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Abstract: Censorship circumvention is often character-

ized as a cat-and-mouse game between a nation-state

censor and the developers of censorship resistance sys-

tems. Decoy routing systems offer a solution to censor-

ship resistance that has the potential to tilt this race

in the favour of the censorship resistor by using real

connections to unblocked, overt sites to deliver censored

content to users. This is achieved by employing the help

of Internet Service Providers (ISPs) or Autonomous Sys-

tems (ASes) that own routers in the middle of the net-

work. However, the deployment of decoy routers has yet

to reach fruition. Obstacles to deployment such as the

heavy requirements on routers that deploy decoy router

relay stations, and the impact on the quality of ser-

vice for customers that pass through these routers have

deterred potential participants from deploying existing

systems. Furthermore, connections from clients to overt

sites often follow different paths in the upstream and

downstream direction, making some existing designs im-

practical. Although decoy routing systems that lessen

the burden on participating routers and accommodate

asymmetric flows have been proposed, these arguably

more deployable systems suffer from security vulnera-

bilities that put their users at risk of discovery or make

them prone to censorship or denial of service attacks.

In this paper, we propose a technique for supporting

route asymmetry in previously symmetric decoy rout-

ing systems. The resulting asymmetric solution is more

secure than previous asymmetric proposals and provides

an option for tiered deployment, allowing more cautious

ASes to deploy a lightweight, non-blocking relay station

that aids in defending against routing-capable adver-

saries. We also provide an experimental evaluation of

relay station performance on off-the-shelf hardware and

additional security improvements to recently proposed

systems.
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1 Introduction

In recent years, Internet censorship has become an in-

creasing world-wide concern. A 2016 Freedom House re-

port declared that Internet freedom has now been in

a steady decline for six consecutive years [25]. They

reported that in 2016, roughly two-thirds of Internet

users dealt with government censorship. This censorship

aims to cut off access from websites that support polit-

ical opposition, marginalized communities, and images

that criticize or satirize those in power. Furthermore,

journalists and users of social media that disseminate,

or merely read, content that a censoring nation deems

contrary have faced personal dangers such as arrest or

increased scrutiny. This makes hiding the use of censor-

ship resistance systems paramount in developing new

circumvention technologies.

Tools for censorship circumvention range from sim-

ple proxies that hide the IP addresses of visited sites,

to systems that disguise traffic patterns by padding

packets or mimicking allowed protocols. These systems

have evolved as a result of a cat-and-mouse game be-

tween nation-state censors and censorship resistors [34].

As new techniques for evading censorship arise, censors

tweak their filtering systems to identify the weaknesses

in existing tools that signal their usage. This makes hid-

ing the fact that the user is using a specific tool (given

that the censor knows the tool exists and the details of

the system) critical to both the user’s safety and the

success of the censorship resistance system.

Decoy routing (also known as end-to-middle (E2M)

proxying) [4, 11, 18, 24, 31, 39, 40] is a technique for cen-

sorship resistance that has the potential to skew the cat-

and-mouse game in the favour of the censorship resistor.

The key way decoy routing hides its usage is by appro-

priation of real, uncensored (“overt”) traffic to provide

access to covert information instead of mimicking al-

lowed traffic. Mimicry is a common technique employed

by censorship circumvention systems [6, 9, 28, 36, 38],
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but by its nature deviates from real traffic in ways that a

sufficiently advanced censor could detect [17]. Although

such techniques have yet to be documented for use by

nation-states in an effort to detect the usage of cen-

sorship resistance systems, they still pose a threat to

individual users who may, now or in the future, face

dire consequences for defying their jurisdiction’s strict

controls on Internet usage.

Although decoy routing provides strong security

properties against both active and passive attacks, there

are numerous obstacles to deployment. The deployment

of a decoy routing system relies on the participation

of autonomous systems (ASes) that own routers in the

middle of the network. Previous work on the optimal

placement of decoy routers aims to maximize the num-

ber of unblocked, overt sites available and minimize the

required amount of deployed stations [5, 20, 30]. How-

ever, researchers have yet to convince large ASes to de-

ploy decoy routing in a production setting. While recent

work on analyzing a small-scale decoy routing deploy-

ment [13] provides hope that ISPs are willing to deploy

lightweight decoy routers, we are still a long way from

convincing the majority of ASes to adopt these systems

for Internet freedom purposes. Concerns such as the

hardware required to block, modify, or drop traffic at

the router, the effect checking for steganographic tags

would have on regular traffic, and the logistics involved

in setting up and maintaining a relay station remain

deterrents for both large and small ASes.

Furthermore, connections to overt sites are often

asymmetric. While they may cross a router with a de-

ployed decoy routing relay station on the path to an

overt site, the path taken back from the overt site to

the user may not cross the same router. This makes the

deployment of decoy routing systems more difficult, per-

haps necessitating a larger number of participant ASes.

While some asymmetric solutions exist [11, 18, 39], they

suffer from security vulnerabilities that could put users

already under the scrutiny of a nation-state censor at

risk. Waterfall, a recently proposed asymmetric decoy

routing system, requires a relay station only on the

downstream half of a flow [31]. This provides resis-

tance against routing around decoys (RAD) attacks [32].

Furthermore, Waterfall provides significant security im-

provements to existing asymmetric designs by employ-

ing and improving upon the techniques used in Slith-

een [4] to securely relay covert information in an un-

detectable and high-bandwidth manner. However, the

registration protocol is prone to denial of service attacks

and blocking.

In this paper, we address the main challenges to

deployability that current decoy routing systems face.

We provide an experimental analysis of affordable, off-

the-shelf hardware that can be used by ASes in the de-

ployment of decoy routing relay stations. To address

the problem of route asymmetry, we leverage the fact

that routes between specific clients and overt sites are

very stable, meaning they pass through the same set of

ASes in subsequent flows. We propose a “gossip” pro-

tocol that may be applied to all previously symmetric

systems to make them work in an asymmetric setting.

In keeping with the ideas presented in Waterfall, our

approach emphasizes downstream traffic. We use ex-

tremely light-weight upstream stations (simple taps) to

relay information to stations on the downstream half

of the flow that incur a bandwidth overhead of only

1.0055× the total bandwidth through upstream station.

Our design provides a more secure alternative to Water-

fall’s registration protocol and requires fewer deployed

heavy-weight relay stations that perform in-line blocking

and intense computations than symmetric systems. We

require as few as five heavy-weight stations for a highly

connected, routing capable adversary such as China, as

opposed to the hundreds of stations required by sym-

metric designs. Our contributions are as follows:

– We propose a new solution for routing asymmetry

that is applicable to all previously symmetric sys-

tems and evaluate the overhead cost of deployment

as well as its resistance to RAD attacks.

