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Touch and You’re Trapp(ck)ed: Quantifying the
Uniqueness of Touch Gestures for Tracking
Abstract: We argue that touch-based gestures on touch-
screen devices enable the threat of a form of persistent
and ubiquitous tracking which we call touch-based track-
ing. Touch-based tracking goes beyond the tracking of
virtual identities and has the potential for cross-device
tracking as well as identifying multiple users using the
same device. We demonstrate the likelihood of touch-
based tracking by focusing on touch gestures widely
used to interact with touch devices such as swipes and
taps.. Our objective is to quantify and measure the in-
formation carried by touch-based gestures which may
lead to tracking users. For this purpose, we develop an
information theoretic method that measures the amount
of information about users leaked by gestures when
modelled as feature vectors. Our methodology allows
us to evaluate the information leaked by individual fea-
tures of gestures, samples of gestures, as well as sam-
ples of combinations of gestures. Through our purpose-
built app, called TouchTrack, we gather gesture samples
from 89 users, and demonstrate that touch gestures con-
tain sufficient information to uniquely identify and track
users. Our results show that writing samples (on a touch
pad) can reveal 73.7% of information (when measured
in bits), and left swipes can reveal up to 68.6% of infor-
mation. Combining different combinations of gestures
results in higher uniqueness, with the combination of
keystrokes, swipes and writing revealing up to 98.5% of
information about users. We further show that, through
our methodology, we can correctly re-identify returning
users with a success rate of more than 90%.
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1 Introduction
Touch gestures such as swipes, taps and keystrokes, are
common modes of interaction with smart touchscreen-
enabled devices, e.g., smartphones, smart watches and
smart glasses. Major platforms including Android OS,
iOS, watchOS and Android Wear provide a variety of
APIs to help app developers detect gestures aiming to
enhance the quality of experience of apps. Access to
these APIs allows apps to collect raw gesture data from
different sensors available on the smart device. The fine-
grained nature of this data means that there is potential
of learning more about users than is perhaps necessary
for the proper functioning of an app. Indeed one area
where touch gestures have been exploited is continuous
authentication through which users are authenticated
by profiling their touch behaviour [1, 14].

In this paper, we argue and verify that touch ges-
tures constitute a privacy threat as they enable a new
form of tracking of individuals, which we refer to as
“touch-based tracking,” which is the ability to continu-
ously and surreptitiously track and distinguish users via
their touch behaviour while they are interacting with
their devices. As compared to “regular” tracking mech-
anisms, e.g., based on cookies, browser fingerprints,
browser user agents, logins and IP addresses, several
factors make touch-based tracking potentially riskier.
First, while regular tracking tracks virtual identities
such as online profiles [13, 20, 25], touch-based tracking
has the potential to track and identify the actual (phys-
ical) person operating the device. It can distinguish and
track multiple users accessing the same device. Second,
touch-based tracking possesses the capability to contin-
uously track users. Third, it also leads to cross-device
tracking where the same user can potentially be traced
on multiple mobile devices. Cross-device tracking intro-
duces additional privacy and security risks, where user
data can be collated and sent to advertising companies
and third party entities to build user profiles based on
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their activities on smartphones, tablets, smart watches
and various IoT devices. However, demonstrating this
type of tracking requires a more generalized approach,
e.g. to validate the stability of features across devices,
which we leave as future work.

Not all use cases of touch-based tracking are neg-
ative. It can also be beneficial to users and service
providers alike. For instance, the identification of mul-
tiple users using the same device may help in provid-
ing content more suitable for each of them. A child us-
ing his/her parent’s smartphone can automatically have
parental control enabled. Touch-based tracking could
also bring commercial benefits to the user (e.g. display-
ing discounts and sales on the product of interest to the
user). The reader might notice a link between touch-
based tracking and touch-based continuous authentica-
tion. There are major differences in the two notions. The
latter verifies a claimed identity based on prior knowl-
edge of the identity and former tracks users even with-
out the knowledge of any disclosed identity. We elab-
orate on this and other differences between the two in
Section 5.

The ubiquity of the touchscreen devices and the fact
that most if not all data from touch events and/or other
sensors can be extracted by any mobile app without re-
questing special permission makes touch-based tracking
a serious privacy threat for users. This not only repre-
sents a valuable new source of information for analyt-
ics, tracking, and ad services but also for app developers
who can (mis)use the information to track individuals
on a single device or across multiple devices. The ob-
jective of this paper is to quantify the amount of in-
formation carried by user’s touch gestures and hence to
evaluate their tracking capabilities. Our main contribu-
tions are summarised as follows.
– We investigate the potential of using touch-based

gestures for tracking, which we call touch-based
tracking. We quantify the amount of information
contained in these gestures which could lead to user
tracking. To the best of our knowledge, this is the
first study considering the potential of touch ges-
tures to profile users. Our work complements re-
search on other forms of tracking such as through
web browsers, host devices, and online social profiles
by fingerprinting browser features, device configura-
tions, and user attributes [4, 7, 13, 18, 19, 24, 25,
27, 38].

– We develop an analytical framework that mea-
sures the amount of identifying information (in bits
and relative mutual information) contained in touch
gestures, represented as feature vectors, at different

levels of granularity. At the finest level, our frame-
work quantifies the information carried by individ-
ual features, e.g., pressure on screen and area cov-
ered by the gesture. At the second level, our frame-
work quantifies the information carried by a ges-
ture sample, e.g., a single swipe. At the third level,
our framework calculates the amount of informa-
tion carried by multiple samples of the same ges-
ture, e.g., a collection of swipes. Lastly, we measure
the information carried by a collection of samples
from multiple gestures, e.g., swipes and taps. We ap-
ply our framework on four widely used touch screen
gestures: i) swipes, ii) taps, iii) keystrokes, and iv)
handwriting, and four sub-categories of swipe: i) up
swipe, ii) down swipe, iii) left swipe, and iv) right
swipe. The framework is generic enough to apply to
any behavioural biometric modality which can be
expressed as feature vectors.

– We develop and deploy a game-like app called
“TouchTrack” for Android powered devices. It con-
sists of three well known open source games: 2048
(for swipes),1 Lexica (for taps),2 Logo Maniac (for
keystrokes),3 and one custom built app for hand-
writing. These games were selected to capture touch
gestures in a natural way. Through our TouchTrack
app the user can check the uniqueness and tracking
potential of his/her gestures.

– Using our TouchTrack app, we carried out a user
study comprised of 89 participants and gathered
a total of 40,600 samples of touch gestures. For
each touch gesture, we identified features that
contain high amount of identifying infor-
mation using the maximum-relevancy minimum-
redundancy (mRMR) algorithm [26]. The algorithm
attempts to constrain features to a subset which are
mutually dissimilar to each other, but similar to the
classification variable, which in our case was the set
of users. We give details in Section 4.2. We found
that the most revealing features were the 80th per-
centile of area from left swipes, the 20th percentile
of area and the 50th percentile of pressure from
downward swipes which yielded 56.1%, 55.50% and
46.13% of information, respectively.

– With the same dataset, wemeasured the amount
of information contained in samples from the

1 https://github.com/gabrielecirulli/2048
2 https://github.com/lexica/lexica
3 https://github.com/Luze26/LogoManiac

https://github.com/gabrielecirulli/2048
https://github.com/lexica/lexica
https://github.com/Luze26/LogoManiac
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same gesture and from multiple gestures.4

We found that 50 features in a single handwrit-
ing sample contribute 68.71% of information about
users, which increases to 73.7% with multiple sam-
ples. We further identified that two or three dif-
ferent gestures combined together reveal more in-
formation about users. For instance swipes, hand-
writing, and keystrokes carry 98.5%, while hand-
writing, taps, and swipes disclose 95.1% of infor-
mation. Among users who performed all the four
gestures, our framework revealed 98.89% of infor-
mation about users.

– Finally, we also validated our framework in
terms of correctly identifying a returning
user. This is important since the same user might
have two different samples from the same gesture
that could be mutually dissimilar (thus showing
high uniqueness) but will not result in identifying
the user. We measure the true positive and false
positive rates (TPR and FPR) of our method. We
define TPR as the rate at which a unique user (in
our set of users) is identified as the correct user given
a test sample (or set of samples). Likewise, FPR is
defined as the rate at which the wrong user is iden-
tified as the target user or a set of more than one
users is identified as the set of possible users given a
test sample (or set of samples). We found that with
multiple samples, swipes and handwriting show a
TPR of 90.0% and 91.0%, respectively. For a com-
bination of gestures we found that swipes and hand-
writing combined together had a TPR of 93.75%. In
terms of FPR, we found that swipes, handwriting,
and keystrokes taken together had an FPR of only
0.8%.

Overall our results demonstrate that touch gestures can
be used to uniquely identify (or fingerprint) users with
high accuracy. This illustrates the threat of tracking
based on touch gestures in general. The rest of the paper
is organized as follows: Section 2 covers our methodol-
ogy of collecting data using TouchTrack app, and then
presents the descriptive statistics about our dataset.
Section 3 outlines our proposed probabilistic analytical
framework in detail. In Section 4, we discuss the results
on the amount of information conveyed by the users of
our dataset for different touch gestures and their combi-
nations . We discuss the limitation and future directions

4 We use the relative mutual information as our metric for iden-
tifying information. For details, see Section 3.

of this work in Section 5. Finally, we describe related
work in Section 6 and conclude in Section 7.

2 Data Collection
To illustrate the potential of touch-based tracking, we
developed and launched a purpose-built app named
TouchTrack to capture gesture samples. We first give
an overview of the TouchTrack app, followed by our
data collection approach. We then briefly describe some
statistics about our dataset.

2.1 Selection of Gestures

Our selection of gestures was based on how frequently
they are performed by users of smartphones or other
touchscreen devices. We narrowed our selection to
swipes (including left, right, upward and downwards
swipes, and the group of four taken together), taps,
keystrokes and handwriting. Swipes and taps are by
far the most frequent gestures on smartphone apps.
Keystrokes are also frequently used for typing text
messages or entering web addresses. Unlike tap, which
could be performed at any point on the touch screen,
a keystroke is restricted to tapping on the mobile key-
board. We therefore separated the two. Writing on the
touchscreen using fingers is an important alternative in-
put method on a smartphone. We did not include other
less frequent gestures such as pinching (for zooming in
or out).

