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Differentially Private Oblivious RAM
Abstract: In this work, we investigate if statistical pri-
vacy can enhance the performance of ORAM mecha-
nisms while providing rigorous privacy guarantees. We
propose a formal and rigorous framework for developing
ORAM protocols with statistical security viz., a differ-
entially private ORAM (DP-ORAM). We present Root
ORAM, a family of DP-ORAMs that provide a tunable,
multi-dimensional trade-off between the desired band-
width overhead, local storage and system security.
We theoretically analyze Root ORAM to quantify
both its security and performance. We experimentally
demonstrate the benefits of Root ORAM and find that
(1) Root ORAM can reduce local storage overhead
by about 2× for a reasonable values of privacy bud-
get, significantly enhancing performance in memory lim-
ited platforms such as trusted execution environments,
and (2) Root ORAM allows tunable trade-offs between
bandwidth, storage, and privacy, reducing bandwidth
overheads by up to 2×-10× (at the cost of increased
storage/statistical privacy), enabling significant reduc-
tions in ORAM access latencies for cloud environments.
We also analyze the privacy guarantees of DP-ORAMs
through the lens of information theoretic metrics of
Shannon entropy and Min-entropy [16]. Finally, Root
ORAM is ideally suited for applications which have a
similar access pattern, and we showcase its utility via
the application of Private Information Retrieval.
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1 Introduction
Oblivious RAM (ORAM), first introduced by Gol-

dreich and Ostrovsky [26, 27], is a cryptographic primi-
tive which allows a client to protect its data access pat-
tern from an untrusted server storing the data. Since
its introduction, substantial progress has been made by
the research community in developing novel and efficient
ORAM schemes [10, 22, 25, 37, 40, 52, 53, 55]. Recent
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work has also shown the promise of using ORAMs as
a critical component in developing protocols for Secure
Multi-Party Computation [25].

ORAMs can mitigate side-channel attacks [17, 34]
in two typical deployment contexts: (1) Trusted Execu-
tion Environments such as SGX-based enclaves [33], in-
volving communications between last-level cache (LLC)
and DRAM, and (2) Client-server environments, such
as communications between smartphones and cloud
servers. However, a key bottleneck in the practical de-
ployment of ORAM protocols in these contexts is the
performance overhead. For instance, even the most ef-
ficient ORAM protocols [37, 40, 54, 55] incur a log-
arithmic bandwidth overhead (>100×-200×) as well
as a logarithmic local storage/stash overhead1. Band-
width is considered the typical bottleneck for ORAM
deployment in client-server applications, while memory
is the typical bottleneck for the ORAM deployment
in trusted execution environments. This lack of low-
overhead ORAMs, despite considerable efforts from the
security community, is an undeniable indicator for the
need of a fundamentally new approach.

In this paper, we propose a novel approach for de-
veloping practical ORAM protocols. Our key idea is to
trade-off performance at the cost of quantified statistical
privacy. We first formalize the notion of a differentially
private ORAM that provides statistical privacy guaran-
tees. As the name suggests, we use the differential pri-
vacy framework developed by Dwork et al. [20] with its
(ε, δ)-differential privacy modification [21]. In the cur-
rent formulation of an ORAM, the output is computa-
tionally indistinguishable for any two input sequences.
In a differentially private ORAM, we characterize the ef-
fect of a small change in the ORAM input to the change
in the probability distribution at the output.

This formalization of a differentially private ORAM
subsumes the current notion of ORAM security viz.,
ε = 0 leads to the currently accepted ORAM security
definition in Section 2. Yet such a formalization opens
up a large underlying design space currently not consid-
ered by the community. We also present Root ORAM,
a tunable family of ORAM schemes allowing variable
bandwidth overheads, system security and outsourcing

1 Recent work such as Circuit ORAM [57] require constant local
memory but increase the protocol round complexity, thereby
increasing the effective bandwidth.
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ratios while providing quantified privacy guarantees of
differentially private ORAMs. Root ORAM is not a
silver bullet for all applications (see Section 7 for en-
abling requirements). But we hope that this first step
in the direction of statistically private ORAMs opens
the door for the research community to build more ef-
ficient ORAM protocols. In Section 7, we demonstrate
an application where DP-ORAM provides a promising
solution to the problem of private information retrieval.

1.1 Our Contributions
Root ORAM introduces a number of paradigm

shifts in the design of ORAM protocols while building
on the prevailing ideas of contemporary ORAM con-
structions. Our main contributions are:

Formalizing differentially private ORAMs:
We formalize the notion of a differentially private
ORAM, which to the extent of our knowledge is the
first of its kind. A differentially private ORAM bounds
the information leakage from memory access patterns
of an ORAM protocol. For details, refer to Section 2.

Tunable protocol family: We propose a tun-
able family of ORAM protocols called Root ORAM.
These schemes can be tailored as per the needs and
constraints of the underlying application to achieve a
desirable trade-off between security, bandwidth and lo-
cal storage. This serves as a key enabler for practical
deployment and is discussed in more detail in Section 6.

Security and Utility: We analyze and provide
theoretical guarantees for the security offered by Root
ORAM schemes in the proposed differentially private
ORAM framework. The proofs are general and will be
useful for analyzing the security of alternative statis-
tically private ORAM schemes in the future. We also
theoretically analyze the utility benefits of using statis-
tical privacy. These results are supported by extensive
experiments using a complete implementation of Root
ORAM. The central results of this paper are summa-
rized below (for details, refer to Section 5).

– We prove that the family of Root ORAM protocols
described in Section 4 satisfy the (ε, δ)-differential
privacy guarantees and give the relation between
ε, δ and the model parameters.

– We concretely show the benefits of using differen-
tial privacy i.e., we demonstrate how a larger value
of ε helps reduce the protocol overheads, thereby
showing an explicit security-performance trade-off.

Practical Impact and Applications: We exper-
imentally investigate the impact of DP-ORAM in the
following contexts:

– To reduce local storage requirements to run ORAM
protocols in trusted hardware. Trusted execution
environments such as the first generation Intel Sky-
lake SGX processors have stringent memory con-
straints, with available memory for implementing
programs (including the ORAM overhead) as low as
90MB [48]. For reasonable values of the privacy bud-
get ε, Root ORAM reduces local storage by more
than 2×, thereby enhancing compatibility with In-
tel SGX (Section 6.3).

– To reduce the bandwidth in embedded computing
and IoT applications, where devices have limited
available bandwidth. Depending on the system pa-
rameters chosen, DP-ORAM can reduce the band-
width overhead by 2×-10× at the cost of statistical
security and higher local storage.

– We also demonstrate how statistical ORAMs in con-
junction with trusted hardware can be used to per-
form differentially private PIR queries [56]. We jus-
tify the trade-off between enhanced performance at
the cost of quantified statistical security for PIR
protocols in Section 7.

Root ORAM enables novel design points in develop-
ing ORAM protocols by leveraging the benefits of statis-
tical privacy. It also supports design points with order of
magnitude performance improvements over state-of-the-
art protocols (at the cost of a quantified loss in security).
Finally, Root ORAM does not assume any server-side
computation and requires practical amounts of client-
side storage (depending on the parameters chosen). It
is also extremely simple to implement at both the client
and the server side.

2 Differentially Private ORAM
The notion of statistical privacy has been around in

security/privacy applications [9, 39, 45] yet it has never
been previously explored in the context of ORAMs. We
believe formulating such a framework would greatly ex-
pand the ability of the research community to develop
novel ORAM protocols with low-bandwidth and low-
client overhead, serving as an enabler for real-world de-
ployment of this technology.

Formally, an ORAM is defined as a protocol (possi-
bly randomized) which takes an input access sequence
a as given below,

a = ((opM, addrM, dataM), ..., (op1, addr1, data1)) (1)

and outputs a resulting output sequence denoted by o =
ORAM(a). Here, M is the length of the access sequence,
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opi denotes whether the ith operation is a read or a
write, addri denotes the address for that access, and
datai denotes the data (if opi is a write). Denoting by
|a| the length of the access sequence a, the currently
accepted security definition for ORAM security can be
summarized as follows [55]:

Definition 1. (Currently accepted ORAM Secu-
rity): Let a as given in Eq. 1, denote an input ac-
cess sequence. Let o = ORAM(a) be the resulting random-
ized data request sequence of an ORAM algorithm. The
ORAM guarantees that for any two sequences a and a′,
the resulting access patterns ORAM(a) and ORAM(a′) are
computationally indistinguishable if |a| = |a′|, and also
that for any sequence a the data returned to the client
by ORAM is consistent with a (i.e the ORAM behaves
like a valid RAM) with high probability.

This framework for ORAMs is constructed with com-
plete security at its core [25, 37, 40, 55] and there is
no natural way to extend this to incorporate a statis-
tical privacy notion. Hence, we introduce and formalize
a statistically private ORAM viz., differentially private
ORAM (DP-ORAM).

2.1 Formalizing DP-ORAM
The intuition behind a DP-ORAM is that given any

two input sequences that differ in a single access, the
distributions of their output sequences should be “close”.
In other words, similar access sequences lead to similar
distributions. We formally define it as follows:

Definition 2. Differentially Private ORAM: Let
a, as defined in Eq. 1, denote the input to an ORAM. Let
o = ORAM(a) be the resulting randomized data request se-
quence of an ORAM algorithm. We say that an ORAM
algorithm is (ε, δ)-differentially private if for all input
access sequences a1 and a2, which differ in at most one
access, the following condition is satisfied by the ORAM,

Pr[ORAM(a1) ∈ S] ≤ eεPr[ORAM(a2) ∈ S] + δ (2)

where e is the base of the natural logarithm and S is any
set of output sequences of the ORAM.

