
Proceedings on Privacy Enhancing Technologies ; 2018 (4):159–178

Daniel Demmler*, Peter Rindal, Mike Rosulek, and Ni Trieu

PIR-PSI: Scaling Private Contact Discovery
Abstract: An important initialization step in many
social-networking applications is contact discovery,
which allows a user of the service to identify which of its
existing social contacts also use the service. Naïve ap-
proaches to contact discovery reveal a user’s entire set
of social/professional contacts to the service, presenting
a significant tension between functionality and privacy.
In this work, we present a system for private contact
discovery, in which the client learns only the intersec-
tion of its own contact list and a server’s user database,
and the server learns only the (approximate) size of the
client’s list. The protocol is specifically tailored to the
case of a small client set and large user database. Our
protocol has provable security guarantees and combines
new ideas with state-of-the-art techniques from private
information retrieval and private set intersection.
We report on a highly optimized prototype implementa-
tion of our system, which is practical on real-world set
sizes. For example, contact discovery between a client
with 1024 contacts and a server with 67 million user en-
tries takes 1.36 sec (when using server multi-threading)
and uses only 4.28MiB of communication.

DOI 10.1515/popets-2018-0037
Received 2018-02-28; revised 2018-06-15; accepted 2018-06-16.

1 Introduction

With the widespread use of smartphones in the last
decade, social networks and their connected instant mes-
saging services are on the rise. Services like Facebook
Messenger or WhatsApp connect more than a billion
users worldwide.1

*Corresponding Author: Daniel Demmler: TU Darm-
stadt , E-mail: daniel.demmler@crisp-da.de
Peter Rindal: Oregon State University, E-mail: ro-
sulekm@engr.orst.edu
Mike Rosulek: Oregon State University, E-mail:
rindalp@oregonstate.edu
Ni Trieu: Oregon State University, E-mail:
trieun@oregonstate.edu

1 https://blog.whatsapp.com/10000631/Connecting-One-Billion-
Users-Every-Day

Contact discovery happens when a client initially
joins a social network and intends to find out which of
its existing contacts are also on this network. Even after
this initial client join, it is also run periodically (e.g.,
daily) in order to capture a client’s contacts that join
the network later on. A trivial approach for contact dis-
covery is to send the client’s entire address book to the
service provider, who replies with the intersection of the
client’s contacts and the provider’s customers. This obvi-
ously leaks sensitive client data to the service provider.
In fact, a German court has recently ruled that such
trivial contact discovery in the WhatsApp messaging
service violates that country’s privacy regulations [28].
Specifically, a user cannot send her contact list to the
WhatsApp servers for contact discovery, without written
consent of all of her contacts.

A slightly better approach (often called “naïve hash-
ing”) has the client hash its contact list before sending it
to the server. However, this solution is insecure, since it
is prone to offline brute force attacks if the input do-
main is small (e.g., telephone numbers). Nonetheless,
naïve hashing is used internally by Facebook and was
previously used for contact discovery by the Signal mes-
saging app. The significance of a truly private contact
discovery was highlighted by the creators of Signal [35].

1.1 State of the Art & Challenges
Contact discovery is fundamentally about identifying
the intersection of two sets. There is a vast amount of
literature on the problem of private set intersection
(PSI), in which parties compute the intersection of their
sets without revealing anything else about the sets (ex-
cept possibly their size). A complete survey is beyond
the scope of this work, but we refer the reader to Pinkas
et al. [39], who give a comprehensive comparison among
the major protocol paradigms for PSI.

In contact discovery, the two parties have sets of
vastly different sizes. The server may have 10s or 100s
of millions of users in its input set, while a typical client
has less than 1000.2 However, most research on PSI is
optimized for the case where two parties have sets of
similar size. As a result, many PSI protocols have com-

2 A 2014 survey by Pew Research found that the average number
of Facebook friends is 338 [45].

https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day


PIR-PSI: Scaling Private Contact Discovery 160

munication and computation costs that scale with the
size of the larger set. For contact discovery, it is imper-
ative that the client’s effort (especially communication
cost) scales sublinearly with the server’s set size. Con-
cretely, in a setting where the client is a mobile device,
we aim for communication of at most a few megabytes.
A small handful of works [8, 29, 41] focus on PSI for
asymmetric set sizes. We give a comprehensive compar-
ison of these works to ours in Sect. 1.3 and Sect. 7.

Even after solving the problems related to the
client’s effort, the computational cost to the server can
also be prohibitive. For example, the server might have
to perform expensive exponentiations for each item in
its set. Unfortunately no known techniques allow the
server to have computational cost sublinear in the size
of its (large) input set. The best we can reasonably hope
for (which we achieve) is for the server’s computation to
consist almost entirely of fast symmetric-key operations
which have hardware support in modern processors.

If contact discovery were a one-time step only for
new users of a service, then the difference between a
few seconds in performance would not be a significant
concern. Yet, existing users must also perform contact
discovery to maintain an up-to-date view. Consider a ser-
vice with 100 million users, each of which performs main-
tenance contact discovery once a week. This is only pos-
sible if the marginal cost of a contact discovery instance
costs less than 6 milliseconds for the service provider
(one week is roughly 600 million milliseconds)! To be
truly realistic and practical, private contact discovery
should be as fast as possible.

1.2 Overview of Results & Contributions
We propose a new approach for private contact discovery
that is practical for realistic set sizes. We refer to our
paradigm asPIR-PSI, as it combines ideas from private
information retrieval (PIR) and standard 2-party PSI.
Techniques: Importantly, we split the service
provider’s role into two to four non-colluding servers.
With 2 servers, each one holds a copy of the user
database. When a third server is used, 2 of the servers
can hold secret shares of the user database rather than
hold it in the clear. With 4 servers, all servers can hold
secret shares. By using a computational PIR scheme,
a single-server solution is possible. Most of our presen-
tation focuses on our main contribution, the simpler
2-server version, but in Sect. 8 we discuss the other vari-
ants in detail. Note that multiple non-colluding servers
is the traditional setting for PIR, and is what allows

our approach to have sublinear cost (in the large server
set size) for the client while still hiding its input set.

Roughly speaking, we combine highly efficient state-
of-the-art techniques from 2-server PIR and 2-party pri-
vate set intersection. The servers store their sets in a
Cuckoo table so that a client with n items needs to probe
only O(n) positions of the server’s database to compute
the intersection. Using the state-of-the-art PIR scheme
of Boyle, Gilboa & Ishai [4, 5], each such query requires
O(κ logN) bits of communication, where N is the size
of the server’s data. In standard PIR, the client learns
the positions of the server’s data in the clear. To protect
the servers’ privacy, we modify the PIR scheme so that
one of the servers learns the PIR output, but blinded by
masks known to the client. This server and the client can
then perform a standard 2-party PSI on masked values.
For this we use the efficient PSI scheme of [30].

Within this general paradigm, we identify several
protocol-level and systems-level optimizations that im-
prove performance over a naïve implementation by sev-
eral orders of magnitude. For example, the fact that
the client probes randomly distributed positions in the
server’s database (a consequence of Cuckoo hashing with
random hash functions) leads to an optimization that re-
duces cost by approximately 500×.

As a contribution of independent interest, we per-
formed an extensive series of experiments (almost a
trillion hashing instances) to develop a predictive for-
mula for computing ideal parameters for Cuckoo hash-
ing. This allows our protocol to use very tight hashing
parameters, which can also yield similar improvements
in all other cuckoo hashing based PSI protocols. A more
detailed description can be found in Section 3.2.
Performance: Let n be the size of the client’s set, let N
the size of the server’s set (n� N), and let κ be the com-
putational security parameter. The total communication
for contact discovery is O

(
κn log(N logn/κn)

)
. The com-

putational cost for the client is O
(
n log(N logn/κn)

)
AES evaluations, O(n) hash evaluations, and κ exponen-
tiations. The exponentiations can be done once-and-for
all in an initialization phase and re-used for subsequent
contact discovery events between the same parties.

Each server performs O
(
(N logn)/κ

)
AES evalua-

tions, O(n) hash evaluations, and κ (initialization-time)
exponentiations. While this is indeed a large number of
AES calls, hardware acceleration (i.e., AES-NI instruc-
tions and SIMD vectorization) can easily allow process-
ing of a billion items per second per thread on typi-
cal server hardware. Furthermore, the server’s computa-



PIR-PSI: Scaling Private Contact Discovery 161

tional effort in PIR-PSI is highly parallelizable, and we
explore the effect of parallelization on our protocol.
Privacy/security for the client: If a corrupt server
does not collude with the other server, then it learns
nothing about the client’s input set except its size. In
the case where the two servers collude, even if they are
malicious (i.e., deviating arbitrarily from the protocol)
they learn no more than the client’s hashed input set.
In other words, the failure mode for PIR-PSI is to
reveal no more than the naïve-hashing approach.
Since naïve-hashing is the status quo for contact discov-
ery in practice, PIR-PSI is a strict privacy improvement.

Furthermore, the non-collusion guarantee is forward-
secure. Compromising both servers leaks nothing about
contact-discovery interactions that happened previously
(when at most one server was compromised).

In PIR-PSI, malicious servers can use a different in-
put set for each client instance (e.g., pretend that Alice
is in their database when performing contact discovery
with Bob, but not with Carol). That is, the servers’ ef-
fective data set is not anchored to some public root of
trust (e.g., a signature or hash of the “correct” data set).
Privacy/security for the server: A semi-honest
client (i.e., one that follows the protocol) learns no more
than the intersection of its set with the servers’ set, ex-
cept its size. A malicious client can learn different infor-
mation, but still no more than O(n) bits of information
about the servers’ set (n is the purported set size of
the client). We can characterize precisely what kinds of
information a malicious client can learn.
Other features: PIR-PSI requires the servers to store
their data-set in a fairly standard Cuckoo hashing table.
Hence, the storage overhead is constant and updates
take constant time.

PIR-PSI can be easily extended so that the client
privately learns associated data for each item in the in-
tersection. In the case of a secure messaging app, the
server may hold a mapping of email addresses to public
keys. A client may wish to obtain the public keys of any
users in its own address book.

As mentioned previously, PIR-PSI can be extended
to a 3-server or 4-server variant where some of the
servers hold only secret shares of DB, with security hold-
ing if no two servers collude (cf. Sect. 8). This setting
may be a better fit for practical deployments of contact
discovery, since a service provider can recruit the help of
other independent organizations, neither of which need
to know the provider’s user database. Holding the user
database in secret shared form reduces the amount of

data that the service provider retains about its users3

and gives stronger defense against data exfiltration.

1.3 Related Work & Comparison

PSI with asymmetric set sizes: As discussed in the
previous section, many protocols for private set intersec-
tion are not well-suited when the two parties have input
sets of very different sizes. For example, [30, 39] are the
fastest PSI protocols for large sets of similar size, but
require communication at least O

(
λ(N + n)

)
where λ is

a statistical security parameter. This cost makes these
approaches prohibitive for contact discovery, where N is
very large.

Only a handful of works specifically consider the
case of asymmetric set sizes. Chen, Laine & Rindal
(CLR) [8] use somewhat-homomorphic encryption to re-
duce communication to logarithmic in the large set size
N . Kiss et al. (KLSAP) [29] describe an approach that
defers O(N) communication to a pre-processing phase,
in which the server sends a large Bloom filter containing
AES(k, x) for each of its items x. To perform contact dis-
covery, the parties use Yao’s protocol to obliviously eval-
uate AES on each of the client’s items, so the client can
then probe the Bloom filter for membership. Resende
and Aranha (RA) [41] describe a similar approach in
which the server sends a large message during the pre-
processing phase. In this case, the large message is a
more space-efficient Cuckoo filter.