– We provide measurements on the impact relay

station deployment would have on regular traffic

through a participant ISP. We hope our results will

convince an AS interested in deploying a relay sta-

tion that their quality of service will not be largely

affected by even the most complex of the recently

proposed decoy routing systems.

– We present a possible vulnerability in decoy rout-

ing systems that modify and re-encrypt TLS ap-

plication data and propose a solution that defends

against an adversary capable of seeing traffic on

both sides of the relay station. This adversary falls

outside the decoy routing threat model for the cen-

sor, but a non-censoring adversary could exploit the

vulnerability to decrypt or modify covert traffic.

In the next section, we discuss existing work in censor-

ship circumvention. In Section 3 we propose our solution

for handling asymmetric routes, followed by experimen-

tal results on relay station efficiency in Section 4 and a

security analysis in Section 5. We end with a conclusion
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and a discussion of future steps towards deployment in

Section 6.

2 Censorship circumvention

Nation-state censors filter Internet traffic before it leaves

their area of influence. Past studies on Internet filtering

have revealed a variety of techniques such as blocking

access to specific IP addresses [2, 29], filtering DNS re-

quests by the URL or keyword [29], or performing more

sophisticated deep-packet inspection techniques to de-

termine the usage of censorship resistance tools [34, 37].

Many Internet filtering techniques employed by censors

have evolved in response to the development of the cen-

sorship circumvention systems. A notable example of

this phenomenon is the interaction between Internet fil-

tering in China and advances in the censorship resis-

tance aspects of Tor [8].

Originally developed to provide anonymity for web

browsing, Tor has been adopted by many for its useful-

ness in circumventing government censorship. By dis-

guising which website a user is browsing, Tor prevents a

censor from learning whether or not a user is accessing

a blocked website. As such, many countries that censor

web traffic began to block all access to Tor. Tschantz

et al. [34] document the interplay between Tor and

China’s Great Firewall (GFW) with extensive empir-

ical evidence taken from bug reports, correspondence

with The Tor Project, and changes in the Tor protocol.

In response to the blocking of publicly listed Tor relays,

unlisted Tor relays called bridges began to be circulated

privately, enabling their use for a short period of time

before their discovery by censors [7]. When bridges are

discovered by censors and subsequently blocked, new

bridges are cycled into use. The GFW responded to

the introduction of bridges by using more sophisticated

deep-packet inspection techniques and exploiting unique

patterns in the Tor protocol to differentiate Tor traffic

from regular web browsing. This led to the development

of pluggable transports [6, 9, 12, 28, 36, 38], designed

to encapsulate and disguise the defining characteristics

of Tor traffic.

The majority of pluggable transports take one of

three different approaches to disguising Tor traffic: ob-

fuscation, mimicry, or appropriation. The first approach

aims to mask the defining characteristics of Tor traf-

fic by making the connection look as random as possi-

ble [6, 38]. The success of this technique is grounded in

the assumption that censors are unwilling to block traf-

fic that they are unable to definitively classify as censor-

ship resistance or contrary to their governance, as that

would possibly lead to an increase in public unrest [10].

However, past precedent indicates that in critical times

censors may be willing to take the risk; Aryan et al.

recorded the blocking of undefined Internet protocols

by the government of Iran during the 2013 presidential

elections [2].

Mimicry aims to make connections indistinguish-

able from popular unblocked content or services, forcing

censors to make a difficult decision: to either continue to

expand their list of blocked sites to include popular ser-

vices (thereby risking public unrest), or surrender their

position. Many pluggable transports shape traffic or en-

capsulate it in messages that closely resemble protocols

such as HTTP [9], Skype [28], or HTML [36]. The ulti-

matum presented to the censor rests entirely on the abil-

ity of these systems to mimic allowed sites and services

more closely than the censor’s ability to exploit minor

differences. Houmansadr et al. [17] argue that the main-

tenance of near-perfect mimicry is extremely difficult;

as advances in computing allow censors to classify large

amounts of traffic more accurately, censorship resistors

will see themselves on the losing side of this reactive

battle.

While the cycling of bridges and use of pluggable

transports has proven effective in many regions for pro-

viding access to Tor, there is a danger that after their

discovery, censoring nations will start to punish users

that have connected to IP addresses revealed to be entry

points to the Tor network. Meek is a pluggable trans-

port that appropriates connections to allowed sites and

services. It disguises the IP address of bridges by hid-

ing them behind popular services such as Google, Ama-

zon Web Services, or Microsoft Azure using a technique

called domain fronting [12]. A user makes a real con-

nection to one of these large domains and accesses a

proxy running inside their systems. Not only does this

protect the user by making it impossible for a censor to

link them to a specific IP address used to access Tor,

it also leverages a powerful incentive for governments

that do not control equivalent services not to block ac-

cess to these powerful sites. For nations that do posses

equivalence, the efficacy of this method diminishes.

Other circumvention systems appropriate allowed

protocols and tunnel censorship resistance traffic

through them [3, 19, 21, 27]. By using existing im-

plementations of protocols such as Voice-over-IP, video

streaming services, or email as a covert channel, these

systems are not discernible by a censor due to differences

in implementation as are systems that use mimicry.

However, Geddes et al. [14] show that differences in the
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Table 1. A comparison of the deployability features and security properties of existing systems. We indicate that a system has the

property or feature listed on the left of the table with a filled circle  . Systems that lack a feature or property are marked with an

empty circle #. Our proposed design to support asymmetric routes enables the deployment of lightweight upstream stations with no

in-line blocking in addition to the original heavyweight downstream stations. (We denote the requirement for in-line blocking in only

the downstream stations with the half-filled circle G#.) This improvement to deployability provides the potential to thwart RAD attacks.

Telex [40]

Telex +
this

work

Cirr
ipede [18]

Curveball [24]

Curveball+
this

work

TapDance [39]

Rebound [11]

Slith
een [4]

Slith
een +

this
work

W
aterfa

ll [31]

W
aterfa

ll +
this

work

No in-line blocking # G# # # G#  # # G# G# G#

Asymmetric #   #    #    

Defends against TCP replay attacks      #      

Defends against latency analysis # # # # # #      

Defends against website fingerprinting # # # # # # #     

RAD-resistant #  # #   # #    

DoS-resistant registration          #  

cached resources are replaced to increase the amount of

covert bandwidth available to the user.

