
Proceedings on Privacy Enhancing Technologies ; 2018 (4):33–50

Elleen Pan*, Jingjing Ren, Martina Lindorfer, Christo Wilson, and David Choffnes

Panoptispy: Characterizing Audio and Video
Exfiltration from Android Applications
Abstract: The high-fidelity sensors and ubiquitous in-
ternet connectivity offered by mobile devices have facil-
itated an explosion in mobile apps that rely on multi-
media features. However, these sensors can also be used
in ways that may violate user’s expectations and per-
sonal privacy. For example, apps have been caught tak-
ing pictures without the user’s knowledge and passively
listened for inaudible, ultrasonic audio beacons. The de-
velopers of mobile device operating systems recognize
that sensor data is sensitive, but unfortunately existing
permission models only mitigate some of the privacy
concerns surrounding multimedia data.
In this work, we present the first large-scale empir-
ical study of media permissions and leaks from An-
droid apps, covering 17,260 apps from Google Play, Ap-
pChina, Mi.com, and Anzhi. We study the behavior of
these apps using a combination of static and dynamic
analysis techniques. Our study reveals several alarming
privacy risks in the Android app ecosystem, including
apps that over-provision their media permissions and
apps that share image and video data with other par-
ties in unexpected ways, without user knowledge or con-
sent. We also identify a previously unreported privacy
risk that arises from third-party libraries that record
and upload screenshots and videos of the screen with-
out informing the user and without requiring any per-
missions.

Keywords: privacy; mobile devices; audio, video, and
image leaks

DOI 10.1515/popets-2018-0030
Received 2018-02-28; revised 2018-06-15; accepted 2018-06-16.

*Corresponding Author: Elleen Pan: Northeastern Uni-
versity, E-mail: elleen@ccs.neu.edu
Jingjing Ren: Northeastern University,
E-mail: renjj@ccs.neu.edu
Martina Lindorfer: UC Santa Barbara,
E-mail: martina@iseclab.org
Christo Wilson: Northeastern University,
E-mail: cbw@ccs.neu.edu
David Choffnes: Northeastern University,
E-mail: choffnes@ccs.neu.edu

1 Introduction
The high-fidelity sensors and ubiquitous internet con-
nectivity offered by mobile devices have facilitated nu-
merous mobile applications (apps) that rely on multi-
media features. For example, a mobile device’s camera
and microphone enable users to capture and share pic-
tures, videos, and recorded audio. Apps also use these
sensors to implement important services such as voice
assistants, optical character recognition (OCR), music
identification, and face and object recognition.

In addition to such beneficial use cases, apps may
use these sensors in ways that violate users’ expectations
and privacy. For example, some apps take pictures with-
out the user’s knowledge by shrinking the viewfinder
preview window to a 1×1 pixel, thus making it virtually
invisible [51, 68]. Similarly, Silverpush, an advertising
company, developed a library that passively listened for
inaudible, ultrasonic audio beacons for tracking users’
TV viewing habits [28]. Finally, as a possible example
of things to come, Facebook has been awarded a patent
on using the mobile device’s camera to analyze users’
emotions while they are browsing the newsfeed [70].

Given that sensor data is highly sensitive, the An-
droid and iOS operating systems include mandatory
access control mechanisms around most sensors. How-
ever, existing permission models only partially mitigate
multimedia privacy concerns because they are coarse
grained and incomplete. For example, when a user grants
a multimedia permission to an app, this permission also
applies to any third-party library code that is included
in the app. Thus, users and even app developers may
be unaware of the extent of privacy risks from such per-
missions. In addition, we find that on Android there is
no permission required for third-party code in an app to
continuously record the screen displayed to the user. As
such, users may unwittingly use apps that collect video
recordings containing sensitive information, similar to
session-replay scripts on websites [44]. A key challenge
for understanding these risks is that there is no general
approach to reveal such behavior.

In this work, our goal is to identify and measure
the exfiltration of media (defined as images, video, and
audio) over the network from Android apps. We focus on

Proceedings on Privacy Enhancing Technologies ; 2018 (4):34–50

(potential) privacy risks that are caused by the transfer
of media recordings to parties over the internet, rather
than privacy risks caused solely by apps’ access to the
camera and microphone (e.g., device fingerprinting [42,
46, 80] and location tracking [28]). We define a leak as
either (1) unexpected recording of users’ interactions
with an app, and (2) sharing of multimedia recordings
with other parties over the internet, without explicitly
indicating this to the user either in the privacy policy
or at run time.

To understand media exfiltration by Android apps
and the potential privacy consequences, we empirically
studied the behavior of 17,260 apps collected from
Google Play and three popular third-party app stores.
We analyze these apps using a combination of static
and dynamic analysis techniques. We use static analy-
sis on all of the apps in our dataset to determine (1)
whether each app requests access to camera and micro-
phone permissions, (2) whether media APIs are actu-
ally referenced in the app’s code, and (3) whether these
API references (if they are present) are in code from the
first-party developer or a third-party library. Of course,
static analysis alone cannot tell us whether an app ac-
tually invokes media APIs, or exfiltrates media over the
network. Therefore, we use dynamic analysis (on a sub-
set of 9,100 apps that have the potential to leak media)
to detect media exfiltration; specifically, we used the Ex-
erciser Monkey [26] to automatically interact with each
app in a controlled environment, recorded network traf-
fic using Mitmproxy [16], and used the MediaExtract
file carving tool [6] to identify media in network flows.

Our work makes the following contributions:

– We present the first large-scale empirical study of
media permissions and leaks from Android apps,
covering 17,260 apps from Google Play, AppChina,
Mi.com, and Anzhi.

– We develop a comprehensive methodology for de-
tecting media exfiltration that combines analysis
of permissions, method references, third-party li-
braries, and automated interactions. We validate
our methodology by analyzing the behavior of a
ground-truth test app that we developed, as well as
through manual examination of key apps that are
known to rely on image, video, and audio collection.

– We find a previously unreported privacy risk from
third-party libraries. Namely, they can record the
screen from the app in which they are embedded
without requiring any permissions. Apps often dis-
play sensitive information, so this exposes users to
stealthy, undisclosed monitoring by third parties.

– Our analysis reveals that several apps share image
and video data with other parties in unexpected
ways. For example, several photo editing apps pro-
cess images in the cloud without explicitly mention-
ing the behavior in their privacy policy.

– Large fractions of apps request multimedia permis-
sions that they never use, and/or include code that
uses multimedia sensors without explicitly request-
ing permissions for them. This inconsistency in-
creases the potential privacy risks for users: previ-
ously unused permissions could be exploited by new
third-party code that a developer includes in an app.
Further, third-party code that does not have per-
missions to use multimedia in one version of an app
may start exploiting any permissions granted to a
future version of the app for an unrelated purpose.

Taken together, our study reveals several alarming pri-
vacy risks in the Android app ecosystem. We have re-
sponsibly disclosed confirmed privacy leaks to develop-
ers and the Android privacy team, and they took action
to remediate the privacy concerns we discovered (§7.1).

Our dataset and analysis results are publicly available
at https://recon.meddle.mobi/panoptispy/.

2 Related Work
We begin by surveying related work on mobile device
privacy in general, and media leaks in particular. We
also discuss existing approaches and tools for investigat-
ing the security and privacy offered by Android apps.

2.1 Privacy Measurements

Tracking and PII collection. Several studies have
documented the growing prevalence of tracking in mo-
bile apps. Vallina-Rodriguez et al. presented a broad
characterization of the online advertising platforms used
by apps [72], and follow-up studies revealed the specific
kinds of personally identifiable information (PII) sent to
trackers and analytics services [31, 38, 61, 65, 73, 76].
Book et al. investigated APIs exposed by advertising li-
braries that can be used to leak PII [33]. Ren et al. used
longitudinal data to examine how app privacy practices
have changed over time [64]. Other studies have focused
on legal implications of apps’ privacy practices, specifi-
cally COPPA and the GDPR [63, 66].

Proceedings on Privacy Enhancing Technologies ; 2018 (4):35–50

Several studies bridge the gap between tracking on
the web and on mobile devices. Leung et al. directly
compared the privacy practices of web and app-based
versions of the same service [55]. In contrast, two studies
have delved into the mechanisms used by advertisers to
track users’ behavior across devices [34, 81].

While this body of work has significantly advanced
our understanding of the mobile tracking ecosystem, one
shortcoming is that it exclusively focuses on leaks of tex-
tual information to third parties (e.g., unique identifiers,
email addresses, names, etc.).

Attacks using multimedia sensors. Several pre-
vious studies take an initial look at how a mobile de-
vice’s cameras and microphones can be used to vio-
late user privacy and security. For example, uninten-
tional variations in the manufacturing of mobile de-
vice cameras, microphones, and speakers can be used
to create fingerprints that uniquely identify mobile de-
vices [42, 46, 80]. Petracca et al. demonstrated nu-
merous attacks that apps with microphone permissions
can implement by passively eavesdropping in the back-
ground [60]. Similarly, Fiebig et al. demonstrated that
apps with camera permissions could passively capture
keystrokes and even users’ fingerprints [45].

Two studies have examined the deployment and im-
plications of ultrasonic beacons. Arp et al. measured the
prevalence of ultrasonic beacons in the wild, and found
them deployed on websites and in stores. Furthermore,
they found 234 apps in the Google Play Store that were
constantly, passively monitoring for these beacons, in
order to track users’ online and offline browsing be-
haviors [28]. Mavroudis et al. consider various attacks
against users that leverage ultrasonic beacons, including
de-anonymizing Tor users [59].

