmarks are sent, 12972 circuits resulting
from the web clients’ Tor daemon activity have been
tested among the guards. In total, 1 false positive was
detected and the fraction of HTTP transfer errors over
successful transfers was 37/13030 ≈ 0.3%. Looking in

the log details, we saw that the connected cells were
received at the same timing as the data cell, raising
a lookalike dropmark fingerprint. This situation might
happen if the middle relay is under congestion. Notice
that the number of transfers is higher than the num-
ber of observed circuits among the guards. Moreover,
we observed that some begin cells with the same desti-
nation are sent along the same circuit when the timing
between them is too close. We tried to prevent that by
setting MaxCircuitDirtiness to 1 second but somehow,
some streams are attached to the same circuit despite
the dirtiness. We investigated the problem and opened
a ticket on the bug tracker [35]. As far as our simula-
tions are concerned, this is not an issue: those streams
can just be ignored.

In the second experiment, we increased the overall
congestion in the network by using 450 web clients in-
stead of 200 and consuming ≈ 50% of the exit capacity
to match the current Tor network load [5]. In this simu-
lation, 26245 circuits were tested among the guards. In
total, 9 false positives have been detected but the frac-
tion of transfer errors over successful transfers raised
to 1448/25869 ≈ 4.3%. This result seems to indicate
that the increased network congestion does not impact
the dropmark attack. Indeed, the congestion happens
mainly in the exit position due to the scarcity of exit
bandwidth while the dropmark attack should be im-
pacted by congestion in the middle position. If we were
lacking middle bandwidth, the impact could have been
noticed.

In the second situation with the light loaded net-
work, where every exit relays send dropmarks for all
connections, no false negatives were detected and 13173
circuits seen among the guards were tagged as having
a dropmark. Increasing the size of the network to 450
web clients, we obtained 41 false negatives over 29322
tested circuits with a fraction of HTTP transfer errors
over successful transfers of 1226/26609 ≈ 4.6%. Most of
those false negatives were due to circuit failures.

Finally, this method shows good results in a loaded
network with ≈ 99.86% true positive rate and ≈ 0.03%
false positive rate and is not perturbed by timeouts that
could happen in a network (such as a web server not an-
swering a connection request). Moreover, this method is
not based on the application layer and does not perturb
it, leading to successful correlation even if a few bytes
are exchanged between the source and the destination.
Nothing prevents an adversary from pairing this attack
with other methods such as Rainbow [32] or passive tim-
ing analysis for even more reliability. Apart from the
FBI-CMU unpublished relay early confirmation attack,



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 43

this attack is the first correlation method known to be
efficient and that presents such an advantage.

5.2 Countermeasures

The dropmark attack can be performed with other RE-
LAY cell types, such as a RELAY_DATA with a wrong
stream id (dropped with an info level log message), RE-
LAY_RESOLVE or any unused relay command number
(dropped with a warn level log message). This list is not
exhaustive and the available code allows testing some of
them. Currently, the range of visibility in the log mes-
sages depends on the cell used for the dropmark. The
visibility is from none (RELAY_DROP) to the notice
level and info level. A first idea would be to log a warn-
ing message for all of these events since the adversary
would rather have one left at a higher level (less visible).
It is however common to receive a RELAY_DATA cell
with a wrong stream id even though it is not suitable
for a warn level log message as these will overload the
logs with no possibility to differentiate a dropmark at-
tack from a legitimate message at the notice log level.
For example, using Tor browser with log info enabled
during 2 minutes and visiting the front page of 3 web-
sites (facebook.com, google.com and 9gag.com) gave us
hundreds of such messages2.

We conjecture that there exists a whole family of
possible active attacks based on the flexibility of the Tor
protocol. Designing countermeasures based on timing
analysis, such as raising a warning or killing the circuit is
pointless because the attacker might find another timing
window to send his dropmark or another way of taking
advantage of the protocol flexibility.

As it is, we do not have any countermeasure that
would not break forward compatibility (killing the cir-
cuit where we received something unexpected breaks
forward compatibility) or one of the original Tor’s goal.
We open the discussion in Section 6 for further re-
search direction regarding the interaction between flexi-
bility and security of anonymous network protocols that
would help to fix this problem.