In Sect. 7 we give a detailed comparison between
these works and PIR-PSI. The main qualitative differ-
ence is the security model. The protocols listed above are
in a two-party setting involving a single server, whereas
PIR-PSI involves several non-colluding servers. We dis-
cuss the consequences of this security model more thor-
oughly in Sect. 4. Besides this difference, the KLSAP &
RA protocols require significant offline communication
and persistent storage for the client.
Keyword PIR: Chor, et al. [9] defined a variant of PIR
called keyword PIR, in which the client has an item x,
the server has a set S, and the client learns whether
x ∈ S. Our construction can be viewed as a kind of multi-
query keyword PIR with symmetric privacy guarantee
for the server (the client learns only whether x ∈ S). In
[5, Appendix A] a similar method is proposed that could
be used to implement private contact discovery.

3 https://www.reuters.com/article/us-usa-cyber-signal/signal-
messaging-app-turns-over-minimal-data-in-first-subpoena-
idUSKCN1241JM

https://www.reuters.com/article/us-usa-cyber-signal/signal-messaging-app-turns-over-minimal-data-in-first-subpoena-idUSKCN1241JM
https://www.reuters.com/article/us-usa-cyber-signal/signal-messaging-app-turns-over-minimal-data-in-first-subpoena-idUSKCN1241JM
https://www.reuters.com/article/us-usa-cyber-signal/signal-messaging-app-turns-over-minimal-data-in-first-subpoena-idUSKCN1241JM


PIR-PSI: Scaling Private Contact Discovery 162

The keyword-PIR method would have computation
cost of O(Nnρ) AES invocations, where the items in
the parties’ sets come from the set {0, 1}ρ. By contrast,
our protocol has server computation cost O(N logn). We
can imagine all parties first hashing their inputs down
to a small ρ-bit fingerprint before performing contact
discovery. But with N items in the server’s set, we must
have ρ ≥ s+2 logN to limit the probability of a collision
to 2−s. In practice ρ > 60 is typical, hence nρ is much
larger than logn.
Signal’s private contact discovery.: Recently the
Signal messaging service announced a solution for pri-
vate contact discovery based on Intel SGX, which they
plan to deploy soon [34]. The idea is for the client to
send their input set directly into an SGX enclave on the
server, where it is privately compared to the server’s
set. The enclave can use remote attestation to prove the
authenticity of the server software.

The security model for this approach is incompara-
ble to ours and others, as it relies on a trusted hardware
assumption. Standard two-party PSI protocols rely on
standard cryptographic hardness assumptions. Our PIR-
PSI protocol relies on cryptographic assumptions as well
as an assumption of non-collusion between two servers.
It is also worth pointing out that commercial uses of
Intel SGX currently require a license and that there is
ongoing research that focuses on applying side-channel
attacks like Spectre and Meltdown to extract confiden-
tial data from SGX enclaves [32].

2 Preliminaries

Throughout the paper we use the following notation:
The large server set has N items, while the small client
set has n items. The length of the item is ρ bits. In
our implementation we use ρ = 128 bits. We write
[m] = {1, . . . ,m}. The computational and statistical se-
curity parameters are denoted by κ, λ, respectively. In
our implementation we use κ = 128 and λ = 40.

2.1 Secure computation
Secure two-party computation allows two distrusting
parties to compute a joint function on their inputs with-
out revealing any additional information except for the
result itself. In 1982, two different approaches [23, 47]
have been introduced and opened up this field of re-
search. Over the last decade, secure computation has
been widely studied and applied in a variety of appli-

Table 1. Notation: Parameters and symbols used.

Parameter Symbol

symmetric security paramter [bits] κ = 128 bits
statistical security paramter [bits] λ = 40 bits
element length [bits] ρ = 128 bits
client set size [elements] n

server set size [elements] N

cuckoo table expansion (Sect. 3.2) e

cuckoo table size [elements] (Sect. 3.2) m = e ·N
DPF bins (Sect. 3.4) β

DPF bin size [elements] (Sect. 3.4) µ

PIR block size (Sect. 3.5) b

scaling factor (Sect. 5.3) c

server database DB

server cuckoo hash table CT

cations. We consider security in the presence of an ad-
versary that can be semi-honest (passive) or malicious
(active). A semi-honest adversary follows the protocol
without deviation, but tries to infer information about
private content from the exchanged messages. A mali-
cious adversary can arbitrarily deviate from the proto-
col and modify, re-order or suppress messages in order
to break the protocol’s security.

2.2 Private Information Retrieval
Private Information Retrieval (PIR) was introduced in
the 1990s by Chor et al. [10]. It enables a client to query
information from one or multiple servers in a privacy
preserving way, such that the servers are unable to infer
which information the client requested. In contrast to
the query, the servers’ database can be public and may
not need to be protected. When first thinking about
PIR, a trivial solution is to have a server send the whole
database to the client, who then locally performs his
query. However, this is extremely inefficient for large
databases. There exists a long list of works that improve
PIR communication complexity [1, 4–6, 13, 14, 16, 20,
24–27, 33, 36, 46]. Most of these protocols demand multi-
ple non-colluding servers. In this work, we are interested
in 2-server PIR schemes.

2.3 Distributed Point Functions
Gilboa and Ishai [22] proposed the notion of a dis-
tributed point function (DPF). For our purposes, a DPF
with domain size N consists of the following algorithms:

DPF.Gen:a randomized algorithm that takes index i ∈
[N ] as input and outputs two (short) keys k1, k2.



PIR-PSI: Scaling Private Contact Discovery 163

DPF.Expand:takes a short key k as input and outputs
a long expanded key K ∈ {0, 1}N .4

The correctness property of a DPF is that, if (k1, k2)←
DPF.Gen(i) then DPF.Expand(k1)⊕DPF.Expand(k2) is a
string with all zeros except for a 1 in the ith bit.

A DPF’s security property is that the marginal
distribution of k1 alone (resp. k2 alone) leaks no in-
formation about i. More formally, the distribution of
k1 induced by (k1, k2) ← DPF.Gen(i) is computation-
ally indistinguishable from that induced by (k1, k2) ←
DPF.Gen(i′), for all i, i′ ∈ [N ].
PIR from DPF: Distributed point functions can be
used for 2-party PIR in a natural way. Suppose the
servers hold a database DB of N strings. The client
wishes to read item DB[i] without revealing i. Using
a DPF with domain size N , the client can compute
(k1, k2) ← DPF.Gen(i), and send one kb to each server.
Server 1 can expand k1 as K1 = DPF.Expand(k1) and
compute the inner product:

K1 ·DB
def=
⊕N

j=1 K1[j] ·DB[j]

Server 2 computes an analogous inner product. The
client can then reconstruct as:

(K1 ·DB)⊕ (K2 ·DB) = (K1 ⊕K2) ·DB = DB[i]

since K1 ⊕K2 is zero everywhere except in position i.
BGI construction: Boyle, Gilboa & Ishai [4, 5] de-
scribe an efficient DPF construction in which the size of
the (unexpanded) keys is roughly κ(logN − log κ) bits,
where κ is the computational security parameter.

Their construction works by considering a full bi-
nary tree with N leaves. To expand the key, the
DPF.Expand algorithm performs a PRF evaluation for
each node in this tree. The (unexpanded) keys contain
a PRF block for each level of the tree.

As described, this gives unexpanded keys that con-
tain κ bits for each level of a tree of height logN . To
achieve κ(logN − log κ) bits total, BGI suggest the fol-
lowing “early termination optimization”: Treat the ex-
panded key as a string of N/κ characters over the alpha-
bet {0, 1}κ. This leads to a tree of height log(N/κ) =
logN−log κ. An extra κ-bit value is required to deal with
the longer characters at the leaves, but overall the total
size of the unexpanded keys is roughly κ(logN − log κ)

4 The original DPF definition also requires efficient random
access to this long expanded key. Our usage of DPF does not
require this feature.

Parameters: Set sizes m and n; Two parties:
sender S and receiver R
Functionality:
– Wait for an input X = {x1, x2, . . . , xn} ⊆
{0, 1}∗ from sender S and an input Y =
{y1, y2, . . . , ym} ⊆ {0, 1}∗ from receiver R

– Give output X ∩ Y to the receiver R.

Fig. 1. Private Set Intersection Functionality Fm,npsi

bits. In practice, we use hardware-accelerated AES-NI
as the underlying PRF, with κ = 128.

2.4 Private Set Intersection (PSI)
Private Set Intersection (PSI) is an application of secure
computation that allows parties, each holding a set of
private items, to compute the intersection of their sets
without revealing anything except for the intersection it-
self. We describe the ideal functionality for PSI in Fig. 1.
Based on oblivious polynomial evaluation, the first PSI
protocol was formally introduced in 2004 by [18]. How-
ever, this protocol requires a quadratic number of expen-
sive public key operations. Over the last decade, many
PSI protocols [8, 11, 12, 17, 29, 30, 37–41, 44] were pro-
posed with linear (or even sub-linear) communication
and computation complexity, which made PSI become
practical for many applications. These PSI protocols
can be classified into two different settings based on the
size of party’s input set: (1) symmetric, where the sets
size have approximately the same size; (2) asymmetric,
where one of the sets is severely smaller than the other.

The most efficient PSI approaches [30, 39] for
symmetric sets are based on efficient Oblivious Trans-
fer (OT) extension.

3 Our Construction: PIR-PSI

We make use of the previously described techniques to
achieve a practical solution for privacy-preserving con-
tact discovery, called PIR-PSI. We assume that the
service provider’s large user database is held on 2 sep-
arate servers. To perform private contact discovery, a
client interacts with both servers simultaneously. The
protocol’s best security properties hold when these two
servers do not collude. Variants of our construction for 3
and 4 servers are described in Sect. 8, in which some of
the servers hold only secret shares of the user database.



PIR-PSI: Scaling Private Contact Discovery 164

We develop the protocol step-by-step in the follow-
ing sections. The full protocol can be found in Fig. 2.

3.1 Warmup: PIR-PEQ
At the center of our construction is a technique for com-
bining a private equality test (PEQ – a special case of
PSI when the parties have one item each) [38] with a
PIR query. Suppose a client holds private input i, x and
wants to learn whether DB[i] = x, where the database
DB is the private input of the servers.

First recall the PIR scheme from Sect. 2.2 based on
DPFs. This PIR scheme has linear reconstruction in the
following sense: the client’s output DB[i] is equal to the
XOR of the responses from the two servers.

Suppose a PIR scheme with linear reconstruction is
modified as follows: the client sends an additional mask r
to server #1. Server #1 computes its PIR response v1
and instead of sending it to the client, sends v1 ⊕ r to
server #2. Then server #2 computes its PIR response
v2 and can reconstruct the masked result v2 ⊕ (v1 ⊕
r) = DB[i] ⊕ r. We refer to this modification of PIR
as designated-output PIR, as the client designates
server #2 to learn the (masked) output.

The client can now perform a standard 2-party se-
cure computation with server #2. In particular, they
can perform a PEQ with input x ⊕ r from the client
and DB[i]⊕ r from the server. As long as the PEQ is se-
cure, and the two servers do not collude, then the servers
learn nothing about the client’s input. If the two servers
collude, they can learn i but not x.

This warm-up problem is not yet sufficient for com-
puting private set intersection between a set X and DB,
since the client may not know which location in DB to
test against. Next we will address this by structuring
the database as a Cuckoo hash table.