In both systems, resources are replaced on a per-

packet basis as they pass through the relay station, mak-

ing decoy routing traffic identical to a regular access

of the overt site. The pattern of connections to overt

servers, packet sizes, and page load times are indistin-

guishable from a non-decoy session, removing the dis-

tinguishing characteristics that arise from appropriating

the connection to the overt site. The task of the censor

now falls on determining whether the access pattern of

the overt sites themselves is done by a user simulator or

a regular user, a problem that is more likely to be error-

prone for a censor than existing website fingerprinting

techniques.

2.2 Known challenges to deployment

Recently, a number of research groups have proposed so-

lutions to the decoy router placement problem (DRP)

that aim to maximize the coverage of overt sites avail-

able through decoy routing stations and minimize the

number of decoy routers needed to successfully inhibit a

censor’s ability to evade decoy routers and block overt

sites [5, 20, 30]. Sufficiently powerful censors can per-

form Routing Around Decoys (RAD) attacks by manip-

ulating BGP and routing tables to send traffic to overt

sites down paths that do not contain a deployed relay

station [31, 32]. With enough deployed stations, these

attacks become extremely difficult and expensive [20].

However, we have yet to see deployment on large ASes,

let alone the widespread placement of relay stations in

the middle of the network.

Wustrow et al. [39] were the first to closely examine

deployment challenges, and developed TapDance as the

result of discussions with ISPs about their reluctance

to deploy existing systems. The resource requirements

of relay stations and route asymmetry were cited as the

most onerous to ISPs and practical usage of existing sys-

tems. Telex and Curveball both require the relay station

to perform in-line flow blocking, severing the connection

between the user and the overt site after the TLS hand-

shake. This not only requires sophisticated and poten-

tially expensive hardware, it also violates the terms of

service many ISPs have with overt sites. Because Tap-

Dance does not perform in-line flow blocking, it does not

have an impact on the quality of service of HTTPS traf-

fic through the router of a deployed relay station. This

has made the trial deployment of TapDance successful,

at both a regional ISP and university network [13]. Dur-

ing the trial, the deployed TapDance stations were able

to serve up to 3,000 clients while processing 40 Gb/s of

regular ISP traffic. However, the deployability of Tap-

Dance is offset by security vulnerabilities that may lead

to easy blocking by a nation-state censor, as we discuss

in the next section.

To our knowledge, there have yet to be experiments

on the resources needed by a relay station that per-

forms in-line blocking to check steganographic tags and

the impact these operations would have on the quality

of service for all overt sites accessible through the de-

ployed relay station. Tags need to be checked for every

TLS connection, which now comprise over a third of all

Internet traffic [1] and require the relay station to per-

form expensive public key operations. In Section 4, we

provide an extensive analysis of the impact of checking

Telex tags using specialized hardware. We chose Telex
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tags as they are used by multiple systems, including

Telex, Slitheen, and Rebound.

Another obstacle in the deployment of decoy rout-

ing systems is the prevalence of asymmetric flows. The

upstream path from a user to an overt site may pass

through a relay station, but the downstream path may

take a different route and miss the relay station targeted

by the user’s tag. Of the seven existing decoy routing

systems, only Cirripede, TapDance, Rebound, and Wa-

terfall support asymmetric flows. With these systems,

as long as the user’s traffic passes through a relay sta-

tion on the upstream (or downstream, in the case of

Waterfall) path to the overt site, the relay station can

effectively deliver covert content to the user. However,

as we discuss in Section 3, second-generation asymmet-

ric solutions have significant flaws that could allow a

passive censor to identify their usage. While Waterfall

has strong security properties, the registration protocol

is prone to denial of service and blockage by a censor.

Our solution presents an alternative to client registra-

tion as well as a solution to the relaying of upstream

covert data from the client to the relay station that

places less strain on overt sites.

For Telex, Curveball, and Slitheen, the relay station

has to see both upstream and downstream traffic of a

tagged session. Our solution can be applied to all pre-

viously symmetric systems to recognize and use asym-

metric flows for the delivery of covert content. We use a

gossip protocol for deployed relay stations to share infor-

mation about potential steganographic tags. We provide

an overview of the deployability features and security

properties of existing systems in Table 1. The previ-

ously symmetric systems Telex, Curveball, and Slitheen

are analyzed both in their original form and along with

our improvements to support routing asymmetry.

3 Routing asymmetry

Traffic between a client and an overt site often takes

a different route, passing through different routers or

ASes, in the upstream and downstream directions. Past

studies have found somewhere between 80% and 90% of

routes to be asymmetric [15, 22, 33]. This asymmetry

becomes more prevalent in the centre of the network.

John et al. [22] found that only about 10% of flows are

symmetric in Tier-1 networks (i.e., the backbone of the

Internet), while flows at the edge of the network are

symmetric about 70% of the time. The ability of a decoy

routing system to work in the presence of asymmetric

flows enhances the system’s deployability by increasing

the effectiveness of deployed stations and lowering the

number of relay stations that must be deployed to de-

fend against routing-capable adversaries. Each individ-

ual relay station can intercept traffic meant for a larger

number of overt sites. Four of the existing decoy routing

systems accomodate routing asymmetry. Cirripede [18],

TapDance [39], and Rebound [11] function properly if

a user’s traffic passes through a deployed relay station

only in the upstream direction towards the overt site,

but each has security issues or drawbacks, which we

outline next. Waterfall [31] takes a different approach,

placing relay stations only on the downstream path from

the overt site to the user.

Cirripede accomplishes routing asymmetry by han-

dling client registration (i.e., recognizing that a client

wishes to begin a decoy routing session) solely through

the passive observation of TCP SYN packets. These

packets are sent from the client to the overt site at the

start of every connection. After recording the ISNs from

12 of the client’s TCP connections, they make a rule in

their routing table to divert all traffic from the client’s

IP address to a service proxy for a fixed period of time.

During this time, as long as the client’s traffic passes

through this router in the upstream direction towards

any overt site, it will be redirected to a service proxy

that will relay data to and from the client and a covert

site. Downstream data from the covert site is sent di-

rectly from the service proxy to the client, eliminating

any need for a relay station to be placed downstream.

On the usability side, a disadvantage of this ap-

proach is that all of a client’s traffic will be redirected

to the service proxy during the fixed time set by the re-

lay station. If a client wishes to browse a site normally,

they must wait for the duration of the decoy routing

session to end. There is also a security vulnerability due

to the fact that traffic between the user and the covert

site does not follow the same downstream path it nor-

mally would in a connection to the overt site during

the proxy phase. If the overt site and the covert site

are significantly far apart, a censor could easily notice

a significant difference in latency or in where the traffic

enters their network to identify decoy routing sessions.