2 [info] connection_edge_process_relay_cell(): data cell
dropped, unknown stream (streamid 19412).

6 Discussion of possible further
works

In the Tor protocol, forward compatibility is the act of
ignoring an unknown cell or ignoring a known cell that
is not supposed to be received (e.g., an unknown relay
Cmd value or a relay-early in the inbound direction).
Section 4 and Section 5 showed how forward compati-
bility could be exploited to retrieve an onion service’s
guard (combined with a side-channel) and to correlate
with high probability without taking advantage of the
user’s data flow. Forward compatibility is a desirable
feature in network protocols. Even more when the net-
work is distributed since many different versions can
compose the overall network.

Tor is not supposed to protect against end-to-end
traffic correlation [22] but it is designed and improved
in order to maximize the attacker’s work under the
classical resource model. We believe that an end-to-end
correlation like our dropmark attack or the relay-early
confirmation attack should be prevented as long as the
countermeasure does not bring any dissuading effect on
another goal of Tor. The question is then: can we come
up with a workaround fix to the bandwidth congestion
attack described in Section 4.1 and the end-to-end cor-
relation attack from Section 5, in a way that will not
impact the ease of deployment, usability, flexibility, and
resistance to censorship of the Tor protocol?

Further work should offer more insights as to how
Tor’s protocol flexibility can be used to design attacks.
Indeed, forward compatibility is one of the many flexible
implementation choices in Tor. More insights might be
gained by recasting prior attacks from the literature in
light of this flexibility issue. If such further work shows
that flexibility has a fundamental impact on the security
of anonymous network protocols, it should come with a
way to set a new trade-off flexibility/security that as-
serts what kind of attack the system is safe from. More-
over, it might be useful to design some adaptive trade-off
that could be changed by the network itself (directory
authorities in Tor’s case). We conjecture that this prob-
lem goes beyond Tor and might be interesting to take
into account for further anonymous network designs.

7 Code and data reproducibility
We made available on Github all the code, data, and
a step-by-step tutorial that can be used to reproduce



Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 44

our graphs and numerical values from Section 4 and
Section 5 [9].

8 Conclusion
In this paper, we show how a common network pro-
tocol feature, the dropping of unexpected packets, can
be used against anonymous communication systems. In
the Tor protocol, the dropping of unexpected packets is
specified in order to enable flexibility and forward com-
patibility. We exploit this feature to facilitate the task of
retrieving the identity of an onion service. We also show,
with the dropmark attack, that we can be practically
very close to the theoretical perfect and instantaneous
traffic confirmation attack model usually considered in
research papers. Even if anonymity can be broken in
some situations, this paper does not claim that the Tor
design is broken. However, it sheds more light over the
fact that ensuring server-side anonymity is complex and
that traffic confirmation can indeed be considered per-
fect and instantaneous in practice. Finally, we open the
discussion regarding a trade-off between flexibility and
security that could be a better approach to defeat our
bandwidth congestion attack, the dropmark attack, pre-
viously known attacks, and defending Tor against yet
unknown threats that could exploit Tor’s flexibility. The
lessons would be valuable for any high throughput low-
latency anonymous communication system proposal.

Acknowledgement
We would like to thanks the anonymous reviewers and
our shepherd Rishab Nithyanand for valuable feedbacks.
We are also thankful to the Tor project members: Roger
Dingledine for helpful thoughts, and George Kadianakis
for awarding us a bug bounty during the disclosure pro-
cess. This bounty is now used to run extra Tor relays.
This work was partially supported by the Innoviris/C-
Cure project and by the European Commission and the
Walloon Region through the FEDER project USERMe-
dia (convention number 501907-379156).

References
[1] Tor’s specifications. https://gitweb.torproject.org/torspec.

git/tree/. Accessed: 2017-05-20.

[2] Generic, decentralized, unstoppable anonymity: The phan-
tom protocol. http://www.magnusbrading.com/phantom/
phantom-design-paper.pdf, 2011. Accessed: 2017-05-20.

[3] Relay early confirmation attack. https://blog.torproject.org/
blog/tor-security-advisory-relay-early-traffic-confirmation-
attack, 2014. Accessed: 2017-05-20.