Shrivastava et al. developed a testing framework
that probes the computer vision algorithms used by
apps with camera permissions [67]. They found that
many apps included libraries that implement character,
face, and barcode detection. Furthermore, the authors
surveyed users and found that 19% of apps in their study
extracted information from images that users did not
expect, and that this made users very uncomfortable.

Our work. Our study complements and extends the
existing measurement work on the privacy implications
of media sensors on mobile devices in two significant
ways. First, existing studies focus on how apps can ex-
tract and distill privacy-sensitive data from images and
audio (e.g., fingerprints). In contrast, we focus on the
wholesale exfiltration of media over the internet. Sec-
ond, prior work does not consider the privacy implica-

tions of static screenshots and captured videos of the
screen. As we will show, these represent significant pri-
vacy risks since they can be surreptitiously recorded by
any app without the need for explicit permissions.

2.2 Privacy Measurement and Tools

Numerous tools from the research community help iden-
tify, and in some cases mitigate, security and privacy
risks on mobile devices.

Static analysis. Previous work analyzed the pri-
vacy implications of Android app bytecode using a va-
riety of static analysis techniques, such as static data
flow (taint) analysis [29, 36, 47, 52], and symbolic exe-
cution [50, 78]. These systems uncover many PII leaks,
but they often overestimate the number of leaks, thus
leading to false positives. Further, code that is heavily
obfuscated or dynamically loaded at run time can lead
to false negatives (recent measurements indicate that
30% of Android apps load code at run time [56]).

Dynamic taint analysis. TaintDroid was the first
system to pioneer the use of dynamic taint track-
ing to analyze privacy leaks on Android [43]. Subse-
quent systems have refined these dynamic analysis tech-
niques [75, 77, 79]. Additionally, there are several tools
to assist in automating the testing process for Android
apps, i.e., to increase code coverage when performing
taint analysis [37, 39, 48, 49, 58]. Unfortunately, dy-
namic analysis alone suffers from false negatives, as fully
exercising all code paths in complex apps is generally
not feasible. Further, taint tracking imposes run-time
overheads that make it challenging to run analysis at
large scale in a reasonable amount of time.

Dynamic network traffic analysis. A separate
line of work focuses on identifying privacy leaks in net-
work traffic [54, 63, 65, 69]. The advantage is that these
approaches are easily deployable for end-user devices,
either via a Virtual Private Network (VPN) proxy or
by conducting analysis on a home router. When com-
bined with ground-truth information about PII and/or
machine learning, this approach can provide good cov-
erage of privacy leaks with few false positives and nega-
tives. However, such approaches will not work well if the
PII is exfiltrated using sophisticated obfuscation [40].

Our work. No single method is totally effective at
detecting all privacy leaks from Android apps. Thus, in
this study we leverage a combination of static analysis
and dynamic network traffic analysis to measure media
leaks. As we discuss in § 5, we first use static analysis

Proceedings on Privacy Enhancing Technologies ; 2018 (4):36–50

to examine the permissions requested by apps and ref-
erences to sensitive API calls. We then run the apps
and automatically interact with them in an attempt to
trigger those APIs, and subsequently analyze the cor-
responding network traffic that those apps generate to
identify media leaks.

3 Threat Model
Our goal is to identify and measure exfiltration of media
(i.e., images, audio, and video) by Android apps over
the network. Media exfiltration presents new privacy
implications compared to well-known PII leaks. They
provide an extra channel to carry PII and private infor-
mation (e.g., a user’s images) that prior approaches do
not identify. Furthermore, screen recording reveals data
as it is entered, which the user may reasonably expect
not to be shared until submitted. Finally, screen record-
ing might reveal highly sensitive information, such as
passwords: Android has the option to toggle password
visibility globally in its security settings (i.e., showing
the entered characters briefly before masking them) or
locally for individual input fields (i.e., unmasking the
whole password) if enabled by the developer.

Definition of media leaks. We assume that the
user has either granted no permissions, or granted an
app permissions to use media sensor(s) for a user-
identifiable purpose of that app. For example, a user
would grant no media permissions to a simple Solitaire
app, and would grant camera permissions to an app that
allows the user to take and edit photos. A suspicious or
unexpected media exfiltration is one that meets at least
one of the following criteria:

– It does not further the primary purpose of the app.
Media shared outside of an app’s primary purpose
presents privacy risks since users do not expect it.
In many cases, this shairng is due to third-party
tracking or analytics libraries. For other cases, we
manually inspect the app being studied to assess
this property.

– It is not disclosed to the user. Media sharing that
is not disclosed may not only be unexpected by the
user, but also may violate privacy laws. We manu-
ally verify whether an app provides visual cues to
users, requests users’ consent, and/or clearly dis-
closes this behavior in its privacy policy.

– It is not employed by similar apps. We determine
this based on comparisons with apps that have
nearly identical functionality. If other, similar apps
do not exfiltrate media, then it is a good indicator
that such functionality is suspicious. We then man-
ually investigate and subjectively label such cases.

– It is not encrypted over the internet. This creates
opportunities for eavesdroppers to passively observe
sensitive content. We check this property based on
whether media is sent over an unencrypted channel.

We assume that apps do not attempt to break the per-
mission model, nor break out of the Android sandbox
(e.g., by exploiting OS-level vulnerabilities). We further
assume that apps access media sensors using only stan-
dard Android APIs that are available to all app develop-
ers on recent Android platforms, as opposed to hidden
or privileged APIs. We do not examine media exfiltra-
tion from apps’ background activity. We also do not
consider data that is reshared after collection, as was
the case for the Cambridge Analytica controversy.

Privacy legislation. While we do not provide a le-
gal analysis of privacy leaks in this study, our definition
of leaks is in line with recent legislation that requires
companies to disclose and explain the purpose of col-
lected PII. The European Union’s General Data Pro-
tection Regulation (GDPR) restricts and requires full
disclosure of PII collection and usage [11]. The Califor-
nia Online Privacy Protection Act (CalOPPA) requires
any party who collects PII from Californian consumers
to provide a privacy policy outlining what data is col-
lected and who it is shared with, and to comply with
posted policies [5]. The Fair Information Practice Prin-
ciples is a set of principles adopted by the US Privacy
Act and other frameworks worldwide. It details prin-
ciples such as transparency, purpose specification, and
data minimization, among others [8].

4 Background
Before we describe our methodology for investigating
media leaks from Android apps, it is important to review
the permission model and APIs offered by Android to
access media resources.

Media permissions. Android restricts access to
sensitive OS capabilities by forcing developers to ob-
tain explicit permission from users. App developers
must list the permissions they plan to use in their

Proceedings on Privacy Enhancing Technologies ; 2018 (4):37–50

AndroidManifest.xml file, which is contained in all An-
droid Packages (APKs). To access the camera and mi-
crophone, apps must request the following permissions:

– android.permission.CAMERA
– android.permission.RECORD_AUDIO

Additionally, apps may request the permissions
android.permission.READ_EXTERNAL_STORAGE or
android.permission.WRITE_EXTERNAL_STORAGE to ac-
cess files that are stored on the device. This poses
another possible outlet for media leaks, as apps can ac-
cess and potentially leak photos, videos, or audio clips
stored on the device if granted either of these permis-
sions. Note that in the Android permission model, the
permission to write to external storage implicitly grants
read access.

Users can accept or reject permission requests. Prior
to Android API level 23, permission requests needed ap-
proval at app install time, and rejection prevented in-
stallation. Since API level 23, apps request permissions
(and must handle rejection) at run time.

Media APIs. Once an app has been granted media
permissions, the following API objects become available:

– android.hardware.camera (API level <21)
– android.hardware.camera2 (API level 21+)
– android.media.AudioRecord
– android.media.MediaRecorder

The camera and AudioRecord objects require the
CAMERA and RECORD_AUDIO permissions, respectively.
The MediaRecorder object only requires RECORD_AUDIO
if used solely for audio recording. Otherwise, to record
video, both permissions are required.

Screenshots. Unlike the camera and audio APIs,
the APIs for taking screenshots and recording video of
the screen are not protected by any permission. The An-
droid APIs for capturing the screen are:

– android.view.View.getDrawingCache()
– android.view.View.getRootView()

This lack of access control is problematic, as apps can
potentially record users’ screen interactions without
their awareness. However, these two methods are multi-
purpose and not solely designed for taking screenshots.
For example, getDrawingCache() caches a bitmap,
which is useful for improving performance when ren-
dering repeated UI elements between activities. The
method getRootView() finds the topmost view of the
UI’s layout, which is a hierarchical tree structure con-
sisting of ViewGroups (internal nodes) and Views (leaf

nodes). In short, when an app calls these methods it
does not necessarily imply that it is recording the screen.

Note that this approach of capturing the screen is
different from that of Android’s MediaProjection API.
The latter provides means to record the screen program-
matically, but includes an indication in the form of a
lock icon. Since the user is informed about the record-
ing in this case, this API is outside of our threat model.

5 Methodology
In this section, we present our methodology for gather-
ing data and measuring media leaks by Android apps.
As shown in Figure 1, our methodology involves both
static and dynamic analysis techniques. We begin by
describing our process for gathering Android apps for
analysis in § 5.1. Next, we discuss our approach for ex-
tracting permissions and method usage from APKs us-
ing static analysis in § 5.2, and our dynamic testbed for
automatically interacting with apps and inducing media
exfiltration over the network in § 5.3. Finally, in § 5.4 we
explain and validate our approach for detecting media
in network flows.

5.1 Selection of Android Apps

Obtaining a broad understanding of media leaks re-
quires testing a large set of apps. However, the time
and resources necessary to dynamically analyze apps is
non-trivial (see § 5.3), and thus we must carefully choose
how to allocate our limited resources.