TapDance implements asymmetry by waiting for

the client and overt site to complete the TLS hand-

shake before initiating the tagging procedure. The first

upstream HTTP GET request from the client contains

a tag in the ciphertext that gives the relay station the

client’s public key and the encrypted TLS master secret

for the session. After retrieving the TLS master secret,

the relay station can decrypt upstream data from the

client and establish a connection to the covert site. It
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then sends covert data to the client directly, encrypting

it with the TLS master secret and assuming the role

of the overt server. Unfortunately, the non-blocking na-

ture of TapDance and its inability to block or modify

downstream traffic leaves the system vulnerable to ac-

tive attacks by an adversarial censor. Because the relay

station is sending traffic to the client on behalf of the

overt site, the TCP sequence numbers for downstream

data will differ from the overt site’s TCP state. A cen-

sor can then replay a stale TCP packet to the overt site,

prompting an acknowledgement that reveals the server’s

true state, inconsistent with what the censor has wit-

nessed. TapDance also suffers from the same passive at-

tack as Cirripede, that stems from the difference in the

locations of the relay station and the overt site.

Rebound’s asymmetric solution presents a different

problem by making traffic vulnerable to attack from a

passive adversary. Rebound’s upstream-only relays re-

ceive necessary handshake information from the client

in an encoding method similar to TapDance. After re-

constructing the TLS master secret, the relay delivers

covert content to the user by encrypting it and send-

ing it as an invalid resource name to the overt server in

an HTTP GET request. To maintain a consistent TCP

state between the overt server and what a passive censor

sees, a client must send a GET request with a length

that matches the length of the downstream data she

wishes to receive. This results in a nearly equal amount

of upstream traffic and downstream traffic, which is a

highly atypical traffic pattern for any type of web brows-

ing activity. Furthermore, the ethical implications of

sending several bad requests to overt sites makes this

technique undesirable.

Waterfall places relay stations on the downstream

path between the user and overt site, a technique that

allows for much stronger security properties in the proxy

phase of the decoy routing session as well as a defense

against RAD attacks. The downstream-only asymmetry

of Waterfall is made possible by the separate registra-

tion protocol between the client and the registration

server. The client sends a registration package with a

series of identifiers: one for each future decoy routing

session the client wishes to establish. The identifiers con-

tain all necessary upstream information a relay station

would need to man-in-the-middle the TLS session with

the overt site. The registration server disseminates this

information to relay stations, which then attempt to

decrypt TLS sessions whose client IP address are in-

cluded in the list of registered clients, using the connec-

tion identifier information provided. This registration

process provides a usability advantage over Cirripede:

clients can choose which of their subsequent flows are to

be decoy sessions and which are regular browsing ses-

sions. However, an attacker could perform a denial of

service attack against suspected clients by registering a

series of identifiers in their name. It is unclear how such

conflicts in registration would be solved. Furthermore,

the connection between the client and the registration

server could be censored, requiring the client to adopt a

different censorship circumvention system to make this

initial connection.

The proxying of covert information to the user in

Waterfall is very similar to Slitheen: overt resources are

replaced in a manner that perfectly imitates the load-

ing of an overt site. However, upstream information is

bounced off of the overt site to the downstream sta-

tion in a manner similar to Rebound. They suggest sev-

eral methods for bouncing covert data off of the overt

server, including HTTP 404 messages and HTTP redi-

rects, the latter of which are quite common in normal

web-browsing behaviour.

In this section, we describe a solution to achieve

asymmetry in previously symmetric decoy routing sys-

tems such as Telex, Curveball, or Slitheen, that main-

tain the security properties of these systems. Our solu-

tion can also be used as an alternative to the registration

protocol of Waterfall and as an alternate way to relay

upstream information to the downstream relay station,

and maintains the same RAD-resistance as Waterfall

due to the focus on the downstream half of the flow.

We position easily deployable, non-blocking relay

stations (which are really just simple taps) in the up-

stream half of a connection from a user to an overt site

to gossip ClientHello random nonces to possible down-

stream relay stations that may be able to recognize a

tag. As this random nonce is the only upstream part of

the TLS handshake a relay station needs to compute the

TLS master secret, the downstream station only needs

this small amount of gossipped information—and not

necessarily in real time—to successfully use that and

subsequent flows for decoy routing. During the proxy

phase of the decoy routing session, these gossip stations

also relay upstream information to nearby downstream

stations.

3.1 Asymmetric gossip protocol

Our solution for asymmetric decoy routing takes a

slightly different approach from existing solutions. We

require the existence of a relay station in both the up-

stream half of the flow (on the path from the client to
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current session. If the downstream station has missed

the ServerHello message by the time the gossip proto-

col completes, it waits for the next connection from the

client to the same overt site.

The next time a client makes a connection to the

same overt site, the client computes the new secret ex-

ponent used to construct the steganographic tag as the

hash of the previous client-relay shared secret and the

IP address of the overt site: s′ = H3(grs‖server_ip‖ρ)

where the first 4 bytes of the ClientHello random nonce,

ρ, are generated from the previous shared secret grs.1

They then place their tag, gs′

‖H1(grs′

‖χ), in the Client-

Hello random nonce of the new TLS session along

with the deterministically generated first 4 bytes. When

a downstream relay station receives the server hand-

shake messages, they extract the ServerHello random

nonce, ServerKeyExchange parameters, and compute

the client’s secret exponent and the ClientHello random

nonce from the saved client-relay shared secret, grs, and

the server IP address.

After computing the TLS master secret for the ses-

sion, the relay station attempts to decrypt the down-

stream TLS Finished message. If the decryption is suc-

cessful, it replaces the hash of the Finished message,

finished_hash with MACH4(grs
′ ‖χ)(finished_hash).

When the client receives the Finished message, they will

compute the keyed MAC of the unmodified TLS Fin-

ished message and compare the result with the received

value. If they received an unmodified Finished message,

the flow was not successfully intercepted by a relay sta-

tion. If they received the keyed MAC, they know the

flow has been intercepted and a decoy routing session

has begun.