[4] Atlas: web application to inspect details of currently running
relays. https://atlas.torproject.org/, 2016. Accessed: 2016-
12-20.

[5] Capacity of the Tor network. https://metrics.torproject.org/
bandwidth-flags.html, 2017. Accessed: 2017-05-20.

[6] Consumption of hidden services in mbit/s. https://metrics.
torproject.org/hidserv-rend-relayed-cells.html, 2017. Ac-
cessed: 2017-05-20.

[7] Data-collecting service in the Tor network. https://collector.
torproject.org/, 2017. Accessed: 2017-05-20.

[8] Defending against guard discovery attacks using vanguards.
https://gitweb.torproject.org/torspec.git/tree/proposals/
247-hs-guard-discovery.txt, 2017. Accessed: 2017-05-20.

[9] Github repository regarding data and code of this paper.
https://github.com/frochet/dropping_on_the_edge, 2017.

[10] Ricochet: Anonymous instant messaging for real privacy.
https://ricochet.im/, 2017. Accessed: 2017-05-20.

[11] Securly and anonymously sharing files with onionshare.
https://github.com/micahflee/onionshare, 2017. Accessed:
2017-05-20.

[12] Ticket 21155: Client’s choice of rend point can leak info
about guard(s) of misconfigured hidden services with entryn-
odes option. https://trac.torproject.org/projects/tor/ticket/
21155, 2017. Accessed: 2017-05-20.

[13] Top-1000 alexa data set. http://s3.amazonaws.com/alexa-
static/top-1m.csv.zip, 2017. Accessed: 2017-05-20.

[14] Tor source code, function circuit_receive_relay_cell(), line
176. https://gitweb.torproject.org/tor.git/tree/src/or/relay.
c?h=release-0.2.9, 2017. Accessed: 2017-05-20.

[15] M. AlSabah and I. Goldberg. Performance and security
improvements for tor: A survey. ACM Computing Surveys
(CSUR), 49(2):32, 2016.

[16] A. Back, U. Möller, and A. Stiglic. Traffic analysis at-
tacks and trade-offs in anonymity providing systems. In
I. S. Moskowitz, editor, Proceedings of Information Hiding
Workshop (IH 2001), pages 245–257. Springer-Verlag, LNCS
2137, April 2001.

[17] A. Barton and M. Wright. Denasa: Destination-naive as-
awareness in anonymous communications. In Proceedings
of the 16th Privacy Enhancing Technologies Symposium
(PETS 2016), July 2016.

[18] A. Biryukov, I. Pustogarov, and R.-P. Weinmann. Trawl-
ing for Tor Hidden services: Detection, measurement,
deanonymization. In Proceedings of the 2013 IEEE Sym-
posium on Security and Privacy, May 2013.

[19] P. Boucher, A. Shostack, and I. Goldberg. Freedom systems
2.0 architecture. White paper, Zero Knowledge Systems,
Inc., December 2000.

[20] Z. Brown. Cebolla: Pragmatic IP Anonymity. In Proceedings
of the 2002 Ottawa Linux Symposium, June 2002.

[21] S. Chakravarty, A. Stavrou, and A. D. Keromytis. Traffic
analysis against low-latency anonymity networks using avail-
able bandwidth estimation. In Proceedings of the European
Symposium Research Computer Security - ESORICS’10.

https://gitweb.torproject.org/torspec.git/tree/
https://gitweb.torproject.org/torspec.git/tree/
http://www.magnusbrading.com/phantom/phantom-design-paper.pdf
http://www.magnusbrading.com/phantom/phantom-design-paper.pdf
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://atlas.torproject.org/
https://metrics.torproject.org/bandwidth-flags.html
https://metrics.torproject.org/bandwidth-flags.html
https://metrics.torproject.org/hidserv-rend-relayed-cells.html
https://metrics.torproject.org/hidserv-rend-relayed-cells.html
https://collector.torproject.org/
https://collector.torproject.org/
https://gitweb.torproject.org/torspec.git/tree/proposals/247-hs-guard-discovery.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/247-hs-guard-discovery.txt
https://github.com/frochet/dropping_on_the_edge
https://github.com/micahflee/onionshare
https://trac.torproject.org/projects/tor/ticket/21155
https://trac.torproject.org/projects/tor/ticket/21155
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://gitweb.torproject.org/tor.git/tree/src/or/relay.c?h=release-0.2.9
https://gitweb.torproject.org/tor.git/tree/src/or/relay.c?h=release-0.2.9


Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 45

Springer, September 2010.
[22] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The

second-generation onion router. In Proceedings of the 13th
USENIX Security Symposium, August 2004.