First we note that we lose no generality by using this
definition: it can capture the existing computational
ORAM security paradigm using ε = 0 and negligible
δ. The formalism also does not make any assumption
about the size of the output sequences in S. If the in-
put to the ORAM is changed by a single access tu-
ple (opi, addri, datai), the output distribution does not

change significantly. Given two sequences a1 and a2, the
two distributions generated (the red and the blue) are
close to each other in the differential privacy sense.

Differential privacy provides two important compos-
ability properties [20] viz, “composition” and “group
privacy”. The former (Theorem 1) refers to the degrada-
tion of privacy guarantees over multiple invocations of
a differentially private mechanism and the latter (Theo-
rem 2) refers to the privacy guarantees when neighbor-
ing databases differ by multiple entries. Together, they
give privacy bounds for arbitrary sequences and provide
rigorous privacy guarantees over multiple invocations or
when access sequences differ in multiple accesses.

Theorem 1 (Composition for DP-ORAM). Invoking
an (ε, δ)-differentially private ORAM mechanism
m times guarantees (mε,mδ)-differential privacy.

Theorem 2 (Group privacy for DP-ORAM). An
(ε, δ)-differentially private ORAM is (ε′, δ′)-
differentially private for access sequences differ-
ing by m accesses where ε′ = mε and δ′ = mem−1δ.
In other words, given two access sequences a1 and
a2 that differ in m accesses.

Pr[ORAM(a1) ∈ S] ≤ eε
′
Pr[ORAM(a2) ∈ S] + δ′ (3)

Theorem 1 holds even for adaptive queries as long as
the randomness used in each mechanism is indepen-
dent of each other. Together, Theorem 1 and 2 allow
us to extend differential privacy guarantees to arbitrary
access sequences from the guarantees for a single invo-
cation on access sequences that differ by a single ac-
cess. It is important to note since privacy guarantees
degrade with both the number of invocations and the
worst case hamming distance between access sequences,
DP-ORAMs are best suited for applications where the
input sequences differ in a small number of accesses. We
present a case study of such an application - Private In-
formation Retrieval (PIR) - in Section 7.

PIR is a cryptographic primitive for privately ac-
cessing data from a public database. ORAM schemes
can be used in conjunction with trusted hardware to
perform PIR queries [7, 59]. We demonstrate the util-
ity of statistical ORAMs by showing how DP-ORAM
can be used in conjunction with trusted hardware to
perform efficient DP-PIR queries [56]. This application
is well suited to showcase the benefits of using statisti-
cal ORAMs as each PIR query corresponds to an access
sequence of exactly one element.
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Symbol Description

N = 2L Number of real data blocks outsourced
0 ≤ k ≤ L+ 1 Model parameter (to tune bandwidth)
p ∈ [0, 1] Model parameter (to tune security)

Z Number of blocks in each bucket

Table 1. Notation for Root ORAM

3 Root ORAM overview
In this section, we describe our key design goals and

give an overview of the Root ORAM protocol.

3.1 Design Goals
Statistically private ORAMs: We target protocols
that offer performance benefits at the cost of statistical
privacy which is quantified using the metric of differen-
tial privacy.
Tunable ORAM schemes: Conventional ORAM
schemes operate at specific overheads with full privacy
but cannot operate at lower overheads. We aim to pro-
vide an ORAM architecture that can be tuned to ap-
plication requirements and can achieve privacy propor-
tional to system resources such as the bandwidth and
local storage.
Rigorous Analysis and Efficiency: We target sys-
tems amenable to rigorous security analysis. At the
same time, we aim for efficient systems that can be eas-
ily implemented on both client and server side.

Finally, the design should use low storage both at
the client as well as the server side. Server side com-
putation is not always practical and hence we do not
assume any such capability. Next we describe the key
ideas of Root ORAM protocol. Over the years, several
different definitions have been used to quantify ORAM
bandwidth overhead.

We will use the original and straightforward defi-
nition of bandwidth as the average number of blocks
transferred for one access [37].

Definition 3. The bandwidth cost of a storage scheme
is given by the average number of blocks transferred in
order to read or write a single block.

3.2 Approach Overview
Root ORAM protocol can broadly be split into four

components, the storage, the access, the new mapping
and the eviction. These are briefly described below. The
notation for Root ORAM is illustrated in Table 1. Tree-
based ORAMs make a relatively easy proof-of-concept

to demonstrate the benefits of DP-ORAMs and hence
we construct Root ORAM as a tree-based ORAM.

Storage: The data to be outsourced is assumed to
be split into units called blocks. Blocks are stored at the
server-side storage in 2k binary trees, each with a depth
of L − k. For simplicity of proofs, we call each of these
trees as “sub-trees” as they can be thought of as sub-
trees of a larger virtual tree (cf Fig. 1). Each node is a
bucket that can hold up to Z data blocks (Z is typically
a small constant such as 4 or 5). This is represented
in Fig. 1. A stash at the client is used to store a small
amount of data. Each data block is mapped to a leaf and
this mapping is stored recursively in smaller ORAMs.

Access: The main invariant is that any data block
is along the path from the associated leaf to the corre-
sponding sub-tree root or is in the stash (as shown in
Fig. 1). Hence, to access a data block, the client looks
up the mapping to find the sub-tree and the associated
leaf that the data block is mapped to and then traverses
the path from that leaf to the sub-tree root.

New Mapping: The data block is then read or
written with the new data and then mapped to a new
leaf. It is important to note that this new mapping is not
uniform among the leaves. The flexibility and the choice
of this non-uniform distribution is given in Section 4.

The intuition behind using a non-uniform distribu-
tion is that it provides performance benefits such as
improving stash storage (refer to Theorem 4). At the
same time, we theoretically quantify the security im-
pact of non-uniform distributions using the framework
of differential privacy (refer to Theorem 3).

Eviction: Finally, new randomized encryptions are
generated and all the data (including some blocks from
the stash) are written to the accessed path with blocks
being pushed as further down the path as possible (to-
wards the leaf). Root ORAM also uses the recursion
technique developed previously [22, 54, 55] to store the
mapping in smaller ORAMs.

3.3 Comparison with Path ORAM [55]
Root ORAM is a generalization of the Path ORAM

protocol [55], yet there are critical differences between
the two protocols. In this subsection, we highlight some
of the critical differences between the two papers.

Differentially Private ORAM: Root ORAM in-
troduces a new metric to quantify ORAM security,
which extends the current formalism to include the no-
tion of a statistically private ORAM. We bound the
privacy offered by the Root ORAM (as well as Path
ORAM) using this metric.
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Fig. 1. The figure illustrates the client and server side storage. At the server side, there are 2k sub-trees, each having a depth of
L− k. An individual sub-tree is boxed and shown in red.

Tunable Statistical ORAM: Path ORAM incurs
a fixed bandwidth cost that cannot be tuned. Thus,
applications that cannot accommodate high bandwidth
costs are unable to achieve access pattern security. Root
ORAM on the other hand is tunable and applications
with limited bandwidth can achieve security propor-
tional to their resources.

Multi-dimensional design space: We demon-
strate the feasibility of new design points by showing
a multi-dimensional trade-off between bandwidth, secu-
rity and client storage. We support a range of operat-
ing conditions by tuning the protocol parameters and
demonstrate the trade-off between resource overheads
and statistical privacy both theoretically and experi-
mentally.

Note that Path ORAM is an instantiation of Root
ORAM for k = 0. For more details, see the remark at
the end of Section 6.

4 Root ORAM details
In this section, we provide the details of Root

ORAM. Basic notation is given in Table 1. B denotes
size of each block in bits, P (x) denotes path from leaf x
to the sub-tree root, P (x, i) the node at level i in P (x)
and x := position[a] indicates data block a is currently
mapped to leaf x.

4.1 Server Storage
Server Storage: The server stores data in the form

of 2k binary trees as shown in Fig. 1. Each node of the
tree is a bucket containing multiple data blocks, real or
dummy (a dummy block is a randomized encryption of
0). For the simplicity of analysis, we consider the roots
of these sub-trees to be at level k and subsequent levels
k + 1, . . . L where L would correspond to the leaves of
each sub-tree.

Bucket structure: Each node is a bucket consist-
ing of Z blocks, each block can either be real or dummy
(encryptions of 0).

Path structure: The leaves are numbered in the
set {0, 1, ..., 2L−1}. P (x) denotes the path (set of buck-
ets along the way) from leaf x to the sub-tree root and
P (x, i) denotes the bucket in P (x) at level i. It is im-
portant to emphasize here that the path length in Root
ORAM is (L+1−k) blocks compared to the L+1 blocks
in Path ORAM.

Dummy blocks and randomized encryption:
We use the standard padding technique (fill buckets
with dummy blocks when needed) along with random-
ized encryption to ensure indistinguishability of real and
dummy blocks.

4.2 Invariants of the scheme
Main Invariant: The main invariant in Root

ORAM is that each real data block a is mapped to a
leaf x := position[a], x ∈ {0, 1, 2, ..., 2L − 1} and at any
point in the execution of the ORAM, the real block will
be somewhere in a bucket ∈ P (x) or in the local Stash.
This path is from the root of a sub-tree to the leaf x
and consists of L−k+ 1 buckets. It is also important to
note that the invariant does not say that the mapping
of each data block is uniform over the set of leaves, as
shall be clarified by the second invariant.