3.2 Cuckoo hashing
Cuckoo hashing has seen extensive use in Private Set
Intersection protocols [30, 37–40] and in related areas
such as privacy preserving genomics [7]. This hashing
technique uses an array with m entries and k hash func-
tions h1, . . . , hk : {0, 1}∗ → [m]. The guarantee is that
an item x will be stored in a hash table at one of the lo-
cations indexed by h1(x), ..., hk(x). Furthermore, only a
single item will be assigned to each entry. Typically, k is
quite small (we use k = 3). When inserting x into the
hash table, a random index i ∈ [k] is selected and x is in-
serted at location hi(x). If an item y currently occupies
that location, it is evicted and y is re-inserted using the

same technique. This process is repeated until all items
are inserted or some upper bound on the number of tri-
als have been reached. In that latter case, the procedure
can either abort or place the item in a special location
called the stash. We choose cuckoo hashing parameters
such that this happens with sufficiently low probability
(see Sect. 5.2 and Appendix B), i.e., no stash is required.

In our setting the server encodes its set DB into a
Cuckoo hash table CT of size m = e ·N , where e > 1 is
an expansion factor. That way, the client (who has the
much smaller set X) must probe only k|X| positions of
the Cuckoo table to compute the intersection. Using the
PIR-PEQ technique just described makes the communi-
cation linear in |X| but only logarithmic in |DB|.

3.3 Hiding the cuckoo locations
There is a subtle issue if one applies the PIR-PEQ idea
naïvely. When the client learns that y ∈ (DB ∩ X),
he/she will in fact learn whether y is placed in position
h1(y) or h2(y) or h3(y) of the Cuckoo table. But this
leaks more than the intersection DB ∩ X, in the sense
that it cannot be simulated given just the intersection!
The placement of y in the Cuckoo table CT depends in-
directly on all the items in DB.5 Note that this is not
a problem for other PSI protocols, since there the party
who processes their input with Cuckoo hashing is the
one who receives output from the PEQs. For contact
discovery, we require these to be different parties.

To overcome this leakage, we design an efficient
oblivious shuffling procedure that obscures the cuckoo
location of an item. First, let us start with a simple case
with two hash functions h1, h2, where the client holds a
single item x. This generalizes in a natural way to k = 3
hash functions. Full details are provided in Appendix A.

The client will generate and send two PIR queries,
for positions h1(x) and h2(x) in CT . The client also
sends two masks r1 and r2 to server #1 which serve
as masks for the designated-output PIR. Server #1 ran-
domly chooses whether to swap these two masks. That is,
it chooses a random permutation σ : {1, 2} → {1, 2} and
masks the first PIR query with rσ(1) and the second with

5 For instance, say the client holds set X and (somehow) knows
the server has set DB = X∪{z} for some unknown z. It happens
that for many x ∈ X and i ∈ [k], hi(x) equals some location `.
Then with good probability some x ∈ X will occupy location `.
However, after testing location ` the client learns no x ∈ X occu-
pies this location. Then the client has learned some information
about z (namely, that hi(z) = ` is likely for some i ∈ [k]), even
though z is not in the intersection.



PIR-PSI: Scaling Private Contact Discovery 165

rσ(2). Server #2 then reconstructs the designated PIR
output, obtaining CT [h1(x)] ⊕ rσ(1), CT [h2(x)] ⊕ rσ(2).
The client now knows that if x ∈ DB, then server #2
must hold either x⊕ r1 or x⊕ r2.

Now instead of performing a private equality test,
the client and server #2 can perform a standard 2-party
PSI with inputs {x⊕ r1, x⊕ r2} from the client and the
designated PIR values {CT [h1(x)] ⊕ rσ(1), CT [h2(x)] ⊕
rσ(2)} from server #2. This technique perfectly hides
whether x was found at h1(x) or h2(x). While it is possi-
ble to perform a separate 2-item PSI for each PIR query,
it is actually more efficient (when using the 2-party PSI
protocol of [30]) to combine all of the PIR queries into
a single PSI with 2n elements each.

Because of the random masks, this approach may
introduce a false positive, where CT [j] 6= x but CT [j]⊕
r = x ⊕ r′ (for some masks r and r′), leading to a PSI
match. In our implementation we only consider items of
length 128, so the false positive probability taken over
all client items is only 2−128+log2((2n)2), by a standard
union bound.

3.4 Optimization: Binning queries
The client probes the servers’ database in positions that
are determined by the Cuckoo hash functions. Under the
reasonable assumptions that (1) the client’s input items
are chosen independently of the Cuckoo hash functions
and (2) the cuckoo hash functions are random functions,
the client probes the cuckoo table CT in uniformly dis-
tributed positions.

Knowing that the client’s queries are randomly dis-
tributed in the database, we can take advantage of
the fact that the queries are “well-spread-out” in some
sense. Consider dividing the server’s CT (m = N · e en-
tries) into β bins of equal size. The client will query
the database in nk random positions, so the distri-
bution of these queries into the β bins can be mod-
eled as a standard balls and bins problem. We can
choose a number β of bins and a maximum load µ so
that Pr[there exists a bin with ≥ µ balls] is below some
threshold (say, 2−40 in practice). With such parameters,
the protocol can be optimized as follows.

The parties agree to divide CT into β regions of
equal size. The client computes the positions of CT that
he/she wishes to query, and collects them according to
their region. The client adds dummy PIR queries until
there are exactly µ queries to each region. The dummy
items are necessary because revealing the number of
(non-dummy) queries to each region would leak infor-
mation about the client’s input to the server. For each

region, the server treats the relevant m/β items as a sub-
database, and the client makes exactly µ PIR queries to
that sub-database.

This change leads to the client making more PIR
queries than before (because of the dummy queries),
but each query is made to a much smaller PIR instance.
Looking at specific parameters shows that binning can
give significant performance improvements.

It is well-known that with β = O
(
nk/ log(nk)

)
bins, the maximum number of balls in any bin is µ =
O
(
log(nk)

)
with very high probability. The total number

of PIR queries (including dummy ones) is βµ = Θ(nk).
That is, the binning optimization with these parameters
increases the number of PIR queries by a constant fac-
tor. At the same time, the PIR database instances are
all smaller by a large factor of β = O

(
nk/ log(nk)

)
. The

main bottleneck in PIR-PSI is the computational cost
of the server in answering PIR queries, which scales lin-
early with the size of the PIR database. Reducing the
size of all effective PIR databases by a factor of β has
a significant performance impact. In general, tuning the
constant factors in β (and corresponding µ) gives a wide
trade-off between communication and computation.

3.5 Optimization: Larger PIR Blocks
So far we have assumed a one-to-one correspondence
between the entries in the server’s cuckoo table and the
server’s database for purposes of PIR. That is, we invoke
PIR with an v-item database corresponding to a region
of the cuckoo table with v entries.

Suppose instead that we use PIR for an v/2-item
database, where each item in the PIR database consists
of a block of 2 cuckoo table entries. The client generates
each PIR query for a single item, but now the PIR query
returns a block of 2 cuckoo table entries. The server will
feed both entries into the 2-party PSI, so that these
extra neighboring items are not leaked to the client.

This change affects the various costs in the following
ways: (1) It reduces the number of cryptographic opera-
tions needed for the server to answer each PIR query by
half; (2) It does not affect the computational cost of the
final inner product between the expanded DPF key and
PIR database entries, since this is over the same amount
of data; (3) It reduces the communication cost of each
PIR query by a small amount (κ bits); (4) It doubles
all costs of the 2-party PSI, since the server’s PSI input
size is doubled.

Of course, this approach can be generalized to use a
PIR blocks of size b, so that a PIR database of size v/b
is used for v cuckoo table entries. This presents a trade-



PIR-PSI: Scaling Private Contact Discovery 166

off between communication and computation, discussed
further in in Sect. 5.

3.6 Asymptotic Performance
With these optimizations the computational complex-
ity for the client is the generation of βµ = O(n) PIR
queries of size O(log(N/κβ)). As such they perform
O(n log(N/κβ)) = O(n log(N logn/κn)) calls to a PRF
and send O(κn log(N/(κn logn))) bits. The servers must
expand each of these queries to a length of O(N/β) bits
which requires O(Nµ/κ) = O(N logn/κ) calls to a PRF.

4 Security
4.1 Semi-Honest Security
The most basic and preferred setting for PIR-PSI is
when at most one of the parties is passively corrupt
(a.k.a. semi-honest). This means that the corrupt party
does not deviate from the protocol. Note that restricting
to a single corrupt party means that we assume non-
collusion between the two PIR servers.

Theorem 1. The Fpir-psi protocol (Fig. 2) is a realiza-
tion of Fn,Npsi secure against a semi-honest adversary that
corrupts at most one party in the Fnk,βµpsi hybrid model.

Proof. In the semi-honest non-colluding setting it is suf-
ficient to show that the transcript of each party can
be simulated given their input and output. That is, we
consider three cases where each one of the parties is in-
dividually corrupt.

Corrupt Client: Consider a corrupt client with input
X and output Z = X ∩DB. We show a simulator that
can simulate the view of the client given just X and
Z. First observe that the simulator playing the role of
both servers knows the permutation π = π2 ◦π1 and the
vector of masks r. As such, response v can be computed
as follows. For x ∈ Z the simulator randomly samples
one of k masks ri1 , . . . , rik ∈ r which the client will use to
mask x and add x⊕ rij to v. Pad v with random values
not contained in union u to size βµ and forward v to
the ideal Fnk,βµpsi . Conditioned on no spurious collisions
between v and u in the real interaction (which happen
with negligible probability, following the discussion in
Sect. 3.3) this ideal interaction perfectly simulates the
real interaction.

One additional piece of information learned by the
client is that cuckoo hashing on the set DB with hash
function h1, ..., hk succeeded. However, by the choice

of cuckoo parameter, this happens with overwhelming
probability and therefore the simulator can ignore the
case of cuckoo hashing failure.

Corrupt server: Each server’s view consists of:
– PIR queries (DPF keys) from the client; since a sin-

gle DPF key leaks nothing about the client’s query
index, these can be simulated as dummy DPF keys.

– Messages in the oblivious masking step, which are
uniformly distributed as discussed in Sect. 3.3 and
Appendix A.

– In the case of server #2, masked PIR responses from
server #1, which are uniformly distributed since
they are masked by the ~r values.

4.2 Colluding Servers
If the two servers collude, they will learn both DPF keys
for every PIR query, and hence learn the locations of all
client’s queries into the cuckoo table. These locations
indeed leak information about the client’s set, although
the exact utility of this leakage is hard to characterize.
The servers still learn nothing from the PSI subprotocol
by colluding since only one of the servers is involved.

It is worth providing some context for private con-
tact discovery. The state-of-the-art for contact discovery
is a naïve (insecure) hashing protocol, where both par-
ties simply hash each item of their set, the client sends
its hashed set to the server, who then computes the in-
tersection. This protocol is insecure because the server
can perform a dictionary attack on the client’s inputs.

However, any PSI protocol (including ours) can be
used in the following way. First, the parties hash all their
items, and then use the hashed values as inputs to the
PSI. As long as the hash function does not introduce col-
lisions, pre-hashing the inputs preserves the correctness
of the PSI protocol.

A side effect of pre-hashing inputs is that the par-
ties never use their “true” inputs to the PSI protocol.
Therefore, the PSI protocol cannot leak more than the
hashed inputs — identical to what the status quo naïve
hashing protocol leaks. Again, this observation is true
for any PSI protocol. In the specific case of PIR-PSI, if
parties pre-hash their inputs, then even if the two servers
collude (even if they are malicious), the overall protocol
can never leak more about the client’s inputs than naïve
hashing. Relative to existing solutions implemented in
current applications, that use naïve hashing, there is no
extra security risk for the client to use PIR-PSI.



