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Abstract:
ferential privacy in the non-interactive setting is to

A key challenge facing the design of dif-

maintain the utility of the released data. To overcome
this challenge, we utilize the Diaconis-Freedman-Meckes
(DFM) effect, which states that most projections of
high-dimensional data are nearly Gaussian. Hence, we
propose the RON-Gauss model that leverages the novel
combination of dimensionality reduction via random or-
thonormal (RON) projection and the Gaussian genera-
tive model for synthesizing differentially-private data.
We analyze how RON-Gauss benefits from the DFM
effect, and present multiple algorithms for a range of
machine learning applications, including both unsuper-
vised and supervised learning. Furthermore, we rigor-
ously prove that (a) our algorithms satisfy the strong
e-differential privacy guarantee, and (b) RON projec-
tion can lower the level of perturbation required for dif-
ferential privacy. Finally, we illustrate the effectiveness
of RON-Gauss under three common machine learning
applications — clustering, classification, and regression
— on three large real-world datasets. Our empirical re-
sults show that (a) RON-Gauss outperforms previous
approaches by up to an order of magnitude, and (b) loss
in utility compared to the non-private real data is small.
Thus, RON-Gauss can serve as a key enabler for real-
world deployment of privacy-preserving data release.
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Data Release

1 Introduction

In an era of big data and machine learning, our digital
society is generating a considerable amount of personal
data at every moment. These data can be sensitive, and
as a result, significant privacy concerns arise. Even with
the use of anonymization mechanisms, privacy leakage
can still occur, as exemplified by Narayanan et al. [91],
Calandrino et al. [24], Barbaro and Zeller [8], Haeberlen
et al. [53], and Backes et al. [4]. These privacy leaks
have motivated the design of formal privacy analysis. To
this end, differential privacy (DP) has become the gold
standard for a rigorous privacy guarantee [15, 35-37,
39]. Many mechanisms have been proposed to comply
with differential privacy [15, 26, 28, 36, 39, 41, 57, 76, 84,
93, 128], and various implementations of differentially-
private systems have been presented in the literature
1, 14, 44, 45, 51, 74, 79, 112, 117, 129].

There are two settings under differential privacy —
interactive and non-interactive [35]. Among the two, the
non-interactive setting has traditionally been more chal-
lenging to implement due to the fact that the pertur-
bation required is often too high for the published data
to be truly useful [11, 21, 40, 118]. However, this set-
ting is still attractive, as there are incentives for the
data collectors to release the data in order to seek out-
side expertise, e.g. the Netflix prize [97], and OpenSNP
[116]. Concurrently, there are incentives for researchers
to obtain the data in their entirety, as existing software
frameworks for data analytics could be directly used
[11, 80]. Particularly, in the current era when machine
learning has become the ubiquitous tool in data anal-
ysis, non-interactive data release would allow virtually
instant compatibility with existing learning algorithms.
For these reasons, we aim to design a non-interactive
differentially-private (DP) data release system.

In this work, we draw inspiration from the Diaconis-
Freedman-Meckes (DFM) effect [87], which shows that,
under suitable conditions, most projections of high-
dimensional data are nearly Gaussian. This effect sug-
gests that, although finding an accurate model for
a high-dimensional dataset is generally hard [18][122,
chapter 7], its projection onto a low-dimensional space
may be modeled well by the Gaussian model. With
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respect to the application of non-interactive DP data
release, this is particularly important because, in DP,
simple statistics can generally be privately learned ac-
curately [38, 42], while privately learning the database
accurately is generally much more difficult [21, 118, 124].