Secondary Invariant: We maintain the secondary
invariant that after each access to a data block, its map-
ping changes according to a leaf dependent non-uniform
distribution D (i.e., its new mapping is randomly sam-
pled from this distributionD). There is tremendous flex-
ibility in choosing this distribution; for our purposes, we
consider a distribution in which a data block is more
likely to be remapped to another leaf in the same sub-
tree than to another sub-tree leaf. This distribution D is
formally given by Eq. 4 and shown graphically in Fig. 2.
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Fig. 2. New mapping of a block is more likely among the cur-
rent sub-tree than any other sub-tree (red). Alternative distri-
butions turn out to be sub-optimal for Root ORAM.

Pz,x = pmin + (pmax − pmin)δrzrx (4)

Where Pz,x is the probability that the new mapping is
leaf z given the previous mapping was leaf x, rx denotes
the root of the sub-tree of leaf x, δij is the Kronecker
delta defined as

δij =

{
0 if i 6= j

1 if i = j

and pmax and pmin are functions of the model parameter
p and are given by:

pmax = 1 + (2k − 1)p
N

pmin = 1− (1− δk0)p
N

(5)

The reason behind using a non-uniform distribution
is that it gives performance benefits such as lower stash
usage, captured theoretically in Theorem 4. This partic-
ular choice of D happens to be ideal for Root ORAM as
can be seen by the analysis from Section 5. Theorem 3
gives the relation between the model parameter p and
the desired level of privacy (given by ε). In practice, the
acceptable privacy budget ε would decide the parameter
p used in the model. We refer the reader to Section 6.4
for details of choosing the parameters.

4.3 Client Storage
Position Map: The client side stores a position

map which maps real data blocks to leaves of the
server tree. This position map is stored recursively us-
ing smaller ORAMs. The recursion technique [22, 54, 55]
aims to recursively store the ORAM position maps into
subsequently smaller ORAMs. The final ORAM posi-
tion map is stored locally.

Stash: The client maintains a local stash, which is
a small amount of storage locally at the client which is
used to store overflown data blocks locally2.

4.4 Protocol Details
The main functions of the protocol are Access and

updateMapping. In the former, we read blocks along
a path of a sub-tree, try to write blocks back to the
same path (with new encryptions) and if there is insuf-
ficient storage, the excess data blocks are stored locally
in the Stash. The latter function generates a distribu-
tion where a data block is more likely to be remapped to
another leaf in the same sub-tree than to another sub-
tree leaf. We use sub-treea to denote the sub-tree the
data block a is currently mapped to, ∪ to denote union
and \ to denote removal from stash.

Access (op, a, data∗) :
1: x← position[a]
2: position[a] = updateMapping(a)
3: Stash = Stash ∪ P (x)
4: data← Read(a) from Stash
5: if op = write then
6: Stash = Stash \(a, data) ∪ (a, data∗)
7: end if
8: flush(x)
9: return data

The updateMapping function implements the new
mapping function as described in Section 4.2. The values
of the probabilities are as shown in Fig. 2 (and Eq. 5).

updateMapping (a) :
1: x← UniformReal(0,1)
2: if x ≤ N · pmin then
3: return Uniform(0, 1, . . . , 2L − 1)
4: else
5: return Uniform(sub−treea)
6: end if

The flush(x) function is implemented by writing
blocks from the stash into the sub-tree, along the path
from the associated leaf to the sub-tree root while writ-
ing them as low in the sub-tree as possible. The pseu-
docode for flush(x) is given below.

2 The stash can be stored on the server at the cost of an increase
in the bandwidth whereas in our approach we provide a way to
reduce the stash without impacting the system bandwidth and
hence store the stash locally.
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flush (x) :
1: for l = L : k do
2: y ← P (x, l)
3: S′ = {(a′, d′) ∈ Stash s.t. P (position[a′], l) =
y}

4: S′ = min(|S′|, Z) blocks from S′

5: Stash = Stash \ S′

6: writeToBucket(y, S′)
7: end for

5 Theoretical evaluation
5.1 Notation

We begin by developing some notation to present
the central results of this paper. We fix N = 2L to be the
total number of outsourced blocks. We denote by OZk,p,
the Root ORAM protocol with bucket size Z and model
parameters k, p. We define the sequence of load/store
operations by s = (a,x,y) where a = {ai}Mi=1 are the
logical block addresses loaded/stored, x = {xi}Mi=1 is
the sequence of leaf labels seen by the server and y =
{yi}Mi=1 is the sequence of new leaf labels.

Let st
[
OZk,p(s)

]
denote the random variable which

equals the number of real data blocks in the stash
after a sequence of load/store operations s, O∞k,p de-
note ∞-Root ORAM3 and stZ [O∞k,p(s)] denote the
stash usage after greedy post-processing. The greedy
post-processing takes an ∞-Root ORAM and reassigns
blocks so that each bucket has no more than Z blocks
(for details refer to [55]). The main results of this paper
are split into two main categories, Section 5.2 which
states and proves the security results and Section 5.3
which states and proves the performance results.

5.2 Security Results
Theorem 3 (Differentially Private Protocols). The
Root ORAM protocol with parameters k, p is (ε, δ)-
differentially private for the following choice of ε
and δ

ε = 2 log
(

1 + (2k − 1) · p
1− (1− δk0)p

)
δ = M ·

(
1 + (2k − 1) · p

N

)M (6)

where δk0 is the Kronecker delta, M is the size of
the access sequence and M > total stash size.

Proof of Theorem 3: Using a conservative security
analysis, we prove the bounds on Root ORAM proto-

3 Analogous to the ∞-ORAM in [55], refer Section 5.3.

cols given in Theorem 3. The proof is split into two
components, viz., the ε bound and the δ bound. For the
ε bound, we first set up the differential privacy frame-
work, then a model to evaluate probabilities of a given
input sequence leading to a specific output sequence and
finally compute the maximum change that could result
from a change in the input. For the δ bound, we first
demonstrate the significance and need for δ in the se-
curity bound and then proceed to conservatively prove
the δ bound.

5.2.1 The ε bound:
We follow the notation described in Section 5.1. We

consider two input sequences a1 and a2 that differ in
only one access, say aj , for some j ∈ {1, 2, . . . ,M}. We
know that the server sees a sequence x given by

x = (positionM [aM ], . . . , position1[a1])

where xi := positioni[ai] is the position of address ai
for the ith load/store operation, along with the asso-
ciated path to the root of the sub-tree. Now, we need
to compute the ratio of probabilities that ORAM(a1) and
ORAM(a2) both lead to the same observed sequence x at
the server. In other words, we compute

Pr[ORAM(a) = x]

for any set of input sequence and observed leaf sequence
a and x respectively, of a given fixed size M .

We evaluate the above probability by invoking the
secondary invariant viz., after each access the mapping
of that data block changes randomly according to a fixed
distribution D given in Eq. 4. Under this invariant, the
probability that a sequence of load/store operations a
leads to a particular observed sequence x can be com-
puted according to the rules below. Since the position
map of each location changes independently and ran-
domly according to D, we can compute the probability
that the input sequence a leads to the output sequence
x (Pr[ORAM(a) = x]) by simply multiplying the probabil-
ities of each individual access. This is shown graphically
in Table. 2.

1. If the block is accessed for the first time, its location
is random and hence the probability is 1/2L.

2. If the block ak was accessed previously at ai, then
the probability is pmax or pmin depending on whether
positionk[ak] and positioni[ai] belong to the same
sub-tree.

3. Finally, we multiply all the above probabilities for
access 1 to M .

If at any point during the above enumeration the stash
size exceeds S, we set the probability to 0. Refer to
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Obs. Seq. a’ b a c a b d
Real Seq. x y x z y z x

Probability 1
N

1
N

pmax
1
N

pmin pmin pmin

Table 2. Demonstration of probabilities given real and observed
access patterns a, o respectively. Different symbols for real
and observed access patterns are merely for the sake of clarity.
Primed symbols are used to denote leaves belonging to the
same sub-tree (ex: a, a’). Only the blue symbols affect the
probability of the boxed data block. The red elements show the
previous and next access of the boxed data block.

Section 5.2.2 for details. The probability that the stash
size exceeds S is bounded by Theorem 5.

Next, we compute the maximum change in proba-
bilities over two neighboring access sequences a1 and a2
that differ in the ith access. Let the logical address ac-
cessed in the two sequences be a and b respectively i.e.,
the ith access in a1 is a and in a2 is b. Since a1 and a2
agree in all other locations, let the previous location of
access of block a be lpa (leaf pa) and the next location
be lna. Similarly, let lpb denote the previous location of
access of b and lnb the next location. If any of these 4
do not exist i.e., the symbol was never accessed before
or was never accessed afterwards, we define that leaf to
be 0 for the sake of clarity of the equations (if data el-
ement a was never accessed after the location of access
change, then lna = 0). Let l be the location of the ac-
cess of the ith access. Note that lpa, lna, lpb, lnb, l all are
specific leaves from x and hence are same for a1 and a2.

It is easy to see that the probabilities can differ in
at most 3 places viz., l, lna and lnb (probabilities for
lpa and lpb depend on the previous access and hence do
not change). To make the equations crisp, we define the
following extension to the Kronecker delta function,

δij =


0 if ri 6= rj

1 if ri = rj
1/N−pmin
pmax−pmin

if j = 0

where rx is the root of the sub-tree associated with leaf
x. This modification of the Kronecker delta is for the
simplicity of the equations. The modification ensures
that if a symbol is accessed for the first time, then its
probability evaluates to 1/N , as it should.

