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Abstract: Website fingerprinting based on TCP/IP
headers is of significant relevance to several Internet
entities. Prior work has focused only on a limited set
of features, and does not help understand the extents
of fingerprint-ability. We address this by conducting an
exhaustive feature analysis within eight different com-
munication scenarios. Our analysis helps reveal several
previously-unknown features in several scenarios, that
can be used to fingerprint websites with much higher ac-
curacy than previously demonstrated. This work helps
the community better understand the extents of learn-
ability (and vulnerability) from TCP/IP headers.
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1 Introduction

Why Study Website Fingerprinting? Website fin-
gerprinting refers to the task of identifying the web-
site being visited, based on information available in the
TCP/IP headers of the network traffic generated. This
task is of significant relevance to at least two types of
entities. The first are legitimate entities—including net-
work managers, Internet Service Providers, regulators,
and researchers—that are, respectively, interested in
protecting enterprise networks, gauging user interests,
studying unfair business practices, and studying the
performance of Internet applications and services. The
second are illegitimate entities with the malicious in-
tent of exploiting vulnerable parts of private user data.!
With increasing adoption of privacy-enhancing tech-
nologies [1-4], access to readable data beyond TCP/IP
headers is fairly limited—a key question that needs to
be answered by the above entities is: to what extent
can websites be fingerprinted (or not) from the TCP/IP
headers of Internet traffic?
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1 Closely related are security experts that want to prevent such
malicious privacy attacks.

State-of-the-art: Limited Set of Features Several
studies have demonstrated the ability to fingerprint
websites in different scenarios, including when com-
plete access to TCP/IP header fields is available [5—
8], when the IP addresses are anonymized [9], when
virtual tunnels are used to hide information about
TCP sub-flows [6, 10-15], when anonymization overlays
like Tor are used [16-26], and when packet sizes are
padded [11, 14, 27-29]. Using machine learning tech-
niques with informative features like packet sizes and
sizes of consecutive burst of packets, for instance, these
studies have achieved high accuracy in fingerprinting
from a closed set of popular websites.

While quite illuminating, these studies answer our
key question in only anecdotal ways. They focus heav-
ily on only a handful of tried-and-tested informative
TCP/IP features—when one study demonstrates that
a feature like packet sizes is quite informative [11, 12],
others come along with techniques to specifically cam-
ouflage packet sizes [14, 27-30]. By focusing on only
a limited set of features, prior work does not help us
understand the “extents” of learn-ability (and vulner-
ability) from TCP/IP headers—what is the list of all
TCP/IP features that are informative for website fin-
gerprinting? If some of these features are camouflaged,
are there others that can still be informative enough?
How effective are they?

Our Approach: Exzhaustive Feature Analysis (in
Diverse Scenarios) In this paper, we make and test
two claims. The first is that there are numerous fea-
tures that can be derived from the TCP/IP headers
of web traffic, and it is important to analyze these ex-
haustively in order to understand the extents of website
fingerprint-ability. The second is that the most informa-
tive features-of-interest are likely to change, when some
parts of the TCP/IP structure are hidden (e.g., in VPN
or Tor tunnels). We evaluate these claims by:
1. Extracting a comprehensive list of TCP/IP features;
2. Considering eight different communication scenar-
ios (which differ in access to TCP/IP information);
3. In each scenario, identifying and analyzing informa-
tive features and evaluating their efficacy in website
fingerprinting.

Our analysis validates both claims. We discover several
previously-unknown features that can be used to finger-
print websites in different communication scenarios, of-
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ten with much higher accuracy than previously shown.
Our findings emphasize the importance of exhaustive
feature analysis in developing a true understanding of
the limits of learn-ability from Internet traffic.

In the rest of this paper, Section 2 summarizes prior
work on website fingerprinting. Section 3 presents our
data collection and analysis methodology. Sections 4-9
analyze the most informative features and evaluate their
performance in different communication scenarios. We
summarize concluding remarks in Section 10.

2 Problem Formulation

Background: Website Fingerprinting Website fin-
gerprinting refers to the task of learning which web-
site is being visited, based on information available
from the TCP/IP headers of network traffic. Note that
the collective network traffic yields headers from each
packet, transmitted within each TCP connection initi-
ated for a webpage download, along with a time at which
each packet was observed at the vantage point. The
packet headers include the source and destination IP
address and port numbers, seq number, ACK number,
TCP flags, receiver window size, TCP segment length,
IP-ID, Protocol, and fragmentation /reassembly fields.?
Header-based features derived from traces of known web
transfers, can be fed to a supervised machine learning
framework to train a classifier to fingerprint websites.

State of the Art
strong ability to fingerprint websites in several differ-

Prior work has demonstrated a

ent communication scenarios, including HTTPx trans-
fers® [5, 7, 9], encrypted tunnels such as OpenVPN or
OpenSSL [6, 8, 10-15], and advanced anonymous net-
works like Tor [16-26]. This body of work relies on in-
formative TCP/IP features—such as packet sizes, sizes
of burst of packets, packet and byte count, inter-arrival
times, and count of unique servers. There is also a sig-
nificant body of work on designing countermeasures to
prevent fingerprinting—most of these focus on obfuscat-
ing informative features such as packet sizes, burst sizes,
and packet timings [14, 27, 28, 30—-32]. A brief summary
of prior work is included in Table 1 and details can be
found throughout the paper.

2 When privacy-enhancing technologies are used, however, some
header information may be unavailable. For example, server 1P
addresses and port numbers are unavailable in encrypted tunnel
and packet sizes are obfuscated when packet-padding is used. We
consider several such communication scenarios in this paper.

3 In this paper, we use HT'TPz to represent all of HT'TPS,
HTTP/1.0, HTTP/1.1 and HTTP/2.
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Need for an Ezxhaustive Feature Analysis A key
component of machine learning is feature engineering,
which involves using domain knowledge to manually
craft features that are likely to make classifiers perform
well—“Applied machine learning is basically feature en-
gineering” [34]. Even with just 40 bytes of information
available in TCP/IP headers, there are a surprisingly
large number of structural traffic features that can be
extracted from a webpage download. These would in-
clude the IP footprint (server counts, IP addresses, tim-
ing and order of servers contacted), the TCP connection
footprint (connection count, sizes, ports used, timing
and order of connections), the data transfer footprint
within TCP connections (burst counts, sizes, timing),
and packet-level footprint (count, sizes, timing)—our ef-
forts to comprehensively list features in Section 3.2 yield
more than 109 feature categories, contributing a total
of nearly 35,683 features!

The state of the art, in contrast, has considered
only a handful of features for website fingerprinting (Ta-
ble 1). This may seem surprising, but it is not—features
such as packet sizes and burst sizes have indeed turned
out to be so informative that most studies have been
able to achieve very high fingerprinting accuracy by just
re-using a few features.

This approach, however, will not work for us—our
objective in this paper is not to simply achieve high fin-
gerprinting accuracy in a given scenario, but rather to
understand the extent to which websites can be finger-
printed using TCP/IP headers (especially when well-
known informative features are successfully masked).
Such an objective necessitates that we comprehensively
analyze the informativeness of all TCP/IP features.*

The work most closely related to ours is [33], which
considers Tor and analyzes the importance of several
features proposed in [10, 18, 22|, along with some self-
defined features—a novel classifier that combines ran-
dom forest and distance metric is then proposed for
website fingerprinting. However, the focus of that work
is not an exhaustive feature analysis and a majority of
features we define are not considered—besides, only the
Tor-based transfers are considered.

4 This need has been partly recognized in [35], which empha-
sizes the importance of shifting the focus of future website finger-
printing research to identifying optimal feature sets (by deriving
security bounds for website fingerprinting defenses based on a
given feature set).
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Table 1. Summary of prior work evaluated in this paper (including communication scenario, feature set, and classifier). Note that “*"

indicates the author did not specify the property.

Author Scenario  Features Classifier
Liberatore (L) [11] SSH packet size count Naive Bayes
Herrmann (H) [12] SSH, Tor  packet size frequency Multinomial Bayes
Panchenko (P) [18] SSH, Tor size markers, HTML markers, # markers, percentage incoming
packets, occurring packet sizes, transmitted bytes, # of packets SVM
Dyer (Vng++) [14] SSH per-direction bandwidth, total time, burst markers Naive Bayes
Wang (FLSVM) [21] Tor Tor cell instances Distance-based SVM
Feghhi (DTW) [15] SSH uplink timing information Dynamic Time Warping
# of incoming & outgoing packets, sum of incoming
Panchenko (CUMUL) [23] Tor & outgoing packet sizes, interpolant of cumulative packet size SVM
# of packets, percentage incoming & outgoing packets
Hayes (k-FP) [33] Tor packet ordering, concentration of outgoing packets, # of Random Forests
packets per second, inter-arrival time, transmission time
Trevisan (T) [7] HTTP server IP address count, hostname count *

Challenges and Goals An exhaustive analysis of all
features is an unusual machine learning task. There are
several challenges that must be addressed:

—  The first step is to exhaustively list all features—we
believe this is infeasible, given that the infinite pos-
sible feature combinations (and statistical deriva-
tives) can not be manually listed. Instead, we pur-
sue the more modest goal of comprehensively list-
ing semantically-relevant groups of features (Sec-
tion 3.2).

The large list of features will necessarily contain sev-
eral features that are correlated. The existence of
interdependent features have three potential side-
effects: possibility of over-fitting [36], curse of high-
dimensionality [37], and (most relevantly) mislead-
ing interpretation of feature importance. Although
dimensionality-reducing algorithms such as Princi-
pal Component Analysis may help get rid of corre-
lated features, they do not let us understand fea-
ture importance, which is the main focus in our
work. Our next goal is to derive a comprehensive list
of important features that are not correlated (Sec-
tion 3.4).

There are several communication scenarios used
widely in the Internet today that conceal some
TCP/IP features (e.g., the use of encrypted tun-
nels hides all TCP sub-flow information). It follows
that features that are informative in one scenario
may not be as revealing in others—e.g., packet size
distribution has been shown as as a powerful feature
in encrypted tunnels; however, this is not the case
in Tor since all packets are padded to a fixed length.
In order to truly understand the extents of website
fingerprint-ability, we repeat our comprehensive fea-
ture analysis under a diverse set of prominent com-
munication scenarios (Section 3.3).