[23] M. Edman and P. F. Syverson. AS-awareness in Tor path
selection. In E. Al-Shaer, S. Jha, and A. D. Keromytis, edi-
tors, Proceedings of the 2009 ACM Conference on Computer
and Communications Security, CCS 2009, pages 380–389.
ACM, November 2009.

[24] N. Evans, R. Dingledine, and C. Grothoff. A practical con-
gestion attack on Tor using long paths. In Proceedings of
the 18th USENIX Security Symposium, August 2009.

[25] N. Feamster and R. Dingledine. Location diversity in
anonymity networks. In Proceedings of the Workshop on
Privacy in the Electronic Society (WPES 2004), October
2004.

[26] X. Fu, Z. Ling, J. Luo, W. Yu, W. Jia, and W. Zhao. One
cell is enough to break tor’s anonymity. In Proceedings of
Black Hat Technical Security Conference, pages 578–589.
Citeseer, 2009.

[27] I. Goldberg, D. Stebila, and B. Ustaoglu. Anonymity and
one-way authentication in key exchange protocols. Designs,
Codes and Cryptography, pages 1–25, 2012.

[28] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding
Routing Information. In R. Anderson, editor, Proceedings
of Information Hiding: First International Workshop, pages
137–150. Springer-Verlag, LNCS 1174, May 1996.

[29] N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How much
anonymity does network latency leak? In Proceedings of
CCS 2007, October 2007.

[30] A. Houmansadr and N. Borisov. Swirl: A scalable watermark
to detect correlated network flows. In Proceedings of the
Network and Distributed Security Symposium - NDSS’11.
Internet Society, February 2011.

[31] A. Houmansadr and N. Borisov. The need for flow finger-
prints to link correlated network flows. In Proceedings of the
13th Privacy Enhancing Technologies Symposium (PETS
2013), July 2013.

[32] A. Houmansadr, N. Kiyavash, and N. Borisov. Rainbow: A
robust and invisible non-blind watermark for network flows.
In Proceedings of the Network and Distributed Security
Symposium - NDSS’09. Internet Society, February 2009.

[33] R. Jansen and N. Hopper. Shadow: Running Tor in a Box
for Accurate and Efficient Experimentation. In Proceedings
of the Network and Distributed System Security Symposium
- NDSS’12. Internet Society, February 2012.

[34] R. Jansen and A. Johnson. Safely measuring tor. In Pro-
ceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS ’16), October 2016.

[35] Jaym. Circuit dirtiness is inconsistant with maxcircuitdirti-
ness. https://trac.torproject.org/projects/tor/ticket/23374#
ticket.

[36] A. Johnson, R. Jansen, N. Hopper, A. Segal, and P. Syver-
son. Peerflow: Secure load balancing in Tor. Proceedings on
Privacy Enhancing Technologies, 2017(2), 2017.

[37] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and S. De-
vadas. Circuit fingerprinting attacks: Passive deanonymiza-
tion of Tor hidden services. In 24th USENIX Security Sym-
posium (USENIX Security 15), pages 287–302, Washington,
D.C., 2015. USENIX Association.

[38] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: An
efficient communication system with strong anonymity. Pro-
ceedings on Privacy Enhancing Technologies, 2016(2):115–
134, 2016.

[39] B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright.
Timing attacks in low-latency mix-based systems. In
A. Juels, editor, Proceedings of Financial Cryptography (FC
’04), pages 251–265. Springer-Verlag, LNCS 3110, February
2004.

[40] S. J. Murdoch and G. Danezis. Low-cost traffic analysis
of Tor. In Proceedings of the 2005 IEEE Symposium on
Security and Privacy. IEEE CS, May 2005.