To provide analytical results that are representa-
tive of apps in general, while also covering high-impact
apps, we select popular and random apps from four app
stores. Our set of apps is compiled from several preex-
isting sources [27, 40, 64], and covers apps from Google
Play, AppChina, Mi.com, and Anzhi. We chose these
three third-party app stores because they were the three
largest markets (aside from the Google Play) in the An-
droZoo dataset [27].

From Google Play, we select 8,038 apps that request
permissions for the camera and/or microphone from a
set of 30,504 apps that are either part of the top 600
popular free apps, top 600 popular apps for each cate-
gory, newest 600 overall, or newest 600 in each category
as of April 2017 [40]. We further include 7,665 APKs col-
lected from a previous study [64] that were either part of
the top 600 popular free apps or the top 50 in each cat-

Proceedings on Privacy Enhancing Technologies ; 2018 (4):38–50

Static Analysis

Dynamic Analysis

Interaction +
Traffic Collection

Media Detection

Permissions
API References Actual Media Leaks

Fig. 1. Design of our experiments. We start with 17,260 apps collected from four app stores on the left. We statically analyze these
apps to extract the media permissions and API references, which then informs our selection of apps to dynamically analyze. The final
output, on the right, are the actual media leaks from apps over the network.

egory as of January 2017. The final Google Play dataset
covers 15,627 unique APKs. From the third-party app
stores, we select the most popular apps as well as 1,000
apps selected uniformly at random from AndroZoo [27].
Specifically, we collect the 510 most popular apps over-
all from AppChina, and the most popular apps from
each category from Mi.com (528 apps) and Anzhi (285
apps). In total our dataset contains 17,260 unique apps.

5.2 Static Analysis

The next step is statically analyzing the 17,260 apps in
our dataset. We use static analysis to determine:

1. Does the app request permissions for the camera,
microphone, and/or accessing external storage?

2. Does its bytecode contain references to the media
APIs listed in § 4?

3. Are media API references in third-party library
code, and if so, which library?

We now discuss why each of these pieces of information
is important for our analysis, and how we obtain them.

Permissions. Examining permissions is the first
step towards understanding which apps in our dataset
might leak images, audio, and video, since permissions
are required to access these sensors or files stored in the
external storage. We use the standard Android SDK tool
aapt to retrieve the AndroidManifest.xml file from all
of the apps in our dataset, and scan the results for apps
that request permissions to access the camera, micro-
phone, or external storage.

However, an app that requests such permissions
does not necessarily use the corresponding media APIs
or leak media over the network. This can occur when
apps request permissions for functionality that is never
used by the app, i.e., the apps are over-privileged [35].
Further, apps that do not request these permissions may
still potentially leak media, e.g., if they upload images
from the mobile device’s internal storage, or gather and

upload screen captures. As a result, our static analysis
on permissions may have false positives and negatives,
which we control for with later dynamic analysis.

API references. We decompile the apps in our
dataset using dex-method-list [6] and locate references
to the camera, audio, and screen capture APIs listed
in § 4. This allows us to identify apps that are over-
privileged, as well as apps that may be capturing screen-
shots and screen video. However, the methods for cap-
turing/recording the screen and reading data from de-
vice storage may serve other purposes, meaning that
the static analysis produces a high false positive rate
for API references to screenshot functionality and read-
ing from external storage. As a result, we also perform
dynamic analysis on these apps, described in § 5.3.

Third-party libraries. Android apps often include
third-party libraries, some of which have been shown to
be the root causes of privacy leaks (e.g., advertising and
tracking libraries [32]). Libraries are able to access sensi-
tive information on mobile devices because they inherit
the capabilities of the app itself. This raises the possi-
bility that library code may take actions that users, and
even first-party developers, are unaware of.

In the context of this study, we are interested in
whether references to media APIs are within code from
the first-party app developer or a third-party library.
This information is critical for correctly attributing the
source of media leaks. To identify the libraries within
apps, we rely on LibScout [30] and LibRadar [57]. Both
tools compare the signatures of bytecode against a pre-
defined database of known library code. Unfortunately,
because of bytecode obfuscation and the presence of
previously unknown library versions, both tools may
produce false negatives. Furthermore, these tools may
produce false positives if an app includes a library, but
never invokes its methods at run time.

To determine whether media API references oc-
cur in first or third-party code, we rely on package
names. Typically, code from the first-party developer
resides in a package name that largely overlaps with

Proceedings on Privacy Enhancing Technologies ; 2018 (4):39–50

Dataset App Source # of APKs Selection Criteria
method-call Google Play 127 Apps that call camera and audio APIs

3p-lib Google Play 187 Apps that covered the most popular set of third-party libraries
appsee Google Play 33 Apps that include the AppSee library

permission Google Play 8,038 Apps that request either camera and audio permission
appchina AppChina 335 Apps that request either camera or audio permission, or call screenshot methods

appmi Mi.com 331 Apps that request either camera or audio permission, or call screenshot methods
anzhi Anzhi 269 Apps that request either camera or audio permission, or call screenshot methods

Table 1. Summary of the 9,100 apps we selected for dynamic analysis, and the criteria used for their selection. Some of our datasets
(3p-lib and appsee) overlap with the rest of our dataset as we selected them for further testing after initial results.

the application package name. We rely on this assump-
tion to distinguish code from first- and third-parties.
For example, all classes related to the main activity
of the app air.com.myheritage.mobile are under the
same package name, yet it also includes packages cor-
responding to third-party libraries like com.appsee and
com.google.android.gms.maps.

Privacy policies. Our definition of media leaks re-
lies on app privacy policies (§ 3), so we manually inspect
the privacy policies of apps that share media over the
internet. If this type of sharing is not explicitly disclosed
in the app’s privacy policy, we call it a media leak.

5.3 Testbed for Dynamic Analysis

Static analysis provides useful guidance about which
apps may potentially exfiltrate media. However, from
this data alone we cannot infer whether media permis-
sions will be used, or whether media APIs will be called
at run time. Thus, results from static analysis alone may
exhibit high false positive rates. On the other hand,
static analysis fails to detect obfuscated and dynami-
cally loaded code, causing false negatives. To address
these issues, we conduct dynamic analysis by running
and interacting with apps. Due to resource constraints,1

we are not able to dynamically analyze all 17,260 apps;
instead, as shown in Figure 1, we select apps that are
more likely to leak media content based on their permis-
sions and media API references. We dynamically ana-
lyzed 9,100 apps (53% of our total dataset). Table 1
shows how these apps are distributed across app store
sources, as well as the criteria for their selection.

In the remainder of this section, we describe our
testbed for dynamically analyzing Android apps.

1 We conduct all dynamic tests on actual Android devices, and
each test takes on the order of minutes.

Automated interaction. Triggering media exfiltra-
tion from mobile apps requires executing and interact-
ing with them. A natural way to accomplish this is via
human interaction; however, this does not scale to the
size of our dataset. Instead, we use the UI/Application
Exerciser Monkey [26]. Each test consists of interacting
with an app using Monkey for 5,000 user events (lasting
for 16 minutes at most). We configured Monkey to ran-
domly select 10 activities in each app and send 500 in-
teractions to each activity. We use 5,000 events because
it allows us to test a large number of APKs in a reason-
able amount of time, and because previous work found
that longer interaction times did not result in more PII
leaks [55]. Note that we did not use pre-configured text
inputs, which vary across apps and require substantial
manual effort; instead, we relied on random interactions.
Accordingly, we miss some events that only human in-
teractions trigger, e.g., in apps that require login.

During each test, we took screenshots from each de-
vice at 1-second intervals. We use these screenshots to
manually verify that observed media exfiltration was not
caused by an explicit interaction event (e.g., clicking the
“upload image” button in an app).

Test environment. We conduct experiments us-
ing ten Android devices: two Nexus 6P phones and six
Nexus 5X phones with Android 6 (API level 23), and
two Nexus 5 phones with Android 4.4.4 (API level 19).
We use real Android devices instead of emulators to
avoid scenarios where apps and third-party libraries be-
have differently when they detect emulation. We ran-
domly assigned apps to devices; 1,814 were ultimately
tested under Android 4.4.4.

Each test was performed in a standardized environ-
ment. Before each test, we prepared the device by delet-
ing all non-standard apps (i.e., everything except for
the standard app suite provided by Google), clearing
the internal user-accessible storage, and then preload-
ing several media files (two decoy Grace Hopper images,
a short video clip, and a short audio clip). These me-

Proceedings on Privacy Enhancing Technologies ; 2018 (4):40–50

Category Supported Unsupported
Audio 3gp, aac, id3v2, m4a, ogg, wav raw
Image bmp, gif, jpg, png, webp
Video 3gp, mp4, webm

Table 2. Media file types supported by our augmented version of
MediaExtract, based on encoders supported by the Android APIs
(bolded) and common libraries we observe in practice.

dia files were placed in the standard locations within
the Android filesystem (e.g., /sdcard/Pictures). We
preloaded the test devices with media as a means to
catch apps that exfiltrate media from the filesystem
without recording any media themselves. Once the de-
vice is cleaned and preloaded, we installed the target
app and exercised it with Monkey.

Recording network traffic. During each test, we
route network traffic through Meddle [62] using a VPN,
and use Mitmproxy [16] to record the plaintext con-
tent of HTTP and HTTPS flows. For apps that prevent
TLS interception via certificate pinning, we use Just-
TrustMe [13], which modifies Android to bypass cer-
tificate pinning for apps that leverage built-in Android
networking APIs and popular libraries (e.g., OkHttp).