Innovations This paper presents two key innovations.
First, it defines and considers several communication
scenarios and performs a comprehensive feature im-
portance analysis in each. Second, it evaluates the ef-
ficacy of the newly-discovered informative features in
accurately fingerprinting websites (by comparing with
prior work). We believe such a comprehensive analysis
is an important first step in two seemingly-competing
directions—aiding legitimate entities in robustly finger-
printing under different communication scenarios, and
aiding security researchers in designing fool-proof coun-
termeasures against website fingerprinting.

3 Methodology
3.1 Data Collection Methodology

Website Downloads The website dataset used in this
paper is collected by visiting the landing page of the
top 3,000 worldwide websites listed on Alexa [38]. Each
website is visited 20 times using Google Chrome Version
61.0.3163.100 (cache disabled) on a desktop machine—
Selenium webdriver is used for web browser automa-
tion.> When visiting a website, we set a 20s time-out
before closing the Chrome browser—pages that fail to
load within this period will be marked as a failure.5

A successful visit is defined as an instance. In to-
tal, we successfully visited 2,712 websites at least once

within 20s. The total number of instances was 44,944.

Website Labels Since the focus of this work is website
fingerprinting, we use the domain name that appears in

5 https://github.com/SeleniumHQ/selenium/
6 We use
by Selenium; pages that fail to be completely loaded within

set__page__load__timeout(time__to__wait) provided

time__to__wait will throw an error. These are either invalid URLs
or too slow to load.



Table 2. Examples of features in each level.

Level
Packet

Examples

packet size count, packet frequency, initial 30 packets, # of packets
per TCP conn., # of incoming packets, ....

Burst burst size count, # of incoming/outgoing bursts per TCP conn.,

bytes of incoming/outgoing bursts, burst duration, ...

TCP
Port
IP address

# of TCP conn., incoming bytes per TCP conn,, ...

port count, transmitted bytes per TCP conn. w.r.t. port 443/80, ...

server IP address count, hostname count, transmitted
bytes per TCP conn. w.r.t. server IP address & hostname, ...

its URL, as the ground-truth label for each website. We
take redirection into account and consider only the final
URL for a given website. Of the 2,712 websites, 52 are
redirected to new URLs (e.g., hitp://extraimago.com
is redirected to hitp://extraimage.net/), while 125 are
redirected to other URLs within our list—one of the
most common URLs for redirection is http://google.com.
Among them, 1,032 websites have at least 20 instances
while 2,032 websites have at least 16 instances. For fea-
ture selection and performance evaluation, we randomly
picked up 2,000 websites out of 2,032 that have at least
16 instances for training and testing (Section 3.4).

Other Datasets For our evaluations, we also use the
SSH2000 dataset provided by Liberatore et al. [11] and
the Tor dataset shared by Wang et al. [22]—these evalu-
ations are included in Appendix 12. SSH2000 [11] is col-
lected by visiting 2,000 popular websites, 51 times each,
through a SOCKS proxy. All TCP traffic is encapsulated
under one tunnel—thus packet size, direction, and time
are available in TCP/IP headers, but all information
about individual TCP connections, server IP addresses
and port numbers is hidden. The Tor dataset [22] con-
sists of instances obtained by visiting 100 websites, 90
times each, with the Tor browser. Due to the use of
onion routing and packet-padding mechanism in Tor,
actual packet size, information about individual TCP
connections, server I[P addresses and port numbers are
not available.

3.2 Feature Engineering

In machine learning, powerful features are defined in
order to make explicit certain implicit characteristics of
data. In this section, we summarize the different types of
features we extract from TCP /IP headers. We group our
features into five levels—examples of feature categories
in each level are presented in Table 2:7

7 Appendix 11 has a complete list of features extracted in this
work along with the number of features in each group.
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1. Packet-level. This level includes features directly
derived from the count, length, timing, and direc-
tion of packets. While packet sizes have been used
quite successfully in the state of the art, we in-
clude features that span the order, timing, and di-
rection of packets as well. We define 43 semantically-
different feature categories in this level.

2. Burst-level. A burst is defined as a sequence of
packets sent in one direction between two pack-
ets from the opposite direction [14]. For example,
a sequence of packet sizes (220, 1440, -300, -810,
530) can be described as (1660, -1110, 530) in burst
level.® In burst-level, we focus on features derived
from the count, duration, bytes, packets, as well
as inter-arrival times. There are 25 semantically-
different feature categories in this level.

3. TCP-level. For HTTPz transfers, we are able to
infer which TCP connection a packet belongs to. We
define features based on the count, duration, num-
ber of bytes, packets, and bursts, and inter-arrival
times of the TCP sub-flows. There are 14 different
semantic feature categories in this level.

4. Port-level. Port numbers have been previously
used to distinguish different types of traffic [39—
41]. In this work we consider features related to
the usage of different port numbers as well as the
amount of traffic to/from port 443 (HTTPS) and 80
(HTTP) in a traffic trace. We define 7 semantically-
different feature categories in this level.

5. IP address-level. Server IP addresses and host-
names have been used previously for website finger-
printing [7]. We extract related features by calculat-
ing the frequency with which different server IP ad-
dresses and hostnames (derived from reverse-DNS
lookups)? are contacted for a webpage download, as
well as the amount of traffic to/from different IP ad-
dresses and hostnames. We define 20 semantically-
different feature categories in this level.

8 For packet direction, positive sign (’+’) is used to represent
incoming packets that sent from servers to clients while nega-
tive sign (’-’) indicates outgoing packets sent by clients. Thus
the range of packet size is [-1500, 1500], with a maximum trans-
mission unit (MTU) of 1500.

9 The hostnames were derived after completion of the 20 down-
load instances of the websites, which boils down to a gap of a few
days for some websites. Hostnames can be more reliable when
the gap is smaller.



Overall, we extract around 35,683 features, that can be
grouped into 109 feature categories, from the TCP/IP
headers of a web page download traffic.

Feature Reduction/Preprocessing High-dimensional
feature spaces may be affected by huge computation
cost and the curse of dimensionality problem in machine
learning [37]. In order to control the number of features
for feasible analysis, we performed each of the follow-
ing preprocessing steps. Most of these are motivated by
prior literature—details of experimental evaluations can
be found in [42]:

1. Packets without payload (ACK packets) are re-
moved from each instance—this not only aids in ex-
tracting burst-level features but also improves the
classification accuracy [18, 20].

2. Packet size is rounded off to an increment of 8,
while burst size is rounded off to an increment of
600—these values are obtained through experimen-
tal evaluations and help manage the tradeoff be-
tween controlling the number of features and infor-
mation loss caused by rounding off.

3. For IP addresses, only the first three bytes of IP
addresses are considered, and for hostnames, only
the second-level domain names are considered—this
helps control the number of features as well as im-
prove robustness when multiple servers are used for

the same service.

3.3 Communication Scenarios Considered

It is important to note that not all of the features identi-

fied in Section 3.2 may be available for a given webpage

download. Indeed, due to increasing reliance on privacy-
enhancing mechanisms, several features in all five levels

(packet-level to IP address level) may be unavailable in

reality. In this section, we identify eight different sce-

narios (summarized in Table 3) that differ in the type
of information available from TCP/IP headers:

1. S0: All TCP/IP features available. The first sce-
nario we consider is the baseline case, in which
no privacy-enhancing mechanisms that influence
TCP/IP headers have been applied when either vis-
iting a website or collecting a trace [5-9]. This would
include a majority of Internet traffic—that is trans-
mitted using direct HTTPz connections between
clients and web servers. Packet headers from all
TCP transfers initiated are available, with the IP
addresses and port numbers intact—features from
all levels identified in Section 3.2 are available.

2. S1: Anonymized IP address. For some entities, ac-
cess to packet traces is available only after IP ad-
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dresses have been anonymized [4]. Therefore, for a

given website, an IP address may be dynamically

mapped to different random values in training data
versus test data. Even more fundamentally, features
derived from specific server IP addresses as well as

reversed hostnames are no longer available (e.g.,

unique hostname, server address count and trans-

mitted bytes w.r.t. a specific IP address).'°

3. S2: Encrypted tunnel (TCP sub-flows hidden).
Many users rely on services that allow them to con-
nect to servers using an encrypted connection (e.g.,
SSH), or through the use of a proxy (e.g., VPN, Tor,
etc.). IP addresses and contents are hidden from at-
tackers. More importantly, information about TCP
sub-flows is hidden; packets and bursts across all
TCP transfers are merged and interleaved into one
tunneled connection. Thus in S2, we are only able to
observe a single TCP connection and features from
TCP-level, port-level, and IP address-level are no
longer available [5, 6, 10-15, 18, 33].

4. 83-S/: Packet padding (packet sizes camouflaged).
The distribution and sequence of packet sizes
has been shown to be one of the most infor-
mative features for website fingerprinting [11-13,
18]. Padding-based privacy-enhancing techniques
aim at hiding actual packet size—for instance,
by padding all transmitted packets to MTU size
(PadToMTU). We next define two scenarios—S3,
in which PadToMTU is employed within HTTPx
transfers (53: S04+PadToMTU) and S4, in which
PadToMTU is employed within encrypted tunnels
(S4: S24+PadToMTU) [11, 12, 14, 18].11.

5. S5: Packet timing camouflaged. In order to con-
sider techniques that camouflage inter-packet ar-
rival times within anonymization networks such as
Tor, we define S5, in which the inter-arrival times
between consecutive padded packets is set to a fixed
value (S5: S4+Fixed IAT) [14, 27-29, 43].

6. S6-S7: Unidirectional traffic. In some cases, incom-
ing and outgoing traffic may be routed through
different links between clients and servers (due to
asymmetric routing or privacy concerns), which
could imply that packet headers sent in only one

10 Note, however, that distribution-based features, such as
number of different IP addresses and distribution of transmitted
bytes per TCP across different servers can still be derived.

11 In Section 9, we also evaluate several recently-proposed
countermeasures that have been shown to be more effective than
PadToMTU [14]



direction may be available for website fingerprint-
ing. We incorporate this situation by defining two
scenarios (derived from S0)—S6, when only incom-
ing traffic headers are available, and S7, when only
outgoing traffic headers are available.