[41] S. J. Murdoch and P. Zieliński. Sampled traffic analysis
by Internet-exchange-level adversaries. In N. Borisov and
P. Golle, editors, Proceedings of the Seventh Workshop on
Privacy Enhancing Technologies (PET 2007). Springer, June
2007.

[42] A. Nambiar and M. Wright. Salsa: A structured approach to
large-scale anonymity. In Proceedings of CCS 2006, Novem-
ber 2006.

[43] V. Pappas, E. Athanasopoulos, S. Ioannidis, and E. P.
Markatos. Compromising anonymity using packet spinning.
In Proceedings of the 11th Information Security Conference
(ISC 2008), September 2008.

[44] T. Project. The chutney tool for testing and automating tor
network setup. https://gitweb.torproject.org/chutney.git.

[45] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anony-
mous connections and onion routing. IEEE Journal on Se-
lected Areas in Communications, 16(4):482–494, May 1998.

[46] F. Rochet and O. Pereira. Waterfilling: Balancing the Tor
network with maximum diversity. Proceedings on Privacy
Enhancing Technologies, 2017(2), 2017.

[47] A. Serjantov and P. Sewell. Passive attack analysis for
connection-based anonymity systems. In Proceedings of
ESORICS 2003, October 2003.

[48] V. Shmatikov. Probabilistic model checking of an anonymity
system. Journal of Computer Security, 12(3-4):355–377,
2004.

[49] V. Shmatikov and M.-H. Wang. Timing analysis in low-
latency mix networks: Attacks and defenses. In Proceedings
of ESORICS 2006, September 2006.

[50] P. Syverson, M. Reed, and D. Goldschlag. Onion Routing
access configurations. In Proceedings of the DARPA Infor-
mation Survivability Conference and Exposition (DISCEX
2000), volume 1, pages 34–40. IEEE CS Press, 2000.

[51] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. To-
wards an Analysis of Onion Routing Security. In H. Feder-
rath, editor, Proceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in Anonymity and
Unobservability, pages 96–114. Springer-Verlag, LNCS 2009,
July 2000.

[52] X. Wang, S. Chen, and S. Jajodia. Tracking anonymous
peer-to-peer voip calls on the internet. In Proceedings of
the ACM Conference on Computer and Communications
Security, pages 81–91, November 2005.

[53] X. Wang, S. Chen, and S. Jajodia. Network Flow Water-
marking Attack on Low-Latency Anonymous Communication
Systems. In Proceedings of the 2007 IEEE Symposium on
Security and Privacy, pages 116–130, May 2007.

https://trac.torproject.org/projects/tor/ticket/23374#ticket
https://trac.torproject.org/projects/tor/ticket/23374#ticket
https://gitweb.torproject.org/chutney.git


Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols 46

[54] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao. DSSS-
based flow marking technique for invisible traceback. In
Symposium on Security and Privacy, pages 18–32. IEEE,
2007.

[55] zzz (Pseudonym) and L. Schimmer. Peer profiling and se-
lection in the i2p anonymous network. In Proceedings of
PET-CON 2009.1, pages 59–59, March 2009.


	Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols
	1 Introduction
	2 Related work
	2.1 Congestion attacks
	2.2 End-to-end correlation

	3 More Background on Tor
	3.1 Components and interaction overview
	3.2 Communication unit: cells
	3.3 Circuit construction
	3.4 Tor Routing Protocol: if I do not get it, I drop it

	4 Side-channel guard discovery of onion service
	4.1 Attack overview
	4.2 Ethical considerations
	4.3 Attack experimentation
	4.3.1 Interaction between the HS guard capacity and the onion service capacity
	4.3.2 Proof of concept
	4.3.3 Vanguards' proposal

	4.4 Going further with the descriptors history
	4.4.1 Methodology
	4.4.2 Analysis - Onion Service's capacity higher than its guard's spare resources
	4.4.3 Analysis - With different onion service's bandwidths
	4.4.4 Analysis - Interval size and effect of multiple observations

	4.5 Countermeasures
	4.6 Conclusion

	5 Using forward compatibility to create the dropmark attack
	5.1 Silently dropmarking Tor flows
	5.1.1 The dropmark attack
	5.1.2 Experimentations

	5.2 Countermeasures

	6 Discussion of possible further works
	7 Code and data reproducibility
	8 Conclusion