To apply the DFM effect to the non-interactive
DP data release, we combine two previously non-
intersecting methods — dimensionality reduction (DR)
[13, 66, 68, 78, 128, 137] and parametric generative
model [11, 59, 81, 94, 98, 106, 134]. Although each
method has independently been explored for the appli-
cation of non-interactive private data release, without
properly combining the two, the DFM effect has not
been fully utilized. As we show in this work, combining
the two to utilize the DFM effect can lead to signifi-
cant gain in the utility of the released data. Specifically,
we closely investigate the DFM theorem by Meckes [87]
and propose the RON-Gauss model for non-interactive
private data release, which combines two techniques —
random orthonormal (RON) projection and the Gaus-
sian generative model. The first component is the DR
technique used for two purposes: reducing the sensitivity
(similar to previous works [13, 66, 68, 78, 128, 137]) and
triggering the DFM effect (which is a first, to the best of
our knowledge). The second component is the paramet-
ric model used to capture the Gaussian nature of the
projection and to allow an accurate DP data modeling.

We present three algorithms for RON-Gauss that
can be applied to a wide range of machine learning ap-
plications, including both unsupervised and supervised
learning. The supervised learning application, in partic-
ular, provides an additional challenge on the conserva-
tion of the training label through the sanitization pro-
cess. Unlike many previous works, RON-Gauss ensures
the integrity of the training label of the sanitized data.
We rigorously prove that all of our three algorithms pre-
serve the strong e-differential privacy guarantee. More-
over, to show the general applicability of our idea, we
extend the framework to employ the Gaussian Mixture
Model (GMM) [12, 90].

Finally, we evaluate our approach on three large
real-world datasets under three common machine learn-
ing applications under the non-interactive setting of
DP — clustering, classification, and regression. The non-
interactive setting is attractive for these applications
since it allows multiple data-analytic algorithms to be
run on the released DP-data without requiring addi-
tional privacy budget like the interactive setting. We
demonstrate that our method can significantly improve
the utility performance by up to an order of magnitude
for a fixed privacy budget, when compared to four prior

methods. More importantly, our method has small loss

in utility when compared to the performance of the non-

private real data.
We summarize our contribution as follows.

—  We exploit the DFM effect for utility enhancement
of differential privacy in the non-interactive setting.

— We propose an approach consisting of random or-
thonormal projection and the Gaussian generative
model (RON-Gauss) for non-interactive DP data re-
lease. We also extend this model to the Gaussian
Mixture Model (GMM).

— We present three algorithms to implement RON-
Gauss that are suitable for both the unsupervised
and supervised machine learning tasks.

—  We rigorously prove that our RON-Gauss algo-
rithms satisfy the strong e-differential privacy.

— We evaluate our method on three real-world
datasets on three machine learning applications un-
der the non-interactive DP setting — clustering, clas-
sification, and regression. The experimental results
show that, when compared to previous methods,
our method can considerably enhance the utility
performance by up to an order of magnitude for
a fixed privacy budget. Finally, compared to the
non-private baseline of using real data, RON-Gauss
incurs only a small loss in utility across all three
machine learning tasks.

Roadmap: We discuss prior works in Section 2, and
present the background components of our approach,
including details of the DFM effect, in Section 3. Then,
we present the proposed RON-Gauss model — along with
its theoretical analysis, algorithms for both supervised
and unsupervised learning, and the privacy proofs — in
Section 4. Finally, we present experimental results show-
ing the strength of RON-Gauss in Section 5, and the
discussion in Section 6.

2 Prior Works

Our work focuses on non-interactive differentially-
private (DP) data release. Since our method involves
dimensionality reduction and a generative model, we
discuss the relevant works under these frameworks.

2.1 Generative Models for Differential
Privacy

The use of generative models for non-interactive DP
data release can be classified into two groups accord-
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ing to Bowen and Liu [17]: non-parametric generative
models, and parametric generative models.