Now if Pr[ORAM(a1) = x] > 0 and Pr[ORAM(a2) =
x] > 0 i.e., both the ratios are well-defined, we can cal-
culate the ratio of the probabilities as:

Pr[ORAM(a1) = x]
Pr[ORAM(a2) = x] =

Pl,lpa
· Plna,l · Plnb,lpb

Plna,lpa
· Pl,lpb

· Plnb,l

After observing that 1/N
pmax

≥ pmin
pmax

, we can see that
this maximum value of the ratio of probabilities occurs
when lna, l, lpa belong to the same sub-tree and lpb, lnb
belong to a different sub-tree. In this case, the ratio is
given by,

pmax · pmax · pmax

pmax · pmin · pmin
=
(
pmax

pmin

)2

Evaluating this in terms of our parameters, pmax and
pmin given by Eq. 5 and plugging this into the differential
privacy equation:

max
a1,a2

|a1−a2|=1

Pr[ORAM(a1) = x]
Pr[ORAM(a2) = x] ≤

(
pmax

pmin

)2

=
(

1 + (2k − 1)p
1− (1− δk0)p

)2

It is important to note that the above equation holds
for all observed access sequences x. And hence, we can
see that Root ORAM guarantees ε = 2 log

(
1+(2k−1)p
1−(1−δk0)p

)
.

This completes the ε bound.4

5.2.2 The δ bound
In this subsection, we show the need for δ in quan-

tifying the security. We demonstrate this necessity us-
ing generic tree-based ORAM constructions. We assume
that the total stash size is S. For demonstration pur-
pose, we construct a minimal working example. Let:

a = ((r , 1 , ·), (r , 1 , ·), ..., (r , 1 , ·)) and
a′ = ((r , 1 , ·), (r , 2 , ·), ..., (r ,S + 1 , ·))

(7)

where r denotes the read operation and · denotes data
which is not important for the demonstration. In words,
one access sequence consists of S accesses to the same
element and the second access sequence consists of S+1
different accesses to elements 1, 2, ..., S + 1.

It can be seen that the sequence 1, 1, ..., 1 is a possi-
ble output sequence of ORAM(a). It is not hard to see that
the same sequence 1, 1, ..., 1 can never occur as ORAM(a′).
The reason for this is simply because if there are more
than S+1 data blocks mapped to the same leaf, the tree
ORAM invariant is broken. Hence the S + 1 accesses to
the same location cannot all be different elements.

To demonstrate this further, we consider a situation
where a program is using a tree-based ORAM protocol

4 Another important point to note here is that the above anal-
ysis is a worst case analysis and hence it only depends on two
probabilities in the distributionD viz., the largest and the small-
est probabilities. The same proof goes through for other proba-
bility distributions leading to ε = 2 log

(
pmax
pmin

)
.
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to hide its access pattern. We also assume that the pro-
gram has the following traits,

Access Pattern =

{
1, 1, 1, ..., 1 if Secret = 1
1, 2, 3, .., S + 1 if Secret = 0

If a is the input access pattern, and we observe a se-
quence of S+1 or more access made to the same location
in ORAM(a), we can immediately infer that Secret = 1. It
is important to note that the probability of an observed
sequence can suddenly jump from a non-zero value to 0
with the change of a single accessed block. We quantify
this by the δ in the (ε, δ)-differential privacy framework
for ORAMs.

We compute the maximum probability for a se-
quence such that some neighboring sequence (i.e., dif-
fering in one access) has zero probability. In particular
we choose the following two sequences:

a1 = (1, 2, 3, ...,M)
a2 = (1, 1, 1, ..., 1)

If Pr[ORAM(ai) = x] > 0 for i = 1, 2, then we have al-
ready shown the ε bound and hence δ = 0 (δ = 0 if
M ≤ S). So it remains to find the maximum δ when
one of these is 0. Let us assume that sequence x has
zero probability when the input sequence is a1 (i.e.,
Pr[ORAM(a1) = x] = 0). In this case, δ is simply the
maximum value of Pr[ORAM(a2) = x]. Then, a conser-
vative upper bound on δ can be found by noting the
following: at each location, the associated probability is
either pmax or pmin or 1/N . Since pmax is the largest of
these, we can get a upper bound on δ as

δ ≤ pMmax (8)

Finally, to complete the proof, we note that the
above δ bound should hold for each possible output ac-
cess sequence x. To extend this to all possible subsets S,
say the support of S contains x1,x2 . . .xs and s ≤ M .
Hence,

Pr[ORAM(a1) ∈ S] =
s∑

k=1

Pr[ORAM(a1) = xk]

≤
s∑

k=1

(eε · Pr[ORAM(a2) = xk] + δ)

= eε ·

(
s∑

k=1

Pr[ORAM(a2) = xk]

)
+ s · δ

≤ eε · Pr[ORAM(a2) ∈ S] +M · δ

This shows that Root ORAM is (ε, δ)-differentially pri-
vate for δ = M · pMmax. This completes the δ bound. �

5.3 Performance Results
Theorem 4 (Security-Performance Trade-off). Let
AZk,p and BZk,q be two Root ORAM protocols5 with
privacy parameters ε1 and ε2 respectively, with
ε1 ≥ ε2. For any given access sequence a, let R1
and R2 denote the random variables for the stash
usage after a sequence s of load/store accesses
using AZk,p and BZk,q respectively. Then,

E[R1] ≤ E[R2] (9)

where the expectation is taken over randomness
of x,y in s = (a,x,y).

Theorem 5 (Stash Bounds). The probability that
the stash size of the DP-ORAM protocol with pa-
rameters k, Z = 5 exceeds R + Z · 2k for R ≥ 1 is
bounded by 14(0.6002)R

Theorem 6 (Bandwidth). The bandwidth of the
Root ORAM protocol with parameters k, p, Z is
2× Z(L+ 1− k) blocks per real access.

We defer the proofs of Theorem 4, 5, and 6 to Ap-
pendix A due to space constraints.

6 Systems evaluation
In the previous sections, we have established the de-

sign space made possible by formalizing DP-ORAM, a
tunable protocol construction, and theoretical security
and performance analysis. In this section, we demon-
strate the multi-dimensional trade-off between band-
width, stash storage, and security using a complete sys-
tems implementation of Root ORAM.

6.1 Details of the implementation
Root ORAM is built entirely in C++. All exper-

iments were performed on a 1.4 GHz Intel processor
with 4GB of RAM. For the Amazon EC2 experiments,
remote servers were set-up and latency measurements
were performed over a TCP connection for reliable data
downloads. For experiments measuring access latency
for applications with bandwidth constraints, we cap
both the upload and download bandwidth to a value γ.
The values of γ used were {10, 30, 100, 300, 1000} KB/s.
We used the trickle application to constrain the band-
width at the client machines to these desired values.

5 The p-parameters for the two ORAMs are different because
the p-parameters are linked to the corresponding security pa-
rameters ε1, ε2 as given by Theorem 3.
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(a) (b)
Fig. 3. Stash improvement as a function of ε and k. Fig. 3a shows the improvement in stash usage compared to a baseline of ε = 0
for (L, k, Z) = (15, 1, 4). Fig. 3b shows the security-performance trade-off relative to ε = 0 for (L,Z) = (15, 4).

Finally, we use the worst case linear access pattern for
the simulations.

We study the effect of system parameters on the per-
formance of Root ORAM. In particular, we study the
inter-dependence between local stash required, band-
width, and security (given by ε). We also study the ac-
cess latency of Root ORAM protocols in two different
settings (1) We measure the access latency over remote
Amazon EC2 servers varying the protocol bandwidth
parameter k (and consequently the bandwidth itself)
(2) We limit the bandwidth at the client end to a spe-
cific value γ (to emulate constrained bandwidth environ-
ments) and measure the access latency of Root ORAM
protocols. In light of the recent paper by Bindschaedler
et al. [11], we base our experimental evaluation by giving
due importance to the constants involved in the over-
heads of the system.

6.2 Evaluation results
Bandwidth, Security and Stash Trade-offs:

Fig. 3a shows how statistical privacy reduces stash sizes.
Note that increasing values of ε lead to lower stash val-
ues, the improvement of which is captured by the y-axis
of Fig. 3a. While Theorem 4 shows that relaxing the se-
curity improves performance, Fig. 3a empirically shows
these performance improvements for concrete values of
the security parameter ε. For instance, Root ORAM
provides a 16% improvement in stash usage for ε = 1, a
40% improvement for ε = 2 and about 80% improvement
for ε = 3 (δ ≈M ·2−14M whereM is the access sequence
length). As shown in Appendix B, the loss in Shannon
entropy of the output sequence is small for moderate
values of ε. For instance, for L = 20, an ε = 3 results
in a loss in entropy of roughly 0.3 bits and for ε = 2

the loss is less than 0.1 bits (compared to 20 bits with-
out any security). Furthermore, as seen in Section 7.3, in
the context of the Private Information Retrieval applica-
tion the use of anonymous communication channels can
further reduce the effective privacy values ε by multiple
orders of magnitude. Similar parameter values for differ-
entially private systems are being increasingly adopted
by the research community [56] as well as seen in de-
ployed systems such as RAPPOR [23] (ε = ln 3), Apple
Diagnostics [1, 2] (ε = 2 for Health information types,
ε = 4 for Lookup Hints and Safari crash domain detec-
tion and ε = 8 for Auto-play intent detection) and US
census data release [3–5] (ε = 8.9 for OnTheMap LEHD
Origin-Destination Employment Statistics (LODES)).
Research works which extensively explore the problem
of setting privacy budgets state that the adopted pri-
vacy budget values range from 0.01 to 10 (refer to Table
1 from Hsu et al. [32] or Fig. 2 from Lee et al. [38]).