PIR-PSI: Scaling Private Contact Discovery 167

Parameters: X is the client’s set, DB is the set held by server #1 and #2, where X,DB ⊆ {0, 1}ρ. n = |X|, N = |DB|, k is
the number of cuckoo hash functions. The protocol uses an instance of Fpsi with input length ρ. λ, κ are the statistical and
computational security parameter.
1. [Cuckoo Hashing] Both servers agree on the same k random hash functions h1, ..., hk : {0, 1}ρ → [m] and cuckoo table size

m = |CT | such that inserting N items into cuckoo hash table CT succeeds with probability ≥ 1− 2−λ.
The servers compute a cuckoo hash table CT such that for all y ∈ DB, CT [hi(y)] = y for some i ∈ k.

2. [Query] Upon the client receiving their set X,
(a) Send n = |X| to the servers. All parties agree on the number of bins β = O(n/ logn), and their size µ = O(logn)

(see Sect. 5.3). Define the region DBi as all locations j ∈ [m] of CT such that (i− 1)m
β
< j ≤ im

β
.

(b) For x ∈ X,h ∈ {h1, ..., hk}, let h(x) index the j’th location in bin i. The client adds (x, j) to bin B[i].
(c) For bin B[i],

i. Pad B[i] to size µ with the pair (⊥, 0).
ii. For (x, j) ∈ B[i] in a random order, the client constructs the keys k1, k2 = DPF.Gen(j). Send ks to server #s.
iii. Server #s expands their key Ks = DPF.Expand(ks) and compute vs[`] = DBi ·Ks where ks is the `’th DPF key

received.
3. [Shuffle] Observe that, (v1 ⊕ v2)[`] = CT [j`] where j` is the `’th PIR location.

(a) The client samples a permutation π of βµ items such that for the i’th x ∈ X, and j ∈ [k] it holds that the π
(

(i−1)k+j
)
’th

DPF key corresponded to the query of item x at location hj(x).
(b) The client samples w1, w2 ← {0, 1}κ and sends w1 to server #1, and w2 to server #2. Define shared terms t = prg(w2),

(r||s||π1) = prg(w1) where r, s, t are random vectors of the same size as vi and π1 is a random permutation of βµ items.
The client sends π2 to server #2 such that π2 ◦ π1 = π and sends p0 = t⊕ π(s) to server #1.

(c) Server #1 samples a random permutation σ of βµ items such that for all i ∈ [βµ/k] it holds that σ(j) ∈ Si where
j ∈ Si = (i− 1)k + {1, ..., k}. Server #1 sends p1 = π1

(
σ(r)⊕ s

)
and p2 = p0 ⊕ v1 to server #2.

(d) Server #2 computes v = v2 ⊕ π2(p1)⊕ t⊕ p2.
4. [PSI] The client then computes the masked versions of the xi ∈ X as x′i = {xi ⊕ rπ((i−1)k+1), ..., xi ⊕ rπ(ik)} and computes

u as the union of all these sets. The client and server #2 respectively send u, v to Fnk,βµpsi such that the client receives
z = u ∩ v. The client outputs {xi : x′i ∩ z 6= ∅}.

Fig. 2. Our 2-server PIR-PSI protocol Fpir-psi.

4.3 Malicious Client
Service providers may be concerned about malicious be-
havior (i.e., protocol deviation) by clients during con-
tact discovery. Since servers get no output from PIR-
PSI, there is no concern over a malicious client inducing
inconsistent output for the servers. The only concern
is therefore what unauthorized information a malicious
client can learn about DB.

Overall the only information the client receives in
PIR-PSI is from the PSI subprotocol. We first observe
that the PSI subprotocol we use ([30]) is naturally se-
cure against a malicious client, when it is instantiated
with an appropriate OT extension protocol. This fact
has been observed in [31, 37]. Hence, in the presence of
a malicious client we can treat the PSI subprotocol as an
ideal PSI functionality. The malicious client can provide
at most nk inputs to the PSI protocol — the function-
ality of PSI implies that the client therefore learns no
more than nk bits of information about DB. This leak-
age is comparable to what an honest client would learn
by having an input set of nk items.
Modifications for more precise leakage character-
ization: In DPF-based PIR schemes clients can make
malformed PIR queries to the server, by sending k1, k2 so

that DPF.Expand(k1) ⊕ DPF.Expand(k2) has more than
one bit set to 1. The result of such a query will be the
XOR of several DB positions.

However, Boyle et al. [5] describe a method by which
the servers can ensure that the client’s PIR queries (DPF
shares) are well-formed. The technique increases the cost
to the servers by a factor of roughly 3× (but adds no
cost to the client).

The client may also send malformed values in the
oblivious masking phase. But since the servers use those
values independently of DB, a simulator (who sees the
client’s oblivious masking messages to both servers) can
simulate what masks will be applied to the PIR queries.
Overall, if the servers ensure validity of the client’s PIR
values, we know that server #1’s input to PSI will con-
sist of a collection of nk individual positions from DB,
each masked with values that can be simulated.

5 Implementation

We implemented a prototype of our Fpir-psi protocol
described in Fig. 2. Our implementation uses AES as
the underlying PRF (for the distributed point function



PIR-PSI: Scaling Private Contact Discovery 168

of [5]) and relies on the PSI implementation of [30] and
the oblivious transfer from [42]. Our implementation is
publicly available [43].

5.1 System-level Optimizations
We highlight here system-level optimizations that con-
tribute to the high performance of our implementation.
We analyze their impact on performance in Appendix C.
Optimized DPF full-domain evaluation: Recall
that the DPF construction of [5] can be thought of as
a large binary tree of PRF evaluations. Expanding the
short DPF key corresponds to computing this entire tree
in order to learn the values at the leaves. The process
of computing the values of all the leaves is called “full-
domain evaluation” in [5].

DPF full-domain evaluation is the major computa-
tional overhead for the servers in our protocol. To limit
its impact our implementation takes full advantage of
instruction vectorization (SIMD). Most modern proces-
sors are capable of performing the same instruction on
multiple (e.g., 8) pieces of data. However, to fully utilize
this feature, special care has to be taken to ensure that
the data being operated on is in cache and contiguous.

To meet these requirements, our implementation
first evaluates the top 3 levels of the DPF binary tree,
resulting in 8 remaining independent subtrees. We then
perform SIMD vectorization to traverse all 8 subtrees
simultaneously. Combining this technique with others,
such as the removal of if statements in favor of array
indexing, our final implementation is roughly 20× faster
then a straight-forward (but not careless) sequential im-
plementation and can perform full-domain DPF evalua-
tion at a rate of 2.6 billion bits/s on a single core.
Single-pass processing: With the high raw through-
put of DPF evaluation, it may not be surprising that it
was no longer the main performance bottleneck. Instead,
performing many passes over the dataset (once for each
PIR query) became the primary bottleneck by an order
of magnitude. To address this issue we further modify
the workflow to evaluate all DPFs (PIR queries) for a
single bin in parallel using vectorization.

That is, for all µ DPF evaluations in a given bin, we
evaluate the binary trees in parallel, and traverse the
leaves in parallel. The values at the leaves are used to
take an inner product with the database items, and the
parallel traversal ensures that a given database item only
needs to be loaded from main memory (or disk) once.
This improves (up to 5×) the performance of the PIR
protocol on large datasets, compared to the straightfor-

ward approach of performing multiple sequential passes
of the dataset.
Parallelization: Beyond the optimizations listed above,
we observe that our protocol simply is very amenable to
parallelization. In particular, our algorithm can be par-
allelized both within the DPF evaluation using different
subtrees and by distributing the PIR protocols for differ-
ent bins between several cores/machines. In the setting
where thousands of these protocols are being executed
a day on a fixed dataset, distributing bin evaluations
between different machines can be extremely attractive
due to the fact that several protocol instances can be
batched together to gain even greater benefits of vec-
torization and data locality. The degree of parallelism
that our protocol allows can be contrasted with more
traditional PSI protocols which require several global
operations, such as a single large shuffle of the server’s
encoded set (as in [30, 37–40]).

5.2 Cuckoo Hashing Parameters

2 4 8 16 32 64
0

20

40

e = |Cuckoo|/N = m/N

Se
cu
ri
ty

P
ar
am

.

26 28 210 212 216 220 224 228

Fig. 3. Empirical (marks) and interpolated (dashed/dotted lines)
cuckoo success probability for k = 2 hash functions and different
set sizes N .

To achieve optimal performance it is crucial to min-
imize the size of the cuckoo table and the number of
hash functions. The table size affects how much work
the servers have to perform and the number of hash func-
tions k affects the number of client queries. As such we
wish to minimize both parameters while ensuring cuckoo
hashing failures are unlikely as this leaks a single bit
about DB. Several works [15, 19] have analyzed cuckoo
hashing from an asymptotic perspective and show that
the failure probability decreases exponentially with in-
creasing table size. However, the exact relationship be-
tween the number of hash functions, stash size, table size
and security parameter is unclear from such an analysis.



PIR-PSI: Scaling Private Contact Discovery 169

1.15 1.2 1.25 1.3 1.35 1.4
0

10

20

30

e = |Cuckoo|/N = m/N

Se
cu
ri
ty

P
ar
am

.

212 214 216 218 220 222

Fig. 4. Empirical (marks) and interpolated (dashed/dotted lines)
cuckoo success probability for k = 3 hash functions and different
set sizes N .

We solve this problem by providing an accurate re-
lationship between these parameters through extensive
experimental analysis of failure probabilities. That is,
we ran Cuckoo-hashing instances totalling nearly 1 tril-
lion items hashed, over two weeks for a variety of pa-
rameters. As a result our bounds are significantly more
accurate and general than previous experiments [8, 39].
We analyzed the resulting distribution to derive highly
predictive equations for the failure probability. We find
that k = 2 and k ≥ 3 behave significantly different and
therefore derive separate equations for each.

Our extrapolations are graphed in Figs. 3 & 4, and
the specifics of the formulas are given in Appendix B.

5.3 Parameter Selection for Cuckoo
Hashing & Binning

Traditional use of cuckoo hashing instructs the parties to
sample new hash functions for each protocol invocation.
In our setting however it can make sense to instruct the
servers, which hold a somewhat static dataset, to per-
form cuckoo hashing once and for all. Updates to the
dataset can then be handled by periodically rebuilding
the cuckoo table once it has reached capacity. This leaves
the question of what the cuckoo hashing success proba-
bility should be. It is standard practice to set statistical
failure events like this to happen with probability 2−40.
However, since the servers perform cuckoo hashing only
occasionally (and since hashing failure applies only to
initialization, not future queries), we choose to use more
efficient parameters with a security level of λ = 20 bits,
i.e., Pr[Cuckoo failure] = 2−20. We emphasize that once
the items are successfully placed into the hash table,
all future lookups (e.g., contact discovery instances) are
error-free, unlike, say, in a Bloom filter.

We also must choose the number of hash functions to
use.6 Through experimental testing we find that overall
the protocol performs best with k = 3 hash functions.
The parameters used can be computed by solving for
e ≈ 1.4 in Equation 2 given that λ = 20.

To see why this configuration was chosen we must
also consider another important parameter, the number
of bins β. Due to binning being performed for each pro-
tocol invocation by the client, we must ensure that it
succeeds with very high probability and therefore we use
the standard of λ = 40 to choose binning parameters. An
asymptotic analysis shows that the best configuration is
to use β = O(n/ logn) bins, each of size µ = O(logn).
However, this hides the exact constants which give op-
timal performance. Upon further investigation we find
that the choice of these parameters result in a commu-
nication/computation trade-off.