2.1.1 Non-Parametric Generative Models

Primarily, these models utilize the differential privacy
guarantee of the Exponential mechanism [84], which
defines a distribution to synthesize the data based on
the input database and the pre-defined quality func-
tion. Various methods — both application-specific and
application-independent — have been proposed [10, 16,
31, 52, 56, 57, 74, 77, 83, 84, 89, 98, 124, 127]. Our
approach contrasts these works in two ways. First, we
consider a parametric generative model, and, second,
we augment our model with dimensionality reduction to
trigger the DFM effect. We will compare our method to
this class of model by implementing the non-parametric
generative model based on Algorithm 1 in [16].

2.1.2 Parametric Generative Models

Our method of using the Gaussian generative model, as
well as the Gaussian Mixture Model, falls into this cat-
egory. We aim at building a system that can be applied
to various applications and data-types, i.e. application-
independent. However, many previous works on non-
interactive DP data release are application-specific or
limited by the data-types they are compatible with.
Thus, we discuss these two types separately.

2.1.2.1 Application-Specific

These models are designed for specific applications or
data-types. For example, the works by Sala et al. [106]
and by Proserpio et al. [98] are for graph analysis, the
system by Ororbia et al. [94] is for plaintext statis-
tics, the analysis by Machanavajjhala et al. [81] is for
commuting pattern analysis, the Binomial-Beta model
by McClure and Reiter [82] and Bayesian-network by
Zhang et al. [134] are for binary data, and the LDA
model by Jiang et al. [66] is for binary classification.
In contrast, in this work, we aim at designing an
application-independent generative model.

2.1.2.2 Application-Independent

These generative models are less common, possibly due
to the fact that releasing data for general analytics of-
ten requires a high level of perturbation that impacts
data utility. Bindschaedler et al. [11] design a system
for plausible deniability, which can be extended to (e, d)-
differential privacy. Acs et al. [3] design a system based

on two steps — kernel K-means clustering and generative
neural networks — to similarly provide (e, §)-differential
privacy. In contrast, our work aims at providing the
strictly stronger e-differential privacy. Another previous
method is MODIPS by Liu [80], which applies statisti-
cal models based on the concept of sufficient statistics
to capture the distribution of the data, and then syn-
thesizes the data from the differentially-private models.
This general idea is, in fact, closely related to the Gaus-
sian generative model employed in this work. However,
the important distinction is that MODIPS is not accom-
panied by dimensionality reduction — a step which will
be shown to enhance the utility of released data via the
DFM effect. For comparison, we implement MODIPS in
our experiments and show the improvement achievable
by RON-Gauss.

2.2 Dimensionality Reduction and
Differential Privacy

Traditionally, data partition and aggregation [28, 31, 57,
58, 60, 61, 75, 93, 98-100, 130, 133, 136] have been ap-
plied to enhance data utility in differential privacy. In
contrast, our work utilizes the DFM effect for the utility
enhancement, of which an important component is di-
mensionality reduction (DR) using the RON projection.
We present previous works pertaining to the use of DR
in DP here. However, although previous works have ex-
plored the use of DR to directly provide DP or to reduce
the sensitivity of the query, our work, in contrast, uses
DR primarily to trigger the DFM effect for enhancing
data utility in the non-interactive setting.

2.2.1 Random Projection

For suitable query functions, random projection has
been shown to preserve differential privacy [13, 119,
120]. Alternatively, random projection has also been
used to enhance the utility of differential privacy. Mul-
tiple types of random projections have been used with
the identity query for non-interactive DP data release
for both purposes. For example, Blocki et al. [13], Ken-
thapadi et al. [68], Zhou et al. [137], and Xu et al.
[132] use a random matrix whose entries are i.i.d. Gaus-
sian, whereas Li et al. [78] use i.i.d. Bernoulli entries.
However, there are three main contrasts to our work.
(1) While Blocki et al. [13] use random projection to
preserve differential privacy, we use random projection
to enhance utility via the DFM effect. (2) Instead of
i.i.d. Gaussian or Bernoulli entries, we use random or-
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thonormal (RON) projection to ensure the DFM effect
as proved by Meckes [87]. (3) As opposed to our ap-
proach, none of the previous random-projection methods
couples DR with a generative model. We will experimen-
tally compare our work with the method by Li et al. [78],
and show that, by exploiting the Gaussian phenomenon
via the DFM effect, we achieve significant utility gain.