5.4 Detection of Media in Network Traffic

Our dynamic tests produce a large dataset of plaintext
network flows generated by apps. In this section, we dis-
cuss how we identified media embedded in these flows.

5.4.1 Media File Extraction and Decoding

We retrieved the raw byte streams of payload content
from each outgoing network flow (typically the payloads
of HTTP POST and PUT messages). We then scanned
these byte streams with MediaExtract [15] to extract
embedded media files. MediaExtract identifies media
files by looking for the “magic numbers” that signify
the beginning of media file headers. For example, JPEG
files are always prefaced with the hexadecimal bytes “FF
D8 FF”. We modified MediaExtract to support two ad-
ditional file types: WebP and WebM. We also evalu-
ated several other forensics tools (Autopsy [4], Test-
Disk/PhotoRec [18], Foremost [9], Scalpel [23], tcpx-
tract [24], LaZy_NT [14], PIL [20]), but these tools ei-
ther supported fewer file formats than MediaExtract,
identified fewer media files in our data than MediaEx-
tract, or extracted incomplete and corrupted media files.

Table 2 shows the media file types that can be na-
tively produced by the Android APIs, as well as the file
types supported by our augmented version of MediaEx-
tract. We are able to detect all file formats that Android
can natively produce, except for raw audio because it
does not have a distinguishable file header. Fortunately,
it is unlikely that apps will attempt to upload raw au-
dio over the network because it is uncompressed, and
the file sizes are large compared to other audio formats.

As with all file carving tools, MediaExtract may
produce false positives, i.e., files that it incorrectly la-
bels as media. We verified that all extracted image files
were true positives by manually checking the media con-
tent, e.g., by opening an extracted image file. We then
repeated experiments manually to ensure observed leaks
were repeatable. Further, we manually determined that
all extracted audio files ≤1KB in size were false posi-
tives. We did not find any true positive audio files in
our extracted dataset, i.e., no apps appeared to exfil-
trate audio in our tests. We also verified the origin and
destination of the network flow carrying the media files
to ensure that the traffic comes from the app itself, as
opposed to a background service or a stock app.

Other encodings. We noticed that some flows in
our dataset relied on specialized encoding formats. We
manually verified that MediaExtract was able to locate
media embedded in Protocol Buffer [22] and Thrift [1]
RPC data structures. Similarly, we pre-processed flows
to decode base64-encoded data before running Media-
Extract.

5.4.2 Validation

We use controlled tests and manual experiments to val-
idate our extraction of media files from network flows.

Test app. We wrote a simple Android app that could
produce all supported types of images, video, and audio
files (see Table 2) and upload them to a web server. We
ran this app through our data collection infrastructure
(i.e., Meddle and Mitmproxy) and attempted to recover
the files with MediaExtract. With the exception of raw
audio, we were able to recover all of the uploaded files.

Manual tests. We generated network traces with
well-known apps that we knew would upload media,
such as Imgur and Giphy (images), SoundCloud (audio),
and Sing! by Smule (audio & video). We were able to
recover all images and videos, as well as audio files that
were uploaded in full. However, there were cases where
we could not recover audio data. For example, Shazam

Proceedings on Privacy Enhancing Technologies ; 2018 (4):41–50

Store # of Apps Audio Camera Screen Capture APIs External Storage Access
Permission API Permission API Screenshot Video Permission

Anzhi 883 12.8% 9.7% 15.7% 11.7% 20.7% 1.5% 23.4%
AppChina 468 28.4% 22.9% 37.0% 28.6% 57.1% 2.4% 94.0%
Mi.com 392 55.9% 41.8% 61.0% 45.7% 81.6% 5.6% 97.4%

Google Play 15,627 45.7% 46.2% 80.5% 75.1% 89.1% 10.6% 92.7%
All 17,260 43.8% 43.6% 75.6% 70.1% 84.6% 9.8% 89.9%

Table 3. Media permission requests and media API references for the app stores in our study. Large fractions of apps request per-
missions for media; in general, a smaller fraction actually call methods that use those permissions. A notable exception is the audio
permission—many apps include code that calls audio APIs but do not request permissions for it (bold text in the table).

interspersed small chunks that appear to be an audio
signature, alongside metadata in JSON structures. In-
terestingly, voice assistants like Hound and Robin did
not upload audio at all; instead they transcribed it lo-
cally on the mobile device and uploaded the text.

6 Aggregate Results
In this section, we present aggregate statistics for our
analysis of media leaks. We begin by investigating the
correlation between media permissions requested and
code references to media-related APIs (§ 6.1), then ana-
lyze which libraries call these APIs (§ 6.2). Last, we use
dynamic analysis to determine the media leaks detected
in network traffic (§ 6.3).

6.1 Permissions and API References

Our first step in understanding the potential for media
leaks is to analyze which media permissions each app
requests, and which media APIs appear in the app’s
code. We summarize the fraction of apps that request
audio and camera permissions, and that call methods to
capture media, in Table 3. Each row corresponds to a
different app store, and the Audio and Camera columns
specify the fraction of apps in each store that requests a
corresponding permission and that calls a corresponding
API. The Screen Capture APIs columns refer to meth-
ods that are used for taking a screenshot or recording a
screen video, neither of which require permissions. The
rightmost column lists the fraction of apps that request
read or write permission for external storage.

The last row aggregates results over all apps in
our study. We find that among the popular and ran-
domly selected apps, a significant fraction of apps re-
quests media permissions (43.8% for audio and 75.6%
for camera). However, this is biased towards apps from

Google Play. Among the Chinese app stores, apps from
Mi.com have similar permissions requests compared to
apps from Google Play; for the other two stores, the
rates of permission requests are much lower.

A notable trend is that larger fractions of apps re-
quest media permissions than actually call media APIs
(on average), which means apps may declare the permis-
sions but never actually use them. Such practices could
impose additional risks, since third-party libraries can
potentially load dynamic code to abuse the granted per-
missions without developers or users knowing.

Note that method references do not necessarily
mean that the method is called. Likewise, a third-party
library may be included, but never used. We specu-
late that such practices explain the higher percentage
of method references than permission requests for audio
resources (bold text in Table 3).

Furthermore, APIs for taking screenshots and read-
ing from device storage also serve other purposes,
which produces a high false positive rate. For exam-
ple, methods for reading from device storage are called
in 96.1% of our app set, i.e., 16,580 apps call either
getExternalStorage or MediaStore.

To summarize, significant fractions of apps request
media permissions and include code that can use them.
Interestingly, there is a nontrivial amount of inconsis-
tency between permissions and API calls, and thus a
need for developers to more carefully consider how they
request and use media functionality. We speculate the
reasons for over-provisioned permissions may come from
several sources. For one, an app may have required the
permission only in a previous version, but developers
failed to update requested permissions in the current
version. Also, the mapping between Android permis-
sions and their associated API is surprisingly poorly
documented, potentially leading to developer confusion.
Last, third-party SDKs provide copy-and-paste instruc-
tions for integration that includes all potentially needed
permissions even if the developer does not use library
functionality that requires them.

Proceedings on Privacy Enhancing Technologies ; 2018 (4):42–50

% of Apps Referencing API from the Library
Library # of Apps % of Apps Audio Camera Screenshot Video

com.facebook 8,322 48.22% 0.04% 0.64% 4.54% 0.37%
com.google.android.gms.maps 7,825 45.34% 0 0 0.01% 0

rx 3,602 20.87% 0 0.03% 0.06% 0
com.inmobi 2,411 13.97% 17.13% 0 26.59% 0

com.google.android.gms.vision 1387 8.04% 0 87.60% 0 0
com.tencent.mm 1,316 7.62% 0 0 0.08% 0

com.millennialmedia 1,272 7.37% 0 0 31.29% 0
com.mopub 1,175 6.81% 0 0 45.87% 0

uk.co.senab.photoview 1,163 6.74% 0 0 0.77% 0
net.hockeyapp.android 967 5.60% 0 0 59.77% 0
com.mixpanel.android 853 4.94% 0 0 71.51% 0

com.tapjoy 621 3.60% 0 0 58.13% 0
com.amazon.device.ads 396 2.29% 0 0 62.12% 0

com.smaato.soma 237 1.37% 0 0 97.47% 0
cn.domob 123 0.71% 0 0 86.18% 0

com.adsdk.sdk 105 0.61% 0 0 92.38% 0
com.mdotm.android 58 0.34% 0 0 27.59% 0

com.heyzap 51 0.30% 0 0 19.61% 0
com.mapbox.mapboxsdk 39 0.23% 0 0 12.82% 0

com.skplanet.tad 31 0.18% 0 0 87.10% 0
com.fusepowered 11 0.06% 9.09% 0 100.00% 0

com.tapit 10 0.06% 0 0 100.00% 0
com.noqoush.adfalcon.android.sdk 5 0.03% 0 0 60.00% 0

com.appflood 3 0.02% 0 0 33.33% 0
com.vdopia.ads.lw 3 0.02% 0 0 100.00% 0

Table 4. Identified third-party libraries in our dataset, and the fraction of apps whose library version references media APIs. Of the 163
libraries identified, only the above 25 reference media APIs. Libraries exhibit a diverse set of media API requests across apps, likely due
to different versions of libraries and developer customization.

6.2 Third-party Libraries

It is common practice for apps to include third-party
libraries for purposes such as utility functions, analytics,
and advertising. In many cases, developers may have a
limited (or no) understanding of the code contained in
these libraries. As such, third-party libraries can be an
interesting vector for media leaks.