Table 3. Information available in different communication sce-
narios (Pg: packet direction, P;: packet length, P;: packet time,
IP/H: server IP and/or hostname, PN: port number).

S5:54+Fixed IAT
S§6:50+Incoming Only
S§7:50+Outgoing Only

\
<
<
<
<

P, | P | P | IP/H| PN | TCP
S0:Baseline v v v v v v
S§1:50+Anonymized IP | v v v v v
S2:Encrypted Tunnel v v v
§3:50+PadToMTU v v v v v
5§4:52+PadToMTU v v

v

v

v

3.4 ldentifying Informative Features

The main goal of this paper is to identify all types of
features that are notably informative for website finger-
printing in a given communication scenario. Given the
large number of features we are considering (35,683),
we believe this step needs to be guided by prudence.
Our list of features is certain to contain several features
that are highly correlated to each other. To realize our
goal, it is important to select features that are not only
highly informative, but are also uncorrelated to each
other. For each communication scenario, we achieve the
above using the following three steps:
1. Filtering out less important features: We first
calculate the importance of each feature for
the task of website fingerprinting. For this, we
use Extra-Trees [44] from scikit-learn [45], with
maz_features=v/# of features and entropy [46] as
the “impurity” criterion, to measure the Mean De-
crease Impurity (MDI) importance [47].12 We use
cross-validation to determine number of trees in the
forest (n__estimators). The larger the MDI impor-
tance, the more informative the feature is.'® Our
goal is to use the importance score to filter out fea-
tures that are not important.

12 We use Extra-Trees instead of Random Forest[48] to calcu-
late MDI, since the former has been shown to be more compu-
tationally efficient and requires less memory—with comparable
classification performance [44].

13 MDI importance has been used widely in gene selection [49—
51] as a screening procedure for identifying important features.
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Theoretically, MDI importance of a feature is equal
to 0 if and only if the feature is irrelevant with to-
tally randomized trees [47]. However, MDI-based
importance scores may be biased in the presence
of correlated features [52]: as the number of cor-
related features increases, the MDI for each indi-
vidual inter-dependent feature decreases—this may
mislead our importance analysis. Identifying and re-
moving correlated features is not feasible for such a
large feature space. Instead, we rank features ac-
cording to their importance score and select the
first n features that contribute to 99% of the total
MDI of the feature list.!* This filtering step leads
to a huge reduction in the number of features—e.g.,
5,852 important features in S0 (see Table 4). In the
second step below, we remove correlated features.

2. Removing correlated features: We next cluster to-

gether correlated features and choose one repre-
sentative feature from each cluster. For clustering,
we first normalize features to zero mean and one
standard deviation and compute the Euclidean dis-
tance between each feature pair. We then perform
average-linkage hierarchical agglomerative cluster-
ing [53] based on Euclidean distance by using Ag-
glomerativeClustering in scikit-learn. To select the
optimal number of clusters, we consider both su-
pervised and unsupervised approaches—both yield
consistent results, so we focus on the latter since
it has a much lower computation cost. We evalu-
ate the “goodness” of each clustering scheme based
on average silhouette scores [54, 55]: the higher the
value, the better the clustering scheme.
After finding the optimal clusters for grouping cor-
related features, we select the feature with the maxi-
mum MDI importance from each cluster. With this,
our final feature list is reduced to only relevant and
uncorrelated features (Table 4). We feed this list
into Extra-Trees, to re-compute the MDI impor-
tance for each feature without correlation bias.

3.  Grouping semantically-similar features: In contrast
to [33], we do not focus on analyzing the importance
of each fine-grained feature (such as the mazimum
packet size and median packet size) in a traffic trace.
Instead, we focus on ranking the importance of fea-
tures with different semantics—defined according to
the 109 semantically-similar feature categories in

14 We do not use a predefined threshold for MDI, since the
presence of inter-dependent features can artificially deflate the
MDI values and make us filter out even important features.



Table 4. Feature Selection Statistics (n_original: total number
of original features; n_MDI: number of features after removing
unimportant features; n_final: number of features after removing
correlated features; n_catrgories: number of categories.)

n_original | n_MDI | n_final | n_cat.
S0: Baseline 35,711 5,852 2,512 106
S1: SO+Anynomized IP 15,598 4,224 2,068 91
S2: Encrypted Tunnel 12,198 2,472 1,099 56
§3: S0+PadToMTU 31,612 5,401 1,944 107
S4: S2+PadToMTU 7,650 1,889 807 58
S5: S4+Fixed IAT 7,647 1,853 882 59
S§6: Incoming Only 32,400 3,058 1,008 37
S7: Outgoing Only 22,315 3,253 948 41

Section 3.2. We believe that this is prudent given
the goal of this paper—it is more informative to
understand which feature category (such as num-
ber of packets per TCP, packet size count, or initial
30 packets) is important for website fingerprinting,
rather than which statistical derivatives of a feature
category is more important. Indeed, when a camou-
flaging technique is adopted, it is likely to hide all
features within a feature category (such as padding
each packet to a fix value in the traffic, rather than
merely trying to cover the maximum packet size).

Thus given the final feature list, we group features
according to their semantically-defined feature cat-
egory, and use summation of the weight of features
within a group as the metric to measure importance

of each category of features.'®

Arguably, the order of the first two steps should be
changed—first remove redundancy and then filter out
less important features. However, the cost for comput-
ing distance between all feature pairs is O(mn?), while
the cost for building a decision tree is O(nmlgm), where
n is the number of features and m refers to size of train-
ing samples. For computation efficiency, we prefer to
calculate the MDI importance first.

Stability of Feature Selection To verify the sta-
bility of our feature selection methodology, we repeat
the above procedure 30 times for each communication
scenario—in each iteration, we randomly choose 2,000
websites with 16 instances from our dataset. We com-
pute the standard deviation (across all iterations) in
the importance of each feature category in the final list.

15 The semantically-similar category here is different from the
correlated groups identified in step 2. There may be correlated
features across semantically-defined feature categories, and there
may be uncorrelated features within a given category.
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The overall standard deviation is around 0.1%, which
demonstrates the consistency of the selected features.

In what follows, we use the above methodology in
each communication scenario. Due to space constraints,
we only summarize the results for some scenarios (51,
S3 and S5)—details are included in [42].

4 Baseline: HTTPx Transfers
(Full TCP/IP Headers)

To begin with, we consider the most common scenario
of visiting webpages using HTTPz transfers, including
HTTP/1.x, HTTP/2.0, and HTTPS, without using en-
hanced privacy technologies. Although advanced tech-
nologies are available, a majority of Internet users do
not use them due to either lack of privacy concerns or
accessibility issues (several countries block VPN and
advanced anonymization networks such as Tor due to
legislation issues).'® Thus, complete access to TCP/IP
headers is available for website fingerprinting.

Related Work Website fingerprinting using HTTPz
traces has been considered in previous studies [5-9],
using different types of features. In the earliest work,
Sun et al. used HTTP object counts and sizes to iden-
tify a website using statistical techniques based on the
Jaccard coefficient [5]. Macia et al. extracted and used
the size and position of the root file and objects cor-
responding to a given web page [9]. Gong et al. ana-
lyzed round-trip times using k-NN with the Dynamic
Time Warping (DTW) metric to remotely fingerprint a
website [6]. Miller et al. extracted burst pairs from each
TCP connection and used a Bag of Gaussian classifi-
cation scheme along with a Hidden Markov model [8].
Trevisan et al. analyzed two datasets with more than
790 million records in DNS requests/response and re-
lied on server IP addresses and lists of hostnames to
classify traffic [7]. The maximum number of wegpages
considered across these prior work is 2,000, and the re-
ported classification accuracy ranges from 50%-90%.
Although prior work has achieved high fingerprint-
ing accuracy with HT'TPx transfers, performance is ex-
pected to degrade as more websites are considered for
classification [14]. An exhaustive feature analysis helps
understand whether there are additional features that
are significantly informative. We do this analysis next.

16 https://www.theregister.co.uk/2017/07/11/russia_ china__
vpns__tor__browser/
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New Informative Features Table 57 lists the feature
categories (ranked by importance) identified for this sce-
nario using the methodology of Section 3.4—note that
these are categories, and include statistical derivatives
and finer-granularity features. Feature categories that
have not been discovered by prior work are:'®
1. Transmitted bytes per TCP conn., w.r.t. top
20 most common hostnames and server IP ad-
dresses. Due to the influence of big players [56] in
the Internet, more content is now being served us-
ing shared infrastructure such as Content Delivery
Networks (CDNs) and cloud computing platforms.
These two feature categories are defined with re-
spect to the top 20 most commonly visited server

t,19 and

hostnames and IP addresses in our datase
indicate: (i) whether a website uses services pro-
vided by prominent providers, such as Akamai,
Google and Facebook, to serve their content, and
(ii) how much data is served from each of these
(which may differ across websites). We find that
these categories are fairly informative. We also find
that hostnames identify a service more reliably than
IP addresses—indeed, the latter may vary across
visits and across client locations.

2. Cumulative packet sizes with/without direc-
tion. These feature categories are based on the sum
of the first n packet sizes, with n ranging from 1 to
100. For example, given a packet sequence of [-100,
100, -70], the first 3 cumulative packet sizes are [100,
200, 270] and the first 3 cumulative packet sizes with
direction are [-100, 0, -70]. These two feature cat-
egories capture a wealth of information on packet
sizes, cumulative burst sizes, request/response or-
dering/direction. While these categories are less
intuitive than simply examining packet sizes and
burst sizes, our analysis reveals that they can be
quite informative for website fingerprinting.

3. Number of bursts per TCP connection. These
feature categories are based on number of bursts
observed within each TCP connection, including in-
coming and outgoing bursts. Among them, the most
important one is ratio of incoming bursts per TCP
connection. Normally, the ratio should be 0.5, given

17 Tables of important features are truncated in this paper due
to space limitation. Complete tables are included in [42].