2.2.2 Other Dimensionality Reduction Methods

Other DR methods have also been used with the iden-
tity query to enhance data utility including PCA [66],
wavelet transform [128], and lossy Fourier transform [2].
In contrast, our DR is coupled with a generative model,
rather than used with the identity query. We experi-
mentally compare our work with the PCA method by
Jiang et al. [66] and show that our use of the generative
model yields significant improvement.

3 Preliminaries

In this section, we discuss important background con-
cepts related to our work.

3.1 Database Notation

We refer to the database as the dataset, which contains
n records (samples), each with m real-valued attributes
(features) — although, our approach is also compatible
with categorical features since they can be converted to
real values with encoding techniques [126]. With this
setup, the dataset can be represented by the data ma-
trix X € R™*™, whose column vectors x; are the sam-
ples, with z;(i) refers to the i!” feature. Finally, random
variables are denoted by a regular capital letter, e.g. Z,
which may refer to a random scalar, vector, or matrix.
The reference will be clear from the context.

3.2 Differential Privacy (DP)

Differential privacy (DP) protects against the inference
of the participation of a sample in the dataset as follows.

Definition 1 (e-DP). A mechanism A on a query func-
tion f(-) preserves e- differential privacy if for all neigh-
boring pairs X, X’ € R™*"™ which differ in a single
record and for all possible measurable outputs S C R,

PHA((X) €8] _
PHA((X) €8] =

xp(€).

Remark 1. There is also the (e,d)-differential privacy
((e,0)-DP) [30, 37], which is a relaxation of this def-
inition. However, this work focuses primarily on the
stronger e-DP.

Our approach employs the Laplace mechanism, which
uses the notion of Li-sensitivity. For a general query
function whose output can be a p X ¢ matrix, the Li-
sensitivity is defined as follows.

Definition 2. The Li-sensitivity of a query function
f: R™*™ — RPX4 for all neighboring datasets X, X’ €

R™*™ which differ in a single sample is

S(f) = sup ||£(X) = (X)),

X, X’

Remark 2. In DP, the notion of neighboring datasets
X, X’ can be considered in two related ways. The first
is the unbounded notion when one record is removed or
added. The second is the bounded notion when values of
one record vary. The main difference is that the latter
assumes the size of the dataset n is publicly known,
while the former assumes it to be private. However, the
two concepts are closely related and a mechanism that
satisfies one can also satisfy the other with a small cost
(ctf. [16]). In the following analysis, we adopt the latter
notion for clarity and mathematical simplicity.

The main tool for DP guarantee in this work is the
Laplace mechanism, which is recited as follows [39, 41].

Theorem 1. For a query function f: R™*"™ — RPX4
with the Li-sensitivity S(f), the following mechanism
preserves e-differential privacy:

San(f(X)) = f(X) + Z,

where Z € RP*9 with z;(i) drawn i.i.d. from the Laplace
distribution Lap(S(f)/e).

3.3 Gaussian Generative Model

Gaussian generative model synthesizes the data from
the Gaussian distribution N (u,X), which is param-
eterized by the mean g € R™, and the covariance
3 e R™*™ [90, 121]. Formally, the Gaussian genera-
tive model has the following density function:

W exp(—%(x -nw)E 7 (x — p)).
(1)

Hence, to obtain the Gaussian generative model for our

fx) =

application, we only need to estimate its mean and
covariance. This reduces the difficult problem of data
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modeling into the much simpler one of statistical esti-

mation. This is particularly important in DP since it

has been shown that simple statistics of the database
can be privately learned accurately [38, 42]. In addition,
this model is supported by the following rationales.