3.1.2 Asymmetric proxying

After the TLS handshake, the downstream relay sta-

tion begins to proxy information between the client and

a covert site. All three symmetric systems rely on up-

stream data from the client in order to establish a con-

nection to a covert site and relay upstream data from the

client to the covert site. We note that in this stage, the

amount of upstream data from the client to the covert

site is typically far less than the downstream covert

data. To retrieve covert data from an upstream relay

station, the downstream relay station will perform a

1 The OUS should therefore be a browser whose TLS implemen-

tation uses random data instead of a timestamp in that field.

challenge-response protocol with the upstream station,

proving the session has been tagged for their private

key and signalling that they wish to receive TLS ap-

plication data from the upstream half of the flow. If

successful, the upstream station will proceed to funnel

upstream TLS records (over a point-to-point encrypted

and authenticated connection) to the downstream sta-

tion, which then decrypts the TLS records and proceeds

in the usual manner. The sending of these upstream TLS

records has no time constraints; they can arrive at the

downstream station asynchronously with downstream

data from the covert site or (in the case of Slitheen) the

overt site. Any delay in the receipt of this data will not

affect the security or correctness of the system, but only

the latency experienced by the client in their browsing

of covert content. The downstream station will make

a connection to the covert site specified by the client

and send the client’s upstream covert data through this

connection. Telex and Curveball will then deliver down-

stream covert data directly to the client, while Slitheen

will insert it into downstream leaf resources.

3.1.3 Challenge-response protocol

We require the downstream relay station to perform a

challenge-response protocol with the upstream gossip

station in order to receive 1) the client information nec-

essary to recognize future tagged flows, and 2) the up-

stream TLS records during the proxy phase of the decoy

routing session. The reason for this requirement is to

mitigate denial-of-service attacks on upstream stations

and protect the privacy of both tagged and untagged

traffic that passes through each upstream relay station.

While the amount of additional data leakage in our gos-

sip protocol is small (all ASes on the path between the

client and the overt site have access to the same infor-

mation), this prevents the usage of our decoy routing

system by adversaries in expanding their ability to per-

form mass surveillance on Internet metadata.

First, to prove to the upstream station that they rec-

ognize one of the gossipped ClientHello tags, the down-

stream station uses the gossipped tag, context string

information (i.e., the server IP and ρ), and ciphersuite

information (i.e., the list of client-proposed cipher suites

that the decoy routing system supports as well as valid

elliptic curves if applicable) and computes all possible

client key exchange parameters for those ciphersuites.

Note that in current implementations of decoy routing

systems this is at most six different sets of parame-

ters. The downstream station then sends hashes of these
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Table 2. Estimates of the number of deployed downstream

and upstream stations needed to evade censorship for China, a

highly connected, routing-capable adversary. We use results from

Houmansadr et al. [20] to estimate a necessary 880 upstream sta-

tions to resist RAD attacks and results from Nasr et al. [31] to

estimate a necessary 5 downstream stations.

System
Heavy-weight Light-weight

stations stations

Symmetric designs [4, 18, 24, 40] 880 N/A

TapDance [39] 0 880

Waterfall [31] 5 0

Gossip protocol + any symmetric

design

5 880

key exchange parameters to the upstream station. The

upstream station compares these hashes with the hash

of the key exchange parameters in the client’s key ex-

change message. If one of them matches, they then send

the connection information (i.e., the client IP address)

to the downstream station so that they can recognize

future tagged flows.

The downstream station must perform the above

challenge-response protocol for each subsequent TLS

session that the client sends to the overt site in order to

receive the upstream TLS records. Because the down-

stream station can compute the key exchange param-

eters for future sessions ahead of time, they can send

multiple sets of parameter hashes to the upstream sta-

tion at once. Then, the upstream station can immedi-

ately forward upstream records as soon as the client

sends a key exchange message whose parameters hash

to a matching value.

3.2 Resistance to RAD attacks

The placement of decoy routers at ASes is critical for

providing censorship resistance to users within censor-

ing regions. Schuchard et al. [32] were the first to ac-

knowledge that the number of decoy routers neces-

sary to evade censorship in the presence of a routing-

capable adversary is much greater than previous esti-

mates. Since the introduction of RAD attacks, there

have been many proposals for the optimal placement

of decoy routers [5, 20, 30, 32]. Although it is unrealis-

tic that all ASes will be willing to deploy our system,

these proposals provide an idea for how many decoy

routers will need to be deployed to provide censorship

resistance for different nation-states. We draw on the

findings of previous work to give an estimate on the

number of heavy-weight downstream and light-weight

gossip stations needed to resist censorship for China (a

highly connected routing-capable adversary).

The placement of downstream decoy routers was in-

vestigated by Nasr et al. [31] in their analysis of Wa-

terfall. They found that it is much more difficult and

expensive for adversaries to route around downstream

stations, and as a result fewer deployments were needed.

Only one deployed decoy station impacts almost a quar-

ter of the traffic from Chinese users, while 5 deployed

stations impacts 78% of the routes.

It is much easier for an adversary to route around

upstream decoy stations. We used the results from

Houmansadr et al. [20] to estimate the number of gos-

sip stations needed. Their results show that if decoy

stations are placed at 3% of ASes (outside of China and

its ring ASes), 40% of the Internet becomes unreachable

for Chinese users, meaning it is not possible for China

to avoid all deployed stations without cutting off access

to 40% of the Internet. This requires the placement of

roughly 880 gossip stations. Table 2 gives a compari-

son of the number of necessary deployments to previous

systems. We note that while we require more deploy-

ments than both TapDance and Waterfall, our gossip

stations are even more deployable than TapDance sta-

tions (which have been successfully deployed [13]): we

require no intensive computations in our upstream sta-

tions to check for tagged flows.

Our asymmetric solution in this section provides a

more secure alternative to previous proposals for the

asymmetric deployment of decoy routing systems. Our

methods can be easily integrated into Waterfall, provid-

ing a more secure alternative to client registration and

a method for relaying upstream covert data in a man-

ner that is kinder to overt sites. The tiered deployment

made possible by our approach presents a cost-effective

way for hesitant ISPs to participate in censorship resis-

tance without the need for hardware that can perform

in-line blocking or traffic replacement.