18 Features that have been identified in prior work will not be
discussed here due to space limitation.

19 A list of 20 most common server IP addresses and hostname
in our dataset can be found at the end of Appendix 11.
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the expected request and response communication
pattern between clients and servers. However, vari-
ations may arise from: (i) the tail of a traffic trace
getting truncated during data collection (which af-
fects TCP connections that require more time to
finish); or (ii) the server failing to receive the last
request or the client failing to receive the last re-
sponse due to congestion; In either case, the ratio
of incoming bursts may change from 0.5 to 5=,
where 2n — 1 is total number of bursts observed.
Ratio of incoming bytes per TCP connec-
tion. This feature category is based on the ratio
of incoming bytes to the total bytes sent in each
TCP connection. This is likely to be influenced by
both content (length) on a website (which deter-
mines the response sizes) and the transfer proto-
col configuration for application data (which de-
termines the request sizes). Other categories re-
lated to transmitted bytes per TCP connection—
including total/incoming/outgoing bytes per TCP
connection—are also informative (cumulative im-
portance of 2.23).

Initial packets in first TCP connection. This
feature category includes the size and direction for
the first 30 packets transmitted within the first TCP
connection. While a similar feature has been used
for Tor traffic analysis, it has not been used be-
fore for HTTPz analysis [22]. When visiting a web-
site using HTTP/1.x, the first TCP connection car-
ries the base page (index.html), whereas subsequent
TCP connections fetch embedded objects. The base
page typically describes the template of the website
and the placement of different objects—which are
more stable than the content (or the embedded ob-
jects). Hence, packet features based only on the first
TCP connection are likely to be informative.
Initial bursts in first TCP connection. Similar
to initial packets, initial bursts indicate the size and
direction of the first 30 bursts in first TCP connec-
tion and capture uniqueness of the request/response
pattern for each website.

Transmitted bytes per TCP connection w.r.t.
port 443 and 80. These categories are based on
the outgoing bytes in each TCP connection that
are sent over HT'TPS (443) and HTTP (80), respec-
tively. Although some websites encrypt all of their
traffic with HTTPS, others use a mix of HT'TP and
HTTPS. These features help fingerprint websites in
terms of their HT'TPS adoption and object sizes.
20 largest bytes per TCP connection. These fea-
ture categories are based on the 20 largest values



of bytes transmitted per TCP connection, includ-
ing total bytes and incoming/outgoing bytes. These
are influenced by the number of requests that are
sent in each TCP connection and their total size.
In HTTP/1.0, each request requires its own TCP
connection. In HTTP/1.1, reuse of TCP connec-
tions becomes possible—thus, more than one request
may be sent in a persistent HT'TP transfer (mostly
in a non-pipelined synchronous manner, though)
HTTP/2 allows more requests to be transferred
over a single TCP connection in a pipelined fash-
ion, thereby enabling asynchronous requests. Thus,
this feature category captures not only information
about website contents but also about the transfer
protocol used by its server.

Classification Accuracy Gains Due to New Fea-
tures We next evaluate how much improvement in
website classification accuracy do the newly discovered
features offer. For this, we classify websites using all fea-
tures listed in Table 5. For comparison, we also classify
websites using feature sets used in prior work (Table
1)—for completeness, we also include feature sets that
have been used in (only) other communication scenar-
ios. In order to control for performance variations due
to the use of different machine learning algorithms by
different prior work, we focus only on the feature sets
they use and apply the same classifier (Extra-Trees) on
top of each feature set. As mentioned in Section 3.1, the
evaluations are conducted using data from 2,000 web-
sites, each with 16 instances. We perform 10-fold cross-
validation to obtain average accuracy. The results are
summarized in Table 6 (our feature set is denoted as

Wfin). We find that:

— As can be seen, classifiers with packet size count
as features (H, L and P) outperform classifiers de-
signed for Tor, including CUMUL and k-FP, since
packet sizes are fixed in Tor and not considered as
informative for classification. FLSVM that treats
packets as a sequence and performs classification
based on the edit distance between each pair of se-
quences is also able to achieve a high accuracy since
it utilizes both packet size and ordering—however, it
imposes a huge computation cost for calculating the
distance between a test sequence and each training
sequence. A high accuracy achieved with T further
confirms that server IP address and hostnames can
be quite informative for website fingerprinting [7].

— Our feature set achieves the highest classification
accuracy. However, since the distribution of packet
size alone is quite informative for identifying a web-
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site in S0, our feature set performs only somewhat
better (1.8%) compared to the best-performing fea-
ture set used in prior work (L) [11]. Nonetheless,
our analysis helps discover several other informative
features that are quite powerful.

Table 5. Informative feature categories in S0: HTTPx. "**' indi-
cates features that have not been discovered before.

1 unique packet size 25.686
2 preposition of first 300 incoming packets 8.328
3 packet size count 6.413
4 unique burst size 5.551
5 ** ratio of incoming bytes per TCP conn. w.r.t. hostname 5.127
6 ** jnitial 30 incoming in first TCP conn. 3.875
7 initial 30 packets 2.349
8 ** jnitial 30 packets in first TCP conn. 2.333
9 initial 30 outgoing packets 2.201
10 unique server IP address 2.007
11 initial 30 incoming packets 2.006
12 ** jnitial 30 outgoing in first TCP conn. 1.867
13 ** ratio of incoming bytes per TCP conn. w.r.t. server IP address 1.746
14 burst size count 1.667
15 ** outgoing bytes per TCP conn. w.r.t. hostname 1.517
16  ** initial 30 outgoing bursts 1.237
17  ** ratio of incoming bursts # per TCP conn. 1.107
18  ** ratio of incoming bytes per TCP conn. 1.094
19 position of first 300 outgoing packets 1.006
20 ** outgoing bytes per TCP conn. w.r.t. Port 443/80 0.976
21 position of first 300 incoming packets 0.851
22 ** transmitted bytes per TCP conn. w.r.t. hostname 0.834
23 ** outgoing bytes per TCP conn. w.r.t. server IP address 0.833
24 ** cumulative size of first 100 packets 0.812
25 preposition of first 300 outgoing packets 0.809
26 ** outgoing bytes per TCP conn. 0.775
27  size of outgoing bursts 0.766
28  ** incoming bytes per TCP conn. w.r.t. hostname 0.735
29  ** 4 of bursts per TCP conn. 0.699
30 ** # of outgoing bursts per TCP conn. 0.671
31 ** # of incoming bursts per TCP conn. 0.656
32 concentration of outgoing packets in first 2,000 packets 0.652
33  ** cumulative size with direction of first 100 packets 0.612
34  ** ratio of incoming bytes w.r.t. Port 443/80 0.552
35 size of first incoming burst in first TCP conn. 0.522
36 ratio of incoming packets # per TCP conn. 0.489
37  hostname count 0.467
38  ** jnitial 30 bursts 0.44
39 ratio of incoming bursts size per TCP conn. 0.439
40 alternative concentration of outgoing packets 0.432

Why Extra-Trees? For deciding which machine learn-
ing classifier to use in the evaluations above, we consid-
ered SVM [57], k&-NN and Extra-Trees. The classifica-
tion accuracy achieved with Extra-trees was, on aver-
age, about 15% higher than that achieved with k-NN
using our dataset. Compared to SVM, Extra-Trees was
also more computationally efficient and consumed less
memory with the large number of features we consider.
Appendix 12 also includes evaluations of the state of the
art using classifiers used in the original work.

FEvaluation of Scenario S1 Our evaluations of
HTTPz traces with anonymized IP addresses yielded
informative features similar to S0 and offered similar
classification performance (Table 6)—detailed evalua-

tion results are included in the extended version in [42].
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Table 6. Classification accuracy achieved with different feature sets proposed in the state of the art (*indicates the target scenario in

the original work).

H L P Vng++ T DTW CUMUL | FLSVM k-FP Wrin
S0: Baseline *02.61 97.96
S1: Anonymized IP *95.37 | *96.16 95.67 79.09 76.83 90.13 97.73
S2: Encrypted Tunnel *05.68 | *15.61 *12.70 *87.27 | 97.41
S§3: S0+PadToMTU 62.07 58.52 N/A 97.54
S§4: S2+PadToMTU 8.29 35.00 11.36 9.98 *76.78 65.10 96.83
S§5: S4+Fixed IAT 11.41 9.77 11.20 85.45 | 95.44
S6: Incoming Only 93.74 93.99 91.09 13.44 02.61 N/A 22.61 81.82 70.49 | 96.70
S§7: Outgoing Only 94.08 94.64 94.95 24.33 12.70 27.52 90.13 58.59 | 96.76

5 Use of Encrypted Tunnels &
Proxies (TCP Flows Hidden)

In order to protect users’ browsing activities from eaves-
dropping, a number of privacy enhancing technologies
have been devised, such as virtual private networks
(VPN), simple SSL proxies and OpenSSH tunnels [2].
As users become more security-savvy, the growing popu-
larity of these privacy mechanisms has greatly enhanced
the user security experience on the Internet [58]. For ex-
ample, OpenSSH has been integrated into many oper-
ation systems and products, such as Linux, Mac OS X
Version 10.1 and later, Cygwin and Nokia IPSO [59].
When a user transfers data over an encrypted tun-
nel to servers (e.g., OpenSSH) or connects through a
proxy (e.g., OpenVPN [1]), packets from different TCP
connections are merged into one tunneled connection
(server IPs and TCP information is hidden). We next
study this scenario (52).

Related Work Website fingerprinting under encrypted
tunnels has received a lot of attention and several infor-
mative features have been identified [5, 10-15, 18, 33].
To our knowledge, the earliest work was by Bissias et al.,
who proposed two features: inter-arrival time and size
of each packet, and used cross-correlation to measure
similarity of traffic from different websites [10]. Later,
Liberatore et al. [11] and Herrmann et al. [12] validated
the importance of packet size count. Lu et al. considered
sequence of packets as strings to measure their edit dis-
tance [13]. Dyer et al. utilized three coarse-grained fea-
tures: total transmission time, per-direction bandwidth,
and burst size information with the Naive Bayes Clas-
sifier [14]. Feghhi et al. used only packet timing infor-
mation in the uplink direction with a variant of the Dy-
namic Time Warping distance metric [15].

New Informative Features Table 7 lists the most
important feature categories in scenario S2. Most of
these—such as unique packet size [11, 12|, initial pack-
ets and packet position [22]—have already been used

in prior work. With TCP sub-flows being hidden, im-
portance of feature categories related to packet size is
increased (compared to S0). Due to the interleaving
of packets from multiple TCP connections in an en-
crypted tunnel, burst size can no longer be used to re-
liably infer request/response patterns when loading a
web page—thus the overall importance of burst-level
features is greatly reduced. For example, importance of
unique burst size is decreased from 5.55 to 0.64, while
burst size count is no longer in the list.