— It is supported by the Diaconis-Freedman-Meckes
(DFM) effect [87], which may be viewed as an ana-
log of the Central Limit Theorem (CLT) [54, 101]
in the feature space. This effect will be discussed in
detail in Section 3.4.

— It is simple to use and well-understood. Sampling
from it is straightforward, since there exist multiple
available packages, e.g. [22, 49, 111].

— Various methods in data analysis have both directly
and indirectly utilized the Gaussian model, e.g. lin-
ear/quadratic discriminant analysis [46, 65], PCA
[63][90, chapter 12], Gaussian Bayes net [90, chap-
ter 10], Gaussian Markov random field [105], Re-
stricted Boltzmann machine (RBM) network [105],
Radial Basis Function (RBF) network [19], factor
analysis [90, chapter 12], and SVM [96].

In spite of these advantages, we acknowledge that there
is possibly no single parametric model that can univer-
sally capture all possible datasets, and generalizing our
approach to non-parametric generative models is an in-

teresting future work.

3.4 Diaconis-Freedman-Meckes (DFM)

Intuitively, the Diaconis-Freedman-Meckes (DFM) ef-
fect — initially proved by Diaconis and Freedman in 1984
[33] — states that "under suitable conditions, most pro-
jections are approximately Gaussian'. Later, the precise
statement of the conditions and the appropriate pro-
jections has been proved by Meckes [86, 87], and the
phenomenon has been substantiated both theoretically
[65] and empirically [20, 92]. This work considers the
theorem by Meckes [87] as follows.

Theorem 2 (DFM effect [87, Corollary 4]). Let W €
R™*P pe a random projection matriz with orthonormal
columns, X € R™ be data drawn i.i.d. from an unknown
distribution X, which satisfies the reqularity conditions
in Table 1, and let X = WTX € RP be the projection
of X wvia W, which has the distribution X. Then, for
p <€ m, with high probability,

~d
X "R oN(0,1),

where N(0,I) is the standard multi-variate Gaussian
distribution with p dimensions, o is the variance of

Let the data X € R™ be drawn from a distribution X,
which satisfies:
E[IXI?] = o*m,

sup E<V7X>2 <1,
VGS"L71

E H||X|\2a*2 - mH < cvm.

Table 1. The regularity conditions for the DFM effect. o is the
Sm—l

variance defined in Theorem 2, ¢ > 0 is a constant, and is

the topological sphere (cf. [125]).

d
the Gaussian distribution, and R s the approrimate
equality in distribution with respect to the conditional
bounded-Lipschitz distance.

Remark 3. The conditional bounded-Lipschitz distance
dpr is a distance metric, which can be used to measure
the similarity between distributions. More detail on dpr,

d
can be found in [103]. Here, the notion & is used to
indicate that the distance between X and oAN(0,1) is
bounded by a small value [87].

Theorem 2 suggests that, under the regularity condi-
tions, most random orthonormal (RON) projections of
the data are close to Gaussian in distribution. More
specifically, Meckes [87] suggests that the Gaussian phe-
2log(m)
nomenon generally occurs for p < ;

og(log(m)) "
ple, if the original dimension of the dataset is m = 100,

For exam-

the projected data would approach Gaussian with p <
13. Intuitively, the regularity conditions assure that the
data are well-spread around the mean with a finite sec-
ond moment. The convergence to the standard Gaussian
also implies that the mean of X is zero. However, this
is less critical since dpy, is a distance metric [103], so
mean-shift can be shown to result in a Gaussian with a
scaled mean-shift (cf. [86, 103]).

4 RON-Gauss: Exploiting the
DFM Effect for Non-Interactive
Differential Privacy

Based on the DFM effect discussed in Section 3.4, we
present our approach for the non-interactive DP data re-
lease: the RON-Gauss model. In the subsequent discus-
sion, we first give an overview of the RON-Gauss model.
Then, we discuss the approach used in RON-Gauss with
corresponding theoretical analyses. Finally, we present
algorithms to implement RON-Gauss for both unsuper-
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vised and supervised learning tasks, and prove that the
data generated from RON-Gauss preserve e-DP.