We investigated the risks from third-party libraries
by analyzing their code for references to media APIs.
Using LibScout, we identified 163 unique libraries based
on their signatures from 17,260 apps. We then matched
these libraries with path names identified by dex-
method-list on the files. Note that our list of libraries is
incomplete because both library package names and li-
brary method calls might be obfuscated at compile time,
preventing us from properly identifying the library. This
is a challenging and orthogonal research problem [74].
Furthermore, LibScout can only identify libraries in its
signature database, which does not include the libraries
we discuss in detail in §7. For the libraries we could au-
tomatically identify, we focus on any references in the
library path to media APIs. Table 4 shows the percent-
age of apps that include third-party libraries and those

that call media API(s) in the third-party library path.
We omitted Android libraries and third-party libraries
that do not use media APIs (138/163) from the table,
which account for the majority of libraries.

Among the 25 libraries, we observe a diverse set of
behaviors for permission requests and API calls. Only
com.facebook includes references to every category of
media API. Few libraries include code that accesses the
microphone: com.facebook, com.google.android.gms.
maps, and com.tencent.mm. Only com.facebook, rx,
and com.google.android.gms.vision reference camera
APIs, while only com.facebook references video APIs.
Note that the video API (MediaRecorder) may also be
used for audio recording. Almost all of the libraries refer-
ence the APIs that can be used to capture screenshots;
however, we caution that these APIs have other uses
besides recording the screen.

Notably, references to media APIs for the same
third-party library can differ widely depending on which
app included the library. We believe this may be due to
different versions of libraries providing different func-
tionality, or developers who customize the code included
in their apps.

Proceedings on Privacy Enhancing Technologies ; 2018 (4):43–50

App Domain Request Method Media Type Description
kr.kkh.image_search2 images.google.com POST (HTTPS) png expected, image search

com.mnnapps.twinfinder_lookalike www.google.com POST (HTTPS) jpg expected, image search
com.allintheloop.sahic collector-10.testfairy.com POST (HTTPS) jpg unexpected, screenshot image of app usage

com.smaper.artisto artisto.smaper.com POST (HTTPS) jpg unexpected, photo editing
com.fotoable.fotobeauty paintlab.fotoable.net POST (HTTP) jpg unexpected, photo editing
com.allintheloop.sahic collector-7.testfairy.com POST (HTTPS) jpg unexpected, screenshot image of app usage
innmov.babymanager babymanagerapp.com POST (HTTPS) jpg expected, sharing screenshot
com.umonistudio.tile log.umsns.com POST (HTTP) jpg expected, sharing screenshot of game score

com.facebook.moments api.facebook.com POST (HTTPS) jpg expected, photo upload
com.kodakalaris.kodakmomentsapp kodakmoments.kodakalaris.com POST (HTTPS) jpg expected, photo upload

com.goodreads match-visualsearch.amazon.com POST (HTTPS) jpg expected, image search
com.main.gopuff c6e83853...0b.api.appsee.com POST (HTTPS) mp4 unexpected, screenshot video of app usage

com.picas.photo.artfilter.android api.picas.tech POST (HTTP) jpg unexpected, photo editing
io.faceapp node-03.faceapp.io POST (HTTPS) jpg unexpected, photo editing

com.neuralprisma api2.neuralprisma.com POST (HTTPS) jpg unexpected, photo editing
io.anyline.examples.store anyline-tracking.azurewebsites.net POST (HTTPS) jpg expected, photo-to-text scanner
com.hound.android.app bh.houndify.com POST (HTTPS) jpg unexpected, screenshot image of app usage
com.msearcher.camfind api.camfindapp.com POST (HTTP) jpg expected, image search

com.momento.cam selfy.s3.amazonaws.com PUT (HTTPS) jpg expected, photo upload
com.intsig.BizCardReader vcf.intsig.net POST (HTTPS) jpg expected, business card scanner

com.zazzle up.zazzle.com POST (HTTP) jpg expected, photo upload

Table 5. Summary of detected media in app-generated network traffic. Of the 21 cases, we find 12 to be leaks (bolded in the first col-
umn): they are either unexpected media transmissions (noted in the last column) or sent in plaintext (bolded in the “Request Method”
column), exposing potentially sensitive information to eavesdroppers.

6.3 Media in Network Traffic

Next, we analyze the network traffic generated by the
9,100 apps that we analyzed dynamically (as described
in §5.3). Table 1 summarizes the apps we selected for
dynamic analysis and the criteria we used to do so.

Recall that our testbed gathers all the network traf-
fic generated during automatic interactions with these
apps, and we search network flows for media content.
Table 5 shows the list of apps (identified by package
name in the first column) that transmitted media con-
tent during our tests. The second column specifies the
destination domain that received the media content, fol-
lowed by the HTTP method and whether encryption
was used. The fourth column specifies what type of me-
dia was transmitted, and the last column indicates our
analysis of whether the transmission was intentional
(and thus expected) or not, and what kind of media
sharing was identified.

We use bold text in the last column to highlight nine
cases that leak media. These include uploading photos,
screenshots, or even videos of screen interactions. The
bold rows in the third column highlight additional five
cases in which the media content is sent in plaintext,
meaning a network eavesdropper (e.g., on a public WiFi
access point or in the user’s ISP) can also see the media
that is transmitted.

Of the 21 cases of media leaks, just under half (9) are
shared with third parties that the user may not be aware
of. Among the third-party domains, we observe third-
party libraries and cloud services (AWS and Azure).

6.4 Analysis of Large Network Flows

The previous analysis relied on identifying known me-
dia types in network traffic, but could miss cases where
the media encoding is non-standard, obfuscated, or en-
crypted at the application layer. In this case, an alter-
native approach to detect potential media content is to
look at relatively large flows that could correspond to
images, audio recordings, or videos.

We begin by plotting the size of each network flow
generated during dynamic analysis. We remove flows
generated by Google Play Services from this analysis.
Although these flows are large and frequent, we do not
consider them to be a vector for media leaks. Figure 2
shows the resulting CDF of the number of bytes per flow
across all apps. The vast majority (99.81%) of requests
are no larger than 100KB and more than 80% contain
fewer than 10KB. By comparison, the size of extracted
images in our study ranges from 8.2KB to 1.1MB.

We further investigated the content of the rela-
tively large flows (≥100KB) in our dataset, which are
sent to 16 second-level domains (7 of which are third-
party domains), and 12 of which have more than one
large flow (see Table 6). Table 7 lists the apps re-
sponsible for those flows. A notable case is the do-
main skyhookwireless.com that is contacted by mul-
tiple apps and provides services to locate devices (e.g.,
IoT devices). The content of the large HTTP requests
is an XML file with information about nearby access
points (MAC, SSID, signal strength and age) that can
be used to calculate fine-grained geolocations without

Proceedings on Privacy Enhancing Technologies ; 2018 (4):44–50

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
 o

f
F

lo
w

s

Payload Size (KB)

Fig. 2. CDF of payload size per flow for data sent from the
app to the internet. The vast majority of flows are small (as
expected), but the minority of large flows indicates potentially
significant data exfiltration.

Domain Average Size (KB) # of Flows
radarstick.com 1,190 4

camfindapp.com 1,070 2
kodakalaris.com 1,069 2
*hockeyapp.net 428 1

faceapp.io 308 2
*skyhookwireless.com 289 7

midomi.com 224 5
mysoluto.com 200 24
*google.com 170 52
houndify.com 158 1

*crittercism.com 131 2
smaper.com 118 3

*newrelic.com 110 1
*googleapis.com 102 1

*appsee.com 101 28
marcopolo.me 101 10

Table 6. Second-level domains receiving large requests of at least
100KB. (*) indicates the domain belongs to a third party.

needing to access GPS. Manual investigation of other
large flows revealed that they generally contained de-
tailed information about the device and apps, at a
level that third-party domains can use to fingerprint
users [41, 53, 71]. While outside the scope of our study
of media leaks, these large flows represent an additional
privacy risk that users should be aware of. Further, such
large flows can potentially use substantial portions of a
cellular data plan’s quota.

Crucially, manual analysis of all of these large flows
did not reveal any additional exfiltrated media files.
This is a positive sign, which suggests that the false neg-
ative rate of our media-detection methodology is low.

7 Case Studies
The previous section focused on aggregate information
about media leaks that we observed in our dataset. In
this section, we use case studies to highlight several in-

Domain Package Name of App
appsee.com com.main.gopuff

camfindapp.com com.msearcher.camfind
crittercism.com com.usaa.mobile.android.usaa

faceapp.io io.faceapp
google.com kr.kkh.image_search2
google.com com.mnnapps.twinfinder_lookalike
google.com com.midoapps.cartooneditor
google.com meemtech.flashlight

googleapis.com com.eosmobi.cleaner
hockeyapp.net org.becu.androidapp
houndify.com com.hound.android.app

kodakalaris.com com.kodakalaris.kodakmomentsapp
marcopolo.me co.happybits.marcopolo
midomi.com com.melodis.midomiMusicIdentifier.freemium

mysoluto.com com.asurion.solutohome.walmart
mysoluto.com com.asurion.solutohome.gigspartner
newrelic.com com.traegergrills.app

radarstick.com com.radarworkx.radarspotter
skyhookwireless.com air.air.com.EasyRandomVideoChat
skyhookwireless.com app.local1285
skyhookwireless.com appinventor.ai_malote1971.SpainParanormalKII
skyhookwireless.com app.qrcode
skyhookwireless.com com.abtnprojects.ambatana
skyhookwireless.com air.com.touchmultimedia.comicpuppetsfree
skyhookwireless.com a2z.Mobile.Event4164

smaper.com com.smaper.artisto
Table 7. Second-level domains receiving large requests of at least
100KB and the apps that generated them.

teresting media leaks in detail, identify their root causes,
and discuss their privacy implications.