For the free variable c, we set the number of bins
to be β = cn/ log2 n and solve for the required bin size
µ. As can be seen in Fig. 5 of the appendix, the use of
k = 3 and scaling factor c = 4 result the best running
time at the expense of a relatively high communication
of 11MiB. However, at the other end of the spectrum is
k = 2 and c = 1/16 results in the smallest communica-
tion of 2.4MiB. The reason k = 2 achieves smaller com-
munication for any fixed c is that the client sends k = 2
PIR queries per item instead of three. However, k = 2
requires that the cuckoo table is three times larger than
for k = 3 and therefore the computation is slower.

Varying c affects the number of bins β. Having fewer
bins reduces the communication due to the bins being
larger and thereby having better real/dummy query ra-
tio. However, larger bins also increases the overall work,
since the work is proportional to the bin size µ times N .
We aim to minimize both the communication and run-
ning time. We therefore decided on choosing k = 3
and c = 1/4 as our default configuration, the circled
data-point in Fig. 5. However, we note that in specific
settings it may be desirable to adjust c further.

The PIR block size b also results in a computa-
tion/communication trade-off. Having a large block size
gives shorter PIR keys and therefore less work to expand
the DPF. However, this also results the server having
a larger input set to the subsequent PSI which makes
that phase require more communication and computa-
tion. Due to the complicated nature of how all these

6 Although the oblivious shuffling procedure of Sect. 3.3 can be
extended in a natural way to include a stash, we use a stash-free
variant of Cuckoo hashing.



PIR-PSI: Scaling Private Contact Discovery 170

Table 2. Our protocol’s total contact discovery communication
cost and running time using T threads, and β = cn/ log2 n bins
and PIR block size of b. LAN: 10Gbps, 0.02ms latency.

Param. Comm. Running time [seconds]
N n c b [MiB] T = 1 T = 4 T = 16

228

210 4 16 28.3 4.07 1.60 0.81
0.25 1 4.93 33.02 13.22 5.54

28 3 16 7.10 3.61 1.30 0.65
1 1 2.20 14.81 6.92 3.40

4 1 32 0.06 1.93 – –
1 1 32 0.03 1.21 – –

226

210 2 8 12.7 1.61 0.72 0.41
0.25 1 4.28 7.22 3.65 1.36

28 6 16 10.3 0.98 0.51 0.26
0.25 4 1.36 4.36 1.90 0.97

4 1 32 0.06 0.56 – –
1 1 32 0.03 0.48 – –

224

210 1 8 8.61 0.67 0.36 0.22
0.25 1 3.85 2.28 0.94 0.50

28 4 8 4.81 0.49 0.22 0.18
1 1 1.68 1.26 0.57 0.36

4 1 32 0.05 0.19 – –
1 1 32 0.03 0.16 – –

220

210 0.5 4 2.10 0.22 0.10 0.06
0.25 1 2.98 0.32 0.21 0.16

28 2 4 1.95 0.20 0.09 0.06
0.25 4 1.13 0.24 0.18 0.15

4 1 32 0.05 0.14 – –
1 1 32 0.03 0.13 – –

parameters interact with each other, we empirically op-
timized the parameters to find that a PIR block size
between 1 and 32 gives the best trade-off.

6 Performance

In this section we analyze the performance of PIR-PSI.
We ran all experiments on a single benchmark machine
which has 2x 18-core Intel Xeon E5-2699 2.30GHz CPU
and 256GB RAM. Specifically, we ran all parties on
the same machine, communicating via localhost network,
and simulated a network connection using the Linux tc
command: a LAN setting with 0.02ms round-trip la-
tency, 10Gbps network bandwidth; a WAN setting with
a simulated 80ms round-trip latency, 100Mbps network
bandwidth. We process elements of size ρ = 128 bits.

Our protocol can be separated into two phases:
the server’s init phase when database is stored in the
Cuckoo table, and the contact discovery phase where
client and server perform the private intersection.

6.1 PIR-PSI performance Results
In our contact discovery phase, the client and server first
perform the pre-processing of PSI between n and 3n
items which is independent of parties’ inputs. We re-

fer this step as pre-processing phase which specifically
includes base OTs, and O(n) PRFs. The online phase
consists of protocol steps that depend on the parties’
inputs. To understand the scalability of our protocol,
we evaluate it on the range of server set size N ∈
{220, 224, 226, 228} and client set size n ∈ {1, 4, 28, 210}.
The small values of n ∈ {1, 4} simulate the performance
of incremental updates to a client’s set. Tab. 2 presents
the communication cost and total contact discovery time
with online time for both single- and multi-threaded ex-
ecution with T ∈ {1, 4, 16} threads.

As discussed in Section 5.3, there are a communica-
tion and computation trade-off on choosing the different
value c and b which effects the number of bins and how
many items are selected per PIR query. The interplay be-
tween these two variable is somewhat complex and offer
a variety of communication computation trade-offs. For
smaller n ∈ {1, 4}, we set b = 32 to drastically reduce
the cost of the PIR computation at the cost of larger
PSI. For larger n, we consider parameters which opti-
mize running time and communication separately, and
show both in Tab. 2.

Our experiments show that our PIR-PSI is highly
scalable. For the database size N = 228 and client
set size n = 210, we obtain an overall running time
of 33.02 s and only 4.93MiB bits of communications for
the contact discovery phase using a single thread. Alter-
natively, running time can be reduced to just 4 s for the
cost of 28MiB communication. Increasing the number
of threads from 1 to 16, our protocol shows a factor of
5× improvement, due to the fact that it parallelizes well.
When considering the smallest server set size of N = 220

with 16 threads, our protocol requires only 1.1MiB of
communication and 0.24 s of contact discovery time.

We point out that the computational workload for
the client is small and consists only of DPF key gen-
eration, sampling random values and the classical PSI
protocol in the size of the client set. This corresponds
to 10% of the overall running time (e.g., 0.3 s of the
total 3.6 s for N = 228 and n = 28). Despite our exper-
iments being run on a somewhat powerful server, the
overwhelming bottleneck for performance is the compu-
tational cost for the server. Furthermore, after parame-
ter agreement, the PIR step adds just a single round of
communication between the client device and the servers
before the PSI starts. Hence, our reported performance
is also representative of a scenario in which the client is
a computationally weaker device connected via a mobile
network. Detailed numbers on the performance impact
of the optimizations from Sect. 5.1 are provided in Ap-
pendix C.



PIR-PSI: Scaling Private Contact Discovery 171

6.2 Updating the Client and Server Sets
In addition to performing PIR-PSI on sets of size n and
N , the contact discovery application requires periodi-
cally adding items to these sets. In case the client adds
a single item x to their set X, only the new item x needs
to be compared with the servers’ set. Our protocol can
naturally handle this case by simply having the client
use X ′ = {x} as their input to the protocol. However, a
shortcoming of this approach is that we cannot use bin-
ning and the PIR query spans the whole cuckoo table.

For a database of size N = 224, our protocol requires
only 0.16 s and 0.19 s to update 1 and 4 items, respec-
tively. When increasing the size toN = 228, we need 1.9 s
to update one item. Our update queries are cheap in
terms of communication, roughly 30–50 kiB. We remark
that update queries can be parallelized well due to the
fact that DPF.Gen and DPF.Expand can each be pro-
cessed in a divide and conquer manner. Also, several up-
date queries from different users can be batched together
to offer very high throughput. However, our current im-
plementation only supports parallelization at the level
of bins/regions, and not for a single DPF query.

The case when a new item is added to the servers’
set can easily be handled by performing a traditional
PSI between one of the servers and the client, where
the server only inputs their new item. One could also
consider batching several server updates together, and
then performing a larger PSI or applying our protocol
to the batched server set.

7 Comparison with Prior Work

In this section we give a thorough qualitative & quan-
titative comparison between our protocol and those
of CLR [8], KLSAP [29], and RA [41]. We obtained
the implementations of CLR & KLSAP from the re-
spective authors, but the implementation of RA is not
publicly available. Because of that, we performed a
comparison on inputs of size N ∈ {216, 220, 224} and
n ∈ {5535, 11041} to match the parameters used in [41,
Table 1&2]. While the experiments of RA were per-
formed on an Intel Haswell i7-4770K quadcore CPU
with 3.4GHz and 16GB RAM, we ran the KLSAP and
CLR protocols on our own hardware, described in the
previous section. We remark that RA’s benchmark ma-
chine has 3.4GHz, which is 1.48× faster than our ma-
chine. The number of cores and RAM available on our
hardware does not influence the results of the single-

threaded benchmarks (T = 1). Results of the compari-
son are summarized in Tab. 3.

7.1 CLR protocol
The high level idea of the protocol of Chen, Laine &
Rindal (CLR) [8] is to have the client encrypt each ele-
ment in their dataset under a homomorphic encryption
scheme, and send the result to the server. The server
evaluates the intersection circuit on encrypted data, and
sends back the result for the receiver to decrypt.

The CLR protocol has communication complexity
O(ρn log(N)), where the items are ρ bits long. Ours
has communication complexity O(κn log(N/(κn logn))),
with no dependence on ρ since the underlying PSI pro-
tocol [30] has no such dependence. For small items
(e.g., ρ = 32 as reflected in Tab. 3), CLR uses less com-
munication than our protocol, e.g., 20MiB as opposed
to 37MiB. However, their protocol scales very poorly for
string length of 128 bits as it would require significantly
less efficient FHE parameters. Furthermore, CLR can
not take advantage of the fact that most contact lists
have significantly fewer than 5535 entries. That is, the
cost for n = 1 and n = 5535 is roughly equivalent, be-
cause of the way FHE optimizations like batching are
used. The main computational bottleneck in CLR is
the server performing O(n) homomorphic evaluations on
large circuits of size O(N/n). The comparable bottleneck
in our protocol is performing DPF.Expand and comput-
ing the large inner products. Since these operations take
advantage of hardware-accelerated AES, PIR-PSI is sig-
nificantly faster than CLR, e.g., 20× for N = 224.

The server’s initialization in CLR involves hashing
the N items into an appropriate data structure (as in
PIR-PSI), but also involves pre-computing the many co-
efficients of polynomials. Hence our initialization phase
is much faster than CLR, e.g., 40× for N = 224. The
CLR protocol does not provide a full analysis of security
against malicious clients. Like our protocol, the leakage
allowed with a malicious client is likely to be minimal.

7.2 KLSAP protocol
In the KLSAP [29] protocol, the server sends a Bloom fil-
ter of size O(λN) to the client in an offline phase. During
later contact discovery phases, the client refers to this
Bloom filter.

The size of this Bloom filter is considerable:
nearly 2GiB for N = 224 server items. This data, which
must be stored by the client, may be prohibitively large



PIR-PSI: Scaling Private Contact Discovery 172

Table 3. Comparison of PIR-PSI to CLR, KLSAP, and RA with T ∈ {1, 4} threads. LAN: 10Gbps, 0.02ms latency. WAN: 100Mbps,
80ms latency. Best results marked in bold. Online communication reported in parenthesizes. Cells with "–" denote that the setting
is not supported, due to limitations in the respective implementation. Cells with "*" indicate that the numbers are scaled for a fair
comparison of error probability. CLR and RA use 32 bit items, while PIR-PSI and KLSAP process 128 bit items.

Protocol
Parameters Communication Running time [seconds] Client Server Init.