2.2 The TouchTrack App

The purpose of TouchTrack is to collect gesture sam-
ples as raw readings from the touch sensors, send them
to our server, and finally inform the users about the
uniqueness of their gestures by displaying the results
computed via our framework at the server. To keep the
user interested in using our app, we decided to design
it like a game. The app is made up of four games, three
of them are based on popular open-source games and a
fourth game was purposely developed by us. We selected
these four games so as to capture the user gestures in
a most natural way. We briefly describe each game in
Appendix A.1 along with the screenshots of the games.

When a new user uses TouchTrack, he/she is re-
quired to sign up using a unique username. The user-
name together with the device ID is hashed and then
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stored in our database. This is done to ensure that ges-
ture samples from different users are kept separate to
establish the ground truth. This also helps us to iden-
tify returning users and devices. For matters of ease and
privacy, we did not require the user to enter a password
with the username. Even though our app sends data
in HTTPs, we did not want to collect any additional
sensitive data, such as passwords, from users. Once the
user has played one or more games, the uniqueness of
the corresponding gestures are computed through our
quantitative framework (described in Section 3) and are
shown to the user in both visual and tabular forms.
Screen shots of results are shown in Figure 7 of Ap-
pendix A.1. For user convenience, our app starts show-
ing results after a single gesture. However, to get more
accurate results, the user is encouraged to perform more
gestures. We would like to remark that our results may
still not be reflective of user touch behaviour in the real
world, as displaying uniqueness results might encour-
age the user to change touch behaviour to avoid pri-
vacy leakage. Probable change in user behaviour due to
feedback has been acknowledged before in the case of
browser-based tracking [13]. We have made the Touch-
Track app available on Google Play Store as our objec-
tive is to extend our work in the future to assess the
effectiveness of touch-based tracking as more users are
added.

2.3 The Raw Dataset

To collect gesture samples, we invited participants
through two means: via emails to targeted participants
and via social networking platforms. At first we up-
loaded a closed testing version of TouchTrack on Google
Play Store and invited colleagues and acquaintances via
email to install our app. A total of 25 participants re-
sponded to the first phase. In the second phase, we
published the first version on Google Play Store and
received a further 56 responses through our personal
and social contacts. We received 8 responses from the
users who installed our app without invitation. We also
included them in our analysis. The app was available
on Google Play Store for two months for data collec-
tion purposes. Once the data is collected, we start our
analysis and results interpretation. The data collected
from the 89 users served two purposes: to identify fea-
tures most effective in fingerprinting users and to train
our analytical framework to evaluate the uniqueness of
gestures.

Table 1 shows the list of raw touch features gath-
ered from the touch sensors of the devices used by the
users across all gestures. By default, these features can
be obtained from Android APIs without requiring any
security permission. We used the MotionEvent Android
API to detect and collect touch data. We did not use
motion features for our analysis because we observed
that certain motion sensors such as accelerometer, gy-
roscope and rotation vector did not produce any raw
data in many phones, and returned a null value to the
Android API.

2.4 Ethics Consideration

Prior to data collection, we underwent and obtained an
ethics approval from our organization’s ethics board.
The users were informed about the purpose of Touch-
Track and what data is being collected. Throughout
data collection, we did not attempt to obtain the real
identities of the participants via, for instance, a link-
age study. The data collected was not released publicly.
No identifying information other than the user selected
username and device ID was stored at our server side.
Moreover, only the hash of the username and device
ID were stored. The only other information stored at
the server were the raw data from gestures from each
username-device ID pair. A privacy disclaimer was dis-
played as soon as the app was launched by a participant
providing the above details. The participant was allowed
to opt-out. We informed users that their personal infor-
mation will remain anonymous and took their consent
beforehand.

2.5 Data Statistics

Table 2 shows the summary statistics of our data col-
lection. The numbers are broken down into number of
users, samples of gestures and features associated with
each gesture. We collected a total of 40,600 gesture sam-
ples. Among these samples, swipe and tap gestures had
the most number of samples. There were a total of 89
users who downloaded and used our app; however, only
30 users used all four games and hence provided samples
for all gestures. Our app was installed on 49 different
smart phone models, with Google Nexus 5 being used
by 11 users and Samsung Galaxy S7 Edge by 8 users.
Nine of the 11 users of Google Nexus 5 used our test
smartphone to record gesture samples as they did not
have an Android powered device. We could distinguish
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Table 1. Raw Features

Raw Touch Features X-Coordinate, Y-Coordinate, Finger Pressure, Finger Area,
Screen Orientation, Finger Orientation, Stroke Time, X-Tilt , Y-Tilt

Table 2. Touch Gesture Data Statistics

Gesture Number of Number of Number of
Users Samples Features

Swipes 81 16611 229
Up Swipes 78 3568 229
Down Swipes 71 4781 229
Left Swipes 63 4252 229
Right Swipes 65 4010 229
Taps 89 16225 7
Keystrokes 49 6473 8
Handwriting 36 1291 241
All Gestures: 30 25186
Total: 89 40600

between users of the same device via their hashed user
ID.

3 Methodology for Computing
the Uniqueness of User
Gestures

In this section we describe our methodology behind
computing uniqueness of gestures. We begin with an
overview, followed by notations and then the methodol-
ogy in detail.

3.1 Overview

Recall that the purpose of calculating uniqueness is to
demonstrate touch-based tracking. For this, we need to
show (a) the uniqueness of gestures, (b) similarity of
gestures from the same user. To do this, we first obtain
gesture samples, i.e., series of raw data values captured
from the sensors of the smart device from a set of users.
Once these samples are collected we extract a set of
salient features, thus representing each gesture by a fea-
ture vector. The set of selected features is the topic of
Section 4.1. For now we assume that each gesture is
associated with a fixed set of features. Once we have
populated our dataset with an initial list of users and

gesture samples as instances of feature vectors, we then
proceed to find the uniqueness of the gestures at differ-
ent levels. At the smallest level, we assess the uniqueness
of single features, by checking how many users exhibit
a given ‘test’ feature value among the total users in the
dataset. At the next level we assess the uniqueness of a
feature vector, i.e., a gesture sample, by checking how
many users in the dataset are likely to exhibit a given
test feature vector. Likewise, we do this for a collection
of samples from the same gesture, and finally for the
collection of samples from a set of different gestures. In
what follows, we define an abstract representation of our
dataset, and how we compute the uniqueness of gestures
at multiple levels using this abstract dataset.

3.2 Background and Notations

We denote the set of users by U, the set of gestures by G,
and the feature space by F. We denote our dataset by D
which is modelled as a multiset of rows. The columns of
D are indexed by a u ∈ U, followed by a g ∈ G, a feature
vector f ∈ F, and finally by an average feature vector
f ∈ F. The average feature vector f is the average of all
feature vectors f under a gesture g ∈ G and a user u ∈ U.
The ith feature under F is denoted by Fi. The dataset
is illustrated in Table 3. We define a random variable U
that takes on values from U, a random variable G that
takes on values of subsets of G, and a random variable
Fg that takes on values of subsets of feature vectors from
the gesture g. When considering only a single gesture
g, we shall drop the subscript and denote the random
variable as F . We use the notation {a} to indicate a
set of cardinality more than 1, whose generic element
is denoted by a. For instance, {f} is a set of two or
more feature vectors. The random variable F can take
feature values as well. Abusing notation, we will denote
this by F = fi, where fi is the value of the ith feature.
A predicate on a row from D denoted

(U = u,G = g,F1 = f1,F2 = f2, . . . ,F = f),

is the conjunction of clauses (U = u), (G = g), and so
on. The predicate evaluates to 1 if a row satisfies each
clause, and 0 otherwise. We can have possibly empty
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clauses. When considering a feature vector, we may sim-
ply use F to represent the conjunction of its constituent
clauses. For example, the predicate

(U = Alice,G = Swipe,F = (0.012, 0.567,∗,∗, . . . ,∗)),

evaluates to 1 on the first row of Table 3, where ‘∗’ indi-
cates that the corresponding feature values are not part
of the predicate. A fuzzy predicate is a function that
evaluates to 1, if the feature vector of a row is similar to
the feature vector specified in the clauses according to
a similarity metric. Fuzzy predicates are distinguished
from predicates by replacing either the equality involv-
ing F or F by ≈. For instance, the following is a fuzzy
predicate

(U = Alice,G = Swipe,F ≈ (0.012, 0.567, . . . , 0.314)).

We denote by #(⋅) the number of rows in D satisfying
the predicate (or fuzzy predicate). The entropy of the
random variable U is defined as

H(U) = −∑
u∈U

Pr(U = u) log2 Pr(U = u)

= −∑
u∈U

1
∣U∣ log2

1
∣U∣ = log2 ∣U∣.

This is the minimum number of bits of information re-
quired to distinguish each user in U. The mutual infor-
mation or information gain between U and a realization
a of the random variable A is defined as

I(U ;A = a) = H(U) −H(U ∣ A = a),

where H(U ∣ A = a) is the conditional entropy given as

H(U ∣ A = a) = −∑
u∈U

Pr(U = u ∣ A = a)

× log2 Pr(U = u ∣ A = a). (1)

Finally, the relative mutual information between a real-
ization a of the random variable A is defined as

IR(U ;A = a) = I(U ;A = a)
H(U) = 1 − H(U ∣ A = a)

H(U) . (2)

Table 3. Structure of the Dataset D.

U G
F

F
F1 F2 ⋯

Alice Swipe 0.012 0.567 ⋯ (0.021,0.770,⋯)

0.019 0.599 ⋯

⋮ ⋮ ⋮ ⋮ ⋮

Bob Tap 0.023 0.608 ⋯ (0.010,0.660,⋯)

0.024 0.499 ⋯

⋮ ⋮ ⋮ ⋮ ⋮

The above measures the uniqueness of a realization of a
random variable A through relative mutual information.
To assess the uniqueness of all possible values the ran-
dom variable A can take, we make use of the conditional
entropy

H(U ∣ A) = −∑
a∈A

Pr(A = a)H(U ∣ A = a) (3)

Here, Pr(A = a) is calculated from the probability distri-
bution of the random variable A. From this, the relative
mutual information of the random variable A is

IR(U ;A) = 1 − H(U ∣ A)
H(U) . (4)

Note that while mutual information should suffice as a
measure to assess uniqueness, our choice of relative mu-
tual information is to account for the different number
of users for different gestures, thus enabling us to com-
pare results across gestures on the same scale. In what
follows, we shall assess the uniqueness based on different
realizations of the random variables G and F . This will
be done by first calculating the conditional probabilities
in Eq. 1 which are determined by predicates or fuzzy
predicates, then computing the conditional entropy in
Eq. 1, which then directly allows us to compute the rel-
ative mutual information in Eq. 2. A given realization is
considered highly unique if the relative mutual informa-
tion is close to 1. We will use percentages to represent
the value of relative mutual information in the range
[0, 1] in the natural way. To assess the uniqueness of
the random variables G and F in its entirety, we will
make use of the relative mutual information defined by
Eq. 4.