7.1 Appsee: Screen Recording

Our first case study focuses on a video leak from
the GoPuff app (com.main.gopuff) referenced in Ta-
ble 5. The app provides on-demand delivery for
users. The video was leaked to a third-party domain
api.appsee.com that is owned by Appsee [2], an app
analytics platform provider. They offer the ability to
“[w]atch every user action and understand exactly how
they use your app, which problems they’re experienc-
ing, and how to fix them. See the app through your
users’ eyes to pinpoint usability, UX and performance
issues.” [2] As we discuss below, this claim is—much to
the chagrin of user privacy—accurate.

We began by decompiling the APK for GoPuff,
which revealed that GoPuff starts Appsee as soon
as the app launches (using the code in Figure 3).
Our dynamic analysis confirmed this: as soon as a
user opens GoPuff, the app records the screen and
sends a video of this interaction to the following do-
main: https://c6e83853bc68d0b076811737cb58920b.
api.appsee.com/upload. Taking a recording of user in-

Proceedings on Privacy Enhancing Technologies ; 2018 (4):45–50

package
com . main . g o p u f f . p r e s e n t a t i o n . view . a c t i v i t i e s ;

public c lass S p l a s h A c t i v i t y extends BaseAct iv i ty
implements SplashScreenView {

// The method onCreate i s c a l l e d when
// S p l a s h A c t i v i t y i s created
public void onCreate (Bundle paramBundle) {

Appsee . s t a r t (g e t S t r i n g (2 1 3 1 2 9 6 4 3 3)) ;
. . .

}
}

Fig. 3. Code snippet from GoPuff, which uses the Appsee library
to recode the screen as a user interacts with the app. The record-
ing starts immediately when the user opens the app, and in some
cases include users’ PII (which is shared with Appsee).

teractions is not itself necessarily a privacy risk. How-
ever, even in this simple example we found that PII was
exposed to Appsee—in this case the user’s ZIP code.2

While this specific example exposes relatively low-
risk PII, it is important to reiterate that Appsee re-
quires no special permission to record the screen, nor
does it notify the user that she is being recorded. In fact,
Appsee puts the burden on the app developer to protect
sensitive information by calling markViewAsSensitive
in the app’s code, or using server-side configuration
through Appsee’s dashboard [3].

At first glance, this is good news: the developer is
in the position of knowing what views in their app are
sensitive. However, our analysis indicates that many de-
velopers either have no sensitive data input, or simply
did not bother to mark any view as sensitive: only five
out of 33 apps in our dataset that include Appsee even
call the markViewAsSensitive method. We show counts
of other method calls in Table 8; most apps start record-
ing (16 start and four startScreen), but only a small
fraction of apps made calls to the stop/pause actions.
Thus, in many cases screen recording is started, never
stops, and no views are omitted from recording using
the client-side AppSee API. It is unknown how many
app developers use AppSee’s dashboard to filter sensi-
tive views on the server-side.

Screen recording, if adopted at scale and/or in apps
that handle sensitive data, could expose substantial
amounts of users’ PII, especially when the full burden
of securing private information is placed on developers.
Further, we argue that the recording of interactions with
an app (without user knowledge) is itself a privacy vio-
lation akin to recording audio or video of the user.

2 We disclosed this to GoPuff, which in response pulled the
Appsee SDK from their iOS and Android apps and updated
their privacy policy [12].

Appsee Method # of Apps # of Occurrences
start 16 37

addEvent 7 27
setUserId 6 6

markViewAsSensitive 5 44
startScreen 4 9

stop 2 2
resume 1 6
pause 1 1

set3rdPartyId 1 1
Total 21 133

Table 8. Number of apps using various methods of the Appsee
library, and how often they called each method.

Given the risks of screen recording, we disclosed this
behavior to Google’s privacy team. Their response was
that “Google constantly monitors apps and analytics
providers to ensure they are policy-compliant. When no-
tified of our findings, they reviewed GoPuff and AppSee
and took the appropriate actions.”

7.2 TestFairy: Screenshots

Our next case study focuses on a similar privacy risk:
taking screenshots of the app while in use. TestFairy [25]
is a mobile beta-testing platform that records user
interactions via screenshots. In our dataset, SAHIC
(com.allintheloop.sahic), which is a networking app
for two conferences – SAHIC Cuba and SAHIC South
America 2017 – uses the library and sent 45 screenshots
to testfairy.com. The screenshots, shown in Figure 4,
include (but are not limited to) information such as a
search for attendees, a message to a contact, and a re-
sponse to a survey. Attached with the screenshots is in-
formation that describes the current view and activity
name of the app as shown in the following request:

https://collector-10.testfairy.com/services/
?method=testfairy.session.addScreenshot\
×tamp=1504971161996\&seq=1\
&sessionToken=80775553-4252621-5418832-376287176
-bab9f09e42c3c2e13a083c070ca30ed203aa05b6\
&lastScreenshotTime=349\&interval=2000\&type=0\
&activityName=com.allintheloop.sahic.MainActivity

While this feature is typically used during beta testing,
the app was not labeled as a beta version in the Google
Play Store. The user is also not informed of the record-
ing, nor is she offered the opportunity to consent to beta
testing upon opening the app. Thus, any reasonable user
of these apps would likely never expect screenshots of
her interactions.

Proceedings on Privacy Enhancing Technologies ; 2018 (4):46–50

To understand how pervasive this problem is, we ex-
amine all the apps in our dataset that include the Test-
Fairy library. Fortunately, we found only one (SAHIC)
out of 16 apps calling any of the TestFairy API methods
for screenshots, and this is consistent with our network
traffic analysis. Thus, despite a substantial privacy risk
from this feature, we find that nearly all apps we tested
are properly removing TestFairy methods before releas-
ing their apps in the Google Play Store.

7.3 Photo Apps: Unexpected Sharing

Many users regularly use the cameras on their phones
to take photos for personal use, then edit those photos
using apps installed on their phones. In fact, both An-
droid and iOS already provide powerful built-in ways
to edit photos directly on the phone. That said, there
is also a marketplace of photography apps that provide
photo-editing features (e.g., filters, adding text, etc.). It
is reasonable for most users to assume that such editing
is performed on the device itself; however, we observed
that several photography apps send the photos to their
servers for processing without explicitly notifying users.

An example of this behavior is Photo Cartoon Cam-
era - PaintLab (com.fotoable.paintlab), which up-
loads to their servers any photo that a user selects for
editing, as well as any photo taken from the app (even
before the user decides to edit the photo). Given that
nothing else in the app indicates the need for an in-
ternet connection, the behavior is unexpected. Further,
uploading photos taken from within the app before users
decide to keep them exposes those users to further pri-
vacy risks from unintentional photo sharing. This be-
havior also appears in InstaBeauty - Makeup Selfie Cam
(com.fotoable.fotobeauty), an app from the same de-
veloper, and in five other photo-editing apps.

We crawled the categories of 8,689 unique apps in
our dataset that were from the Google Play Store. Our
crawler was able to identify the categories of 7,022 apps.
Out of those 7,022 apps, 463 apps were part of the “Pho-
tography” category. Our experiments detected 6 apps
exhibiting this uploading behavior.

The privacy disclosures for these apps are not
entirely clear. Fotoable, the developer of two afore-
mentioned apps, has a privacy policy disclosure that
makes only a general statement that personal infor-
mation may be collected and used [10]. Three other
apps, FaceApp (io.faceapp), Picas - Art Photo Filter,
Picture Filter (com.picas.photo.artfilter.android),
and Prisma Photo Editor (com.neuralprisma) specif-

ically include users’ photos as “personal information”
collected [7, 19, 21]. However, this disclosure is arguably
misleading as the app does not indicate uploading of
a user’s photo while they are editing it. In one app,
Artisto - Video & Photo Editor (com.smaper.artisto),
the privacy policy does not even seem to apply to this
app—rather, it appears to be a general privacy policy
for the developer’s family of apps, and is focused on
games [17]. Thus, it is reasonable to assume that users
of these apps may not be aware of photo exfiltration and
may not have consented to it.

8 Limitations
We now discuss some important issues and limitations of
our study. From a set of 17,260 apps, we uncovered few
instances of covert recording (i.e. apps taking pictures
or videos without users intentionally doing so). On the
one hand, this is good news: a very large fraction of
apps are not abusing the ability to record media. On
the other hand, it could also indicate that our analysis
missed other cases of media leaks.

Dynamic analysis limitations. A number of fac-
tors could lead to this result. First, our media extraction
method is not perfect. For example, an app could trans-
form an audio recording into a different format (e.g.,
a text transcript or musical features such as beat and
notes) that our system does not detect. Similarly, our
approach does not stitch together a single media file
transferred over multiple flows, or cases where a media
file does not use a standard encoding format. Second, we
may miss cases where multiple apps collude to subvert
the permission model, e.g., when an app uses an In-
tent to launch another app [35]. Third, we do not detect
media that is intentionally obfuscated when it is sent
over the network, or encrypted at the application-layer
(Mitmproxy does enable us to bypass TLS encryption).

It is possible for automated interactions to trigger
a legitimate media exfiltration that could be mistak-
enly classified as a media leak. To mitigate this issue,
we regularly captured screenshots during the automated
interactions, then manually verified that a media leak
was not generated by an intentional trigger in the app,
e.g., camera shutter or audio recording button.