N n Size [MiB] LAN (10Gbps) WAN (100Mbps) Storage [seconds]
T = 1 T = 4 T = 1 T = 4 [MiB] T = 1 T = 4

CLR
[8]

224 11041 21.1 38.6 19.7 41.0 22.1

0

76.8 20.6
5535 12.5 34.0 16.3 36.0 18.2 71.2 18.5

220 11041 11.5 3.7 3.2 4.9 4.4 9.1 2.5
5535 5.6 3.5 1.9 4.1 2.5 5.1 1.4

216 11041 4.1/4.4 1.8 1.4 2.2 1.8 1.2 0.3
5535 2.6 0.9 0.6 1.1 0.9 0.9 0.3

KLSAP
[29]

224 11041 2049 (43.3) 90.4 – 265.1 – 1941 8.32 –5535 1070 (21.7) 52.3 – 128.3 – 1016

220 11041 1968 (43.3) 82.1 – 259.9 – 1860 0.58 –5535 989 (21.7) 44.8 – 124.7 – 935

216 11041 1963 (43.3) 81.8 – 259.6 – 1855 0.04 –5535 984 (21.7) 44.0 – 121.4 – 930

RA
[41]

224 11041 171.67 (0.67)* 1.08* – 18.39* – 171.00* 333.62 –5535 168.34 (0.34)* 0.75* – 17.61* – 168.00*

220 11041 11.36 (0.67)* 0.67* – 3.41* – 10.69* 20.78 –5535 10.84 (0.34)* 0.34* – 2.89* – 10.50*

216 11041 1.34 (0.67)* 0.66* – 1.33* – 0.67* 1.30 –5535 1.00 (0.34)* 0.33* – 0.85* – 0.66*

Ours

224 11041 32.46 2.18 1.65 5.63 5.13

0

2.690 –5535 21.45 1.34 1.11 3.72 2.77

220 11041 22.86 0.37 0.31 3.70 3.59 0.089 –5535 11.67 0.29 0.24 2.50 2.29

216 11041 12.83 0.28 0.29 2.55 2.55 0.004 –5535 7.66 0.21 0.20 1.85 1.85

for mobile client applications. By contrast, our protocol
(and CLR) requires no long-term storage by the client.

In the contact discovery phase, KLSAP runs Yao’s
protocol to obliviously evaluate an AES circuit for each
of the client’s items. Not even counting the boom filter,
this requires slightly more communication than our ap-
proach (1.5×). Additionally, it requires more computa-
tion by the (weak) client: evaluating many AES garbled
circuits (thousands of AES calls per item) vs. running
many instances DPF.Gen (logN AES calls per item) fol-
lowed by a specialized PSI protocol (constant number
of hash/AES per item). Even though the server in our
protocol must perform O(N) computation during con-
tact discovery, our considerable optimizations result in
a much faster discovery phase (40× for N = 224).

When the server makes changes to its set in KLSAP,
it must either re-key its AES function (which results in
re-sending the huge Bloom filter), or send incremental
updates to the Bloom filter (which breaks forward se-
crecy, as a client can query its items in both the old and
new versions of the Bloom filter).

KLSAP is easily adapted to secure against a mali-
cious client. This stems from the fact that the contact
discovery phase uses Yao’s protocol with the client act-
ing as garbled circuit evaluator. Hence it is naturally se-

cure against a malicious client (provided that one uses
malicious-secure OTs).
Subtleties about hashing errors: The way that KL-
SAP uses a Bloom filter also leads to qualitative differ-
ences in the error probabilities compared to PIR-PSI. In
KLSAP the server publishes a Bloom filter for all clients,
who later query it for membership. The false-positive
rate (FPR) of the Bloom filter is the probability that a
single item not in the server’s set is mistakenly classi-
fied as being in the intersection. Importantly, the FPR
for this global Bloom filter is per client item. In KLSAP
this FPR is set to 2−30, which means after processing a
combined 1 million client items the probability of some
client receiving a false positive may be as high as 2−10!

By contrast, the PIR-PSI server places its items in a
Cuckoo table once-and-for all (with hashing error proba-
bility 2−20). As long as this one-time event is successful,
all subsequent probes to this data structure are error-
free (we store the entire ρ = 128 bit item in the Cuckoo
table, not just a short fingerprint as in [41]). If the hash-
ing is unsuccessful, the server simply tries again with dif-
ferent hash functions. All of our other failure events (e.g.,
probability of a bad event within our 2-party PSI proto-
col) are calibrated for error probability 2−40 per contact



PIR-PSI: Scaling Private Contact Discovery 173

discovery instance, not per item! To have a comparable
guarantee, the Bloom filter FPR of KLSAP would have
to be scaled by a factor of log2(n).

7.3 RA protocol
The RA [41] protocol uses a similar approach to KL-
SAP, in that it uses a relatively large representation of
the server’s set, which is sent in an offline phase and
stored by the client. The downsides of this architecture
discussed above for KLSAP also apply to RA (client stor-
age, more client computation, false-positive rate issues,
forward secrecy).

RA’s implementation uses a Cuckoo filter that stores
for each item a 16-bit fingerprint. This choice leads to
a relatively high false-positive rate of 2−13.4. To achieve
the failure events with error probability 2−40 per con-
tact discovery instance (in line with our protocol), the
Cuckoo filter FPR of RA would be 2−(40+log2(n)). There-
fore, their protocol would have to be modified to use
56-bit and 57-bit fingerprints for n = 5535 and n =
11041, respectively. This change increases the commu-
nication cost, transmission time, and offline storage re-
quirements 3.44−3.5×, relative to the numbers reported
in [41, Table 1]. In Tab. 3 we report the scaled commu-
nication costs, the scaled online running time, and the
scaled client’s storage, but refrain from trying to scale
the server’s initialization times. As can be seen our pro-
tocol running time is 1.2− 3.2× faster than RA for suf-
ficiently large N . We also have a 100× more efficient
server initialization phase and achieve communication
complexity of O(n logN) as compared to O(N) of RA.
This difference can easily be seen by how the communi-
cation of RA significantly increases for larger N .

In RA, the persistent client storage is not a Bloom
filter but a more compact Cuckoo filter. This reduces the
client storage, but it still remains linear in N . For N =
228 the storage requirement is 2.57GiB to achieve an
error probability of 2−40 per contact discovery instance.

The RA protocol does not provide any analysis of
security against malicious clients.

8 Other Extensions

Although this work mainly focuses on the setting of pure
contact discovery with two servers, our protocol can be
easily modified for other settings.
PSI with associated data (PSI+AD): refers to a
scenario where the client has a set A of keys and the

server has a set B of key-value pairs, and the client
wishes to learn {(k, v) | (k, v) ∈ B and k ∈ A}. In the
context of an encrypted messaging service, the keys may
be phone numbers or email addresses, and the values
may be the user’s public key within the service.

PIR-PSI can be modified to support associated data,
in a natural way. The server’s Cuckoo hash table simply
holds key-value pairs, and the 2-party PSI protocol is
replaced by a 2-party PSI+AD protocol. The client will
then learn masked values for each item in the intersec-
tion, which it can unmask. The PSI protocol of [30] that
we use is easily modified to allow associated data.
3- and 4-Server Variant: We described PIR-PSI in
the context of two non-colluding servers, who store iden-
tical copies of the service provider’s user database. Since
both servers hold copies of this sensitive database, they
are presumably both operated by the service provider,
so the promise of non-collusion may be questionable. Us-
ing a folklore observation from the PIR literature, we
can allow servers to hold only secret shares of the user
database, at the cost of adding more servers.

Consider the case of 3 servers. The service provider
can recruit two independent entities to assist with pri-
vate contact discovery, without entrusting them with
the sensitive user database. The main idea is to let
servers #2 and #3 hold additive secret shares of the
database and jointly simulate the effect of a single server
that holds the database in the clear.

Recall the 2-party DPF-PIR scheme of [5], that we
use. The client sends DPF shares k1, k2 to the servers,
who expand the keys to K1,K2 and performs an inner
product with the database. The client XORs the two
responses to obtain result (K1 ·DB)⊕(K2 ·DB) = (K1⊕
K2) ·DB = DB[i].

In our 3-server case, we have server #1 holding DB,
and servers #2 and #3 holding DB2, DB3 respectively,
where DB = DB2 ⊕ DB3. We simply let the client
send DPF share k1 to server #1, and send k2 to both
of the other servers. All servers expand their DPF share
and perform an inner product with their database/share.
The client will receive K1 ·DB from server #1, K2 ·DB2
from server #2, and K2 ·DB3 from server #3. The XOR
of all responses is indeed

(K1 ·DB)⊕ (K2 ·DB2)⊕ (K2 ·DB3)
= (K1 ·DB)⊕K2 · (DB2 ⊕DB3)
= K1 ·DB ⊕K2 ·DB = (K1 ⊕K2) ·DB = DB[i]

Now the entire PIR-PSI protocol can be implemented
with this 3-server PIR protocol as its basis. The compu-
tational cost of each server is identical to the 2-server



PIR-PSI: Scaling Private Contact Discovery 174

PIR-PSI, and is performed in parallel by the indepen-
dent servers. Hence, the total time is minimally affected.
The client’s total communication is unaffected since
server #2 can forward K2 to server #3. The protocol
security is the same, except that the non-collusion prop-
erties hold now only if server #1 doesn’t collude with
any of the other servers. If servers #2 & #3 collude,
then they clearly learn DB, but as far as the client’s
privacy is concerned, the situation simply collapses to
2-server PIR-PSI.

Similarly, server #1 can also be replaced by a pair
of servers, each with secret shares (and this sharing of
DB can be independent of the other sharing of DB).
This results in a 4-server architecture with security for
the client as long as neither of servers #1 & #2 collude
with one of the servers #3 & #4, and where no single
server holds DB in the clear.
2-Server with OPRF Variant: An alternative to the
3-server variant above is to leverage a pre-processing
phase. Similar to [41], the idea is to have server #1
apply an oblivious PRF to their items instead of a
hash function, which will ensure that the database is
pseudorandom in the view of server #2, who does not
know the PRF key. In particular, let server #1 sample
a key k for the oblivious PRF F used in [41] and up-
date the database as DB′i := Fk(DBi), which is then
sent to server #2. When a client wishes to compute
the intersection of its set X with DB, they first per-
form an oblivious PRF protocol with server #1 to learn
X ′ = {Fk(x) | x ∈ X}. Note that this protocol ensures
that the client does not learn k. The client can now
engage in our standard two-server PIR-PSI protocol to
compute Z′ = X ′ ∩DB′ and thereby infer Z = X ∩DB.

The advantage of this approach is that server #2
does not learn any information about the plaintext
database DB since the PRF was applied to each record.
Moreover, this holds even if server #2 colludes with one
of the clients. The added performance cost of this variant
has two components. First, server #1 must update its
database by applying the PRF to it. As shown by [41],
a single CPU core can process roughly 50,000 records
per second, which is sufficiently fast given that this is
a one-time cost. The second overhead is performing the
oblivious PRF protocol with the clients. This requires
three exponentiations per item in X, which represents
an acceptable overhead given that |X| is small.
Single Server Variant: We also note that our PIR-
PSI architecture has the potential to be extended to the
single-server setting. Several PIR protocols [1–3], based
on fully homomorphic encryption have been shown to

offer good performance while at the same time removing
the two-server requirement. With some modifications to
our architecture, we observe that such PIR protocols can
be used. The main challenge to overcome is how to secret
share and shuffle the results of the PIR before being
forwarded to the PSI protocol. First, a PIR protocol
which allows the result to be secret shared is required.
We observer that typical PIR protocols (e.g. [3]) can
support such a functionality by adding a random share
to the result ciphertext. Given this, a two party variant
of step 3 of Fig. 2 can be implemented using standard
two-party shuffling protocols. We leave the optimization
and exact specification of such a single-server PIR-PSI
protocol to future work, but note its feasibility.