Table 7. Most informative features in S2: Encrypted Tunnel. '**’
indicates features not been discovered before.

1 unique packet size 52.264
2 packet size count 13.528
3 preposition of first 300 incoming packets 12.714
4 initial 30 packets 2.722
5 initial 30 outgoing packets 1.952
6 position of first 300 outgoing packets 1.611
7 initial 30 incoming packets 1.48

8 concentration of outgoing packets in first 2,000 packets 1.351
9 position of first 300 incoming packets 1.189
10 preposition of first 300 outgoing packets 1.141
11 alternative concentration of outgoing packets 1.099
12 ** cumulative size of first 100 packets 0.901
13 ** average inter-arrival time of first 20 packets 0.736
14  ** cumulative size with direction of first 100 packets 0.73
15  unique burst size 0.647
16 size of outgoing bursts 0.522
17  ** average inter-arrival time of first 20 outgoing packets  0.496
18 ** average inter-arrival time of first 20 incoming packets 0.491
19 concentration of first 30 outgoing packets 0.373
20 ratio of incoming packets # per TCP conn. 0.363
21  # of packets per TCP conn. 0.306
22 ** 4 of packets in a burst count 0.301
23 ** jnitial 30 incoming bursts 0.286
24  ** jnitial 30 outgoing bursts 0.272
25  # of outgoing packets per TCP conn. 0.266
26 ** initial 30 bursts 0.253
27  ** # of packets in incoming burst count 0.231
28 interpolant of cumulative packet size 0.227
29  size of incoming bursts 0.221
30 alternative outgoing packets per second 0.215

Compared to S0, we also note the increased impor-
tance of features related to the inter-arrival time be-
tween subsequent packets (inter-arrival times of first
20 incoming/outgoing packets). These features are
affected by object sizes and the number of parallel TCP
connections initiated within encrypted tunnels.



Classification Accuracy Gains We next evaluate the
classification accuracy yielded by the newly discovered
features, and compare it to features used in prior work
(Table 6). Since encrypted tunnels do not hide actual
packet size, performance of classifiers that use packet
size count as features, including H, L and P, remains
the same. With TCP sub-flows being hidden, accuracy
achieved with Vng++ [14] reduces significantly from
79.90% to 15.61%— such a significant drop is mainly
due to the decrease of importance of burst size count in
encrypted tunnels. Overall, accuracy achieved with the
best-performing features from the state-of-the-art (L),
which uses raw packet size count as features, is only
somewhat lower compared with Wfin (around 1.3%),
which further validates the informativeness of packet
size for website fingerprinting. Evaluation results with
other datasets are included in Section 12.1.

6 Padding-based Camouflaging

The distribution and sequence of packet sizes has been
demonstrated as one of the most informative features for
website fingerprinting in both prior work [11, 12, 14, 18]
and our work. In this section, we consider padding-based
privacy-enhancing techniques that hide actual packet
sizes. We evaluate these both within HTTPx transfers
as well as encrypted tunnels. In addition, we examine
the influence of techniques that camouflage inter-packet
arrival times between consecutive padded packets.

6.1 PadToMTU

We first start with HTTPz transfers and study what
features are most informative for website fingerprinting
when PadToMTU is used (53:50+PadToMTU). Due
to space limitation, detailed analysis is presented only
in [42]. The main finding is that when packet sizes
are hidden, importance of other feature categories in-
creases, such as initial packets in first TCP connection
and transmitted bytes w.r.t. server IP addresses. No-
tably, two burst-level feature categories gain importance
in this scenario: burst duration and number of packets in
a burst count. In terms of classification accuracy, Wfin
outperforms the best performing feature set from the
state-of-the-art by around 10%.

6.2 Encrypted Tunnel + PadToMTU

The next scenario we consider (54:S2+PadToMTU) re-
sembles Tor, since: (i) all packets are padded to a fix
size, and (ii) IP addresses, port numbers, and TCP sub-
flows are all hidden in TCP/IP headers, which is char-
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acteristic of Tor due to onion routing. Tor [16] aims at
protecting users’ surfing activities from eavesdropping
by routing data through several relay nodes, as well as
using layered encryption of the content. It has been re-
garded as one of the most secure networking technol-
ogy with more than 2 million current daily users [3]—
consequently, it has received a lot of attention in traffic
analysis literature in the past few years.

In 54, only limited information from packet-level
and burst-level is available and we extract around 7,600
initial features (Table 4) for importance analysis to un-
derstand whether there are other features that can be
used for website fingerprinting when actual packet size
is camouflaged within encrypted tunnels.

Related Work Tor traffic analysis has received a lot
of attention and several informative features have been
identified in prior research. Murdoch et al. showed that
an attacker with control over both-ends of a Tor connec-
tion can compromise the client’s privacy by analyzing
timing characteristics [17]. Panchenko et al. used packet
size count and several additional features, such as total
transmitted bytes and HTML Marker, with Support Vec-
tor Machines (SVM) [18]. Yu et al. took a fundamentally
different approach by utilizing browsing time intervals
to infer the length of web page and managed to iden-
tify 1,000 accessed pages using a Hidden Markov Model
(HMM) and the Viterbi algorithm [19]. Cai et al. em-
ployed the size and direction of packets as features along
with distance-based SVM [20]. Based on Cai et al. [20],
Wang et al. focused on cell as a unit of data (rather
than TCP/IP packets) with 100 websites, to define a
new metric for characterizing the similarity between two
traffic instances [21]. Apart from general size and tim-
ing features, Wang et al. added several features, such as
concentration of outgoing packets and packet ordering,
to identify 100 monitored web pages with k-NN [22].
Panchenko et al. combined four basic features identified
in [18] together with features extracted from cumula-
tive sum of packet sizes for analyzing 100 websites us-
ing Tor [23]. More recently, based on comments made by
Juarez et al. [60], Wang et al. attempted to remove as-
sumptions made in previous website fingerprinting and
gap the bridge between laboratory setups and realistic
conditions [24]. Finally, Abe et al. [25] and Rimmer et
al. [26] investigated the application of deep learning for
website fingerprinting in Tor traffic.

New Informative Features Table 8 lists the most in-
formative features for scenario S4. With even packet
sizes being hidden in encrypted tunnels, the impor-
tance of features that are accessible is increased (com-



pared to S2)—the ranking of importance remains rel-
atively stable, though. For example, importance of ini-
tial (incoming/outgoing) packets is increased from 6.33
to 16.58, and that of inter-arrival time of first 20 (in-
coming/outgoing) packets is increased from 1.83 to 6.12.
In total, the importance of features that have not been
discovered in prior studies is 22.182° (compared to 6.28
for S2), suggesting that the state of the art in Tor traf-
fic analysis was quite far from having discovered most
powerful features.

Table 8. Most informative features in S4: S2+PadToMTU. '**’
indicates features that have not been discovered before.

1 preposition of first 300 incoming packets 24.039
2 concentration of outgoing packets in first 2,000 packets 7.417
3 initial 30 incoming packets 5.906
4 alternative concentration of outgoing packets 5.673
5 ** cumulative size with direction of first 100 packets 5.65
6 initial 30 packets 5.611
7 position of first 300 outgoing packets 5.424
8 position of first 300 incoming packets 4.413
9 initial 30 outgoing packets 4.197
10 preposition of first 300 outgoing packets 4.196
11  ** average inter-arrival time of first 20 packets 2.38
12 unique burst size 1.978
13 ** average inter-arrival time of first 20 incoming packets 1.896
14  ** average inter-arrival time of first 20 outgoing packets 1.824
15 ** jnitial 30 outgoing bursts 1.761
16  ** initial 30 bursts 1.3
17 number of outgoing packets per second 1.205
18  ** # of packets in incoming burst count 1.163
19 ** # of packets in a burst count 1.108
20 alternative outgoing packets per second 0.934
21  ** outgoing burst duration 0.878
22 # of outgoing packets per TCP conn. 0.864
23 ** jnijtial 30 incoming bursts 0.862
24  ratio of incoming packets # per TCP conn. 0.842
25  concentration of first 30 outgoing packets 0.815
26 ** burst duration 0.812
27  burst size count 0.785
28  ** 4 of packets in outgoing burst 0.65
29 size of incoming bursts 0.591
30 alternative packets per second 0.558
31 concentration of last 30 incoming packets 0.463
32 interpolant of cumulative packet size 0.438
33  ** # of packets in each burst 0.432
34  concentration of last 30 outgoing packets 0.428
35 number of packets per second 0.428
36 number of incoming packets per second 0.372
37  ** 4 of packets in outgoing burst count 0.358
38 ** incoming burst duration 0.34

Classification Accuracy Gains We evaluate the web-
site classification accuracy achieved using the newly dis-
covered features, and compare it to features used in
prior work (Table 6). With packet size being camou-
flaged in encrypted tunnels, classification accuracy of
classifiers that use burst size as features (P and Vng++)
is further decreased. In this case, Wfin still outperforms

20 This is computed as the sum of importance of all feature
categories marked with "**’ in Table 8.
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the best-performing feature sets from the state-of-the-
art by around 9%. Furthermore, the overall classifica-
tion accuracy of Wfin is only slightly lower than that
achieved in S2—this indicates that despite the absence
of the powerful features related to packet sizes, our anal-
ysis methodology helps uncover several other features
that are collectively nearly as informative.

Encrypted Tunnel + PadToMTU + Fixed IAT
Our evaluation of scenario S5:54+FizedIAT yields sim-
ilar classification performance as S/ (see Table 6)—
detailed evaluation results are included in [42].

7 Unidirectional Traffic Headers

In some cases, incoming and outgoing traffic may be
routed through different links between client and server
due to asymmetric routing or security concerns (e.g.,
[61-63]).

fic may be accessible on the link being monitored.

Thus, only the incoming or outgoing traf-

We next consider the scenarios with only incoming
(S6:50+Incoming Only) and outgoing (S7:50+Outgoing
Only) HTTPz traffic available and study website finger-
printing with features derived from unidirectional traf-
fic headers. Note that while incoming traffic contains
responses sent from servers to clients for displaying ob-
jects on a website, outgoing traffic contains the requests
from clients to servers and reveals the length of url as-
sociated with each object. In prior work, Feghhi et al.
demonstrated the efficiency of using uplink time infor-
mation of packets for website fingerprinting [15]. How-
ever, to the best of our knowledge, there is mo prior
work that studies/targets website fingerprinting in uni-
directional scenarios.