3.3 Bandwidth overhead

The bandwidth overhead of the gossip protocol is small

compared to the existing load of routers. We also note

that the upstream stations do not need to perform

in-line blocking, drastically lightening the load com-

pared to previous symmetric systems. The overhead has

three parts: (1) that induced by gossipping the Client-

Hello data that passes through the router to a set of

known relay stations, (2) the challenge-response proto-

cols between the upstream and downstream stations,
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and (3) that of funnelling the upstream TLS applica-

tion records of proven tagged flows to the downstream

station. The gossipped data consists of the ClientHello

random nonce, the server IP address, and the list of

supported ciphersuites and supported elliptic curves. Its

size is dependent on the number of ciphersuites sup-

ported by the client. Using Firefox, we measured the

average gossip data size to the Alexa top 100 sites as 66

bytes. Note that there was almost no variation in the

ciphersuites offered by the client in the version of Fire-

fox we were using. Using traffic measurements from the

Center for Applied Internet Data Analysis (CAIDA) [1]

shown in Table 3 in the next section, we calculate the

bandwidth overhead of gossipping ClientHello messages

as

1 +
66 · 4430n

125000 · 2035.71
= 1 + 0.0011n

where n is the number of relay stations gossipped to. If,

for example, we set n = 5, the number of downstream

routers sufficient to defend against a highly connected

adversary such as China, the overhead is only 1.0055×

the total bandwidth through the router of the deployed

relay station. To give concrete numbers, for a router

on a typical OC48 link of a large ISP that handles ap-

proximately 2 Gb/s of traffic, the router would have to

transmit an extra 11 Mb/s of gossip data.

The challenge-response protocol requires the down-

stream station to send the upstream station a maximum

of six 32-byte hashes for each TLS session, given cur-

rent implementations of decoy routing systems. The up-

stream station responds with a 4-byte client IP address.

The total amount of data exchanged for a single-session

asymmetric decoy routing session is then 196 bytes. As

the base rate of decoy routing flows is very low, this

number is negligible in the calculation of the overhead.

To calculate the bandwidth of the proxy phase of the

gossip protocol, we measured the average bandwidth of

upstream TLS application data to the Alexa top 100

sites. Note that this data is only gossipped for flows

that are tagged for a downstream station, which do not

likely make up the majority of traffic through a relay

station. In our CAIDA data set, the proportion of all

data that is upstream data in TLS flows is 0.042. The

overall bandwidth overhead is then 1+0.0011n+0.042β

where β is the base rate of tagged TLS flows. Note that

for β < 10−3, the overhead induced by copying upstream

data is negligible, resulting in a total overhead of only

a few percent.

To compare the bandwidth cost of relaying up-

stream information to the downstream relay during the

proxy phase of the session to Waterfall, which has a

similar requirement, our approach requires strictly less

additional traffic. Our approach sends upstream records

directly, while Waterfall requires them to be wrapped

in appropriately sized HTTP GET requests. It is im-

portant to note that while our approach requires less

traffic overhead, it does require more effort from the

system to determine which bytes to forward, perform

the challenge-response protocol, and tunnel upstream

traffic, though the demands we place on the upstream

station are less than those required by TapDance, which

is already shown to be deployable [13]. Importantly, our

approach places zero additional load on unsuspecting

overt sites.

4 Relay station experiments

Wustrow et al. [39] found the main obstacle in convinc-

ing ISPs and ASes to deploy decoy routing systems to be

the resource requirements of existing systems in check-

ing tags and performing in-line blocking. By checking

every TLS session for steganographic tags, the deploy-

ment of decoy routing systems also has the potential

to affect the quality of service for all customers whose

traffic traverses a relay station.

We performed several experiments to determine the

impact a deployed decoy routing station would have on

existing traffic in a real-world scenario. Note that these

experiments measure the cost of the heavyweight down-

stream relay stations, of which fewer need to be deployed

to defend against routing-capable adversaries. The cost

of an upstream gossip station in terms of its impact on

quality of service is nonexistant as the station does not

perform in-line blocking of flows.

Our first set of tests aims to measure the effect tag

checking would have on the quality of service for both

TLS and non-TLS traffic of regular customers. We chose

the Slitheen tagging procedure for our measurements, as

the Slitheen modified TLS handshake requires the most

effort from a deployed relay station and the Slitheen

source code is freely available.2

For our tests, we used specialized (but off-the shelf)

hardware capable of performing in-line blocking and ef-

ficient deep-packet inspection. Our reasons for doing so

were that 1) only TapDance does not require in-line

blocking, and this feature also introduces several vul-

nerabilities that an active attacker can exploit to easily

differentiate decoy routing sessions, and 2) by showing

2 https://crysp.uwaterloo.ca/software/slitheen/

https://crysp.uwaterloo.ca/software/slitheen/
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Fig. 6. CDFs comparing the average TCP round trip time (RTT)

for non-TLS flows with tag checking on and off.

age additional latency is 7 ms, which is very low and falls

within the standard deviation of each condition (10 ms).

In addition to measuring the impact a deployed re-

lay station has on the quality of service for TLS flows, we

also measured the impact it has on non-TLS flows and

whether our equipment and software introduced any ad-

ditional latency by performing deep-packet inspection to

search for ClientHello messages. We performed a similar

test as above, this time making 1000 HTTP connections

to remote sites for each condition. For each connection,

we calculated the average RTT of all TCP packets in the

flow. The results are given as CDFs in Figure 6. The ad-

ditional latency of deploying a relay station was 0.4 ms,

which is very low, and falls within a standard deviation

of each condition (10 ms). We note that at this time,

the Slitheen tag checking and relay station code has not

been optimized for quality of service. With further im-

provements, the results in this section for both TLS and

non-TLS flows will likely show an even lower impact on

the customers of participant ISPs.

Our results show that while the deployment of a

full downstream relay station adds additional latency

to flows due to checking for tags in ClientHello random

nonces, but the latency introduced is quite small.

4.2 Defenses against latency analysis
attacks

The security properties of Slitheen rely on the inabil-

ity of a censor to detect additional latency added by

the relay station in checking tags or replacing content

from the overt site. We conducted tests to see whether

the divert functionality of the PTS and the implementa-

tion of the relay station added enough latency to tagged

flows to allow a censor to reliably classify them as de-

coy routing sessions. We simulated an attack in which
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Fig. 7. The maximum F-score (i.e., the harmonic mean of preci-

sion and recall) a censor can achieve in classifying flows as decoy

routing sessions or as regular accesses to the Alexa top 5 sites.

Precision is dependent on the base rate of decoy routing sessions.

As a result, the more prevalent decoy routing sessions are, the

higher a censor’s accuracy in classifying flows.

the censor compiles a database of expected latencies for

both decoy sessions and regular browsing sessions for

each overt destination by making 100 connections to the

top 5 Alexa sites for each condition. We then calculated

the precision and recall an adversary could achieve in

classifying flows as decoy routing or regular sessions.