9 Deployment

We now turn our attention to practical questions sur-
rounding the real-world deployment of our multi-server
PIR-PSI protocol. As briefly discussed in the previous
section, the requirement that a single organization has
two non-colluding servers may be hard to realize. How-
ever, we argue that the 3-server or 2-server with an
OPRF variants make deployment significantly simpler.
Effectively, these variants reduce the problem to finding
one or two external semi-honest parties that will not
collude with the service provider (server #1). A natu-
ral solution to this problem is to leverage existing cloud
providers such as Microsoft Azure. Given that these com-
panies have a significant interest to maintain their rep-
utation, they would have a large incentive to not col-
lude. Indeed, Microsoft has informally proposed such a
setting [21] where secure computation services are pro-
vided under a non-collusion assumption. Alternatively,
privacy-conscious organization such as the Electronic
Frontier Foundation (EFF) could serve as the second
server.

Acknowledgments
We thank the anonymous reviewers of PETS 2018 for
their helpful comments on our paper. This work has
been co-funded by the German Federal Ministry of Ed-
ucation and Research (BMBF) and by the Hessen State
Ministry for Higher Education, Research and the Arts
(HMWK) within CRISP, by the DFG as part of projects
S5 and E4 within the CRC 1119 CROSSING. Authors
from Oregon State University have been partially sup-
ported by a Google faculty research award.



REFERENCES 175

References
[1] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killi-

jian. XPIR : Private Information Retrieval for Everyone. In:
PoPETs 2016.2 (2016), pp. 155 –174.

[2] S. Angel and S. Setty. Unobservable Communication over
Fully Untrusted Infrastructure. In: OSDI. 2016, pp. 551–569.

[3] S. Angel, H. Chen, K. Laine, and S. Setty. PIR with com-
pressed queries and amortized query processing. In: Proceed-
ings of the 2018 IEEE Symposium on Security and Privacy.
SP ’18. IEEE Computer Society, 2018.

[4] E. Boyle, N. Gilboa, and Y. Ishai. Function Secret Sharing.
In: EUROCRYPT 2015, Part II. Vol. 9057. LNCS. Springer,
Heidelberg, 2015, pp. 337–367.

[5] E. Boyle, N. Gilboa, and Y. Ishai. Function Secret Sharing:
Improvements and Extensions. In: ACM CCS 16. ACM Press,
2016, pp. 1292–1303.

[6] C. Cachin, S. Micali, and M. Stadler. Computationally Pri-
vate Information Retrieval with Polylogarithmic Communi-
cation. In: EUROCRYPT’99. Vol. 1592. LNCS. Springer,
Heidelberg, 1999, pp. 402–414.

[7] G. S. Cetin et al. Private Queries on Encrypted Genomic
Data. In: IACR Cryptology ePrint Archive 2017 (2017),
p. 207. url: http://eprint.iacr.org/2017/207.

[8] H. Chen, K. Laine, and P. Rindal. Fast Private Set Intersec-
tion from Homomorphic Encryption. In: ACM CCS 17. ACM
Press, 2017, pp. 1243–1255.

[9] B. Chor, N. Gilboa, and M. Naor. Private Information Re-
trieval by Keywords. Cryptology ePrint Archive, Report
1998/003. http://eprint.iacr.org/1998/003. 1998.

[10] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Pri-
vate Information Retrieval. In: J. ACM 45.6 (1998), pp. 965–
981.

[11] E. De Cristofaro, J. Kim, and G. Tsudik. Linear-Complexity
Private Set Intersection Protocols Secure in Malicious Model.
In: ASIACRYPT 2010. Vol. 6477. LNCS. Springer, Heidel-
berg, 2010, pp. 213–231.

[12] E. De Cristofaro and G. Tsudik. Practical Private Set In-
tersection Protocols with Linear Complexity. In: FC 2010.
Vol. 6052. LNCS. Springer, Heidelberg, 2010, pp. 143–159.

[13] D. Demmler, A. Herzberg, and T. Schneider. RAID-PIR:
Practical Multi-Server PIR. In: ACM Workshop on Cloud
Computing Security. CCSW ’14. ACM, 2014, pp. 45–56.

[14] C. Devet, I. Goldberg, and N. Heninger. Optimally Robust
Private Information Retrieval. In: Proceedings of the 21st
USENIX Conference on Security Symposium. Security’12.
USENIX Association, 2012, pp. 13–13. url: http://dl.acm.
org/citation.cfm?id=2362793.2362806.

[15] M. Dietzfelbinger et al. Tight thresholds for cuckoo hashing
via XORSAT. In: International Colloquium on Automata,
Languages, and Programming. Springer. 2010, pp. 213–225.

[16] C. Dong and L. Chen. A Fast Single Server Private Informa-
tion Retrieval Protocol with Low Communication Cost. In:
ESORICS 2014, Part I. Vol. 8712. LNCS. Springer, Heidel-
berg, 2014, pp. 380–399.

[17] C. Dong, L. Chen, and Z. Wen. When private set intersec-
tion meets big data: an efficient and scalable protocol. In:
ACM CCS 13. ACM Press, 2013, pp. 789–800.

[18] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient Private
Matching and Set Intersection. In: EUROCRYPT 2004.
Vol. 3027. LNCS. Springer, Heidelberg, 2004, pp. 1–19.

[19] A. Frieze, P. Melsted, and M. Mitzenmacher. An analysis of
random-walk cuckoo hashing. In: Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and
Techniques. Springer, 2009, pp. 490–503.

[20] C. Gentry and Z. Ramzan. Single-Database Private Infor-
mation Retrieval with Constant Communication Rate. In:
ICALP 2005. Vol. 3580. LNCS. Springer, Heidelberg, 2005,
pp. 803–815.

[21] R. Gilad-Bachrach et al. Secure Data Exchange: A Market-
place in the Cloud. In: (2016).

[22] N. Gilboa and Y. Ishai. Distributed Point Functions and
Their Applications. In: EUROCRYPT 2014. Vol. 8441.
LNCS. Springer, Heidelberg, 2014, pp. 640–658.

[23] O. Goldreich, S. Micali, and A. Wigderson. How to Play any
Mental Game or A Completeness Theorem for Protocols
with Honest Majority. In: 19th ACM STOC. ACM Press,
1987, pp. 218–229.

[24] J. Groth, A. Kiayias, and H. Lipmaa. Multi-query
Computationally-Private Information Retrieval with Con-
stant Communication Rate. In: PKC 2010. Vol. 6056. LNCS.
Springer, Heidelberg, 2010, pp. 107–123.

[25] R. Henry. Polynomial Batch Codes for Efficient IT-PIR. In:
PoPETs 2016.4 (2016), pp. 202–218. url: https://doi.org/
10.1515/popets-2016-0036.

[26] R. Henry, Y. Huang, and I. Goldberg. One (Block) Size
Fits All: PIR and SPIR with Variable-Length Records via
Multi-Block Queries. In: NDSS 2013. The Internet Society,
2013.

[27] R. Henry, F. G. Olumofin, and I. Goldberg. Practical PIR for
electronic commerce. In: ACM CCS 11. ACM Press, 2011,
pp. 677–690.

[28] Huffington Post. Nach Gerichtsurteil: WhatsApp-Nutzern
können Abmahnkosten drohen (German). http ://www.
huffingtonpost.de/2017/06/27/whatsapp- abmahnung-
anwalt-medien-gericht-nutzer_n_17302734.html. 2017.

[29] Á. Kiss et al. Private Set Intersection for Unequal Set
Sizes with Mobile Applications. In: PoPETs 2017.4 (2017),
pp. 177–197.

[30] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu.
Efficient Batched Oblivious PRF with Applications to Pri-
vate Set Intersection. In: ACM CCS 16. ACM Press, 2016,
pp. 818–829.

[31] M. Lambæk. Breaking and Fixing Private Set Intersection
Protocols. https://eprint.iacr.org/2016/665. MA thesis.
Aarhus University, 2016.

[32] Large-Scale Data & Systems (LSDS) Group, Imperial Col-
lege, London. spectre-attack-sgx. Github Repository. https:
//github.com/lsds/spectre-attack-sgx. 2017.

[33] W. Lueks and I. Goldberg. Sublinear Scaling for Multi-Client
Private Information Retrieval. In: FC 2015. Vol. 8975. LNCS.
Springer, Heidelberg, 2015, pp. 168–186.

[34] M. Marlinspike. Technology preview: Private contact discov-
ery for Signal. Signal blog post. https://signal.org/blog/
private-contact-discovery/. 2017.

[35] M. Marlinspike. The Difficulty Of Private Contact Discovery.
Whisper Systems blog post. https://whispersystems.org/
blog/contact-discovery/. 2014.

http://eprint.iacr.org/2017/207
http://eprint.iacr.org/1998/003
http://dl.acm.org/citation.cfm?id=2362793.2362806
http://dl.acm.org/citation.cfm?id=2362793.2362806
https://doi.org/10.1515/popets-2016-0036
https://doi.org/10.1515/popets-2016-0036
http://www.huffingtonpost.de/2017/06/27/whatsapp-abmahnung-anwalt-medien-gericht-nutzer_n_17302734.html
http://www.huffingtonpost.de/2017/06/27/whatsapp-abmahnung-anwalt-medien-gericht-nutzer_n_17302734.html
http://www.huffingtonpost.de/2017/06/27/whatsapp-abmahnung-anwalt-medien-gericht-nutzer_n_17302734.html
https://eprint.iacr.org/2016/665
https://github.com/lsds/spectre-attack-sgx
https://github.com/lsds/spectre-attack-sgx
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://whispersystems.org/blog/contact-discovery/
https://whispersystems.org/blog/contact-discovery/


REFERENCES 176

[36] T. Mayberry, E.-O. Blass, and A. H. Chan. PIRMAP: Effi-
cient Private Information Retrieval for MapReduce. In: FC
2013. Vol. 7859. LNCS. Springer, Heidelberg, 2013, pp. 371–
385.

[37] M. Orrù, E. Orsini, and P. Scholl. Actively Secure 1-out-of-
N OT Extension with Application to Private Set Intersection.
In: Topics in Cryptology – CT-RSA 2017: The Cryptogra-
phers’ Track at the RSA Conference 2017, San Francisco,
CA, USA, February 14–17, 2017, Proceedings. Springer
International Publishing, 2017, pp. 381–396.

[38] B. Pinkas, T. Schneider, and M. Zohner. Faster Private Set
Intersection Based on OT Extension. In: USENIX Security
14. SEC’14. USENIX Association, 2014, pp. 797–812.

[39] B. Pinkas, T. Schneider, and M. Zohner. Scalable Private
Set Intersection Based on OT Extension. Cryptology ePrint
Archive, Report 2016/930. http://eprint.iacr.org/2016/930.
2016.

[40] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing:
Private Set Intersection Using Permutation-based Hash-
ing. In: USENIX Security 15. USENIX Association, 2015,
pp. 515–530.

[41] A. C. D. Resende and D. F. Aranha. Faster Unbalanced
Private Set Intersection. In: FC 2018. LNCS. Springer, Hei-
delberg, 2018.

[42] P. Rindal. libOTe: an efficient, portable, and easy to use
Oblivious Transfer Library. https : / / github . com/osu -
crypto/libOTe.

[43] P. Rindal. libPSI: A repository for private set intersection.
https://github.com/osu-crypto/libPSI.

[44] P. Rindal and M. Rosulek. Improved Private Set Intersection
Against Malicious Adversaries. In: EUROCRYPT 2017,
Part I. Vol. 10210. LNCS. Springer, Heidelberg, 2017,
pp. 235–259.

[45] A. Smith. 6 new facts about Facebook. Pew Research
Center Fact Tank. http ://www.pewresearch.org/fact -
tank/2014/02/03/6-new-facts-about-facebook/. 2014.

[46] J. T. Trostle and A. Parrish. Efficient Computationally Pri-
vate Information Retrieval from Anonymity or Trapdoor
Groups. In: ISC 2010. Vol. 6531. LNCS. Springer, Heidel-
berg, 2011, pp. 114–128.