7.1 Incoming Traffic Only

Informative Features Table 9 lists the most infor-
mative feature categories for scenario S6. Due to the
absence of request traffic, features related to burst size

(such as unique burst size and burst size count) are no

longer based on segmentation of request/response pat-

terns in TCP transfers. Instead, they simply denote the
total incoming bytes per TCP connection. Additional
timing-based features are significant in this scenario:

1. Dwuration of each TCP connection. This feature
category consists of the duration (time gap between
last and first packets) of each TCP connection, rel-
ative to the duration of first TCP connection. It
is likely to be influenced by object sizes (content),
transfer protocol configuration used by the server,



and the inter-arrival time between packets in each
TCP connection.

2. Relative end time of each TCP connection.
This feature computes the end time of each TCP
connection, relative to the start time of the first
TCP connection.

Table 9. Most informative features in S6: Incoming Traffic Only.
"**' indicates features that have not been discovered before.

1 unique packet size 44.566
2 unique burst size 12.356
3 unique server |IP address 10.365
4 ** jnitial 30 incoming in first TCP conn. 5.704
5 packet size count 5.425
6 initial 30 incoming packets 4.16

7 ** incoming bytes per TCP conn. w.r.t. hostname 2.404
8 ** cumulative size of first 100 packets 2.183
9 ** incoming bytes per TCP conn. 1.669
10 ** average inter-arrival time of incoming packets per TCP conn. 1.267
11  ** relative duration of each TCP conn. 1.181
12 ** count of packet number in incoming burst 0.928
13  server port count 0.917
14 ** incoming bytes per TCP conn. w.r.t. Port 443/80 0.909
15 ** average inter-arrival time of first 20 incoming packets 0.84
16  ** incoming bytes per TCP conn. w.r.t. server IP address 0.71
17 ** relative end time of each TCP conn. 0.651
18  hostname count 0.576
19 ** jnitial 30 incoming bursts 0.483
20 # of TCP conn. 0.481
21  ** 20 largest bytes per TCP conn. w.r.t. hostname 0.457
22 ** 4 of packets in incoming burst 0.434

Classification Accuracy Gains We evaluate the clas-
sification accuracy yielded by the features we have dis-
covered for scenario S6—although no prior work has
targeted this scenario before, we use features proposed
by others for other communication scenarios. Table 6
summarizes the results. We find that compared with S0,
the availability of only incoming traffic does not severely
degrade performance of classifiers that rely on packet
sizes—indeed, packet-size based features alone carry
enough information for website fingerprinting. However,
as expected, the performance of classifiers that rely on
features describing the interleaving pattern between in-
coming and outgoing packets, such as k-FP and CU-
MUL, degrades significantly. Overall, Wfin outperforms
other feature sets and the gap is around 2.7% compared
with the state of the art (L).

Outgoing Traffic Only We next consider scenar-
ios in which only outgoing HTTPx traffic is available
(87:50+0Outgoing Only). The general importance rank-
ing of different feature categories is similar to S6. De-
tailed evaluation results are included in [42].

8 Open-world Scenario Evaluation

In this section, we evaluate the performance of Wfin in
an open-world scenario, in which a client may visit a
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large world size that includes unmonitored web pages
that have never been seen by the classifier during train-
ing. We use the open-world Tor dataset collected by
Wang et al. [22] and compare Wfin with one of the
state-of-the-art classifiers—k-FP [33]. This dataset is
composed of 100 monitored web pages, each with 90
instances, and 8,900 non-monitored websites each with
a single instance. With the same experimental setup as
n [33], the classifier is trained on 60 instances for each
of the 100 monitored web pages and 3500 unmonitored
web pages, and the client can browse to any of those
monitored web pages or to 5,000 unmonitored ones.

The aim of the classifier is to determine whether the
client is visiting one of the monitored web pages and
establish which one. Since the dataset is imbalanced,
the performance is measured in terms of true positive
rate?! (TPR), false positive rate?? (FPR), and bayesian
detection rate?® (BDR), and is shown in Table 10: Wfin
is able to correctly classify a monitored web page 92%
of the time (compared to 88% with k-F'P).

Table 10. Open-world performance (%) of k-FP and Wfin with
Wang et al. dataset [22].

TPR FPR BDR
k-FP  0.88+0.01 0.0051+0.001 0.997
Wfin  0.924+0.01 0.006+0.001 0.996

9 Recent Countermeasures

Several countermeasures have been proposed over the
past decade to camouflage informative features such as
packet sizes. We next evaluate the performance of Wfin
in the presence of several of these, including traffic mor-
phing [30], Decoy [18], BuFLO [14], Tamaraw [28] and
Walkie-Talkie [31]. It is important to note that the Wfin
features used in this section are the same as those that
were derived in the corresponding scenarios in Sections
4-7—Wfin has not been re-derived with these new coun-
termeasures in place. In [42], we include evaluations that
show that the classification performance obtained using
the above approach matches that obtained when Wfin
is rederived with the BuFLO countermeasure.

21 Pr that a monitored page is classified correctly, a.k.a. recall.
22 Pr that an unmonitored page is classified as monitored.

23 Pr that a page is correctly classified when the classifier rec-
ognized it as a monitored page, also called precision.



9.1 Our Dataset

Encrypted Tunnel (S2) First, we evaluate the per-
formance of Wfin against countermeasures with 2,000
websites from our dataset in S2 and compare with CU-
MUL and k-FP, which are two state of the art classifiers.
The outcomes are shown in Table 11. As can be seen,
Wfin outperforms both CUMUL and k-FP in face of
countermeasures due to its high diversity in the feature
set. The difference ranges between 0.2% to 20%.

Table 11. Closed-world accuracy (%) against countermeasures
with our dataset in S2.

CUMUL k-FP  Wfin
Morphing 74.78 77.41 82.17
Decoy 8.18 12.93 33.24
BuFLO (=0, 5=0.08) 6.97 6.63 7.19

Encrypted Tunnel + PadToMTU (S4) We evaluate
performance of Wfin against countermeasures in S4 and
display the outcomes in Table 12. Wfin still outperforms
both CUMUL and k-FP and the gap falls between 0.5%
to 7%.

Table 12. Closed-world accuracy (%) against countermeasures
with our dataset in 54.

CUMUL k-FP Wrfin
Morphing 84.19 82.05 91.82
Decoy 8.35 11.63 16.61
BuFLO (=0, 5=0.08) 4.54 4.9 5.46

9.2 Wang et al. Tor Dataset [22]

Next, we compare performance of Wfin and k-FP
against four types of countermeasures shown in Table
13 in both closed-world and open-world scenarios with
the Tor dataset [22].

Closed-world Scenario In closed-world scenario, we
use 90 instances from each of the 100 monitored web
pages for training and testing with 10-fold cross vali-
dation. In general, Wfin outperforms k-FP in face of
countermeasures due to its high diversity in feature
types. The most efficient countermeasure is Tamaraw
[28], which aims at hiding packet size and ordering by
sending packets in fixed size and injecting junk packets.

Table 13. Closed-world accuracy against countermeasures with
Wang et al. dataset [22].

k-FP | Wfin
Morphing 0.91 | 0.93
Decoy 0.35 | 0.53
BuFLO (7=0, 3=0.08) 0.21 0.24
Tamaraw (Bo.,:=0.04, 3;,=0.012) | 0.10 0.11
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Open-world Scenario In open-world scenario, we
measure the TPR, FPR and BDR of k-FP and Wfin
against countermeasures under the same setup in Sec-
tion 8. The outcomes are shown in Table 14. In face
of BuFLO, Wfin is able to correctly classify a website
24% of the time, while k-FP is able to correctly classify
with 5% probability. In the worst case against Tama-
raw, Wfin still outperforms k-FP around 8% in terms
of TPR. Overall, Wfin is able to achieve higher TPR,
lower FPR and higher BDR in face of different counter-
measures in open-world scenario compared with k-FP.

Table 14. Open-world performance of k-FP and Wfin against
countermeasures with Wang et al. dataset [22].

k-FP Wrfin
TPR | FPR BDR | TPR | FPR BDR
Morphing | 0.86 | 0.006 | 0.996 | 0.92 | 0.007 | 0.996
Decoy 0.18 | 0.033 | 0.915 | 0.51 | 0.010 | 0.991
BuFLO 0.05 0.0 1.0 0.24 0.0 1.0
Tamaraw | 0.02 0.0 1.0 0.10 0.0 1.0

9.3 Walkie-Talkie [31]

Finally, we evaluate the performance of Wfin and k-FP
against a fairly recent countermeasure—Walkie-Talkie
[31]—with two Tor datasets collected by Wang et al. [31]
in open-world scenario (shown in Table 15). The experi-
mental setup is the same as in previous sections and the
datasets consist of 100 websites, each with 100 instances,
and 10,000 websites each with one instance.?* Without
Walkie-Talkie, Wfin outperforms k-F'P by around 7% in
terms of TPR. The gap is further increased to 15% with
the Tor dataset protected by Walkie-Talkie.

Table 15. Open-world performance of k-FP and Wfin against Tor
(Undefended) and Tor with Walkie-Talkie [31] (Defended).

Undefended Defended
TPR FPR BDR | TPR FPR BDR
k-FP | 0.76 | 0.113 | 0.902 | 0.20 | 0.027 | 0.899
Wfin | 0.83 | 0.018 | 0.989 | 0.35 | 0.012 | 0.982

10 Discussion & Conclusions

In this paper, we conduct an exhaustive feature impor-
tance analysis in eight different communication scenar-
ios for website fingerprinting. Using a careful methodol-
ogy for listing, reducing, grouping, and evaluating fea-

24 The reason why we do not evaluate Walkie-Talkie in our
dataset and Wang et al. [22] dataset is because Walkie-Talkie
requires browsers to work in half-duplex mode and both datasets
are collected in the normal full-duplex mode.



tures, we (i) discover several previously-unknown infor-
mative feature categories, and (ii) outperform the fea-
tures used in the state of the art with the feature set
derived from our methodology across all eight commu-
nication scenarios. More specifically, by analyzing the
importance of different feature categories across all sce-
narios, we discover the following:

—  When available in HTTPz (S50/1), encrypted tun-
nel (S2) and unidirectional scenario (S6/7), fea-
tures derived from actual packet size alone, such as
packet size count and unique packet size, are infor-
mative enough to achieve comparable performance
with state of the art.