3.3 Measuring Uniqueness

We measure uniqueness based on a single feature value
from a gesture sample, a single feature vector (i.e., a
gesture sample), a set of feature vectors (i.e., a set of
gesture samples), and finally a set of feature vectors
corresponding to a set of gesture samples from multi-
ple gestures. To measure uniqueness based on a single
continuous feature, we first bin its values within dis-
crete bins and then calculate the probability of a user
producing the feature value within a bin. In contrast,
to evaluate uniqueness of features vector(s), we do not
bin the features, and instead rely on fuzzy predicates.
Our procedure to bin continuous features (for evaluating
uniqueness of single features) is described in Appendix
A.2.
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3.3.1 Uniqueness based on a Feature value

Given a feature value fi corresponding to the ith fea-
ture of a gesture g ∈ G, the uniqueness of the value is
computed as follows. We first calculate the probability
that a u ∈ U is likely to have produced this feature value.
This probability is calculated by Eq 5.

Pr(U = u ∣ G = g,F = fi) =
#(U = u,G = g,Fi = fi)

#(G = g,Fi = fi)
(5)

The conditional entropy in U given the feature value
fi of a sample of the gesture g is given by plugging
the above conditional probability in Eq. 1 to obtain
H(U ∣ G = g,F = fi), from which the relative mutual
information I(U ;G = g,F = fi) can be obtained from
Eq. 2.

Example 1. Suppose our dataset has ∣U∣ = 128 users,
giving us H(U) = log2 ∣U∣ = 7 bits. Suppose now we are
looking at the swipe gesture, and we are interested in
the first feature having value f1 = 0.012. Further suppose
that out of the 128 users, only Alice and Bob have exhib-
ited this value in the dataset, with Alice having exhib-
ited it twice (corresponding to two different samples of
swipe), and Bob only once. We have #(G = Swipe,F1 =
0.012) = 3, #(U = Alice,G = Swipe,F1 = 0.012) = 2,
and #(U = Bob,G = Swipe,F1 = 0.012) = 1. Then
Pr(U = Alice ∣ G = Swipe, F = 0.012) = 2

3 and Pr(U =
Bob ∣ G = Swipe, F = 0.012) = 1

3 . From this we get
H(U ∣ G = Swipe, F = 0.012) = −2

3 log2
2
3 −

1
3 log2

1
3 ≈ 0.92

And finally, IR(U ;G = Swipe, F = 0.012) = 0.8688. We
say that the feature value f1 = 0.012 for the swipe ges-
ture reveals 87% of information.

To assess the uniqueness of the ith feature (and not just
one particular feature value) we calculate the probabil-
ity that the random variable F corresponding to the ith
feature takes on the feature value fi as

Pr(F = fi ∣ G = g) = #(G = g,Fi = fi)
∑f∈F #(G = g,Fi = f)

. (6)

That is we count all instances of the feature value fi and
divide it by the sum of all instances of feature values f in
the range of F . By plugging this value and the result of
conditional entropy of feature values in Eq. 3, we obtain
the conditional entropy pertaining to F , from which we
can compute the relative mutual information I(U ;F )
from Eq. 4.

3.3.2 Uniqueness based on a Gesture Sample

To measure uniqueness of a gesture sample, we use the
entire feature vector f corresponding to the gesture g,
and check against all feature vectors of the user u. Due
to high dimensionality of the feature vector, it is un-
likely that any two feature vectors from the same user
will be exactly the same. We therefore use the fuzzy
predicate in this case, which relies on a similarity met-
ric. We postpone our choice of the similarity metric to
Section 3.4. The conditional probability is calculated as

Pr(U = u ∣ G = g,F = f) = #(U = u,G = g,F ≈ f)
#(G = g,F ≈ f) , (7)

From this probability we can then compute the con-
ditional entropy and relative mutual information as be-
fore. Due to space limit we omit how the relative mutual
information for the entire gesture is computed, which is
similar to the case of the relative mutual information
for a feature.

3.3.3 Uniqueness based on a Set of Gesture Samples

If we are given a set of feature vectors {f} from a gesture
g, we first obtain the average vector f from {f}. Then, we
compare this average vector against the average vector
under F of the user u ∈ U (for the same gesture). Given
this, the probability that the set of gesture samples is
from the user u ∈ U is

Pr(U = u ∣ G = g,F = {f}) = #(U = u,G = g,F ≈ f)
#(G = g,F ≈ f)

(8)

Notice the use of fuzzy predicates. Given this probabil-
ity, the conditional entropy and relative mutual infor-
mation can be computed as before.

3.3.4 Uniqueness based on Multiple Gestures

Given a subset of gestures {g} and their corresponding
sets of feature vectors {fg}, we first obtain an average
feature vector for each gesture, denoted fg, and then
count the number of rows in D that satisfy the product
of the fuzzy predicates generated by the average feature
vectors of the gestures involved. More specifically, the
probability of the collection belonging to a user u ∈ U is
calculated as

Pr(U = u ∣ G = {g},{Fg = {fg}}) =

∏g(U = u,G = g,F ≈ fg)
∑u′∈U (∏g(U = u′,G = g,F ≈ fg))

(9)
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The symbol ∏ stands for product. In this case the prod-
uct is over all gestures in {g}. For instance, if we have
{Swipe,Tap} as two gestures, then we are essentially
checking if the product predicate

(G = Swipe,F ≈ fSwipe) × (G = Tap,F ≈ fTap)

evaluates to 1, which is only possible if both the fuzzy
predicates evaluate to 1 for a given user in D. We di-
vide this by summing the same product predicate for all
users in D. The conditional entropy and relative mutual
information can be computed by plugging in the above
conditional probability.

3.4 Calculating Fuzzy Predicates

To demonstrate how fuzzy predicates are evaluated, we
use a generic feature vector f belonging to a gesture
g ∈ G. This is tested against a feature vector f ′ belonging
to a row in D under F or F (in case of the latter, we
have an average feature vector). As mentioned before,
evaluation of the fuzzy predicate is tied to a similarity
metric. We chose the cosine similarity metric. Assume
the length of f ism, then the cosine of the angle between
f and f ′ is defined as

cos(f , f ′) = ∑m
i=1 fif

′

i√
∑m

i=1 f
2
i

√
∑m

i=1 f
′2
i

, (10)

which ranges between −1 and 1, the latter indicat-
ing complete similarity. Together with a threshold τ ∈
[−1, 1], the cosine similarity metric is then

scos(f , f ′, τ) =
⎧⎪⎪⎨⎪⎪⎩

1, if cos(f , f ′) ≥ τ
0, otherwise

(11)

Example 2. Given a row (u′, g′, f ′, ⋅) of the dataset D
(ignoring the last column under F), the fuzzy predicate
(U = u,G = g,F ≈ f) evaluates to 1 if u′ = u, g′ = g and
scos(f , f ′, τ) = 1.

The threshold τ is set by balancing the true positive rate
(TPR) and the false positive rate (FPR), i.e., the value
that returns the best equal error rate (EER). Details on
this appear in Section 4.5.

4 Results
In this section, we present and discuss the results of
applying our framework to show the uniqueness of ges-
tures. Our goal is to show that touch gestures can be

used to track users. For this, we need to show (a) that
they are highly unique and (b) their ability to iden-
tify returning users. We first identify a set of features
for each gesture.Then we rank the features in terms of
their distinguishing capacity and finally we apply our
methodology on the selected features to show unique-
ness results.

4.1 Feature Identification and Extraction

From the raw features described in Table 1 (cf. Sec-
tion 2.3), we derived more features to capture informa-
tion such as averages, standard deviations, minimums
and maximums. These derived features are called ex-
tracted features. A gesture sample generates a sequence
of raw data points. The length of this sequence depends
on the duration of the gesture and the sampling rate
(usually around a millisecond), which is normally dif-
ferent across devices. This means that the sequences
corresponding to two samples from the same gesture
may not be of the same length. We therefore performed
spline polynomial interpolation [10] to ensure the same
number of data points (length of sequence) across sam-
ples from the same gesture. Since the sequences from
different gestures are expected to be of different lengths,
we did a separate interpolation for each gesture.

We identified a set of most commonly used fea-
tures in literature (on gesture based authentication).
We extracted 229 features for swipes, 7 for taps, 8 for
keystrokes, and 241 for handwriting. Out of these, only 7
features are common across all gesture categories. These
features are Inter-Stroke Time, Stroke Duration, Start
X, Start Pressure, Start Y, Start Area, and Mid-Stroke
Finger Orientation. Table 9 in Appendix A.5 shows the
list of these features. A few of the extracted features
are Median of First 5 Acceleration Points, 80-percentile
of pairwise X-Tilt, Std. Dev. of Pairwise Change of
Area-Position, Direct End to End Direction, End to
End X Distance, Median of Last 3 Velocities Points,
20-percentile pairwise Pressure etc.

4.2 Feature Subset Selection (FSS)

As a first step, we were interested in finding the unique-
ness of gestures as a function of increasing number of
features. To do this, we needed a ranking of features
in terms of their distinguishing capacity.We use the
maximum-relevance-minimal-redundancy (mRMR) al-
gorithm that attempts to constrain features to a sub-
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set which are mutually as dissimilar to each other as
possible, but as similar to the classification variable as
possible [26]. In our case, the classification variable is
the set U of users in our dataset. Given a set of m fea-
tures F1, . . . , Fm to find the highest rank feature, the
mRMR algorithm finds the feature Fi that maximizes
I(U ;Fi), where U takes on values from U, and minimizes
I(Fi;Fj), where j ≠ i. The mutual information I(Fi;Fj)
is calculated by using the joint distribution of features
Fi and Fj through our dataset. Likewise, for more than
one feature, the algorithm returns the subset of features
that maximize, respectively minimize, the cumulative
mutual information. A more detailed description of the
algorithm is given in Appendix A.3.