Static analysis limitations. We used static anal-
ysis to identify apps that might record media, namely
by identifying corresponding API calls. It is well known,
however, that the existence of an API call in a piece of

Proceedings on Privacy Enhancing Technologies ; 2018 (4):47–50

Fig. 4. Example screenshots collected by TestFairy. Left: Contact info. Center: Messaging another user. Right: Responses to a survey.

code does not guarantee it will ever be executed. To ad-
dress this, we used dynamic analysis to filter out false
positives. However, this does not address false negatives
(where media API calls are reachable, but our auto-
mated interaction tool does not trigger them).

Further, our static analysis approach focuses on
methods from the Android SDK and not native code,
so we may miss cases of media leaks. Likewise, we may
miss leaks from dynamically loaded code.

We rely on LibRadar and LibScout to identify third-
party libraries. However, these tools may not be able
to detect obfuscated libraries, or new versions of previ-
ously identified libraries. Fortunately, these limitations
did not hinder our ability to identify the sources of me-
dia leaks in our study.

Future work. There are several ways to address
the above issues. More sophisticated static analysis ap-
proaches could determine whether referenced methods
are reachable during normal interactions with an app. A
better understanding of how media may be sent over the
network, and potentially transformed before transmis-
sion, would reduce our false negative rate. Our analysis
could also incorporate analysis of native code that leaks
media recordings.

Lastly, while we focused our analysis on Android
apps, we will investigate in future work whether iOS
apps exhibit similar behavior, as e.g., AppSee and Test-
Fairy also provide iOS SDKs.

9 Conclusion
In this paper, we investigated the potential for, and spe-
cific instances of, multimedia recordings being sent over
the internet by 17,260 popular Android apps across mul-
tiple app stores. We find that several apps leak content

recorded from the camera and the screen over the in-
ternet, and in ways that are either undisclosed or un-
expected given the purpose of the app. Importantly, we
find that third-party libraries record a video of a user’s
interaction with an app, including at times sensitive in-
put fields, without any permissions or notification to the
user. Further, several apps share users’ photos and other
media over the internet without explicitly indicating
this to the user. We also find that there is poor correla-
tion between the permissions that an app requests and
the permissions that an app needs to successfully run its
code. This opens up the potential for unexpected expo-
sure to additional media exfiltration with the inclusion
of new libraries in future versions of the app. In ongo-
ing work, we are continuing to monitor how multimedia
content leaks over the internet from mobile and IoT de-
vices, and assess the implications of such behavior.

Acknowledgments
We thank the anonymous reviewers and our shepherd
Joel Reardon for their valuable feedback.

This material is based upon work supported by the
DHS S&T contract FA8750-17-2-0145; the NSF under
Award No. CNS-1408632, IIS-1408345, and IIS-1553088;
a Security, Privacy and Anti-Abuse award from Google;
a Comcast Innovation Fund grant; and a Data Trans-
parency Lab grant. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of our sponsors.

Proceedings on Privacy Enhancing Technologies ; 2018 (4):48–50

References
[1] Apache Thrift. https://thrift.apache.org/.
[2] Appsee Mobile App Analytics. https://www.appsee.com/.
[3] Appsee Tutorials: Protecting Users’ Privacy. https:

//www.appsee.com/tutorials/privacy. (last accessed
06/14/2018).

[4] Autopsy. https://www.sleuthkit.org/autopsy/.
[5] CalOPPA Chapter 22: Internet Privacy Requirements.

https://leginfo.legislature.ca.gov/faces/codes_
displayText.xhtml?lawCode=BPC&division=8.&title=
&part=&chapter=22.&article=.

[6] dex-method-list. https://github.com/JakeWharton/dex-
method-list.

[7] FaceApp Privacy Policy. http://archive.today/2018.
06.14-232005/https://www.faceapp.com/privacy. (last
accessed 06/14/2018).

[8] Fair Information Practice Principles (FIPPS). https:
//www.dhs.gov/sites/default/files/publications/
consolidated-powerpoint-final.pdf.

[9] Foremost. http://foremost.sourceforge.net/.
[10] Fotoable Privacy Policy. http://archive.today/2018.

06.14-230916/https://www.fotoable.com/privacy.html.
(last accessed 06/14/2018).

[11] General Data Protection Regulation (GDPR). https://eur-
lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
32016R0679&from=EN.

[12] GoPuff Privacy Agreement. https://gopuff.com/privacy-
agreement. (last accessed 06/14/2018).

[13] JustTrustMe. https://github.com/Fuzion24/JustTrustMe.
[14] LaZy_NT. https://pypi.python.org/pypi/LaZy_NT.
[15] Mediaextract. https://github.com/panzi/mediaextract.
[16] Mitmproxy. https://mitmproxy.org/.
[17] My.com Terms of Use. http://archive.today/2018.06.

14-231903/https://legal.my.com/us/games/tou/. (last
accessed 06/14/2018).

[18] PhotoRec. https://www.cgsecurity.org/wiki/PhotoRec.
[19] Picas.tech Privacy Policy. http://archive.today/2018.

06.14-231220/https://www.picas.tech/privacyandroid.
php. (last accessed 06/14/2018).

[20] PIL. https://pypi.python.org/pypi/PIL.
[21] Prisma Privacy Policy. http://archive.today/2018.06.

14-232142/http://prisma-ai.com/privacy.html. (last
accessed 06/14/2018).

[22] Protocol Buffers. https://developers.google.com/
protocol-buffers/.

[23] Scalpel. https://github.com/sleuthkit/scalpel.
[24] tcpxtract. http://tcpxtract.sourceforge.net/.
[25] TestFairy Mobile Testing Platform. https://www.

testfairy.com/.
[26] UI/Application Exerciser Monkey. https://developer.

android.com/tools/help/monkey.html.
[27] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and

Yves Le Traon. AndroZoo: Collecting Millions of An-
droid Apps for the Research Community. In Proc. of the
International Conference on Mining Software Repositories
(MSR), 2016.

[28] Daniel Arp, Erwin Quiring, Christian Wressnegger, and Kon-
rad Rieck. Privacy Threats through Ultrasonic Side Chan-

nels on Mobile Devices. In Proc. of the IEEE European
Symposium on Security and Privacy (EuroS&P), 2017.

[29] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric
Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon,
Damien Octeau, and Patrick McDaniel. FlowDroid: Precise
Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In Proc. of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2014.

[30] Michael Backes, Sven Bugiel, and Erik Derr. Reliable Third-
Party Library Detection in Android and its Security Appli-
cations. In Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2016.

[31] Rebecca Balebako, Jaeyeon Jung, Wei Lu, Lorrie Faith Cra-
nor, and Carolyn Nguyen. "Little Brothers Watching You:"
Raising Awareness of Data Leaks on Smartphones. In Proc.
of the Symposium on Usable Privacy and Security (SOUPS),
2013.

[32] Theodore Book, Adam Pridgen, and Dan S. Wallach. Lon-
gitudinal Analysis of Android Ad Library Permissions. In
Proc. of the IEEE Mobile Security Technologies Workshop
(MoST), 2013.

[33] Theodore Book and Dan S. Wallach. A Case of Collusion: A
Study of the Interface Between Ad Libraries and Their Apps.
In Proc. of the ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM), 2013.

[34] Justin Brookman, Phoebe Rouge, Aaron Alva, and Christina
Yeung. Cross-Device Tracking: Measurement and Disclo-
sures. In Proc. of the Privacy Enhancing Technologies
Symposium (PETS), 2017.

[35] Paolo Calciati and Alessandra Gorla. How do Apps Evolve
in Their Permission Requests? A Preliminary Study. In
Proc. of the International Conference on Mining Software
Repositories (MSR), 2017.

[36] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel
Egele, Christopher Kruegel, Giovanni Vigna, and Yan Chen.
EdgeMiner: Automatically Detecting Implicit Control Flow
Transitions through the Android Framework. In Proc. of
the Network and Distributed System Security Symposium
(NDSS), 2015.

[37] Patrick Carter, Collin Mulliner, Martina Lindorfer, William
Robertson, and Engin Kirda. CuriousDroid: Automated
User Interface Interaction for Android Application Analysis
Sandboxes. In Proc. of the International Conference on
Financial Cryptography and Data Security (FC), 2016.

[38] Terence Chen, Imdad Ullah, Mohamed Ali Kaafar, and
Roksana Boreli. Information Leakage through Mobile An-
alytics Services. In Proc. of the ACM Workshop on Mobile
Computing Systems and Applications (HotMobile), 2014.

[39] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro
Orso. Automated Test Input Generation for Android: Are
We There Yet? In Proc. of the IEEE/ACM International
Conference on Automated Software Engineering (ASE),
2015.

[40] Andrea Continella, Yanick Fratantonio, Martina Lindorfer,
Alessandro Puccetti, Ali Zand, Christopher Kruegel, and
Giovanni Vigna. Obfuscation-Resilient Privacy Leak Detec-
tion for Mobile Apps Through Differential Analysis. In Proc.
of the Network and Distributed System Security Symposium
(NDSS), 2017.

Proceedings on Privacy Enhancing Technologies ; 2018 (4):49–50

[41] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio
Nucci, and Dawn Song. NetworkProfiler: Towards Auto-
matic Fingerprinting of Android Apps. In Proc. of IEEE
International Conference on Computer Communications
(INFOCOM), 2013.

[42] Anupam Das, Nikita Borisov, and Matthew Caesar. Do You
Hear What I Hear?: Fingerprinting Smart Devices Through
Embedded Acoustic Components. In Proc. of the ACM
Conference on Computer and Communications Security
(CCS), 2014.

[43] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P.
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.
TaintDroid: An Information-Flow Tracking System for Re-
altime Privacy Monitoring on Smartphones. In Proc. of
the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2010.