— Although the importance of server IP addresses
and hostnames has been partially revealed in pre-
vious studies [7, 8], more informative features can
be extracted from server IP addresses and host-
names, such as transmitted bytes per TCP conn.
w.r.t. server IP addresses/hostnames, to fingerprint
a website when TCP
(50/3). The performance is promising even in uni-

sub-flows are not hidden

directional scenarios (S6/7).

— When packet size are hidden in HTTPz (S5%), im-
portances of features extracted from server IP ad-
dresses and hostnames, and from TCP-level, such
as initial packets in first TCP connection, ratio of
incoming bytes per TCP connection are increased.
Furthermore, features extracted from first TCP con-
nection in TCP-level are among the most informa-
tive ones.

—  When TCP sub-flows are multiplexed via encrypted
tunnels (52/4), features derived from burst-level are
no longer as informative as expected, although they
are intended to describe the request/response pat-
tern and have been widely used in prior studies
14, 18, 22].

—  With packet size being hidden in encrypted tunnel
(S4), features describing packet ordering become
most informative, such as preposition of incoming
packets, initial packets and cumulative packet size
with direction. This suggests the potential of de-
ploying deep learning in identifying websites in Tor
[25, 26] since one powerful ability of deep learning
methods is to exploit input sequence ordering.

— Top informative features across all communica-
tion scenarios include position/preposition of pack-
ets, initial packets, concentration of outgoing pack-
ets and cumulative packet size with direction. Those
features are extracted from both packet size and di-
rection and reveal packet ordering. Thus they are
more robust across all communication scenarios.
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We believe this work is an important step in a new

direction—that of searching for the limits of learn-

ability. Our feature selection methodology can also be
applied to other fields of traffic analysis—such as finger-
printing of applications, protocols, online user activity,
and type of content [58, 64—66]—in order to identify the
most informative features and better serve their goals.

However, there are several practical issues that need
to be explored in future work to bridge the gap between
our experimental findings and the real world:

—  Traffic segmentation. Most Internet links aggregate
traffic from multiple sources and clients. Before the
traffic of a given web page download can be fed to
a classifier, it must be extracted from an aggre-
gated traffic trace—indeed, current fingerprinting
techniques all assume and rely on this preprocessing
step. However, there is only scant prior work on pro-
viding a solution—Feghhi et al. [15] and Wang et al.
[24] have utilized timing information and machine
learning techniques, respectively. Nevertheless, this
still remains a challenging open issue.

—  Influence of cache. While Miller et al. [8] studied
the effect of cache on website fingerprinting with
HTTPS traffic, most of prior studies have disabled
cache during data collection to rule out the impact
of caching on the traffic trace—when objects are
cached locally, less packets are observed in the traf-
fic trace. Thus, an open question for this paper is
how will caching impact feature importance. One
speculation is that the relative importance of each
feature category will change while the overall rank-
ing remains stable. It is also worth noting that the
influence of caching depends strongly on the time
gap between consecutive visits to a web page—this
adds diversity to real world traffic, which must be
incorporated in training and testing conditions.

—  Diverse browser platforms. There is significant di-
versity in the browser platforms used by Internet
clients. It is important to study the influence of
browsers on website fingerprinting—especially when
the browsers platforms used in the training and test-
ing datasets are different.

— HTTP/2. With the growing adoption of HTTP/2
[67-69],
pipelined /parallel download of objects is becom-

features such as server push and
ing increasingly commonplace. We speculate these
new features will make website fingerprinting more
challenging under the HTTPx scenario since they
directly influence several of the important traf-
fic features we have identified. Understanding this

influence remains an important future work.
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11 A complete list of features

In this part, we present the complete list of features
have extracted in this work in a format of <category
index - description (number of features)>. Statistical
derivatives includes sum, maz, min, mean, 25/50/75/90
percentile and standard deviation.

Packet-level 1-packet size count (366), 2-unique packet size
(366), 3-number of packets per TCP conn. (9), 4-number of in-
coming packets per TCP conn. (9), 5-number of outgoing pack-
ets per TCP conn. (9), 6-ratio of incoming packet number per
TCP?5(10), 7-packet frequency?® (1), 8-incoming packets fre-
quency (1), 9-outgoing packets frequency (1), 10-cumulative size
of first 100 packets?” (100), 11-cumulative size with direction of
first 100 packets (100), 12-interpolant of cumulative packet size
(100) [23], 13-concentration of outgoing packets in first 2,000
packets?® (109), 14-alternative concentration of outgoing pack-
ets2? (28), 15-concentration of first 30 incoming packets (1), 16-
concentration of first 30 outgoing packets (1), 17-concentration
of last 30 incoming packets (1), 18-concentration of last 30 out-
going packets (1), 19-number of packets per second in 60s3° (68),
20-number of incoming packets per second (68), 21-number of
outgoing packets per second (68), 22-alternative packets per sec-
ond 3! (29), 23-alternative incoming packets per second (29),
24-alternative outgoing packets per second (29), 25-initial 30
packets32 (30), 26-initial 30 incoming packets (30), 27-initial 30

25 Include overall ratio of incoming packets in a trace.

26 Ratio between total number of packets and trace duration.
27 The nth cumulative packet size is calculated by summing up
total size of first n packets. For example, given a packet sequence
of [-100, 100, -70], first 3 cumulative packet size is [100, 200, 270]
and first 3 cumulative packet size with direction is [-100, 0, -70].
28 Ratio of outgoing packets in every 20 non-overlapping pack-
ets [22, 33]. We focus on first 2,000 packets.

29 This feature is calculated by splitting concentration of out-
going packets feature list (12) into 20 evenly sized subsets and
sum each subset [33].

30 Number of packets in each second along with their statistical
derivatives [33]. Number of features in this category determines
by the maximum time it takes to load a page in training data
and we focus on first 60s.

31 Create 20 even sized subsets for the number of packets per
second feature list (19/20/21) and calculate sum of values in
each subset [33].

32 Direction and size of first 30 packets in a traffic trace [22].
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outgoing packets (30), 28-initial 30 packets in first TCP conn.33
(30), 29-initial 30 incoming packets in first TCP conn. (30), 30-
initial 30 outgoing packets in first TCP conn. (30), 31-position
of first 300 outgoing packets3* (309), 32-preposition of first 300
outgoing packets3® (309), 33-position of first 300 incoming pack-
ets (309), 34-preposition of first 300 incoming packets (309), 35-
average inter-arrival time of first 20 packets36(20), 36-average
inter-arrival time of first 20 incoming packets (20), 37-average
inter-arrival time of first 20 outgoing packets (20), 38-average
inter-arrival time between packets (1), 39-average inter-arrival
time between incoming packets (1), 40-average inter-arrival time
between outgoing packets (1), 41-trace duration (1), 42-duration
of incoming packets (1), 43-duration of outgoing packets (1),

TCP-level 44-average inter-arrival time between consecutive
packets per TCP conn.37 (209), 45-average inter-arrival time be-
tween incoming packets per TCP conn. (209), 46-average inter-
arrival time between outgoing packets per TCP conn. (209) 47-
relative start time of each TCP conn.3® (208), 48-relative end
time of each TCP conn. (208), 49-relative duration of each TCP
conn. (208), 50-number of TCP conn. (1), 5l-incoming bytes
per TCP conn. (208), 52-outgoing bytes per TCP conn. (208),
53-total bytes per TCP conn. (208), 54-ratio of incoming bytes
to total transmitted bytes per TCP conn. (208), 55-20 largest
transmitted bytes per TCP conn.3? (20), 56-20 largest incoming
bytes per TCP conn. (20), 57-20 largest outgoing bytes per TCP
conn. (20),

Burst-level 58-burst size count?® (4,555%), 59-unique burst size
(4,555%), 60-number of incoming bursts per TCP conn. (209), 61-
number of outgoing bursts per TCP conn. (209), 62-number of
bursts per TCP conn. (209), 63-ratio of incoming burst number
per TCP conn. (210), 64-burst duration (8), 65-incoming burst
duration (9), 66-outgoing burst duration (9), 67-size of incoming
bursts (9), 68-size of outgoing bursts (9), 69-ratio of incoming

33 Direction and size of first 30 packets in first TCP connection.
34 A list of features that indicate the total number of packets
seen before each outgoing packet in the sequence [33].

35 Number of incoming packets between current outgoing
packet and the previous outgoing packets.

36 It is calculated by adding up inter-arrival time between nth
and (n+1)th packet in each TCP connection and dividing it by
the total number of TCP connections in the traffic trace. We
focus on first 20 time intervals.

37 For each TCP connection, we calculate the average inter-
arrival time between consecutive packets. This feature category
includes calculate the overall statistical derivatives and values
taken from first 200 TCP connection.

38 Start time and end time for each of the first 200 TCP con-
nections, relative to the start time of the first TCP conn.

39 It is calculated by sorting total transmitted bytes in each
TCP in a descending order and select the top 20.

40 Burst size is defined as the total size of consecutive packets
sent in one direction. Burst size count indicates the number of
bursts with size X in a traffic trace. The range of X is deter-
mined by the maximum size of consecutive packets sent in one
direction. In our dataset, number of features in this category is
4,555 when rounded to an incremental of 600.



bursts size per TCP conn.(8), 70-number of packets in a burst
count*! (109*), 71-number of packets in incoming burst count
(109*), 72-number of packets in outgoing burst count (16*), 73-
number of packets in each burst (8), 74-number of packets in
each incoming burst (8), 75-number of packets in each outgoing
burst (8), 76-initial 30 bursts in first TCP conn.*? (30), 77-
initial 30 incoming bursts in first TCP conn. (30), 78-initial 30
outgoing bursts in first TCP conn. (30), 79-initial 30 bursts (30),
80-initial 30 incoming bursts (30), 81-initial 30 outgoing bursts
(30), 82-size and direction of the first incoming burst (HTML
size [18]) (1),

Port-level 83-number of unique server port*3 (1), 84-server port
count?* (21*), 85-unique server port?® (21*), 86-transmitted
bytes per TCP conn. w.r.t. port 80/443%6 (18), 87-incoming
bytes per TCP conn. w.r.t. port 80/443 (18), 88-outgoing bytes
per TCP conn. w.r.t. port 80/443 (18), 89-ratio of incoming
bytes w.r.t. port 80/443 (2),

IP address-level 90-number of unique sever IP addresses
(1), 91-server IP address count*® (8,727*), 92-20 largest server
IP address count (20), 93-unique server IP address (8,727%),
94-transmitted bytes per TCP conn. w.r.t. server IP address??