4.3 Effect of Number of Features on
Uniqueness

In order to determine uniqueness of gestures as a func-
tion of features, we used sets of top i features from each
gesture according to their mRMR rank, where i was in-
cremented in discrete steps until m (the total number
of features). We then evaluated their relative mutual
information using our framework for the uniqueness of
a single gesture sample (cf. Section 3.3.2) and multiple
samples from the same gesture (cf. Section 3.3.3).

To do this we first partitioned the data from each
user-gesture pair into two random but mutually exclu-
sive sets. The first set had 80% of the gesture samples,
and the second had the remaining 20% of the samples.
The larger set was labelled as our dataset D, and sam-
ples from the 20% set were used for “testing.” We shall
call this approach the 80-20 approach throughout the
rest of this paper. We call the 20% set, the testing set.
Thus, to evaluate our methodology, we select a sample
from the testing set (fixing a user and a gesture), and
then check against the dataset D.

Now to check the effect of an increasing number of
features on the uniqueness of gestures, we selected top i
features from the mRMR ranking for incremental values
of i and then used the above mentioned 80-20 partition-
ing. We used an exhaustive approach, i.e., for testing
single samples, we selected each sample in the the test-
ing sets of all users, and then calculated the relative
mutual information using Eq. 4. For testing a set of ges-
ture samples, we used the entire 20% testing set as one
set of gesture samples, and subsequently computed the
relative mutual information. In our methodology, the
relative mutual information for both these categories
requires evaluating the fuzzy predicate, which in turn is

determined by the threshold τ of the cosine similarity
metric. For these results we set a universal threshold of
τ = 0.8, since we wanted to check the effect of mutual
information keeping everything else fixed. The outcome
of this analysis is depicted in Table 4. We note that for
all gestures, the relative mutual information increases
with increasing number of features. Also, the unique-
ness of a set of gesture samples is generally higher than
single samples, and in all cases surpasses the uniqueness
of single samples as we increase the number of features.
The uniqueness of multiple swipe samples is the high-
est, with 92.01% (highlighted green with *), followed by
handwriting (85.93%) and downward swipes (77.52%).
On the other hand, samples of taps and keystrokes ex-
hibit least uniqueness carrying 34.73% and 41.02% of
information. This may also be due to the low num-
ber of features identified for these gestures. We observe
that given a single gesture sample, handwriting provides
79.49% (highlighted green with *) of information about
the user and a keystroke gives the least amount of in-
formation i.e. 28.76%.

The above analysis does not take into account the
true positive rate (TPR) of the uniqueness measure-
ment. Given a test sample from a user u ∈ U, we mark
it as a true positive if the corresponding predicate only
evaluates to 1 on the user u. Otherwise, we mark it as a
false positive. Note that this means that if the predicate
evaluates to 1 for more than one user, then we consider
it as a false positive even if it evaluated to 1 on the user
u. The TPR and FPR are then evaluated over all possi-
ble test samples. Table 5 shows the TPRs and FPRs for
different sets of features corresponding to a single sam-
ple and multiple samples from a gesture. We found that
TPR decreases with the increase in number of features.
The most probable reason for this continual decrease is
the variations in a user’s own touch behaviour as the
dimension of the feature space increases.

With only 15 features, the TPR is 89% or above for
all gestures (with multiple samples). In terms of FPR
rates, we see that keystrokes and taps have relatively
high FPR rates (43% and 37%, respectively, for multiple
samples). The FPR decreases as we increase the num-
ber of features. We selected first 50 features for hand-
writing, 50 for swipes (all four types), 8 for keystrokes,
and 7 for taps (highlighted blue in Tables 4 & 5) for
further analysis, as these presented a good balance be-
tween TPR and FPR. We also performed 10-fold cross-
validation and splits such as 30-70, 40-60 using Weka
to evaluate the relative mutual information, TPR and
FPR of a single gesture sample and multiple samples
from the same gesture. The results gathered from these
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Table 4. Relative Mutual Information for a varying set of features. Green cells with * indicate highest relative mutual information for a
gesture sample and a set of gesture samples. Blue highlighted rows indicate our final selection of features.

Gesture # of Rel. Mutual Information of Gesture # of Rel. Mutual Information of
Features Gesture Sample Set of Gesture Samples Features Gesture Sample Set of Gesture Samples

Swipe 15 43.23% 40.09% Left Swipe 15 47.71% 52.89%
(Expected 20 45.53% 41.91% (Expected 20 50.59% 55.59%

IS: 6.32 bits) 25 46.09% 45.40% IS: 5.97 bits) 25 50.71% 56.85%
30 48.18% 45.60% 30 52.38% 60.03%
50 57.79% 63.39% 50 53.96% 68.66%
75 61.39% 75.34% 75 57.96% 70.62%
100 61.87% 83.28% 100 59.82% 71.11%
150 62.88% 88.50% 150 62.64% 71.55%
200 63.13% 91.23% 200 65.52% 74.23%
229 64.10% 92.01%* 229 65.77% 74.68%

Up Swipe 15 45.93% 43.30% Right Swipe 15 48.29% 53.71%
(Expected 20 48.05% 46.39% (Expected 20 50.03% 54.14%

IS: 6.28 bits) 25 48.26% 46.59% IS:6.02 bits) 25 50.44% 56.00%
30 48.56% 47.43% 30 51.24% 56.19%
50 49.02% 50.23% 50 52.27% 57.48%
75 55.09% 63.81% 75 55.59% 62.62%
100 58.68% 68.79% 100 56.58% 65.35%
150 58.74% 69.22% 150 57.11% 65.88%
200 61.53% 71.94% 200 59.88% 67.48%
229 61.68% 73.11% 229 60.12% 67.65%

Down Swipe 15 48.46% 46.85% Handwriting 15 47.06% 52.24%
(Expected 20 51.44% 49.89% (Expected 20 49.35% 52.78%

IS: 6.14 bits) 25 51.53% 51.17% IS:5.16 bits) 25 52.93% 55.94%
30 51.60% 51.43% 30 55.57% 58.99%
50 52.22% 54.58% 50 68.71% 73.72%
75 58.33% 67.51% 75 72.09% 77.19%
100 60.55% 70.05% 100 74.75% 79.34%
150 62.33% 71.35% 150 78.08% 83.47%
200 65.25% 75.59% 200 78.16% 85.36%
229 65.51% 77.52% 241 79.49%* 85.93%

Keystroke 1 23.92% 17.83% Tap 1 24.80% 15.17%
(Expected 2 26.29% 20.00% Expected 2 26.25% 25.23%
IS:5.61 bits) 3 26.62% 29.97% IS:6.47 bits) 3 27.85% 26.94%

4 26.86% 30.49% 4 28.75% 33.25%
5 26.86% 30.49% 5 29.48% 34.25%
6 27.25% 36.70% 6 29.55% 34.44%
7 27.34% 37.63% 7 29.58% 34.73%
8 28.76% 41.02%

approaches were similar to 20-80 approach. We are thus
mentioning results from 20-80 approach only.

4.4 Uniqueness of Individual Features

Before assessing the uniqueness of features we binned
any continuous features or features with a large domain.
See Appendix A.2 for details. To assess the unique-
ness of features, we again divided our dataset using
the aforementioned 80-20 partition. Then, we exhaus-
tively computed the relative mutual information defined
in Eq. 4 as a measure of uniqueness for each feature
value in the testing sets of all users. We found that 80-
percentile of area in left swipe reveals 56.10% of infor-

mation about a user, followed by 20-percentile of area in
down swipe 55.50%. Similarly, 50-percentile of pressure
yields 46.13% of information from down swipe. Among
features which are shared among all gestures,start area
contains 52.5% of information, followed by start pres-
sure yielding 45.4% of information. On the other ex-
treme, inter-stroke time for a keystroke reveals min-
imum amount of user information, i.e,. 7%. We ob-
serve no trend (in terms of dependency) among fea-
tures,except that relative information decreases in de-
cending order of the features. We also computed the
cumulative distribution function (CDF) of the relative
mutual information through Eq. 2 for a given feature.
We present the CDF of top five features of every ges-
ture in figure 1. It is evident that features corresponding
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Table 5. TPR and FPR of Gesture for a varying number of features. Green cells with * indicate highest TPR and low FPR for a gesture
sample and a set of gesture samples. Blue highlighted rows indicates our final selection of features.

Gesture # of Gesture Sample Set of Gesture Samples Gesture # of Gesture Sample Set of Gesture Samples
Features TPR FPR TPR FPR Features TPR FPR TPR FPR

Swipe 15 0.67 0.15 0.92 0.20 Left Swipe 15 0.55 0.07 0.91 0.14
20 0.67 0.14 0.94 0.20 20 0.53 0.07 0.90 0.12
25 0.62 0.11 0.94 0.17 25 0.51 0.06 0.86 0.12
30 0.57 0.11 0.92 0.16 30 0.46 0.04 0.86 0.11
50 0.23 0.02 0.89 0.07 50 0.34 0.02 0.83 0.07
75 0.14 0.009 0.89 0.03 75 0.33 0.02 0.81 0.07
100 0.11 0.007 0.89 0.02 100 0.31 0.02 0.77 0.07
150 0.10 0.007 0.84 0.01 150 0.30 0.02 0.78 0.07
200 0.10 0.007 0.76 0.009 200 0.29 0.02 0.77 0.06
229 0.10 0.006* 0.76 0.009* 229 0.29 0.02 0.75 0.06

Up Swipe 15 0.56 0.10 0.89 0.16 Right Swipe 15 0.55 0.08 0.93 0.13
20 0.54 0.10 0.89 0.14 20 0.54 0.06 0.88 0.12
25 0.52 0.09 0.88 0.14 25 0.53 0.06 0.86 0.12
30 0.52 0.09 0.88 0.14 30 0.51 0.06 0.86 0.11
50 0.51 0.08 0.85 0.13 50 0.51 0.05 0.85 0.10
75 0.40 0.05 0.82 0.07 75 0.41 0.03 0.85 0.09
100 0.37 0.05 0.79 0.05 100 0.41 0.03 0.85 0.08
150 0.37 0.04 0.79 0.05 150 0.41 0.03 0.85 0.08
200 0.35 0.04 0.77 0.05 200 0.39 0.03 0.83 0.08
229 0.34 0.04 0.74 0.04 229 0.39* 0.03 0.83 0.08