4.1 Overview

RON-Gauss stands for Random OrthoNormal projec-
tion with GAUSSian generative model. As its name sug-
gests, RON-Gauss has two components - dimensionality
reduction (DR) via random orthonormal (RON) projec-
tion, and parametric data modeling via the Gaussian
generative model. Each component plays an important
role in RON-Gauss as follows.

The DR via random orthonormal (RON) projection
has two purposes. First, as previous works have shown
[13, 66, 68, 78, 128, 137], DR can reduce sensitivity of
the data. This is true for many DR techniques. However,
in this work, we choose the RON projection due to the
second purpose of DR in the RON-Gauss model, i.e. to
trigger the DFM effect. This is verified by Theorem 2
as proved by Meckes [87].

The parametric modeling via the Gaussian genera-
tive model also has two purposes. First, it allows us to
fully exploit the DFM effect since, unlike most practi-
cal data-analytic settings, we know the distribution of
the data from the effect. Second, it allows us to reduce
the difficult problem of non-interactive private data re-
lease into the more amenable one of DP statistical esti-
mation. Particularly, it reduces the problem into that
of privately estimating the mean and covariance — a
problem which has seen success in DP literature (cf.
[15, 36, 38, 39, 41-43, 124]).

Combining these two components is crucial for get-
ting high utility from the released data, as we will
demonstrate in our experiments, and we highlight the
main differences between our approach and previous
works in non-interactive DP data release as follows.

— Although prior works have used DR for improving
utility of the released data (cf. Section 2.2), these
works do not use the Gaussian generative model.
Hence, they do not fully exploit the DFM effect.

— Similarly, there have been prior works that use gen-
erative models for synthesizing private data (cf. Sec-
tion 2.1). However, without DR, the sensitivity is
generally large for high-dimensional data, and, more
importantly, the DFM effect does not apply.

—  Unlike the work by Blocki et al. [13], we do not use
random projection to provide DP. In RON-Gauss,
DP is provided after the projection via the Laplace
mechanism on the Gaussian generative model.

—  Unlike previous works that use i.i.d. Gaussian or
Bernoulli random projection [68, 78, 132, 137], we

use RON projection, which has been proved to be
suitable for the DFM effect (Theorem 2).

Finally, we acknowledge that although RON-Gauss is
designed to be application-independent, it may not be
suitable for every task. In this work, we focus on popular
machine learning tasks including clustering, regression,
and classification. As discussed in Section 3.3, many ma-
chine learning algorithms implicitly or explicitly utilize
the Gaussian model, so RON-Gauss is generally suitable
for these applications.

4.2 Approach and Theoretical Analysis

The RON-Gauss model uses the following steps:
1. Pre-processing to satisfy the conditions for the DFM
effect (Theorem 2).
(a) Pre-normalization.
(b) Data centering.
(c) Data re-normalization.
2. RON projection.
3. Gaussian generative model estimation.

We provide the detail of each process as follows.

4.2.1 Data Pre-Processing

Given a dataset with n samples and m features, to uti-
lize the DFM effect, we want to ensure that the data
satisfy the regularity conditions of Theorem 2. We show
that the following sample-wise normalization ensures
the conditions are satisfied.

Lemma 1 (Sample-wise normalization). Let D € R™
be data drawn i.i.d. from a distribution D. Let X € R™
be derived from D by the sample-wise normalization’ :

D

1D
Then,
2
E[IXI?] = 1,

sup IE(V,X>2 <1,
vesm—1

E HHXH?U*? - mH =02 =m]|.

Proof. The first and third equalities are obvious by ob-
serving that || X|| = 1. The second inequality follows

1 Here, it is implicitly assumed that || D]| is finite, which is typ-
ically the case when we are given a training dataset.
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from the Cauchy—Schwarz inequality [25, 109] as fol-
lows. E (v, X)? < E [HVH2 HX||2} = 1, since v is on the

surface of the unit sphere.