We measured two different types of latency for each

flow: the time it took to perform a full TLS handshake,

and the average TCP acknowledgement time, or round-

trip time (RTT) for application data. A censor will at-

tempt to select a cut-off latency for each measurement

type to identify decoy routing sessions. All flows with a

higher latency than the cut-off value are classified as de-
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coy routing sessions, while all flows with a lower latency

are classified as a regular access to the overt site. We

computed the CDFs of each type of latency for decoy

routing sessions and regular accesses to each of the top

5 sites. From these CDFs, we can compute the true neg-

ative rate, τ , and false negative rate, φ, of an adversary

for each possible latency cut-off point. We calculate the

precision of the censor as:

precision =
β(1 − φ)

β(1 − φ) + (1 − β)(1 − τ)

where β is the base rate of the incidence of decoy routing

sessions. A typical censor would try to maximize preci-

sion, thereby minimizing the number of regular accesses

to the overt site that are mistakenly identified as de-

coy routing sessions and blocked. By maximizing recall,

a censor ensures that they are identifying and block-

ing as many decoy routing sessions as possible. The re-

call of the censor is calculated as the true positive rate:

recall = 1 − φ.

A censor can achieve a precision of 1, indicating that

they do not incorrectly classify any regular accesses to

the overt site as decoy routing sessions. However, of-

ten this means the censor can only identify a very small

portion of decoy routing sessions while the majority will

continue undetected. They can also achieve a recall of

1 by simply classifying all connections as decoy rout-

ing sessions and blocking them. For most censors, both

measures are important so we define a censor’s accu-

racy in terms of its F-score, the harmonic mean of the

precision and recall values. Precision and recall can be

weighted differently according to the individual goals of

the censor, but we consider the default equal weighting

in this paper. For each value of β, the adversary will se-

lect a cut-off value that maximizes their F-score, given

the latency distributions of each overt site. We plot the

maximum F-score values based on the latency distri-

butions for both the TLS and handshake time and the

TCP RTT for five of the Alexa top sites in Figure 7.

The maximum accuracy a censor can achieve in

identifying decoy routing sessions is very low for both

types of latency. For the majority of sites, this value

drops to almost 0 with a base rate of occurrence of de-

coy routing sessions of less than 10−4, and meaning that

if no more than one in every 10,000 connections to popu-

lar sites are decoy routing sessions, a censor is unable to

reliably determine whether or not any given flow is car-

rying censorship resistance traffic. Even with a higher

occurrence of decoy routing, the maximum F-score stays

below 0.5 for most sites, making a reasonable censor

that is unwilling to upset their population extremely

wary of classifying and blocking potential decoy routing

sessions. We note that some sites exhibit anomolous be-

haviour (e.g., google.com and youtube.com in their TCP

RTTs and TLS handshake times, respectively). Such be-

haviour can be measured by the client, and those sites

not selected as overt sites.

5 Security analysis and

improvements

Our proposal to add asymmetry to previously symmet-

ric decoy routing systems has two main advantages: it

has better security properties than previously proposed

asymmetric systems, and it provides a path for tiered

deployment, creating a less expensive defense against

routing-capable adversaries. We provide a comparison

of the security properties of existing systems and our

suggested improvements to previously symmetric sys-

tems in Table 1.

TapDance remains the only system capable of per-

forming decoy routing without requiring a relay station

to block or modify traffic. However, this feature comes at

the cost of security. We believe a better route to deploy-

ment is by providing ISPs and ASes with experimental

evidence of the impact a deployed relay station would

have on customer traffic using existing hardware capa-

ble of performing tag checks efficiently and blocking or

modifying tagged flows. By targeting ASes that already

own this hardware or showing them a clear path to de-

ployment, we are providing more evidence that decoy

routing is an attainable option and moving towards real-

world deployment. Furthermore, our asymmetric solu-

tion does not require in-line blocking for upstream re-

lays, enabling more cautious potential participants to

provide a stronger defense against RAD attacks.

5.1 Security of the gossip protocol

While the gossip protocol does not leak any additional

information of tagged or untagged flows to an adversary,

it does increase the number of routers that see traffic

between the client and the overt site, possibly increas-

ing the ability of a passive adversary to perform traf-

fic analysis or surviellance attacks. However, gossipped

messages do not significantly increase a censor’s ability

to detect the usage of censorship circumvention tools or

attribute them to individual users. In this section, we

discuss the impact of the gossip protocol on the secu-

rity and privacy of both users of Slitheen and non-users

google.com
youtube.com
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whose upstream handshake messages are gossipped to

other relay stations.

Passive adversary: The gossip protocol requires

an upstream station to send all seemingly untagged

ClientHello messages, along with the upstream TLS ap-

plication data to the downstream relay station. Note

that the gossipping of ClientHello messages is done for

all TLS handshakes that the upstream station does not

recognize as tagged and includes both untagged and po-

tentially tagged flows; therefore the gossipped messages

do not expose censorship resistance traffic.

It is worth noting that the gossipping of application

data to the downstream relay station only happens for

tagged flows. A censor that can see traffic between relay

stations could then perform a timing analysis attack

to connect outgoing connections to gossipped messages.

This is outside our threat model as we assume relay

stations exist outside of the censor’s area of influence

and therefore probably do not cross through a censor’s

control. It is also practically difficult to correlate the

TLS application records of any one flow to the encrypted

traffic sent between two relay stations. Approximately

37% of flows are HTTPS [1], meaning that a censor

observing traffic on even a small router would have to

decide which of the thousands (1/β) of TLS sessions

that data corresponded to.

Malicious relays: Our challenge-response protocol

in Section 3.1.3 prevents a malicious downstream relay

from lying about recognizing tags in order to induce

extra load on the gossip station in a denial-of-service

attack, or to increase their surveillance of flows outside

of their usual field of view. However, precautions should

be taken to prevent a censor from pretending to be an

upstream station in order to use downstream stations

as oracles to identify tagged flows. Downstream stations

should maintain a list of approved and trusted upstream

stations, as well as their public key information. This

information can be updated by relay station operators

as new upstream stations are deployed in much the same

way as the client software maintains a list of public keys

for trusted downstream stations.

5.2 Superencryption of application data

Severing or abandoning the connection with the overt

site in the proxy phase of the decoy routing session in-

troduces a vulnerability in which the server’s state of

the connection does not match the traffic that a censor

sees. The censor can exploit this in most systems using

a RAD attack or a regular TCP replay attack. Slith-

een [4], Rebound [11], and Waterfall [31] avoid this vul-

nerability by interacting with the overt site throughout

the proxy phase, modifying the contents of the TLS en-

crypted data to give covert data to the client. However,

this process of modification introduces a new vulnera-

bility to systems that use the same TLS master secret

to re-encrypt the application-level data [4, 11].