Down Swipe 15 0.57 0.11 0.92 0.17 Handwriting 15 0.67 0.11 0.97 0.16
20 0.53 0.09 0.90 0.14 20 0.64 0.10 0.94 0.16
25 0.53 0.08 0.88 0.14 25 0.47 0.05 0.92 0.14
30 0.53 0.08 0.87 0.14 30 0.47 0.04 0.89 0.13
50 0.49 0.08 0.85 0.12 50 0.29 0.01 0.88 0.06
75 0.40 0.04 0.85 0.07 75 0.24 0.01 0.82 0.05
100 0.38 0.04 0.84 0.06 100 0.21 0.009 0.79 0.05
150 0.34 0.03 0.84 0.05 150 0.15 0.006* 0.73 0.04
200 0.32 0.03 0.82 0.04 200 0.14 0.006* 0.64 0.03
229 0.32 0.03 0.77 0.04 241 0.13 0.006* 0.61 0.03

Keystroke 1 0.46 0.23 0.96 0.43 Tap 1 0.54 0.26 0.95 0.37
2 0.44 0.21 0.96 0.40 2 0.53 0.22 0.94 0.35
3 0.43 0.18 0.95 0.37 3 0.53 0.21 0.94 0.34
4 0.41 0.17 0.93 0.36 4 0.32 0.10 0.85 0.27
5 0.40 0.17 0.93 0.36 5 0.31 0.10 0.85 0.27
6 0.22 0.09 0.83 0.32 6 0.31 0.10 0.85 0.26
7 0.22 0.09 0.83 0.32 7 0.31 0.10 0.85 0.26
8 0.18 0.08 0.79 0.27

to different statistics of area and pressure, e.g., average,
percentiles etc., reveal the most information about a
user, i.e., more than 40% of information for half of the
users in our database. As before, we notice that all types
of swipes and handwriting reveal the most information
about users, and taps and keystrokes have relatively less
information leakage about users.

4.5 Uniqueness of a Gesture Sample

Recall from Section 3.3.2 that for gesture sample, we
need to calculate the fuzzy predicate using the cosine
similarity metric (cf. Section 3.4). Once we have fixed

Table 6. Thresholds of the cosine similarity metric for a gesture
sample. τ = Threshold, EER = Equal Error Rate.

Gesture τ EER Gesture τ EER
Swipe 0.38 22% Up Swipe 0.55 27%
Down Swipe 0.52 28% Left Swipe 0.48 22%
Right Swipe 0.58 22% Handwriting 0.40 19%
Tap 0.29 35% Keystroke 0.13 39%

the set of features, and hence fixed the feature space,
we need to find the threshold τ of the cosine similarity
metric that balances uniqueness of gesture samples and
correctly (and uniquely) identifying a returning user. To
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(h) Handwriting
Fig. 1. Cumulative Distribution Function (CDF) of Features. Y-axes represents fraction of the participant population and X-axes are
Relative Mutual Information in percentage. The graph shows that Swipe, Left and Down Swipe reveals more than 50% of information

for half of the population, respectively.

do this, we once again split the data into an 80-20 par-
tition, and then evaluated the equal error rate (EER)
(i.e., the rate at which 1−TPR equals FPR) by varying
the threshold. Table 6 shows the threshold that gave the
lowest EER against each gesture. We can see that our
methodology correctly re-identifies a returning user up
to 81% (19% EER) of the time if given a handwriting
sample. The worst performance is a TPR of 61% (39%
EER) when a sample of keystroke is provided. The ROC
of a gesture sample for all gesture types is given in Ap-
pendix A.5.

After fixing the threshold, we computed the unique-
ness through our relative mutual information metric,
i.e., Eq. 3. The results showed that a handwriting sam-
ple reveals the highest amount of information (68.71%),
followed by swipes (57.77%). The four types of swipes,
i.e., left, up, down, and right swipes, yield 53.9%, 52.2%,
52.2%, and 48.5% of information, respectively. However,
taps and keystroke reveal only 29.5% and 26.2% of infor-
mation, respectively. Figure 2 shows the CDF of a ges-
ture sample calculated for each of the gesture (through
the relative mutual information metric of Eq. 2). We
observe a considerable difference in the range of infor-
mation revealed by different gestures, with handwriting
exposing more than 60% of information for half of the
users in the database. Following this, the swipes also
show high uniqueness, revealing 30% to 65% of informa-
tion about 75% of users. This suggests that handwriting

and swipes carry highly identifiable information about
users.
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Fig. 2. CDF of a Gesture Sample. Relative Information of
Respective Categories are: -●- Swipe: 57.7%, -9- Up Swipe:

48.5%, -◾- Down Swipe: 52.2%, -+- Left Swipe: 53.9%, -⋆- Right
Swipe: 53.3%, -◆- Tap: 29.5%, -▴- Keystroke: 26.2%, -×-

Handwriting: 68.7%

4.6 Uniqueness of a Set of Gesture
Samples

We now consider the amount of information revealed by
multiple samples of each gesture. We computed a dif-
ferent threshold of the cosine similarity metric for this
category, and chose the one which resulted in the best
EER. Table 7 shows the threshold and the correspond-
ing EER values. Comparing this table to Table 6, we
see that the rate of re-identifying a returning user is
higher reaching up to 91% (9% EER) for handwriting.
This means that combining a few samples of the same
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gesture may allow for more accurate tracking. The ROC
of a set of gesture samples for all gesture types are given
in Appendix A.5.

Table 7. Thresholds of the cosine similarity metric for a set of
gesture samples. τ = Threshold, EER = Equal Error Rate.

Gesture τ EER Gesture τ EER
Swipe 0.75 10% Up Swipe 0.77 16%
Down Swipe 0.78 14% Left Swipe 0.75 12%
Right Swipe 0.77 12% Handwriting 0.76 09%
Tap 0.85 20% Keystroke 0.85 23%

Based on the threshold values obtained, we then
apply the cosine similarity metric on the dataset and
calculate relative mutual information through Eq. 4.
Once again handwriting reveals 73.7% of information,
followed by left swipe which yields 68.6% of information
of user gestures. In accordance with previous results,
taps and keystrokes reveal minimum amount of informa-
tion about users, i.e., 34.71% and 41.0%, respectively.
Looking at the CDF of relative mutual information in
Figure 3, we can observe that swipes, its subtypes, and
handwriting consistently perform better in revealing in-
formation than taps and keystrokes. As discussed ear-
lier, the less information from keystrokes and taps can
be due to the less number of features identified for these
gestures.

0% 20% 40% 60% 80% 100%
Relative Mutual Information

0.00

0.25

0.50

0.75

1.00

CD
F

Fig. 3. CDF of Set of Gesture Samples. Relative Information of
Respective Categories are: -●- Swipes: 63.3%, -9- Up Swipes:
50.23%, -◾- Down Swipes: 54.5%, -+- Left Swipes: 68.6%, -⋆-

Right Swipes: 57.4%, -◆- Taps: 34.7%, -▴- Keystrokes: 41.0%, -×-
Handwriting: 73.7%

4.7 Uniqueness of Gesture Categories
Combination

Next we consider multiple gestures in different com-
binations and measure their uniqueness through our
methodology outlined in Section 3.3.4. Figure 4 shows
the quantification results for different gesture combina-
tions. We found that a combination of all gestures re-

veal a maximum of 98.89% of information about users,
followed by the combination of swipes, handwriting &
keystrokes that yield 98.5% of information. In contrast,
the combination of taps and keystroke reveals minimum
information, i.e., 33.5%. We would like to emphasise
here that information revealed by the combination of
various gestures is dependent on the number of users
who had performed all gestures in the combination. This
number was different for different gesture combinations.
For example, the total number of users who performed
taps was 89, whereas only 49 users submitted keystroke
samples (cf. Table 2). Furthermore, the total number
of users who had performed both taps and keystrokes
were 45. This is one reason for our choice of the rela-
tive mutual information metric (as opposed to simple
mutual information) which “normalises” the mutual in-
formation.
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Fig. 4. Uniqueness of Combination of Gestures

We also tested these gesture combinations in terms
of re-identifying returning users. The thresholds for the
cosine similarity metric for each gesture were as reported
in the previous section (Table 7). Figure 5 shows the
TPR and FPR of the different combinations of gestures.
Since the threshold for the cosine similarity metric for
each gesture was already set, the figure does not report
EER as TPR and FPR are not balanced. For this reason,
we also show the true negative and false negative rates.
We see that as we increase the number of gestures in
our combination, the FPR drastically decreases, but so
does the TPR. For instance, all gestures together yield
0.99% FPR but also a low TPR (just above 40%). The
lowest FPR was recorded by the combination of swipes,
handwriting and keystrokes (0.85%). The main reason
for a big drop in TPR as compared to the rate of sin-
gle gestures, is mainly due to the rather strict metric of
only labelling a given combination as being from a user
if the predicate for each gesture evaluates to 1 (cf. Sec-
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tion 3.3.3). This can be changed by using, for instance,
a majority rule.

We also investigate the impact of different users us-
ing the same device however, due to space limitation we
present our results in appendix A.4.

5 Discussion
Our results reveal some important findings which we
enlist below.
1. Multiple samples of a gesture taken together reveal

more accurate information about a user than a sin-
gle sample of a gesture. This means that tracking
based on collecting larger number of user samples is
likely to be more accurate. Having said that a single
gesture sample or a single feature of a gesture also
reveal enough information (upto 68% and 56%, re-
spectively) so as significantly narrow down the set
of possible users for tracking.

2. Swipes and handwriting carry more information as
compared to taps and keystrokes. This is largely due
to the rich set of information that can be derived as
features from swipes and handwriting. In contrast,
taps and keystrokes are simpler gestures from which
only a few characteristic features can be derived.

3. Features based on the area and pressure of the fin-
ger performing the gesture are the most informative.
This shows that there is significant inter-user vari-
ation in the area covered and the pressured exerted
on the screen.