From this lemma, we can verify that the sample-wise
normalization satisfies the regularity conditions in The-
orem 2 simply by considering o = 1/y/m. Recall from
Theorem 2 that the choice of ¢ indicates what the vari-
ance of the projected data will be. In other words, a low
value of o geometrically signifies a narrow bell curve
of Gaussian. Hence, in our application, this is the nor-
malization we employ. However, we observe that this
normalization has an effect of placing all data sam-
ples onto the surface of the sphere, ie. x; € S™ L
Hence, it is beneficial to center the data before per-
forming this normalization to ensure that the data re-
main well-spread after the normalization. For this rea-
son, data pre-processing for RON-Gauss consists of
three steps — pre-normalization, data centering, and
data re-normalization. As we will discuss shortly, the
pre-normalization is to aid with the sensitivity deriva-
tion of the sample mean used in the centering process,
while the re-normalization is to ensure the regularity
conditions in Theorem 2 is satisfied before the projec-
tion. These three steps are discussed in detail as follows.

4.2.1.1 Pre-Normalization
We start with a given dataset X € R™*" with n samples
and m features, and perform the preliminary sample-

wise normalization as follows.

Xi
Xj = ’
[l
for all x; € X. This normalization ensures that ||x;|| = 1

for every sample, which will be important for the deriva-
tion of the Li-sensitivity in the next step.

4.2.1.2 Data Centering

Data centering is performed before RON projection in
order to reduce the bias of the covariance estimation for
the Gaussian generative model and to ensure that the
data are well-spread. Data centering is achieved simply
by subtracting the DP-mean of the dataset. Given the
pre-normalized dataset, {x; € R™;||x;|| = 1}, the
sample mean is p = %Z?:1 X;, and the Li-sensitivity
of the sample mean can be computed as follows.

Lemma 2. Given a sample-wise normalized dataset
X € R™*"™  the Ly-sensitivity of the sample mean is

s(f) = 2/m/n.

Proof. For neighboring datasets X, X/,

s(f) = sup [[£(X) - F(X))],
X, X’

1
= sup i =], < sup Y i -

2
< sup Y2 (il + i) = 247

where the first inequality uses the norm relation [62,
page 333]. O

With the Li-sensitivity of the sample mean, we can
then derive DP-mean puP? via the Laplace mecha-
nism (Theorem 1), and perform data centering by X =
X —uPP1T where 1 is the vector with all ones. We note
that, although the mean is DP-protected, the centered
data are not DP-protected, so they cannot be released.
RON-Gauss only uses the centered data to estimate the
covariance, which is then DP-protected. Hence, the cen-
tered data are never published. In addition, as will be
important to the DP analysis later, we note that this
centering process ensures that any neighboring datasets
would be centered by the same mean. Hence, neighbor-
ing X and X’ would still differ by only one record.

4.2.1.3 Data Re-Normalization

After adjusting the mean, the centered dataset X would
likely not remain normalized. Hence, to ensure the regu-
larity conditions in Theorem 2, we re-normalize the data
after the centering process using the same sample-wise
normalization scheme, i.e.

X

X = —.
Il

Hence, we again have ||X;|| = 1 for every sample. In
addition, neighboring datasets still differ by only one
sample since the normalization factor only depends on
the corresponding sample, but not on any other sample.

4.2.1.4 Summary
DATA PREPROCESSING  (Algorithm 1)
these steps for pre-processing the data, which include

summarizes

pre-normalizing, centering, and re-normalizing. The DP
mean derivation uses the Laplace mechanism with the
sensitivity in Lemma 2. If needed, the DP mean can also
be acquired from this algorithm.