During the re-encryption of new application data, if

the relay station re-uses the same nonce, an adversary

capable of seeing the data on both sides of the relay

station could use it to decrypt or modify the data be-

tween the user and the covert site. Although this attack

falls outside the usual threat model for decoy routing,

in which we assume that the censor is unable to com-

pare traffic on both sides of the relay station, this puts

vulnerable users of censorship circumvention systems at

risk. We describe the attack in more detail, and our

solution of adding an extra layer of encryption around

covert data, in Appendix B.

6 Conclusion and future work

As the Internet becomes more centralized and the capa-

bilities of censors grow, so will their ability to filter Inter-

net traffic with increasingly sophisticated methods. It is

possible in the future that as censorship becomes more

prevalent, so will the dangers of resisting government

controls. There is a dire need for a censorship circum-

vention system that provides users with blocked content

as well as hides their usage of the system. Decoy routing

provides a promising solution to Internet censorship. Its

strong security properties, and trend of realistically ap-

propriating real, uncensored connections in the place of

mimicry have the potential to end the cat-and-mouse

game in favour of the resistor.

In this paper, we proposed a new approach to rout-

ing asymmetry that provides better security than pre-

vious asymmetric systems and a path to tiered deploy-

ment that allows for several lightweight, limited systems

to surround a powerful censor, limiting the censor’s abil-

ity to perform routing-based attacks. This work presents

the next steps towards the deployment of decoy routing

systems, however there is still much work to be done.

With more efficient implementations of the relay sta-

tion, the possible impact of deployment may be even

less than what we measured with our limited improve-

ments. We look at our results as a positive indication

that decoy routing may prove to be practical in the fu-

ture and may convince the owners of Internet routers to

consider participating in censorship circumvention.
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A Modifications to TLS

Most decoy routing systems require modifications to the

TLSv1.2 handshake. In this section, we describe the

modifications used by Slitheen [4] described in Section 3,

and directly compare them to the original TLSv1.2

handshake. These are very similar to the modifications

used in Telex [40] and Curveball [24].

Figure 8 gives an overview of a TLS handshake, with

modifications shown in red. The modifications do not

change the number or the size of the messages sent be-

tween the client and the server, only the contents of

the messages. This is done in a way to avoid detection

by the censor: only a party in possession of the client

secret, the relay secret, or the TLS master secret can

detect that modifications have been made.

The first modification happens in the generation of

the ClientHello random nonce. This nonce is usually

randomly generated and is used in the computation of

the TLS master secret. In Slitheen, the last 28 bytes of

this 32 byte nonce are replaced with a steganographic

tag, gs‖H1(grs‖χ), where s is a secret generated by

the client, gr is the public key of a relay station, and

χ = server_ip‖ClientHello random[0..3] is a con-

text string that consists of the server’s IP address and

the first 4 bytes of the ClientHello random nonce (in

older versions of popular TLS libraries, this was often

a timestamp; however, in newer versions it is typically

generated randomly). The tag is recognizable only to

the relay station with the private key r, and appears

indistinguishable from random to any other observer.

The next modification is in the computation of val-

ues in the ClientKeyExchange message. Instead of ran-

domly generating her private key exchange parameter,

the client generates it from the previously generated tag.

The private key is the result of feeding the client-relay

shared secret H2(grs‖χ) into a pseudo-random number

generator. She then computes her public parameters in

the ClientKeyExchange message from this private key.

The relay station also has the ability to compute the

private key, allowing it to later man-in-the-middle the

TLS connection.

The last modification to the handshake is in the

downstream Finished message, sent from the server to

https://freedomhouse.org/report/freedom-net/freedom-net-2016
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and from that, since the additional authentication

data A is known:

Ek(n||032) = (((A · Ek(0) ⊕ C1) · Ek(0) ⊕ L) · Ek(0)) ⊕ T1.

This gives them everything necessary to compute

their own tag for an arbitrary ciphertext C3:

T3 = ((A · Ek(0) ⊕ C3) · Ek(0) ⊕ L) · Ek(0) ⊕ Ek(n||032)

In the event that a user is browsing a covert site

with TLS, the consequences of both of these attacks are

mitigated. An adversary would be unable to decrypt the

client’s data, and any tampering would be detected in

the TLS records sent between the client and the covert

site. However, an adversary could use this to perform a

targeted denial of service attack against decoy routing

users. This attack is exceptionally damaging when the

user of Slitheen is browsing a plaintext site, giving a

third-party observer the ability to determine not only

that the client is using Slitheen, but also what covert

data they are receiving.

In Rebound, the same attack allows an adversary to

determine that a change in the underlying plaintext has

been made (and at what points the change has been

made), but the randomness of the encrypted requests

and responses between the client and relay station pre-

vents an attacker from modifying the contents of the

plaintext or discovering the nature of covert content.

To defend against this attack, we propose adding

an additional layer of authenticated encryption under

the ciphertext on the downstream side of the relay sta-

tion, both in order to make it completely random, and

to protect against modification. We chose this method

rather than simply re-encrypting with a different, ran-

domly generated, nonce as a censor could detect the

usage of a non-sequential nonce. The keys for this “su-

perencryption” step may be derived from the client ID

in Slitheen, or the client-relay shared secret in Rebound

by feeding it into a PRF.

Both the client and the relay station generate two

superencryption keys: one to encrypt a 128-bit header

and another to encrypt a variable-length covert data

body. The header consists of an 4-byte counter and a 4-

byte acknowledgement field. The counter is incremented

for each chunk of covert data, and doubles as a mech-

anism for ordering covert data. In both Slitheen and

Rebound, data to and from the covert site has the po-

tential to arrive at the relay station and client, respec-

tively, in a different order than it was written, as it

can be distributed across multiple TCP connections to

different overt sites. A counter allows each party to pro-

cess the covert data in order, acknowledge the receipt

of data, and retransmit data that was lost. The client

and the server acknowledge received covert data in a

similar style to TCP to prevent the loss of covert data

chunks due to route-flapping or RAD attacks from a

routing-capable adversary. The remainder of the header

contains a 2-byte stream ID that indicates which con-

nection to a covert server the data belongs to, the 2-byte

length of the covert data chunk, and the 2-byte length

of randomly generated padding. The last remaining 2

bytes of the header are padded with zeros. The covert

data itself is encrypted using an authenticated encryp-

tion mode such as AES-GCM that is indistinguishable

from random by an attacker.

Upon the receipt of a new chunk of covert content,

the client or relay station will first decrypt the covert

data header and extract the length of the covert data

chunk. The client should verify that the counter is as

expected and the padding at the end of the header ex-

ists. The client can then decrypt the covert data and

send it to the client’s browser.