4. Overall, we show that tracking using touch gestures
is highly feasible and accurate. This is demonstrated
by the fact that we can correctly identify a return-
ing user with a true positive rate of up to 91% with
the handwriting samples. Though, TPR is a critical

metric for an authentication system that evaluates
the system’s ability to correctly identify users. How-
ever, in case of tracking, a near 100% TPR is less
critical, e.g., it may be acceptable for an advertising
company to correctly track 90% of users and display
related ads, whilst showing unrelated ads to 10%.
This is indeed the case with our scheme, where 9%
of users will be incorrectly classified (receive irrel-
evant ads). Still, our methodology would correctly
classify 91% of the users to display relevant ads.
In future, we plan to expand the framework to im-
prove the classification results, and hence minimise
the FPR.

5. Our data collection procedure did not impose any
condition on how users needed to interact with their
smartphones such as sitting, standing, and walk-
ing postures. Our results are still able to show high
uniqueness and accurate re-identification of return-
ing users.

Touch-based Tracking vs. Continuous/Implicit
Authentication:
The reader might confuse the notion of touch-based
tracking with touch-based continuous or implicit au-
thentication. Even though the main goal of this paper is
to quantify the amount of information carried by touch
gestures and hence to evaluate the tracking capabilities
using touch based features, in the following we would
like to clarify some major differences between the two
notions. Conceptually, the goal of authentication is to
verify a claimed identity which assumes prior knowl-
edge of the identity. The aim of touch-based tracking
is to track users with or without the knowledge of any
disclosed identity. Here we highlight further technical
differences.
1. A typical continuous authentication scheme involves

a classifier which is trained on the data of a tar-
get user.5 This training data is gathered during a
preceding registration phase. The classifier knows
which training model to target for classification
given a claimed identity. Touch-based tracking on
the other hand is supposed to function without
knowing the identity of the current user. This im-
plies no registration phase and therefore the absence
of training models for target users. Thus, classifica-

5 Or a set of users using the same device, in which case each
user has a separate training model. See for instance [37].
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tion methods used for continuous authentication are
not readily applicable for touch-based tracking.

2. Continuous authentication schemes require a cer-
tain number of samples before an authentication
decision can be made with confidence. This is less
of a stringent requirement on touch-based tracking,
and tracking may proceed with even a single ob-
servation. The probable user set may be large, but
it does not hinder tracking. Therefore, classification
methods used in continuous authentication schemes
are too restricted for use in touch-based tracking.

3. As a corollary to above, high classification rate, i.e.,
near 100% TPR and low FPR, is critical for the
success of a continuous authentication scheme. In
the case of tracking, a high TPR or misclassification
rate is less critical, e.g., it may be acceptable for an
advertising company to correctly track 90% of users
and display related ads, whilst showing unrelated
ads to 10%.

4. A final point is around measuring uniqueness. The
goal of touch-based tracking is to illustrate how
tracking is probable. This involves measuring how
touch gestures, for instance, convey unique informa-
tion. This needs to be measured at all levels: from
single features to a collection of samples from multi-
ple gestures. Our goal is to demonstrate how differ-
ent granularity of information contained in gestures
contribute to uniqueness and subsequent tracking
of users. Some of this information does not lead to
(successful) continuous authentication, e.g., unique-
ness of single features. On the other hand, for touch-
based tracking, this information is useful as it can
be used in conjunction with other information (not
necessarily from gestures) to more accurately track
users.

In light of the above, we argue that touch-based track-
ing requires a different methodology from continuous
authentication systems (to assess uniqueness of touch-
based gestures).

Limitations:
We have only used the cosine similarity metric to eval-
uate uniqueness. We have not investigated other sim-
ilarity metrics such as Euclidean distance, manhattan
distance, and Jaccard index for comparison. Our main
goal was to demonstrate the feasibility of touch-based
tracking, and for that fixing a representative similar-
ity metric was sufficient. Our quantitative methodology
can also be extended by replacing the similarity metric

with a machine learning classifier such as support vector
machines (SVM) or k-nearest neighbours (kNN).

Our focus in this paper has been on four commonly
used touch gestures. It is possible that other not-so
widely used gestures such as pinch-in, pinch-out, drag,
touch and hold, and multi-finger touches may lead to
better unique identification rates of users and conse-
quently user tracking. Another important aspect for fu-
ture investigation is to verify our methodology for more
complex scenarios such as single-device multi-user track-
ing and multi-device single-user tracking. The first sce-
nario distinguishes between multiple users accessing the
same device, e.g., a smartphone in a family accessed by
parents and kids. The second scenario is the tracking
of the same user across multiple devices. This scenario
is quite realistic as the average number of connected
devices per person is 3.5 [3]. Therefore, tracking user
across multiple devices can create a potential risk to user
privacy. Cross-device tracking is not straightforward to
evaluate as it requires a more generalized approach. For
example, it requires selecting “stable” features across all
types of devices. This requires significantly more work
in data collection and measurement to validate the sta-
bility of features across devices, which we intend to work
on in the future.

The stability of the gesture based fingerprint with
time also needs to be investigated, as the user behaviour
normally changes with time and it may have an impact
on the accuracy of the uniqueness. We also need to ver-
ify the reliability and accuracy of our methodology as
more users and more gesture data is collected through
out TouchTrack app. Moreover, we did not at present
take motion sensor features into account. There is likely
a possibility that user uniqueness increases with the ad-
dition of these features. Our framework heavily relies
on raw features extracted from android API; it assumes
that raw features can be accessed from API’s without
requiring security permissions. While this assumption is
valid for now, a number of other ways could be identified
and used to extract raw features from mobile API’s. Fi-
nally, we did not apply our framework on other mobile
operating systems (OS) such as iOS andWindows, as we
cannot access the raw features from these OS without
having security permissions.

6 Related Work
Several techniques, in the past, have been proposed
on implicit/continuous authentication. Frank et al.
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[14] presented an Implicit Authentication (IA) scheme
named ‘Touchalytics’ to authenticate user based on
their finger movements on a touch screen of a smart-
phone. Their scheme used mutual information to select
features that give high information gain. Sherman et al.
[32] studied free-form multitouch gestures for mobile au-
thentication. A part of their work used mutual informa-
tion to illustrate the security strength of free-form ges-
tures. However, they did not apply mutual information
directly to gesture data. Instead, they first preprocess
the data to remove any predictable information from
the gestures (using second order autoregressive model).
The residual of each gesture sample thus obtained, is
used to measure the mutual information between two
gesture samples. The overall purpose was to assess the
security strength of free-form gestures for which they
use mutual information to weed out any predictable in-
formation content in those gestures. Contrary to this, we
directly apply mutual information on the gesture sam-
ples as our goal is to measure the amount of information
carried by touch gestures, and to see how uniquely iden-
tifiable a user is based on the information contained in
gestures. Secondly, mutual information is not further
used for authentication in the work by Sherman et al.
In contrast, in our work, we use the mutual informa-
tion metric (relative mutual information to be precise),
to measure information at all levels including combina-
tions of gesture samples.

Like wise, there are a number of other touch gesture
based continuous/implicit authentication schemes pro-
posed in [1, 23, 28, 31, 37, 40, 41]. Keystroke dynamics
for authenticating mobile phone users have also been
widely studied [15, 17, 21, 36, 39]. A body of work has
also been conducted on Unobtrusive methods for IA on
mobile phones such as Gait-based IA schemes [11, 35]
and context aware schemes [5, 16, 33]. Our work differs
significantly from the above mentioned schemes based
on the reasons given in Section 5.

Device and browser fingerprinting has been numer-
ously demonstrated by the research community. Perhaps
the pioneering work in the threat of tracking dates back
to Sweeney, who showed for the first time that coarse-
grained information such as birthday, gender, and ZIP
code can uniquely identify a person [34]. This work was
followed by several studies that provided measurement
insights into web and device tracking. Eckersley [13]
quantified the uniqueness of web browsers based on user
agent and/or the browser configuration (plugins, fonts,
cookies, screen resolution etc.). Olejnik et al. [25] per-
formed a large-scale analysis of web browsing histories
to track web users. Similarly, a number of device and

browser tracking methods have been demonstrated in
[20, 22, 38].

A body of work also focused on fingerprinting mo-
bile device. Studies by Kurtz [19] and Bojinov [2] focus
on different physical characteristics of a mobile device,
with the former focusing on device configurations and
the latter utilizing the noisy nature of hardware sen-
sors such as accelerometer and microphones. Similarly,
work performed in [6–9, 12, 42] focused on fingerprint-
ing devices based on different physical characteristics.
A number of studies has also focused on identifying mo-
bile user traits and characteristics using the information
provided by mobile SDKs to third party apps, such as
list of installed apps, running apps, device model, oper-
ating systems etc. [19, 30].

Our work differs from the abovementioned tech-
niques which are confined to fingerprinting virtual iden-
tities. For-instance, the browser fingerprinting tech-
niques utilized characteristics such as plug-ins, fonts,
caches, histories etc. to uniquely identify a browser.
Likewise, keystroke dynamics-based tracking focuses ei-
ther on keyboard-equipped devices or keystroke based
gestures only. By comparison, our demonstration of
touch-based tracking can track the physical identity of a
person by fingerprinting the touch gestures on a mobile
device used by the same person or the same device used
by different users.

7 Conclusion
In this paper, we introduce a new privacy threat in-
duced by the collection and monitoring of touch ges-
tures of mobile device users. We proposed and developed
an analytical framework that quantifies the amount of
information carried by the user touch gestures mainly
swipes, keystrokes, taps, and handwriting. We quantify
uniqueness at four different levels from a feature value
to the combinations of gestures altogether. In addition,
we also developed an android app, called TouchTrack,
that collects users gesture data and provides real-time
results about the uniqueness of their gestures.

Our findings highlight that user touch gestures ex-
hibit high uniqueness. Additionally, we also showed that
returning users could be correctly re-identified with high
accuracy, indicating that touch-based tracking is possi-
ble. We plan to extend our framework to demonstrate
other aspects of touch-based tracking such as cross-
device user tracking.
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A Appendix
This supplementary section gives more insights on the
information presented in above sections.

A.1 TouchTrack App Overview
The TouchTrack app consists of three well-known games
and one purpose-built game. A brief description of
games are given below:
1. 2048: We used this game to collect swipes. It is a

free and open-source game which is played on a 4
by 4 grid having numbered tiles that need to be
swiped in any of the four directions. We selected
this game since it is widely known and it captures
swipes mimicking their usage in a natural way, i.e.,
while reading emails or swiping through an image
gallery.