[47] A. C.-C. Yao. Protocols for Secure Computations (Extended
Abstract). In: 23rd FOCS. IEEE Computer Society Press,
1982, pp. 160–164.

A Hiding Cuckoo Locations

We previously described a simple approach to hide the
Cuckoo location for a single item of the client. At first
glance, it seems trivial to generalize this approach to
many items for the client – simply repeat the procedure
above once for each client item. However, it requires
server #2 to know that two PIR queries correspond to
the same logical client item (e.g., two queries correspond
to h1(x) and h2(x) for the same x, so their masks can be
randomly swapped). This turns out to be incompatible

with another of our optimizations (see Sect. 3.4) that lets
the servers learn some information about the location
of the PIR queries. It is safe to leak this information
about the collective set of client queries (e.g., a certain
number of the client’s queries are made to this region in
CT ) but not about specific queries (e.g., client has an x
where h1(x) is in this region and h2(x) is in that region).

We therefore generalize this oblivious masking tech-
nique as the following functionality:
– The client holds a permutation π that maps its logi-

cal inputs to the indices of those PIR queries. That
is, for each item xj of the client, the π(2j + 1)’th
PIR query is for CT [h1(xj)] and the π(2j + 2)’th
PIR query is for CT [h2(xj)].

– The client also holds a vector ~r of masks
– Server #1 chooses a random permutation σ with the

property that {σ(2j+1), σ(2j+2)} = {2j+1, 2j+2}
for all j. That is, σ consists of swaps of adjacent
items only.

– Servers #1 & #2 have vectors of PIR responses
~v1, ~v2, respectively.

– The goal is for server #2 to learn:

~v1 ⊕ ~v2 ⊕ π(σ(~r)) def= ~v1 ⊕ ~v2 ⊕ (rπ(σ(1)), . . . , rπ(σ(2n)))

We claim that this results in masks r2j+1, r2j+2 being
“routed” to the two PIR queries corresponding to logical
item xj . Indeed, since ~v1⊕~v2 comprise the unmasked PIR
outputs, the definition of π implies that

~v1 ⊕ ~v2 = π
(
CT [h1(x1)], CT [h2(x1)], . . . ,

CT [h1(xn)], CT [h2(xn)]
)

Hence, server #2’s output is the following vector per-
muted by π:(

CT [h1(x1)], CT [h2(x1)], . . .
)
⊕ (rσ(1), rσ(2), . . .)

By the construction of σ, we see that masks r2j+1
and r2j+2 are indeed paired up with CT [h1(xj)] and
CT [h2(xj)], as desired.
Hence, the client can compute the 2n values of the form
xj ⊕ r2j+1, xj ⊕ r2j+2, and use these as input to a con-
ventional 2-party PSI protocol. Server #2 can use its
output from this oblivious masking as its input to the
PSI. From the output of this PSI subprotocol, the client
can deduce the intersection.

To actually achieve this oblivious masking function-
ality, we do the following: The client picks three ran-
dom mask vectors ~r,~s,~t of length m and generates a
2-out-of-2 secret sharing of π as π = π2 ◦ π1. The client
sends ~t and π2 to server #2 and ~r, ~s, π1 and ~t⊕ π(~s) to

http://eprint.iacr.org/2016/930
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libPSI
http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/


REFERENCES 177

server #1. Server #1 sends π1
(
σ(~r)⊕~s

)
and [~t⊕π(~s)⊕~v1]

to server #2, who can then compute ~v:

~v = ~v2 ⊕ π2

(
π1
(
σ(~r)⊕ ~s

))
⊕ ~t⊕ [~t⊕ π(~s)⊕ ~v1]

= ~v2 ⊕ π
(
σ(~r)

)
⊕ π(~s) ⊕ ~t⊕ ~t⊕ π(~s)⊕ ~v1

= ~v1 ⊕ ~v2 ⊕ π
(
σ(~r)

)
In order to be compatible with further optimiza-

tions, we must show that the servers learn nothing about
the client’s permutation π, which captures which PIR
queries correspond to the same logical client input.

Server #1 receives ~r,~s, π1, and ~t⊕π(~s). These values
are randomly selected by the client, so server #1 learns
nothing about π from this oblivious masking process.

Server #2 receives ~t and π2 from the client, and
π1(σ(~r)⊕~s) as well as ~t⊕π(~s)⊕~v1 from server #1. Since
the values ~t, π2, ~r, ~s are each uniformly distributed, the
entire view of server #2 is random. Hence, server #2 like-
wise learns nothing about π from the oblivious masking
process.
Saving bandwidth: We can save bandwidth in the
oblivious masking procedure by observing that many of
the client’s messages are random, and can instead be
chosen pseudorandomly.

Recall that ~r,~s, π1,~t⊕π(~s) are sent to server #1 and
~t, π2 to server #2. The client can send a small seed w to
server #1 and use this seed to pseudorandomly choose
(~r,~s, π1) = PRG(w). Similarly, the client can send a seed
to server #2 and use it pseudorandomly define ~t.

Now that π1 is fixed, the client can solve for appro-
priate π2 such that π2 ◦ π1 = π. The client must send
other values explicitly: ~t ⊕ π(~s) to server #1 and π2 to
server #2.

B Cuckoo Hashing Failure
Probability Formula

Let e > 1 be the expansion factor denoting that N
items are inserted into a cuckoo table of size m = eN .
Fig. 3 shows the security parameter (i.e., λ, such that
the probability of hashing failure is 2−λ) of Cuckoo hash-
ing with k = 2 hash functions. As N becomes larger, λ
scales linearly with log2 N and with the stash size s,
which matches the results of [15]. For e ≥ 8 and k = 2,
we interpolate the relationship as the linear equation

λ =
(
1 + 0.65s

)(
3.3 log2(e) + log2(N)− 0.8

)
(1)

For smaller values of e, we observe that λ quickly con-
verges to 1 at e = 2. We approximate this behavior by

subtracting
(
5 log2(N) + 14

)
e−2.5 from Equation 1. We

note that these exact interpolated parameters are spe-
cific to our implementation which uses a specific eviction
policy (linear walk) and re-insert bounds (100). However,
we observed similar bounds for other parameters and
evictions strategies (e.g. random walks or 200 re-insert
bound).

We also consider the case k = 3, shown in Fig. 4
and find that it scales significantly better that k = 2.
For instance, at e = 2 we find λ ≈ 100 for interesting
set sizes while the same value of e applied to k = 2
results in λ ≈ 1. As before we find that λ grows linearly
with the expansion factor e. Unlike in the case of k =
2, we observe that increasing N has a slight negative
effect on λ. Namely, doubling N roughly decreases λ
by 2. However, the slope at which λ increases for k = 3
is much larger than k = 2 and therefore this dependence
on logN has little impact on λ. We summarize these
findings for k = 3 as the linear equation

λ = aNe+ bN (2)

where aN ≈ 123.5 and bN ≈ −130 − log2 N . Here we
use an approximation to hide an effect that happens for
small N ≤ 512. In this regime we find that the security
level quickly falls. In particular, the slope aN and inter-
cept bN go to zero roughly following the normal distribu-
tion CDF. By individually interpolating these variable
we obtain accurate predictions of λ for N ≥ 4. Our inter-
polations show that aN = 123.5 ·CDFnormal(x = N,µ =
6.3, σ = 2.3) and bN = −130 · CDFnormal(x = N,µ =
6.45, σ = 2.18)− log2 N .

For k = 3 we do not consider a stash due to our ex-
periments showing it having a much smaller impact as
compared to k = 2. Additionally, we do not compute ex-
act parameters for k > 3 due to the diminishing returns.
In particular, k = 4 follows the same regime as k = 3
but only marginally improves the failure probability.

C Effect of the Optimizations

In this section, we discuss the effect of our optimiza-
tions on the performance. By far the most important
optimization employed is the use of binning. Observe
in Tab. 4 that the running time with all optimizations
enabled is 1.0 s while the removal of binning results in
a running time of 1906 s. This can be explained by the
overall reduction of asymptotic complexity to O(N logn)
with binning as opposed to O(Nn) without binning.



REFERENCES 178

Table 4. Online running time in seconds of the protocol with all
optimizations enabled compared with the various optimizations of
Sect. 5.1 individually disabled.

N n
All Opt. No No No No
Enabled Batching Blocking Vectorization Binning

224 212 1.0 2.1 3.7 40.1 1906

Another important optimization is the use of PIR
blocks which consist of more than cuckoo table item.
This blocking technique allows for a better balance be-
tween the cost of the PIR compared to the cost of the
subsequent PSI. Increasing the block size logarithmically
decreases the cost of the PIR while linearly increasing
the cost of the PSI. Since the PIR computation is so
much larger than the PSI (assuming n� N) setting the
block size to be greater than 1 gave significant perfor-
mance improvements. In practice we found that setting b
to be within 1 and 32 gave the best results. Tab. 4 shows
that setting b to optimize running time gives a 3.7× im-
provement.

We also consider the effect that our highly optimized
DPF implementation has on the overall running time.
Vectorization refers to an implementation of the DPF
with the full-domain optimization implemented similar
as described by the [5, Figure 4]. We then improve on
their basic construction to take full advantage of CPU
vectorization and fixed-key AES. The result is a 40× dif-
ference in overall running-time.

The final optimization is to improve memory locality
of our implementation by carefully accessing the cuckoo
table. Instead of computing each PIR query individually,
which would require loading the large cuckoo table from
memory many times, our batching optimization runs all
DPF evaluations for a given database location at the
same time. This significantly reduces the amount of data
that has to be fetched from main memory. For a dataset
of size N = 224 we observe that this optimization yields
2.1× improvement, and an even bigger 5× improvement
when applied to a larger dataset of N = 228 along with
using T = 16 threads.

2 4 8 16

512

1024

2048

Communication (MiB)

R
un

ni
ng

ti
m
e
(m

s) k = 3
k = 2

Fig. 5. Communication and computation trade-off for n =
210, N = 224, T = 16 threads, k cuckoo hash function, no stash,
with the use of β = cn/ log2 n bins where c ∈ {2−5, 2−4, . . . , 23}
and are listed left to right as seen above. The configuration
(k = 2, c = 2−5) did not fit on the plot. The highlighted point
(k = 3, c = 1/4) is the default parameter choice that is used.


	PIR-PSI: Scaling Private Contact Discovery
	1 Introduction
	1.1 State of the Art & Challenges
	1.2 Overview of Results & Contributions
	1.3 Related Work & Comparison

	2 Preliminaries
	2.1 Secure computation
	2.2 Private Information Retrieval
	2.3 Distributed Point Functions
	2.4 Private Set Intersection (PSI)

	3 Our Construction: PIR-PSI
	3.1 Warmup: PIR-PEQ
	3.2 Cuckoo hashing
	3.3 Hiding the cuckoo locations
	3.4 Optimization: Binning queries
	3.5 Optimization: Larger PIR Blocks
	3.6 Asymptotic Performance

	4 Security
	4.1 Semi-Honest Security
	4.2 Colluding Servers
	4.3 Malicious Client

	5 Implementation
	5.1 System-level Optimizations
	5.2 Cuckoo Hashing Parameters
	5.3 Parameter Selection for Cuckoo Hashing & Binning

	6 Performance
	6.1 PIR-PSI performance Results
	6.2 Updating the Client and Server Sets

	7 Comparison with Prior Work
	7.1 CLR protocol
	7.2 KLSAP protocol
	7.3 RA protocol

	8 Other Extensions
	9 Deployment
	A Hiding Cuckoo Locations
	B Cuckoo Hashing Failure Probability Formula
	C Effect of the Optimizations