Fig. 3b depicts the trade-off between the stash im-
provement (relative to ε = 0), security and bandwidth
(parameter k) for the Root ORAM protocol. We can
see the significant performance gains in the high band-
width regime. Note that the stash size of the Root
ORAM protocol (as in Theorem 5) can be split into
two components viz., exponential component (bounded
by Z · 2k) and the randomness component (bounded
by 14(0.6002)R). The former dominates the latter for
small values of bandwidth i.e., large values of k and
hence the stash-security trade-off is less significant in
those regimes, which agrees with the results in Fig. 3b.
Fig. 3a and Fig. 3b thus capture the effect of varying
the security (ε) on the performance by the reduction in
stash size (compared to a baseline of ε = 0) and show

http://onthemap.ces.census.gov/


Differentially Private Oblivious RAM 74

Fig. 4. Absolute values of stash usage for (L,Z) = (20, 5). The
theoretical values are plot for a failure probability of 2−80.

that statistical privacy can be used to improve the per-
formance of ORAM schemes.

Absolute Stash Values: Fig. 4 shows the abso-
lute values of the stash size (in Bytes) as a function of
the bandwidth. The stash roughly grows exponentially
with reducing bandwidth, which serves as an experi-
mental validation of Theorem 5. We can see that the
required stash values are low enough to be practical in
most systems today. For instance, we can achieve a 10×
outsourcing ratio at a bandwidth of about 20KB (for
1GB of outsourced data and local storage of 100MB).
Similarly, we can achieve 100× outsourcing ratio with a
bandwidth of 60KB and an outsourcing ratio of 1000×
with a bandwidth of 90KB.

Real-world implementation: We compute the
latency overhead of a memory accesses as a function of
the bandwidth parameter k as well as the constrained
application bandwidth γ. Fig. 5a depicts the access la-
tency as a function of the bandwidth (varying k). We
can see how Root ORAM provides a spectrum of ac-
ceptable bandwidth-latency choices compared to a sin-
gle design point for Path ORAM. In Fig. 5b, we com-
pare the access latency when the application bandwidth
is limited (for a fixed value of γ). We find the latency
as a function of the constrained application bandwidth
γ (constrained at the client side) for a few different val-
ues of k. The bandwidth for a given value of k can be
computed using Theorem 6 as 10 ∗ (21 − k) blocks. We
find that for limited application bandwidth, the system
parameters significantly affect the access latency. Hence
applications with constrained bandwidths can greatly
benefit from using Root ORAM. For instance, in a sce-
nario where the application bandwidth is limited to

10KB/s (γ = 10KB/s), we can improve the access la-
tency by roughly 10× using Root ORAM.

6.3 Practical Impact
Next, we consider the significance of local storage

and bandwidth improvements offered by Root ORAM in
the typical deployment contexts of (1) trusted execution
environments and (2) client-server/cloud settings.

Local storage: Trusted Execution Environments,
such as enclaves created using Intel SGX-Processors,
have severe memory constraints, with total local mem-
ory of only 94MB [48], which is a significant bottleneck
for ORAM deployment6. Fig. 3b shows 16% stash im-
provement for ε = 1 values and 1.8× for ε = 3. Hence,
for 1KB block size and ORAM parameters (L, k, Z) =
(20, 11, 5), a 2× improvement would reduce the stash
usage from 532KB (Fig. 4) to about 266KB. This sig-
nificantly frees up the limited memory for trusted com-
puting operations. For larger block sizes such as 256KB
(considered in [11]), a 2× stash performance improve-
ment would reduce stash overhead from 133MB to
66.5MB, enabling compatibility with current architec-
tures of trusted processors such as the Intel Skylake.

Even in the context of smartphone applications,
our results indicate that for 1TB of outsourced data,
Root ORAM can bring down the local storage over-
head (extending Fig. 4 results for 1MB block sizes and
(L, k, Z) = (20, 11, 5)) from 500MB to less than 250MB
(as low as 100MB for higher ε).

Bandwidth: Root ORAM allows tunable trade-offs
between bandwidth, storage, and privacy. In many em-
bedded computing and IoT applications, bandwidth is
a significant bottleneck for ORAM deployment. Root
ORAM can reduce bandwidth overhead by up to 2×-
10× (at the cost of increased local storage and statistical
privacy), providing dramatic gains in network access la-
tency as shown in Fig. 5b.

6.4 Choosing parameters
To use Root ORAM as a system, we require a lower

bound on the number of accessesM (to bound the worst
case δ leakage). If this is unknown, M is set to S + 1
(one more than the total stash size). Typical to differ-
entially private systems, a privacy budget is set i.e., an
upper bound εbudget is set for the system use. For the
particular application we take into account the worst
case hamming distance between access patterns. If this
distance is too large, we recommend using εbudget = 0.

6 Recent work such as Circuit ORAM [57] require constant local
memory but increase the protocol round complexity, thereby
increasing the effective bandwidth.
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(a) (b)
Fig. 5. Real-world implementations over Amazon EC2. Fig. 5a shows the Root ORAM latency as a function of the bandwidth
for (L,Z) = (20, 5) and different block sizes viz., 1 KB, 4 KB and 16 KB. Fig. 5b shows the latency as a function of the con-
strained/limited application bandwidth for 4 KB block sizes and (L,Z) = (20, 5). Note the significant difference between the
access latency across different k values for constrained bandwidth applications.

Once the privacy budget is set, using the results of
Section 5 and Section 6.2, Root ORAM parameters can
be chosen using acceptable values of bandwidth, stash
and security parameters (k, S and ε). Two of the three
parameters can be set to desired values independently
viz., two among security parameter ε, the bandwidth
parameter (k) and stash size (S) can be chosen inde-
pendently. The third parameter is determined by the
choice of the other two and the optimal trade-off choice
would be determined by the specific application require-
ments. Finally, depending on the application under con-
sideration and the effect of different block sizes on the
bandwidth and storage overhead, an optimal block size
can be chosen. For instance, in the application of PIR-
Tor [46], Tor clients query about 4MB of data from Tor
directory servers to retrieve information about Tor re-
lays (refer to Section 7 connection between the ORAMs
and PIR). This can be accomplished by using an ORAM
with 4MB block size or a smaller block size ORAM with
multiple invocations. The different performance over-
head of such choices in system design are quantified in
Theorem 3 and 5, and the resulting security is quantified
via composition theorems from Section 2.

Remark: It is important to note that when k = 0,
the storage structure in Root ORAM reduces to a single
sub-tree. Hence, the non-uniform distribution in Root
ORAM reduces to a uniform distribution over all the
leaves. Another sanity check is that both pmax and pmin

equal 1/N when k = 0. At the same time, since k = 0, no
levels in the tree are cached. Hence Root ORAM when
k = 0 instantiates exactly into the Path ORAM protocol.

7 Applications: Efficient Private
Information Retrieval
In this section, we demonstrate how DP-ORAM

in conjunction with trusted hardware can be used to
perform differentially private Private Information Re-
trieval (DP-PIR) queries. The idea of using ORAM in
conjunction with trusted hardware has been previously
explored by the research community [7, 8, 47, 59]. An
important line of research is in developing faster PIR
protocols using a combination of trusted hardware and
ORAM [7, 59].

7.1 Private Information Retrieval (PIR)
Private Information Retrieval is a cryptographic

primitive that provides privacy to a database user.
Specifically, the protocol allows the user to hide his/her
queries when accessing a public database from the
database holder. The critical difference between the PIR
and ORAM problem settings is that one assumes a
public database (PIR) and the other assumes a pri-
vate database (ORAM). In a Differentially Private-PIR
scheme (DP-PIR), the PIR privacy guarantees are re-
laxed and quantified using differential privacy.

7.2 Differentially Private-PIR schemes
(DP-PIR)

Differentially Private PIR has been proposed by
Toledo el. al. in [56]. The definition relies on an indistin-
guishability game between the adversary and a number
of honest users as follows:
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7.2.1 DP-PIR indistinguishability game
Among the set of honest users U , one is identified by the
adversary as the target user Ut. The adversary provides
the target user Ut two queries Qi, Qj and provides all
other users a single query Q0. The target user selects
one of the two queries and then all users use a PIR sys-
tem to retrieve records. The adversary observes all the
transmitted information including all the information
from corrupt servers. The privacy of a DP-PIR protocol
is formulated as follows (from Toledo et al. [56]):

Definition 4. Differentially Private PIR: A proto-
col provides (ε, δ)-private PIR if there are non-negative
constants ε and δ, such that for any possible adversary-
provided queries Qi, Qj , and Q0, and for all possible ad-
versarial observations O in the observation space Ω we
have that

∀Qi, Qj , and Q0 Pr(O|Qi) ≤ eε ·Pr(O|Qj)+δ (10)

The security of DP-PIR schemes translates to the pri-
vacy of the underlying queries. Hence, the privacy guar-
antees of DP-PIR are easier to interpret as they directly
relate to the “program secret” i.e., the PIR query.