2. Lexica: We used this game to collect taps. It is an-
other open-source free word game that gives the user
three minutes to find as many words as possible on
a 5 by 5 grid of random letters. The original be-
haviour of the game requires user to drag letters to
make a single word. For our work, we changed the
drag operation to a tap, and ask user to tap on the
letter to select it, or tap on again the same letter for
de-selection. The grid of 5*5 allows user to tap on
almost every point of screen, thus simulating natu-
ral taps.

3. Logo Maniac: We used this game to collect
keystrokes. The game tests the user’s ability to re-
call popular brands by showing logos and asking
them to type the brand name. We modify this game
by only having the most popular brands in our
database, and providing hints to user if they can-
not recall it. We modified the keyboard layout of
the game to make it similar to the keyboard layout
used for entering texts in Android phones, to cap-
ture the user’s natural typing behaviour on phones.

4. Write Something: We used this game to collect
handwriting samples. This game was purpose-built
by us. It asks users to write a word shown at top
left corner of the screen with a finger. User is pro-
vided with a large area on the screen to write in any
direction or from any point.

The screen shots of the TouchTrack App are displayed in
figure 6, while figure 7 shows the shots of result screen.
We show uniqueness results for a feature, set of gesture
samples, and multiple gestures to our app users.

(a) 2048 (b) Logo
Maniac

(c) Write
Something

(d) Lexica

Fig. 6. TouchTrack Game Screens

(a) Results
Overview

(b) Gesture
Results

(c) Graphs (d) Summary

Fig. 7. TouchTrack Result Screens

A.2 Binning Feature Values
If a feature is continuous, then the probability that its
corresponding random variable F has the value f is 0.
In an actual implementation, continuous features are re-
placed by their floating point analogues. Still, the prob-
ability that the random variable exhibits the exact value
f is negligibly small. This will result in our uniqueness
based measure returning every feature value as unique
(even from the same user). We therefore, bin features
that are either continuous or have a large domain. Let
σ denote standard deviation. Fix a gesture g ∈ G, let
n = #(G = g) denote the number of samples of the fea-
ture. We use Scott’s formula [29] to obtain the optimum
bin size ∆f as

∆f = 3.49σ(F )
n

.

Given this bin width the total number of bins are then

⌈maxF −minF
∆f

⌉ .

Given a feature value f , its bin is calculated as

b = ⌈f −minF
∆f

⌉

The feature value f is then converted to the feature
value

f̂ = b∆f +minF
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The value f̂ is then stored in the dataset D instead of
f .

A.3 The mRMR Algorithm and Results
We intend to select features which have a potential to
uniquely identify users based on touch gestures. In or-
der to select the most distinguishing and non-redundant
features from the given list, mRMR defines the sub-
set of features that maximizes mutual information with
the class label I(F ;C) and minimizes the information
between I(fi; fj)6 To apply mRMR, one must con-
vert the features to discrete variables. We discretize
features using bin’s approach and use scott’s rule to
get equally spaced bins. We input a list of features

Input: Set of all features Stot = {f1, f2, ......fk}, a
gesture g ∈ G, and a Class c.

1 Initialize Fsel ← ∅, β ← 1.0
∣Stot ∣

.
2 for i = 1 to ∣Stot∣ do
3 Compute feature relevancy I(fi; c) using

I(S, c) = I({fi, i = 1,2, ...k}; c)
4 Select feature which has the highest value i.e.

max(I(S; c))
5 if Fsel == ∅ then
6 Append Fsel ← Fsel + fmax

7 Set fsel ←max(I(S; c))
8 if Fsel == ∣Stot∣ then
9 break

10 for j = 1 to ∣Stot∣ do
11 if fj ∉ Fsel then
12 Compute I(fsel; fj).
13 Combine relevancy and redundancy as

∅(fj) = I(fsel; c) - β ∗ I(fsel; fj).
14 if fj ≥ fj−1 then
15 fsel ← fj

7

16 Append Fsel ← Fsel + fsel

17 Return Fsel
Algorithm 1: mRMR Feature Selection Algorithm

Stot = {f1, f2, ......fk} of dimension k and a gesture g to
mRMR algorithm, and receive a selected list of features
Fsel with dimension m as an output, where m ≤ k, and
F ⊆ S. The subset F should produce high uniqueness
and better classification accuracy compared to feature
set S. The algorithm starts with an empty list and it-
eratively adds one feature at a time by keeping high
relevancy and minimum redundancy. The relevancy is
determined by measuring the mutual information of a

6 mRMR follows filter-based approach with entropy and infor-
mation gain being an inherent part of feature selection.
7 Incrementally select the jth feature from the remaining set S−
Fsel that maximizes ∅(.) using the eq. maxfj∈S−Fsel [I(fsel, c)−

β ∗ I(fsel, fj)]

feature with the class label I(fi;C) while redundancy
is measured between features I(fi; fj) . The algorithm
terminates when all features in S are exhausted. At the
end, we obtain list of features F ranked merit-wise along
with their MRMR values. In our case, we picked the fea-
tures which were giving high relevancy, low redundancy,
and where the improvement in mRMR values was not
significant. The mRMR algorithm for finding the best
subset of m features using forward selection strategy is
formalized below.

Figure 8 shows resulting mRMR values correspond-
ing to features of swipe, its sub-types, and handwriting.
It is clear that mRMR values become a lot consistent
after a certain range of features e.g. 170. Moreover, we
observe a sharp decline in mRMR values after a set of
50 features which indicates that features have low rele-
vancy to the class but high dependency to other features
after a certain range. Also, note that x-axis starts with
the second feature instead of first; the reason is that
mRMR algorithm selects the first feature based only on
the maximum relevancy between a feature and a class,
as mentioned in Steps 4 to 7. While this could be a draw-
back of mRMR, we, however, validate selected features
by applying our framework and also by using classifica-
tion metrics.
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A.4 Users using Same Devices
We select “Nexus 5” as our primary device to analyze
uniqueness results for users accessing our app through
the same device. We chose “Nexus 5” because it is was
most used model of phone in our study, primarily be-
cause our test smartphone is also Nexus 5, which were
given to users who did not possess an Android phone, for
data collection. Table 8 shows the statistics of analyzed
data. Our results indicate that users are highly recog-
nizable on the same device. For a set of gesture sam-
ples, the performance of keystrokes and taps are fairly
better on a single device as compared to multiple de-
vices. We found that features with a single data point,
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Table 8. Touch Data Statistics

Gesture Users Sp. Gesture Users Sp.

Swipes 08 920 Up Swipes 08 244
Down Swipes 07 217 Left Swipes 07 214
Right Swipes 08 245 Handwriting 08 259
Taps 09 2653 Keystrokes 08 1614
Total Samples: 6366 Sp. = Samples

such as Start X, Start Y, Start Pressure, Start Area, etc.
highly contributes towards user uniqueness for keystroke
and taps. Similarly, handwriting and overall swipes also
show improved performance with the Finger Area being
most prominent feature.

Figure 9 shows the CDF of a set of gesture sam-
ples. We observe that handwriting reflects 100% of user
identification followed by swipes with 95.83% of mutual
relative information. Keystrokes and taps reveal 85.5%
and 77.7% of user information respectively. The perfor-
mance of swipe sub-types are also improved except for
the up swipes (54%).

Figure 10 is the CDF of a gesture sample. We found
that the performance of a handwriting and a swipe is
overall improved, with 100% and 80.8% of identification
respectively. It is noted that these results reflect a subset
of the user data for a single Nexus 5X device. It could
be concluded that these results are influenced from the
device type and size of the subset. In order to confidently
verify our suspicions, we need to collect and analyze
data from other types of devices with more user data
and consider it as part of future work.

A.5 Results Summary
The ROC Curves of a gesture sample and set of gesture
samples are shown in figure 11 and 12. Table 9 and 10
represent the summary of results corresponding to each
gesture and combinations.
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Table 9. Summary of Results - Gesture Sample
Gesture Gesture Sample Set of Gesture Samples Features List

Rel. Inf. TPR Rel. Inf. TPR
Swipe 57.79% 76.11% 63.33% 89.85% Stop Area, 80-percentile pairwise X-Tilt, Start Area, Mid-Stroke Pressure, 80-percentile pairwise Area, Std. Dev. of Pairwise Velocity, Std. Dev. of Pairwise Change of Area-Position, 20-

percentile pairwise Area, 50-percentile pairwise Area, End to End Acc.*, Distance, Start Pressure, End Point of Pairwise Area, Start Point of Pairwise Area, Mid-Stroke Area, Std. Dev. of
Pairwise Area, Average of Pairwise X-Tilt, Average of Pairwise Area, 50-percentile pairwise Pressure, 20-percentile pairwise Change of Area-Position, 80-percentile pairwise Pressure, Median
of Last 3 Velocities Points, 20-percentile pairwise Pressure, Average of Pairwise Pressure, 80-percentile pairwise Change of Area-Position, Start Point of Pairwise Pressure, Stop Pressure,
Start Point of Pairwise X-Tilt, Start Point of Pairwise Change of Area-Position, Std. Dev. of Pairwise Change of Pressure-Position, Start Point of Pairwise Velocity, End Point of Pairwise
Pressure, 80-percentile pairwise Y-Tilt, Std. Dev. of Pairwise Pressure, Start Point of Pairwise Direction, Average of Pairwise Change of Area-Position, Start Y, 50-percentile pairwise X-Tilt,
End to End Pressure Distance, 20-percentile pairwise X-Tilt, Start Point of Pairwise Change of Pressure-Position, Median of First 5 Acc. Points, Average of Pairwise Change of Pressure-
Position, Start Point of Pairwise Y Velocity, Average Velocity, 20-percentile pairwise Change of Pressure-Position, Average of Pairwise Y-Tilt, 80-percentile pairwise Change of Pressure-
Position, End Point of Pairwise X-Tilt, Direct End To End Direction, Average of Pairwise Y, Start Point of Pairwise Y-Tilt