47

(180), 95-incoming bytes per TCP conn. w.r.t. server IP ad-
dress(180), 96-outgoing bytes per TCP conn. w.r.t. server IP
address (180), 97-ratio of incoming bytes per TCP conn. w.r.t.
server IP address (160), 98-20 largest transmitted bytes per TCP
conn. w.r.t. server IP address®® (20), 99-20 largest incoming
bytes per TCP conn. w.r.t. server IP address (20), 100-20 largest

outgoing bytes per TCP conn. w.r.t. server IP address (20),

41 It indicates the number of bursts contain n packets in a
traffic trace. Up-bound of n determines by the maximum number
of consecutive packets sent in one direction in training set, which
is 109 in our dataset.

42 It indicates size and direction of first 30 bursts.

43 Number of different server ports seen in a traffic trace.

44 Tt indicates number of TCP connections that are sent over
port X. Values of X is determined by how many different server
ports have been seen in training data.

45 It indicates whether a specific server port (such as 443,80)
has been used for transmitting data in a traffic trace. If yes, set
it to 1 else 0.

46 It calculates statistical derivatives about packet sent over
port 80/443 in each TCP connection.

47 It illustrates the number of different server addresses a client
connects with to load a website.

48 It counts the occurrence of each server address in a traffic
trace. Number of this feature depends on how many different
server addresses are seen in the training dataset, which in our
case is around 8,727.

49 We focus on transmitted bytes per TCP connection w.r.t.
20 most common IP addresses in our dataset.

50 We compute the total transmitted bytes with each server
address in a traffic trace and record the 20 largest value in a
descending order.
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101-number of unique hostnames®! (1), 102-hostname count®?
(1,141%*), 103-transmitted bytes per TCP conn. w.r.t. host-
name®® (160), 104-incoming bytes per TCP conn. w.r.t. host-
name (180), 105-outgoing bytes per TCP conn. w.r.t. hostname
(180), 106-ratio of incoming bytes per TCP conn. w.r.t. host-
name (160), 107-20 largest transmitted bytes per TCP conn.
w.r.t. hostnames®# (20), 108-20 largest incoming bytes per TCP
conn. w.r.t. hostname (20), 109-20 largest outgoing bytes per
TCP conn. w.r.t. hostname (20)

20 most common server IP address in our dataset 1-
216.58.217, 2-204.85.30, 3-204.85.32, 4-31.13.69, 5-31.13.71, 6-
216.58.218, 7-172.217.1, 8-54.192.19, 9-151.101.32, 10-52.85.142,
11-68.67.178, 12-8.43.72, 13-216.58.195, 14-172.217.2, 15-
74.119.118, 16-199.16.156, 17-173.241.242, 18-72.21.91, 19-
66.150.48, 20-199.96.57,

20 most common hostnames in our dataset 1-1e100.net. , 2-
amazonaws.com. , 3-akamaitechnologies.com. , 4-cloudfront.net.
, 5-fbedn.net.
adnexus.net. , 9-yahoo.com. , 10-quantserve.com , 11-openx.org

6-facebook.com. , 7-sl-reverse.com. , 8-

, 12-googleusercontent.com. , 13-aol.com. , 14-nr-data.net. , 15-
turn.com. , 16-yandex.ru. , 17-hwcdn.net. , 18-btrll.com. , 19-a-
msedge.net. , 20-omtrdc.net. ,

12 Additional Evaluations

12.1 Performance with other datasets

We next use two datasets made available by prior work
to study our feature selection methodology.

SSH2000 Dataset [11] We evaluate the performance
of Wfin with the data on 2,000 websites in SSH2000
[11]—for scenarios S2, S4, and S5. The results are sum-
marized in Table 16. As can be seen, the difference in
performance of Wfin and the best-performing features
from the state-of-the-art is quite significant—5.65%,
17.16%, and 20.64%, respectively, across the three sce-
narios. We also find that the classifiers that rely on
packet size do not perform as well with this dataset
(compared to our dataset). We suspect this is due to
less uniqueness in packet sizes in SSH2000 (according to
analysis in [11]). On the other hand, accuracy obtained
with DTW is higher in SSH2000 than with our dataset,
which suggests that packet times in SSH2000 are more
unique for each website. This is also supported by the

51 It computes the number of different second-level hostnames
a client connects with to load a website.

52 It indicates how many TCP connections each hostname con-
nects with to load a website.

53 We focus on transmitted bytes per TCP connection w.r.t.
20 most common hostnames in our dataset.

54 We compute the total transmitted bytes per hostname in
a traffic trace and record the 20 largest value in a descending
order.
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Table 16. Performance comparison between different sets of features with 2,000 websites in SSH2000.

H L P Vng++ | DTW | CUMUL | FLSVM k-FP Wrin
S2: Encrypted Tunnel | *76.02 | *74.75 | *74.05 | *47.88 34.03 69.28 70.64 %63.13 81.67
S4: S2+PadToMTU 7.06 15.81 29.24 30.99 58.09 27.04 80.29
S5: S4+Fixed IAT 29.17 26.62 45.69 54.91 75.55

Table 17. Top 30 informative features in S2: Encrypted Tunnel
with 2,000 websites from SSH2000. '**' indicates features that
have not been discovered before.

1 unique packet size 28.27
2 preposition of first 300 incoming packets 8.72

3 packet size count 6.466
4 position of first 300 incoming packets 6.173
5 unique burst size 4.678
6 ** jnitial 30 outgoing bursts 4.045
7 concentration of outgoing packets in first 2,000 packets 2.656
8 initial 30 packets 2.519
9 size of outgoing bursts 2.401
10 position of first 300 outgoing packets 2.279
11 alternative concentration of outgoing packets 2.259
12 initial 30 outgoing packets 2.204
13 ratio of incoming bursts size per TCP conn. 2.001
14  burst size count 1.902
15 ** cumulative size with direction of first 100 packets 1.897
16  ** initial 30 bursts 1.741
17  ** average inter-arrival time of first 20 packets 1.741
18 preposition of first 300 outgoing packets 1.695
19  ** average inter-arrival time of first 20 outgoing packets 1.586
20 ** burst duration 1.529
21  ** average inter-arrival time of first 20 incoming packets 1.165
22 ** outgoing burst duration 1.075
23 initial 30 incoming packets 1.042
24 concentration of first 30 incoming packets 0.902
25  size of incoming bursts 0.799
26 concentration of first 30 outgoing packets 0.72

27  ** incoming burst duration 0.694
28  ** cumulative size of first 100 packets 0.672
29  ** jnitial 30 incoming bursts 0.671
30 ratio of incoming packets # per TCP conn. 0.659

gap between the performance of Vng++ (which uses to-
tal transmission time as one of three features) in each
dataset. When inter-arrival times are fixed (S5), clas-
sification accuracy obtained with features proposed in
k-FP decreases from 63.13% to 54.91% with SSH2000,
while in our dataset the performance gap is less than
1%. This further supports the conclusion about unique
timing information in SSH2000, since k-FP uses three
features extracted from packet timestamp.

Tor dataset [22] We evaluated the performance of our
classifier with a public Tor dataset provided by Wang et
al.[22], which is collected by visiting 100 websites each
90 times with Tor browser. With the informative fea-
tures identified in S4, we are able to achieve an accu-
racy of around 92.21% with 90 instances per website (60
for training and 30 for testing) using Extra-Trees—this
is comparable to the accuracy 0.91 + 0.03 reported in
[22]. Based on estimation of bayes error about samples
in Tor dataset in [35], an accuracy around 91% may be

Table 18. Performance evaluation by using classifier introduced in
previous work with 2,000 websites in our dataset.

H L P Vng++ | CUMUL | FLSVM k-FP Wrin
S0 97.96
S1 | *92.51 92.48 9369 39.88 82.85 76.20 97.73
52 *03.08 | *7.60 *gg.18 | 07.41
53 63.10 | 33.04 97.54
54| 013 | 3131 [ *10.87 | 31.69 | *84.18 | 63.15 96.83
S5 10.61 | 26.45 86.10 | 95.44
S6 | 94.45 | 84.65 | 8362 | 1344 | 33.80 | 83.20 | 73.67 | 96.70
57 | 88.88 | 8530 | 9343 | 2433 | 3659 | 76.20 | 64.23 | 96.76
the best performance we are able to obtain with this

Tor dataset in a closed-world experiment.

12.2 Influence of Classifier

In Section 4-7, we have evaluated the performance of
different feature sets on classification accuracy by using
the Extra-Trees classifier. In order to understand the po-
tential impact of different machine learning algorithms
on classification performance, we next evaluate classifi-
cation accuracy achieved using the respective machine
learning algorithm proposed in the original work. Table
18 summarizes the results. Comparing with Table 6, two
observations are worth emphasizing here:

1. Classifiers do affect classification performance. For
example, with the same input data samples and fea-
tures, accuracy achieved with Extra-Trees is higher
in most cases, compared to Bayes classifiers such as
Naive Bayes (L) and Multinomial Bayes (H).
Extra-Trees does not outperform in all cases. For ex-
ample, SVM, which is the original machine learning
algorithm used in P, outperforms Extra-Trees in 54
and S5 (in which P performs poorly); while in other
scenarios, such as SO and S (in which P performs
well), Extra-Trees performs better than SVM.

More fundamentally, we believe that our analysis sug-
gests that any website fingerprinting research must sep-
arately evaluate the impact of the feature set and the
machine learning algorithm being used, in order to help
us better understand the improvement in the proposed
work compared to others. This is especially important
for prior work that combines results from either multiple
layers of classifiers, or employs additional models (e.g.,
HMM) for improving classification performance [8, 33].
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