7.2.2 DP-PIR construction from DP-ORAM
To construct a DP-PIR protocol using Root ORAM, we
assume the PIR database is on a server with a trusted
processor such as Intel SGX [33] or 4765 cryptographic
co-processor by IBM [6]. DP-ORAM based DP-PIR op-
erates on a public database (as required by any PIR
application) but is encrypted by the trusted hardware
to hide memory accesses. Different users of the DP-PIR
application use the same underlying DP-ORAM. The
DP-ORAM protocol is run within the trusted hardware
which also stores the ORAM stash and hence is com-
mon across different users and multiple ORAM invo-
cations. The DP-ORAM block size is set equal to the
PIR database block size. To perform a DP-PIR query,
a client does the following:

– Step 1 (Initialization): In the initialization step,
the client and the trusted hardware set up an au-
thenticated encrypted channel (AEC) for communi-
cation (with or without an anonymous communica-
tion channel). The trusted hardware also initializes
the ORAM storage structure with the entries of the
PIR database. The ORAM is initialized with block
size equal to the PIR block size. Other parameters
are chosen according to application constraints (re-
fer to Section 6.4).

– Step 2 (Send Query): The client sends his PIR
query (some database index i) to the trusted hard-
ware through the AEC set up in Step 1 (over an
anonymous channel or directly over the network).

– Step 3 (DP-ORAM): The trusted hardware de-
crypts the PIR query to get the decrypted index i
and initiates a DP-ORAM query using this index.

– Step 4 (Receive Response): The trusted hard-
ware retrieves the PIR block with index i using the
DP-ORAM protocol from the untrusted memory. It
sends this block over the AEC to the client.

We show that the above constructed PIR protocol sat-
isfies the guarantees of DP-PIR protocols from Defini-
tion 4. More formally,

Theorem 7 (DP-ORAM ⇒ DP-PIR). The PIR pro-
tocol described above completed using a (ε, δ)-DP-
ORAM is (ε, δ)-DP-PIR.

We defer the proof of Theorem 7 to Appendix A.

7.3 Application Requirements and
Multiple Queries:

Application Requirements: Next we compare
the application requirements for various DP-PIR pro-
tocols. The 4 DP-PIR protocols from Toledo et al. [56]
all rely on the use of multiple servers and 2 of the 4
schemes rely on the use of anonymous communication
channels. DP-ORAM based DP-PIR described in Sec-
tion 7.2.2 is a DP-Computational PIR scheme in con-
trast with the DP-Information-Theoretic PIR schemes
in Toledo et al. [56]. Our DP-PIR protocol requires a
single server and the use of anonymous channels is op-
tional, though the existence of the latter improves the
performance of our proposed protocol as discussed later
in this Section. Our protocols require the use of trusted
hardware but this results in significant performance im-
provements as discussed in Section 7.4.

Single Queries: DP-PIR protocols, as formalized
in Section 7.2.1, quantify the privacy for a single PIR
query. In Theorem 7, we quantify the privacy of our pro-
posed DP-PIR scheme for a single query. Performance
benefits of DP-ORAM directly enhance the performance
of the PIR protocol (cf Section 7.4) and showcase the
benefits of DP-ORAMs7. We further analyze the single
query mode of operation into two categories:

7 DP-PIR is well suited to showcase the benefits of using sta-
tistical ORAMs as neighboring sequences in this application di-
rectly map to “program secrets” and differ by a single access.
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– Without anonymous channels (ACs): Without
access to ACs, Theorem 7 gives the privacy guaran-
tees of our DP-PIR protocol.

– With anonymous channels: If ACs are available,
they can be used to boost the performance of our
DP-PIR protocol by leveraging the additional pri-
vacy offered by the communication channel. This
leads to significant performance benefits which we
summarize in the following theorem:

Theorem 8 (DP-PIR with Anonymous Channels).
The composition of a (ε, δ)-differentially private
PIR mechanism with a perfect anonymity system
used by u users, for sufficiently large number of
users8, yields a (ε′, δ′)-differentially private PIR
mechanism for each user where:

ε′ = e2ε

u

δ′ = min{1, u · δ + neg(u)}
(11)

where neg(u) is a negligible function9 of u.

We defer the proof of Theorem 8 to Appendix A. These
bounds significantly enhance the privacy values of when
using a DP-PIR protocol in composition with a anony-
mous communication channel. For instance, assuming
u = 103 users use a (2, 2−80)-DP-PIR, each user is ef-
fectively using a (0.05, 2−70)-DP-PIR protocol10.

Multiple Queries: An important consideration
in the use of DP-PIR schemes is the effect of multiple
queries on the security of the scheme. Multiple invoca-
tions of the DP-PIR scheme results in a privacy loss. We
extend Theorem 1 to prove Theorem 9 that bounds the
privacy of DP-PIR schemes under multiple invocations.
Consequently, the privacy of multiple DP-PIR invoca-
tions can be found by composing Theorem 9 with the
bounds from Theorem 7 or Theorem 8 depending on the
availability of anonymous communication channels.

Theorem 9 (DP-PIR Composition Theorem). m in-
vocations of a (ε, δ)-DP-ORAM based DP-PIR
protocol guarantees an overall (mε,mδ)-DP-PIR
protocol.

We defer the proof of Theorem 9 to Appendix A.

8 Sufficiently large number of users: u� max{1, e2ε}.
9 A negligible function neg(n) is a function neg : N → R such
that ∀c ∈ Z+ ∃Nc ∈ Z+ such that ∀x ≥ Nc, |neg(n)| < n−c

10 Ignoring terms negligible in u

Fig. 6. Security-Bandwidth trade-offs for DP-PIR protocols
(Toledo et al. [56], Path-PIR [43], and Path ORAM [55]).

7.4 Comparison with Prior Work
Next we compare the performance of our DP-PIR

scheme with (1) DP-PIR schemes from [56] (2) Path-
PIR construction [43]. We begin by briefly describing
the 4 DP-PIR schemes from Toledo et al. [56]:
– Direct Requests: For each real query, the client

sends p − 1 other dummy queries spread across d
identical databases. da of the databases are assumed
to be adversarial.

– Anonymous Direct Requests: This protocol as-
sumes the use of anonymous communication chan-
nels (ACs) and performs the above mentioned Di-
rect request protocol in conjuction with the AC. The
increased privacy occurs from the fact that each user
sends p requests yet derives privacy among u · p re-
quests (where u is the number of users).

– Sparse-PIR: This protocol is based on Chor’s PIR
protocol [15]. Instead of generating random vectors
for the servers, the client generates biased (hence
sparse) random vectors using i.i.d Bernoulli trials
with parameter θ.

– Anonymous Sparse-PIR: Similar to anonymous
direct requests, this protocol is the composition of
the Sparse-PIR protocol with an anonymity system.

We compare our protocols with the exact same set-
up as in [56]. Different parameters are set to the fol-
lowing values: (1) Database with n = 106 blocks (2)
Number of databases d = 102 (3) Number of adversarial
databases da = 0.1×d = 10 (this showcases the most op-
timistic version of the results of [56]). Anonymous direct
request has the same parameters as the direct request
protocol with an additional assumption of number of
users u = 103. Sparse-PIR and Anonymous Sparse-PIR
protocols ignore the communication cost from the client
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side. This communcication overhead is information the-
oretically lower bounded by a ·h(θ) where a is the size of
vector to be sent and h(·) is the binary entropy function.
Since the overhead for encoding the random vectors is
linear (and hence very large) in Sparse PIR and Anony-
mous Sparse PIR protocols, we assume they are based
on the 2D variant of Chor’s protocol [15].

Bandwidth comparison: As seen in Fig. 6, our
DP-PIR protocol provides orders of magnitude perfor-
mance improvements over state-of-the-art DP-PIR pro-
tocols from [56]. The performance gains come from the
logarithmic overhead of ORAM schemes compared to
linear overhead of PIR schemes. Path-PIR does not pro-
vide statistical security and hence is seen as a single
data-point in Fig. 6. Path-PIR also achieves logarith-
mic overhead yet suffers from (1) heavy computation
requirements at the client and the server due to the use
of underlying homomorphic encryptions (2) large stor-
age overhead due to logarithmic bucket sizes (3) scala-
bility i.e., is better suited for small databases (or large
block sizes).

Other comparisons: As discussed before, our DP-
PIR protocol requires the use of trusted hardware but
results in significant performance improvements. At
the same time, our DP-PIR protocol requires a sin-
gle server in contrast with multiple servers required for
Toledo et al. [56]. It is interesting to note that our DP-
ORAM based DP-PIR (described in Section 7.2.2) is
a DP-Computational PIR scheme in contrast with the
DP-Information-Theoretic PIR schemes from Toledo et
al. [56]. Our protocol as well as protocols from Toledo
et al. [56] benefit from the use of anonymous chan-
nels. Computational costs for our DP-PIR protocol are
O(logN) whereas they are O(p), O(d ·N · θ) for various
schemes in Toledo et al. [56]. On the contrary, additional
storage costs for our protocol are given by Theorem 5
(O(logN) + Z ∗ 2k) but are 0 for schemes in Toledo et
al. [56]. Finally, we remark that the set-up cost for our
protocol includes a one time ORAM database initializa-
tion11 phase (where the PIR database is stored in the
ORAM database) which does not exist for other DP-
PIR protocols.