[44] Steven Englehardt. No boundaries: Exfiltration of per-
sonal data by session-replay scripts. https://freedom-to-
tinker.com/2017/11/15/no-boundaries-exfiltration-
of-personal-data-by-session-replay-scripts/, Novem-
ber 2017.

[45] Tobias Fiebig, Jan Krissler, and Ronny Hänsch. Security
Impact of High Resolution Smartphone Cameras. In Proc. of
the USENIX Workshop on Offensive Technologies (WOOT),
2014.

[46] Jessica Fridrich. Sensor Defects in Digital Image Forensic. In
Digital Image Forensics, pages 179–218. Springer, 2013.

[47] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao
Chen. AndroidLeaks: Automatically Detecting Potential
Privacy Leaks in Android Applications on a Large Scale.
In Proc. of the International Conference on Trust and
Trustworthy Computing (TRUST), 2012.

[48] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd
Millstein. RERAN: Timing- and Touch-sensitive Record and
Replay for Android. In Proc. of the International Conference
on Software Engineering (ICSE), 2013.

[49] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and
Ramesh Govindan. PUMA: Programmable UI-Automation
for Large-Scale Dynamic Analysis of Mobile Apps. In
Proc. of the International Conference on Mobile Systems,
Applications and Services (MobiSys), 2014.

[50] Jinseong Jeon, Kristopher K. Micinski, and Jeffrey S. Foster.
SymDroid: Symbolic Execution for Dalvik Bytecode. Tech-
nical Report CS-TR-5022, University of Maryland, College
Park, 2012.

[51] Michael Kassner. Take secret photos by exploiting Android’s
camera app. https://www.techrepublic.com/article/
take-secret-photos-by-exploiting-androids-camera-
app/, June 2014.

[52] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum
Shin. SCANDAL: Static Analyzer for Detecting Privacy
Leaks in Android Applications. In Proc. of the IEEE Mobile
Security Technologies Workshop (MoST), 2012.

[53] Tadayoshi Kohno, Andre Broido, and KC Claffy. Remote
Physical Device Fingerprinting. IEEE Transactions on
Dependable and Secure Computing, 2(2):93–108, 2005.

[54] Anh Le, Janus Varmarken, Simon Langhoff, Anastasia
Shuba, Minas Gjoka, and Athina Markopoulou. AntMoni-
tor: A System for Monitoring from Mobile Devices. In Proc.
of the ACM Workshop on Crowdsourcing and Crowdsharing

of Big (Internet) Data (C2B(1)D), 2015.
[55] Christophe Leung, Jingjing Ren, David Choffnes, and

Christo Wilson. Should You Use the App for That?: Com-
paring the Privacy Implications of App- and Web-based
Online Services. In Proc. of the Internet Measurement
Conference (IMC), 2016.

[56] Martina Lindorfer, Matthias Neugschwandtner, Lukas We-
ichselbaum, Yanick Fratantonio, Victor van der Veen, and
Christian Platzer. Andrubis - 1,000,000 Apps Later: A View
on Current Android Malware Behaviors. In Proc. of the
International Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security (BADGERS),
2014.

[57] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen.
LibRadar: Fast and Accurate Detection of Third-party Li-
braries in Android Apps. In Proc. of the International
Conference on Software Engineering (ICSE), 2016.

[58] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dyn-
odroid: An Input Generation System for Android Apps.
In Proc. of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2013.

[59] Vasilios Mavroudis, Shuang Hao, Yanick Fratantonio, Fed-
erico Maggi, Giovanni Vigna, and Christopher Kruegel. On
the Privacy and Security of the Ultrasound Ecosystem. In
Proc. of the Privacy Enhancing Technologies Symposium
(PETS), 2017.

[60] Giuseppe Petracca, Yuqiong Sun, Trent Jaeger, and Ahmad
Atamli. AuDroid: Preventing Attacks on Audio Channels in
Mobile Devices. In Proc. of the Annual Computer Security
Applications Conference (ACSAC), 2015.

[61] Ashwin Rao, Arash Molavi Kakhki, Abbas Razaghpanah,
Anke Li, David Choffnes nad Arnaud Legout, Alan Mis-
love, and Phillipa Gill. Meddle: Enabling Transparency and
Control for Mobile Internet Traffic. Journal of Technology
Science (JoTS), (2015103003), October 2015.

[62] Ashwin Rao, Arash Molavi Kakhki, Abbas Razaghpanah,
Amy Tang, Shen Wang, Justine Sherry, Phillipa Gill, Arvind
Krishnamurthy, Arnaud Legout, Alan Mislove, and David
Choffnes. Using the Middle to Meddle with Mobile. Tech-
nical Report NEU-CCS-2013-12-10, Northeastern University,
2013.

[63] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-
Rodriguez, Srikanth Sundaresan, Mark Allman, Christian
Kreibich, and Phillipa Gill. Apps, Trackers, Privacy, and
Regulators: A Global Study of the Mobile Tracking Ecosys-
tem. In Proc. of the Network and Distributed System
Security Symposium (NDSS), 2018.

[64] Jingjing Ren, Martina Lindorfer, Daniel Dubois, Ashwin
Rao, David Choffnes, and Narseo Vallina-Rodriguez. Bug
Fixes, Improvements, ... and Privacy Leaks – A Longitudinal
Study of PII Leaks Across Android App Versions. In Proc.
of the Network and Distributed System Security Symposium
(NDSS), 2018.

[65] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud
Legout, and David Choffnes. ReCon: Revealing and Control-
ling Privacy Leaks in Mobile Network Traffic. In Proc. of the
International Conference on Mobile Systems, Applications
and Services (MobiSys), 2016.

[66] Irwin Reyes, Primal Wiesekera, Joel Reardon, Amit
Elazari Bar On, Abbas Razaghpanah, Narseo Vallina-

Proceedings on Privacy Enhancing Technologies ; 2018 (4):50–50

Rodriguez, and Serge Egelman. "Won’t Somebody Think
of the Children?" Examining COPPA Compliance at Scale.
In Proc. of the Privacy Enhancing Technologies Symposium
(PETS), 2018.

[67] Animesh Shrivastava, Puneet Jain, Soteris Demetriou, Lan-
don P. Cox, and Kyu-Han Kim. CamForensics: Under-
standing Visual Privacy Leaks in the Wild. In Proc. of the
ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2017.

[68] Szymon Sidor. Exploring limits of covert data collection on
Android: apps can take photos with your phone without you
knowing. http://www.ez.ai/2014/05/exploring-limits-
of-covert-data.html, May 2014.

[69] Yihang Song and Urs Hengartner. PrivacyGuard: A VPN-
based Platform to Detect Information Leakage on Android
Devices. In Proc. of the ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM), 2015.

[70] Aatif Sulleyman. Facebook could secretly watch
users through webcams, patents reveal. http://www.
independent.co.uk/life-style/gadgets-and-tech/news/
facebook-plans-to-watch-users-through-webcams-spy-
patent-application-social-media-a7779711.html, June
2017.

[71] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan
Martinovic. AppScanner: Automatic Fingerprinting of Smart-
phone Apps from Encrypted Network Traffic. In Proc. of
the IEEE European Symposium on Security and Privacy
(EuroS&P), 2016.

[72] Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore,
Hamed Haddadi, Yan Grunenberger, Konstantina Papa-
giannaki, and Jon Crowcroft. Breaking for Commercials:
Characterizing Mobile Advertising. In Proc. of the Internet
Measurement Conference (IMC), 2012.

[73] Narseo Vallina-Rodriguez, Srikanth Sundaresan, Abbas
Razaghpanah, Rishab Nithyanand, Mark Allman, Christian
Kreibich, and Phillipa Gill. Tracking the Trackers: Towards
Understanding the Mobile Advertising and Tracking Ecosys-
tem. In Proc. of the Workshop on Data and Algorithmic
Transparency (DAT), 2016.

[74] Yan Wang, Haowei Wu, Hailong Zhang, and Atanas
Rountev. Orlis: Obfuscation-Resilient Library Detection
for Android. In Proc. of the IEEE/ACM International
Conference on Mobile Software Engineering and Systems
(MOBILESoft), 2018.

[75] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and
Xue Liu. Effective Real-time Android Application Auditing.
In Proc. of the IEEE Symposium on Security and Privacy
(S&P), 2015.

[76] Ning Xia, Han Hee Song, Yong Liao, Marios Iliofotou, An-
tonio Nucci, Zhi-Li Zhang, and Aleksandar Kuzmanovic.
Mosaic: Quantifying Privacy Leakage in Mobile Networks.
In Proc. of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM), 2013.

[77] Lok Kwong Yan and Heng Yin. DroidScope: Seamlessly
Reconstructing the OS and Dalvik Semantic Views for Dy-
namic Android Malware Analysis. In Proc. of the USENIX
Security Symposium, 2012.

[78] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng
Ning, and X. Sean Wang. AppIntent: Analyzing Sensitive

Data Transmission in Android for Privacy Leakage Detec-
tion. In Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2013.

[79] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei
Gu, Peng Ning, X. Sean Wang, and Binyu Zang. Vetting
Undesirable Behaviors in Android Apps with Permission Use
Analysis. In Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2013.

[80] Zhe Zhou, Wenrui Diao, Xiangyu Liu, and Kehuan Zhang.
Acoustic Fingerprinting Revisited: Generate Stable Device
ID Stealthily with Inaudible Sound. In Proc. of the ACM
Conference on Computer and Communications Security
(CCS), 2014.

[81] Sebastian Zimmeck, Jie S. Li, Hyungtae Kim, Steven M.
Bellovin, and Tony Jebara. A Privacy Analysis of Cross-
device Tracking. In Proc. of the USENIX Security
Symposium, 2017.