Up Swipe 48.56% 74.11% 50.23% 84.44% Stop Pressure, Std. Dev. of Pairwise X-Tilt, Average Velocity, Start Pressure, Start Y, Average of Pairwise X-Tilt, Std. Dev. of Pairwise Area, 20-percentile pairwise Pressure, 80-percentile
pairwise Area, 20-percentile pairwise Area, Phone Orientation, End Point of Pairwise Pressure, Average of Pairwise Area, End Point of Pairwise X-Tilt, Stop Y, End Point of Pairwise Area,
Start Point of Pairwise Pressure, Start X, Median of First 5 Acceleration Points, Average of Pairwise Pressure, 50-percentile pairwise Area Acc., 50-percentile pairwise Y Acc., 50-percentile
pairwise Pressure Acc., 50-percentile pairwise Change of X-Tilt Position, Std. Dev. of Pairwise Pressure, Start Point of Pairwise X-Tilt, Start Point of Pairwise Area, Stop X, Average of Pair-
wise Direction, 80-percentile pairwise Pressure, Std. Dev. of Pairwise Y-Tilt, End to End Y Distance, 80-percentile pairwise Y Acc., 20-percentile pairwise X-Tilt, Length of Trajectory, 50-
percentile pairwise Acc., 80-percentile pairwise Pressure Acc., Average of Pairwise Y-Tilt, 50-percentile pairwise X Acc., Std. Dev. of Pairwise X-Tilt Acc., 20-percentile pairwise Change of
Area-Position, Start Point of Pairwise Y-Tilt, 20-percentile pairwise Direction, End to End X Distance, 50-percentile pairwise Area, End Point of Pairwise Y-Tilt, 50-percentile pairwise X,
20-percentile pairwise Change of Pressure-Position, Direct End To End Direction, 20-percentile pairwise Raw Y-Tilt

Down Swipe 52.22% 72.64% 54.58% 86.12% Start Point of Pairwise Area, 50-percentile pairwise Acc., Median of First 5 Acc. Points, Start Y, Stop Pressure, Start Point of Pairwise Change of Area-Position, Start Pressure, 50-percentile
pairwise Acc., 50-percentile pairwise Pressure Acc., Average Velocity, Std. Dev. of Pairwise Area, 80-percentile pairwise Pressure Acc., End Point of Pairwise Area, Average of Pairwise X-
Tilt, Average of Pairwise Area, Start Point of Pairwise Pressure, Average of Pairwise Direction, 20-percentile pairwise Area, 20-percentile pairwise Pressure, 20-percentile pairwise Change of
Area-Position, End Point of Pairwise Pressure, Start Point of Pairwise X-Tilt, 80-percentile pairwise Area, 50-percentile pairwise Y Acc., End to End Y Distance, Average of Pairwise Pressure,
Start X, Stop Y, Average of Pairwise Change of Area-Position, Std. Dev. of Pairwise X-Tilt, Std. Dev. of Pairwise Pressure, Average of Pairwise Velocity, 80-percentile pairwise Y Acc., Ratio
of End2End Dist. and Len of Trajectory, 80-percentile pairwise Pressure, 50-percentile pairwise Area, Average of Pairwise Y-Tilt, Average of Pairwise Y Velocity, End to End X Distance, Av-
erage of Pairwise X-Tilt Velocity, 20-percentile pairwise X-Tilt, 80-percentile pairwise Change of Y-Position, Start Area, 50-percentile pairwise Pressure, Start Point of Pairwise Y-Tilt, Start
Point of Pairwise Change of Pressure-Position, 50-percentile pairwise Y, Std. Dev. of Pairwise X-Tilt Acc., Average of Pairwise Y, End Point of Pairwise X-Tilt

Left Swipe 53.96% 74.60% 68.66% 88.52% 20-percentile pairwise Area, Average of Pairwise X-Tilt, Stop Pressure, 80-percentile pairwise Area, Start Pressure, Average Velocity, 50-percentile pairwise Pressure Acc., Std. Dev. of Pair-
wise X-Tilt, Start Point of Pairwise Area, Median of First 5 Acc. Points, Start X, Std. Dev. of Pairwise Area, End Point of Pairwise Area, 80-percentile pairwise Pressure Acc., 50-percentile
pairwise Acc., Average of Pairwise Area, 20-percentile pairwise Pressure, 20-percentile pairwise Change of Area-Position, 50-percentile pairwise Area Acc., End Point of Pairwise Pressure,
Start Point of Pairwise Change of Area-Position, 50-percentile pairwise Y Acc., 80-percentile pairwise Area Acc., Start Y, 20-percentile pairwise X-Tilt, End to End Y Distance, Start Point of
Pairwise Pressure, 50-percentile pairwise Change of X-Tilt Position, Average of Pairwise Pressure, Stop Y, Average of Pairwise Y-Tilt, 50-percentile pairwise Area, Std. Dev. of Pairwise Pres-
sure, Start Point of Pairwise X-Tilt, 80-percentile pairwise Change of X-Tilt Position, 80-percentile pairwise Pressure, Average of Pairwise Change of Area-Position, Start Point of Pairwise
Y, 50-percentile pairwise X-Tilt Acc., 80-percentile pairwise Y Acc., Average of Pairwise X-Tilt Velocity, Average of Pairwise Y Velocity, 20-percentile pairwise Y-Tilt, Average of Pairwise X-
Tilt Acc., End Point of Pairwise X-Tilt, 20-percentile pairwise Change of Pressure-Position, 50-percentile pairwise X Acc., Start Point of Pairwise X-Tilt Velocity, Std. Dev. of Pairwise Y-Tilt,
Average of Pairwise Velocity

Right Swipe 52.27% 76.37% 57.48% 86.24% 50-percentile pairwise Pressure Acc., Average of Pairwise X-Tilt, Stop Pressure, Start Pressure, 80-percentile pairwise Pressure Acc., Median of First 5 Acc. Points, Std. Dev. of Pairwise
X-Tilt, Start Point of Pairwise Area, 20-percentile pairwise Area, Start Y, 80-percentile pairwise Area, End Point of Pairwise Area, Start X, Average of Pairwise Area, Std. Dev. of Pair-
wise Area, 50-percentile pairwise Area Acc., 20-percentile pairwise Pressure, Start Point of Pairwise Change of Area-Position, End Point of Pairwise Pressure, 80-percentile pairwise Change
of X-Tilt Position, Average of Pairwise Direction, Average of Pairwise Pressure, Start Point of Pairwise X-Tilt, Average Velocity, End to End Y Distance, 20-percentile pairwise X-Tilt, 50-
percentile pairwise Y Acc., Start Point of Pairwise Pressure, Average of Pairwise X-Tilt Velocity, 50-percentile pairwise Area, Average of Pairwise Y-Tilt, Stop Y, Std. Dev. of Pairwise Y-Tilt,
80-percentile pairwise Y Acc., 50-percentile pairwise Acc., 50-percentile pairwise X Acc., Std. Dev. of Pairwise Pressure, Average of Pairwise Change of Area-Position, 80-percentile pairwise
Pressure, 80-percentile pairwise Area Acc., 50-percentile pairwise X-Tilt Acc., 50-percentile pairwise Change of X-Tilt Position, 20-percentile pairwise Y-Tilt, Average of Pairwise Velocity, 20-
percentile pairwise X-Tilt Velocity, Start Point of Pairwise Y-Tilt, Start Point of Pairwise Y, End to End X Distance, End Point of Pairwise X-Tilt, Start Point of Pairwise Change of Pressure-
Position

Keystroke 26.25% 60.00% 41.02% 75.00% Inter-Stroke Time, Stroke Duration, Start X, Start Pressure, Start Y,Start Area, Mid-Stroke Finger Orientation, Key Error Rate
Tap 29.58% 63.33% 34.73% 79.54% Inter-Stroke Time, Stroke Duration, Start X, Start Pressure, Start Y,Start Area, Mid-Stroke Finger Orientation

Handwriting 68.71% 81.16% 73.73% 91.11% Average Pressure, Average Y, End Point of Pairwise X-Tilt, 80-percentile pairwise Pressure, 20-percentile pairwise Pressure, 80-percentile pairwise Area, Mid-Stroke Pressure, drawing width,
50-percentile pairwise Pressure, 80-percentile pairwise Y, Average of Pairwise Pressure, Std. Dev. of Pairwise X-Tilt, Start Pressure, Stop Pressure, End to End Y Distance, Start Point of
Pairwise Pressure, End Point of Pairwise Y-Tilt, 20-percentile pairwise Y, End Point of Pairwise Pressure, 80-percentile pairwise X-Tilt, Std. Dev. of Pairwise Pressure, Start Point of Pairwise
Direction, 50-percentile pairwise Y, 80-percentile pairwise X-Tilt Velocity, std. Dev. of Pairwise Change of Area-Position, TMP, Std. Dev. of Pairwise Change of Pressure-Position, Average of
Pairwise Y, Std. Dev. of Pairwise X-Tilt Velocity, 20-percentile pairwise Area, Start Y, Std. Dev. of Pairwise Y-Tilt, 80-percentile pairwise Y-Tilt, drawing area, End to End Pressure Distance,
50-percentile pairwise Direction, 80-percentile pairwise Direction, 80-percentile pairwise Y-Tilt Velocity, Direct End To End Distance, Average of Pairwise X-Tilt, Start Point of Pairwise Y,
Std. Dev. of Pairwise Y-Tilt Velocity, Stop Y, LMP, Stroke Duration, Start Point of Pairwise Change of Pressure-Position, 20-percentile pairwise Direction, 50-percentile pairwise X-Tilt, 80-
percentile pairwise Change of X-Tilt Position, 20-percentile pairwise Change of Area-Position

* Acc. refers to Acceleration.

Table 10. Summary of Results - Gestures Combinations

Gesture Rel. Inf. TPR FPR Gesture Rel. Inf. TPR FPR
Combinations

Swipes, Taps 48.11% 72.72% 16.75% Swipes, Keystrokes 46.80% 91.10% 22.40%
Swipes, Handwriting 72.75% 93.75% 10.88% Taps, Keystrokes 33.55% 91.11% 33.83%
Taps, Handwriting 66.31% 88.57% 12.68% Keystrokes, Handwriting 68.26% 72.41% 13.17%

Swipes, Taps, Keystrokes 93.87% 39.4% 2.3% Swipes, Taps, Handwriting 96.10% 68.75% 1.8%
Swipes, Keystrokes, Handwriting 98.54% 51.85% 0.85% Taps, Keystrokes, Handwriting 95.06% 51.72% 2.46%

All Gestures 98.93% 40.74% 0.99%
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