7.5 Other Applications
Our discussion above focused on the PIR, which it-

self is a fundamental privacy technology that can en-
able numerous applications, including PIR-Tor [46], PIR

11 DP-ORAM initialization is done once and hence can be done
using an ε = 0 DP-ORAM to preserve privacy budget for future
queries.

for e-commerce [31], PIR for MIX Nets [35]. Benefits of
DP-ORAM extend to other applications as well. For in-
stance, Gentry et al. [25] demonstrate the use of ORAMs
as building blocks for secure computation. The benefits
of DP-ORAM can be extended to such applications of
ORAM protocols for improving performance. In fact,
the use of differential privacy to boost the performance
of secure computation is already gaining attention in the
research community with work by He et al. [30]. Finally,
DP-ORAM can be used in systems such as Dropbox and
Google Drive to privately retrieve data at low network
overheads and local storage.

8 Related work
Oblivious RAMs were first formalized in a seminal

paper by Goldreich and Ostrovsky [27]. Since then, the
research community has made substantial progress in
making ORAMs practical [28, 29, 40, 50, 53, 55, 60].
Hierarchical constructions such as [29, 36, 50] were pro-
posed building on [27] and tree based ORAM schemes
such as [25, 37, 40, 51, 53–55] were proposed building
on Shi et. al. [22]. A recent benchmark for ORAMs has
been the Path ORAM protocol [55] that gives theo-
retical bounds on the local memory usage. Tessaro et.
al. [14] build on [55] and extend it for multiple clients
by level caching in tree based ORAM schemes. Root
ORAM generalizes the construction of [55] to provide
a tunable framework offering DP-ORAM guarantees.
Root ORAM gets around the Goldreich-Ostrovsky lower
bound by using (1) Statistical security, which voids the
proof of the lower bound [27] (2) Stash storage that is
not a constant (which is what gives the logarithmic GO-
lower bound). Our work opens up new opportunities for
rethinking lower bounds for statistical ORAMs.

Gentry et. al. [25] have shown the promise of using
ORAMs as a building block in developing protocols for
Secure Multi-Party Computation. This work is among
the first in the line of research using ORAMs as crit-
ical component of building other cryptographic primi-
tives. Recently, there has been a number of works using
ORAMs for private information retrieval [8, 43, 47, 59],
for private ad recommendation [7] and secure computa-
tion and machine learning [25, 41, 49, 58].

Several optimizations have been proposed to re-
duce the overhead of tree-based ORAMs. Recently, Ring
ORAM [40] reduced the bandwidth using the XOR
technique leveraging server-side computation. The XOR
technique is orthogonal to the ideas explored in this
work and can be extended to Root ORAM, further in-
fluencing the protocol design space. Two optimizations
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for Shi et. al. [22] were proposed by Gentry et al. [25].
First, they reduce the storage overhead by a multiplica-
tive factor and second, they reduce the time complex-
ity of the protocol. They explore the benefits of using a
multiple fan-out tree structure instead of a conventional
binary tree. ORAM has also been implemented at a chip
level in prototypes such as the Ascend architecture [24]
and the Phantom architecture [42].

Recently, Circuit ORAM [57] proposed a novel pro-
tocol to reduce the complexity of the eviction proto-
col in Path ORAM when implementing on a small pri-
vate memory. This is ideally suited for secure compu-
tation environments and is the state-of-the-art proto-
col when implementing ORAMs in trusted hardware.
Though Circuit ORAM works with a constant memory,
it increases the protocol complexity which leads to a
higher bandwidth usage. Burst ORAM [37] builds on
ObliviStore [53] by level caching and optimizing the on-
line bandwidth (formalized in [12]) for bursty (realistic)
access pattern. Onion ORAM [18] “breaks” the ORAM
lower bound by leveraging server side computation and
additively homomorphic encryptions and achieving con-
stant bandwidth overhead.

Floram [19] is a state-of-the-art ORAM construc-
tion which constructs an ORAM protocol in the Dis-
tributed ORAM model (DORAM). In the DORAM
model, the ORAM memory is split across multiple
servers. Whereas in the conventional ORAM setting two
logical access sequences of the same length produce in-
distinguishable physical access sequences, in a DORAM,
only the physical access sequences observed by a single
server are indistinguishable. It is possible to augment
our work with Floram to further boost its performance.

In summary, Root ORAM is the first protocol that
demonstrates a trade-off between performance and sta-
tistical privacy (quantified with differential privacy).
The tunable security-bandwidth-outsourcing ratio con-
struction and the formalization of differentially private
ORAMs differentiates our work from prior approaches.

9 Limitations
In this work, we enable the design of practical

ORAM schemes for applications with stringent band-
width constraints and small local storage. For some ap-
plications, it might be acceptable to trade-off statisti-
cal privacy for better performance and Root ORAM
demonstrates the first step in this direction by introduc-
ing a tunable framework that provides differential pri-
vacy guarantees. Though Theorem 1 - 2 help us bound
the privacy leakage for arbitrary access sequences, we

acknowledge that Root ORAM is currently better suited
for similar access sequences. For example, our approach
is ideally suited for applications such as PIR (Sec-
tion 7). The formalization of DP-ORAM opens up a
number of research directions such as optimal security-
performance trade-offs, rethinking lower bounds for sta-
tistically private ORAMs, as well as better performance
improvement results. Our work has already inspired
other researchers to rethink research ideas at the inter-
section of differential privacy and conventional cryptog-
raphy [13, 44]. Finally, we note that the ideas developed
in this work are orthogonal yet applicable to more recent
works such as Ring ORAM, Onion ORAM, and Burst
ORAM [18, 37, 40]. Similarly, DP-ORAM constructions
for non-tree based ORAMs would be interesting for fu-
ture work.

10 Conclusions
To summarize, we introduce and formalize the no-

tion of a differentially private ORAM, which to our
knowledge is the first of its kind. We present Root
ORAM, a tunable family of ORAM protocols which
provide a multi-dimensional trade-off between security,
bandwidth and local storage requirements. We evaluate
the protocol using theoretical analysis, simulations, and
real world implementation on Amazon EC2. We analyze
the benefits of statistical ORAMs in (1) trusted exe-
cution environments and (2) server-client settings and
demonstrate how statistical ORAMs can improve the
performance of existing ORAMs. Finally, we showcase
the utility of Root ORAM via the application of Private
Information Retrieval.
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A Theorem Proofs
Proof of Theorem 4: We use two key concepts

viz., ∞-ORAM and the greedy post-processing algo-
rithm from prior works [55, 57] in proving the above
result. We begin by briefly describing these concepts
and then prove an equivalence between a greedily post-
processed ∞-ORAM and Root ORAM (Lemma 1 and
Lemma 2). Finally, we complete the argument by prov-
ing the effectiveness of using a non-uniform distribution
in reducing the stash usage in∞-ORAM, thereby show-
ing its effectiveness in Root ORAM. Next, we briefly
discuss the concepts of ∞-ORAM and the greedy post-
processing algorithm and refer the reader to [55] for
more details. We follow the notation from Section 5.1.
∞-ORAM: This is an imaginary ORAM, used as

a mathematical abstraction to facilitate proofs about
Root ORAM. The ∞-ORAM has all parameters identi-
cal to the Root ORAM except it has an infinitely large
bucket size (Z →∞). This allows the∞-ORAM to store
as many blocks in a bucket as possible.

Greedy post-processing: This is an algorithm
that post processes the stash and the buckets in an
∞-ORAM such that after a sequence of s load/store
operations, the distribution of the real blocks over the
buckets and stash is exactly the same as that of the
Root ORAM after being accessed using s. It is easy to
see that the ∞-ORAM starts with an empty stash. The
greedy post processing algorithm mentioned below pro-
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cesses the ∞-ORAM until the tree has no buckets with
more than Z blocks.

– Select any block in a bucket that stores more than
Z blocks. Suppose that the bucket is at level h and
P is the path from the bucket to the root.

– Find the highest level (closer to the root) i ≤ h such
that the bucket at level i on path P stores less than
Z blocks. If such a bucket exists, move the block to
level i else move it to the stash.

Next, we state Lemma 1 and Lemma 2 and omit
their proofs due to their similarity with [55] as well as
space constraints.

Lemma 1. The stash usage in the post processed ∞-
Root ORAM is the same as Root ORAM protocol with
the same parameters.

stZ [O∞k,p(s)] = st[OZk,p(s)] (12)

For the sake of analysis, we combine the 2k binary sub-
trees by appending a binary tree of depth k−1 above the
sub-trees. This creates an extended binary tree of height
L which contains the original sub-trees at its bottom.
We look at the bucket usage over rooted sub-trees of
this extended binary tree (rooted sub-tree is a sub-tree
which contains the root of the extended tree). We denote
by T a generic rooted sub-tree. We use n(T ) to denote
the total number of buckets in T and uT (O∞k,p[s]) for the
number of real blocks in T for an ∞-Root ORAM after
a sequence s operations.

Lemma 2. The stash usage stZ [A∞k,p(s)] in post-
processed ∞-Root ORAM is > R if and only if
there exists a sub-tree T in ∞-Root ORAM such that
uT
(
A∞k,p[s]

)
> n(T ) · Z +R

Let AZk,p and BZk,q be two Root ORAM protocols with
security parameters ε1 and ε2 respectively.

Suppose S denotes the set of leaves of the extended
binary tree and S′ the set of leaves of the currently
mapped sub-tree. The probability distribution functions
for the updateMapping function in AZk,p and BZk,q differ
only in the following way: some probability mass m (for
some m ≥ 0) moves from leaves S − S′ to S′.

Thus, with probability mass (1 −m), the random-
ized mapping for both protocol AZk,p and protocol BZk,q
behave identically. However, with probability mass m,
the data block will be mapped to a leaf in S′ in protocol
AZk,p but to a leaf in S − S′ in protocol BZk,q. Hence, in
the ∞-ORAM, the data block will be placed on a level
less than k−1 (higher up in the tree) in B∞k,q whereas in

A∞k,q it will be placed the same sub-tree i.e., on a level
greater than k − 1 (lower down in the tree). Hence for
any subtler T , if the data block in A∞k,q was placed in a
bucket in T , then so will the data block in B∞k,q. Hence,

uT (A∞k,p[s]) ≤ uT (B∞k,q[s])

Hence, for any given sub-tree T , we have:(
uT (A∞k,p[s]) > n(T ) · Z +R

)
⇒
(
uT (B∞k,q[s]) > n(T ) · Z +R

)
Using the above condition over all rooted sub-trees T ,
we have

Pr
[
∃T
(
uT (A∞k,p[s]) > n(T ) · Z +R

)]
≤ Pr

[
∃T
(
uT (B∞k,q[s]) > n(T ) · Z +R

)]
Hence,

Pr
[
st[AZk,p(s)] > R] = Pr

[
stZ [A∞k,p(s)] > R

]
= Pr

[
∃T
(
uT (A∞k,p[s]) > n(T ) · Z +R

)]
≤ Pr

[
∃T
(
uT (B∞k,q[s]) > n(T ) · Z +R

)]
= Pr

[
stZ [B∞k,q(s)] > R

]
= Pr

[
st[BZk,q(s)] > R

]
Finally, to complete the argument, we use the following
result from basic information theory:

Lemma 3. Let X be a discrete random variable that
takes on only non-negative integer values. Then

E[X] =
∞∑
i=1

Pr(X ≥ i) (13)

Summing Eq. 13 for R = 0, 1, 2 · · · (which corresponds
to R1, R2 ≥ 1) we get that,

E[R1] =
∑
R

Pr
[
st[AZk,p(s)] > R

]
≤
∑
R

Pr
[
st[BZk,p(s)] > R

]
= E[R2]

Which completes the proof for Theorem 4. �

Proof of Theorem 5: Using Theorem 4, we know
that the stash usage is “lower” for non-zero values of ε.
Hence, it suffices to give stash bounds when ε = 0. As
in the proof for Theorem 4, we conceptually extend the
server storage to contain a complete binary tree with
height L, where the sub-trees form the lower levels of
the extended binary tree. We can see that for ε = 0,
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the Root ORAM protocol with the additional storage
reduces to the Path ORAM protocol and hence the stash
size of Root ORAM can bounded as:

Pr
[
st[OZk,p(s)] > R+ Z · 2k

]
≤ 14(0.6002)R (14)

This completes the proof of the stash bounds12. �

Proof of Theorem 6: The proof follows by noting
that the depth of each sub-tree is equal to (L + 1 − k)
and hence number of blocks are transferred per access
is 2Z times the depth. �

Proof of Theorem 7: The proof follows directly
from the setup and the definition of DP-PIR. Given any
two adversarial queries Qi, Qj for database records, we
consider these as ORAM input access sequences, each
with only single access. Since these access sequences dif-
fer in a single access, for any output observation O:

Pr[O|Qi] ≤ eε Pr[O|Qj ] + δ (15)

which is the privacy guarantee for DP-PIR. �

Proof of Theorem 8: δ captures the failure proba-
bility of our system and hence we can union bound this
failure probability across the u users. Across u users,
the failure probability δ′ can be bounded as: δ′ ≤ u · δ
(δ′ ≤ 1). With probability 1 − δ′, the composite sys-
tem is now ε-differentially private and we can use the
Composition Lemma13 to get the following bound on ε′:

ε′ = ln
(
e2ε + u− 1

)
− ln u

= ln
(
e2ε

u
+ u− 1

u

)
≤ ln

(
e2ε

u
+ 1
)
≤ e2ε

u

Where the last two inequalities follow from (1)
u � 1 (2) u � e2ε and ln(1 + x) ≤ x when x > −1.
Finally, since the Composition Lemma from Toledo et
al. [56] holds with a failure probability 1 − neg(u), we
can incorporate this failure into the delta bound (union
bound) to complete the proof of Theorem 8. �

12 Line 4 in Flush protocol in Root ORAM ensures that buck-
ets never store more than Z blocks. Hence, capturing the stash
failure probability suffices.
13 Since u� 1, the law of large numbers holds for the proof of
the Composition Lemma from Toledo et al. [56].

Fig. 7. Entropy rate for worst case access sequence for L = 20
and 15 and k = 1.

Proof of Theorem 9: The proof follows naturally
from the results of Theorem 1. DP-PIR protocol relies
on a DP-ORAM protocol and hence the privacy of m
(ε, δ)-DP-PIR queries sent to the trusted hardware by
Theorem 1 can be bound by a single DP-PIR protocol
with privacy (mε,mδ)-DP-PIR guarantees. �

B Entropy Calculation for DP
Next, we provide an interpretation of the privacy

guarantees of the protocol in terms of entropy [16].
Specifically, we find the worst case entropy of the ob-
served access sequence for any given input access se-
quence. This entropy reflects the adversaries’ uncer-
tainty in the observed access sequence given any input
sequence. We compute this entropy as follows:

Let X1, X2, . . . , XM denote the random variables
indicating the accessed location for the given access
sequence a of logical block addresses (i.e., Xi is the
random variable for yi where y = {yi}Mi=1 as in Sec-
tion 5). Let π(·) denote a function which maps an index
in {1, 2, . . . ,M} to the location of the previous access of
the same data block. In other words, if some data block
a was accessed at the ith (xi = a) and then at the jth

(xj = a) location, then π(j) = i.14

Let H(·) denote the Shannon Entropy. If we have
perfect security, H(X1, X2, . . . , XM ) = M · logN and
hence the entropy rate is logN (entropy per ac-
cess). Using DP-ORAM reduces this entropy and we

14 Formally, we can define π(·) : {1, 2, . . . ,M} → {1, 2, . . . ,M−
1} ∪ φ as π(j) = max i s.t. xi = xj and i < j and φ otherwise.

π(j) =
{

max i s.t. xi = xj and i < j

φ otherwise
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compute this loss in entropy below. We know that
P (Xi) = Uniform ({0, 1, 2, . . . , 2L − 1}) if π(i) = φ and
P (Xi|Xπ(i)) = D, where D is the distribution specified
in Eq. 4. Hence, we can compute the entropy of the
complete sequence as follows:

H(X1, X2, . . . XM ) = H(X1) +
M∑
i=2

H(Xi|Xi−1 . . . X1)

≥ H(X1) +
M∑
i=2

H(Xi|Xi−1 . . . X1, π(i))

= H(X1) +
M∑
i=2

H(Xi|Xπ(i))

= α · logN + (M − α) ·H(D)
≥M ·H(D)

Where α is the number of accesses such that π(·) = φ

i.e., accessed for the first time. We know that 1 ≤ α ≤ N
and the entropy rate is 1

MH(X1, X2, . . . HM ) ≥ H(D).
For the chosen distribution D, we can compute

H(D) as:

H(D) = −(N − 2L−k)pmin log pmin − 2L−kpmax log pmax

(16)
since there are N−2L−k leaves with probability pmin and
2L−k leaves with probability pmax. The entropy rate is
hence lower bounded by the expression in Eq. 16. In
a similar manner, we compute the min-entropy of the
observed sequence H∞(X1, X2, . . . , XM )15.

H∞(X1, X2, . . . HM ) = − log
[
(1/N)α · pM−αmax

]
≥ −M · log pmax (17)

Fig. 7 plots the lower bound on the entropy rate of
the observed access sequence as a function of the ε (nu-
merically). We can see that the entropy rate decreases
as ε increases but the decrease is small for moderate val-
ues of ε. For instance, for L = 20, using ε = 3 results in
a loss of roughly 0.3-bits of entropy and for ε = 2 the
loss is 0.1 bits (contrast this with the performance im-
provements presented in Section 6.2 and Fig. 3a). Even
at larger values of ε, the loss is less than 2-bits.

The entropy loss analysis bounds the reduction in
the entropy of the next access observed by the adversary
given access to an arbitrary number of previous accesses
(hence the asymptotic analysis). This can be used to
argue about the entropy loss of the entire sequence as
a function of the number of accesses (using the bounds
from Fig. 7 and Eq. 16,17). In other words, given a num-
ber of accessesM , the baseline of perfect security would

15 Min-entropy is defined as H∞(X) = − log max
i
p(xi).

guarantee an uncertainty of the observed sequence to be
M · logN = 20 ·M -bits (considering L = logN = 20)
whereas using DP-ORAM will reduce this entropy to
M×entropy per access. To put these in perspective, for
an access sequence of length 103 the entropy loss for
ε = 2 will reduce the entropy of the observed sequence
from 20,000-bits to 19,900-bits (by about 0.5%).

C Advanced Composition
theorem - DP
Advanced composition theorem bounds the privacy

guarantees of a mechanism under k-fold adaptive com-
position (for details refer to Chapter 3 of [20]). Formally
it is stated as:

Theorem 10 (Advanced composition). For all
ε, δ, δ′ ≥ 0, the class of (ε, δ)-differentially pri-
vate mechanisms satisfies (ε′, kδ + δ′)-differential
privacy under k-fold adaptive composition for:

ε′ =
√

2k ln(1/δ′)ε+ kε(eε − 1) (18)

The above result provides a guideline for setting the
privacy budget under composition. Using the advanced
composition theorem, we can see that the privacy bud-
get scales sub-linearly with the number of queries (Ex-
ample 3.7 in [20]).
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