4.2.2 RON Projection

As shown in Lemma 1, after the pre-processing steps,
X can be shown to be in a form that complies with the
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Algo. 1 DATA_ PREPROCESSING

Algo. 2 RON__ PROJECTION

Input: dataset X € R™*™ and ¢, > 0.

1. Pre-normalize: x; := %,/ ||x;]| for all x; € X.
Derive the DP mean: uP¥ = (% Z?:l xi)+ Z, where z;(4)
is drawn i.i.d. from Lap(2+/m/ne,).

3. Center the data: X = X — pPP17,
4. Re-normalize: X; = X;/ ||%;|| for all X; € X.

Output: X, pPr.

regularity conditions in Theorem 2. The next step is
to project X onto a low-dimensional space using the
random orthonormal (RON) projection matrix W €
R™*P : WI'W = I. The RON projection matrix is de-
rived independently of the dataset, so it does not leak
privacy, and no privacy budget is needed for its acqui-
sition.

The projection is done via the linear transforma-
tion X; = WTx; € RP for each sample, or, equivalently,
in the matrix notation X = W7X € RPX". Since the
projection is done sample-wise, the neighboring datasets
would still differ by only one sample after the projection.
This property will be important to the DP analysis of
the RON projection later. In addition, the other impor-
tant theoretical aspect of the RON projection step is
the bound on the projected data. This is provided by
the following lemma.

Lemma 3. Given a normalized data sample x € R™
and a random orthonormal (RON) projection matriz,
W e R™¥P: WIW =1, let X = W% be the projection
via W. Then, ||X||p < 1.

Proof. The proof is provided in Appendix A. O

Lemma 3 indicates that the RON projection of the nor-
malized data does not change their Frobenius norm.
This will be critical in the DP analysis of RON-Gauss
algorithms in the next step.

RON__PrROJECTION (Algorithm 2) summarizes the
current step that projects the pre-processed data onto a
lower dimension p via RON projection. The RON pro-
jection matrix can be derived efficiently via the QR fac-
torization [50, 107], as shown in the algorithm. Specif-
ically, the RON projection matrix is constructed by
stacking side-by-side p column vectors of the unitary
matrix Q from the QR factorization. Then, the projec-
tion is done via the linear operation X = WTX € RPxn_If
needed, the RON projection matrix can also be acquired
from the output of the algorithm.

We further note that the projected data X are still
not DP-protected. This is one key difference between

Input: pre-processed dataset X € R™*" and dimension p < m.

1. Form a matrix A € R™X™ whose elements are drawn i.i.d.
from the uniform distribution.

2. Factorize A via the QR factorization as A = QR, where
QeRrR™ ™. QTQ =1

3.  Construct a RON projection matrix W = [q1,...
Rmxp_

4. Project the data: X = WTX € RPX7,

sap| €

Output: X e RPX" W,

our work and that of Blocki et al. [13], which uses ran-
dom projection to directly provide DP. In our work, X
is never released, and we only use it to estimate the co-
variance of the Gaussian generative model in the next
step. The DP protection in our work is provided in this
next step on the Gaussian generative model.

4.2.3 Gaussian Generative Model Estimation

This step constructs the Gaussian generative model,
which is where the DP protection in RON-Gauss is pro-
vided. We emphasize that RON-Gauss is an output-
perturbation algorithm, and we employ the standard
DP threat model, i.e. the RON-Gauss algorithm is run
by a trusted entity and only the output of the algorithm
is available to the public. The DP-protected Gaussian
generative model is then used to synthesize DP dataset
for the non-interactive DP data release setting we con-
sider. Synthesizing DP data from a parametric model, as
opposed to releasing the model itself, has two benefits.
First, existing machine learning software can readily be
used with the DP data as if they were the real data. Sec-
ond, it presents an additional challenge for an attacker
aiming to perform inference attacks, since the attacker
would also need to estimate the model parameters from
the released data, incurring further errors.

Before delving into the detail of this step, there is
an important distinction to be made about the data-
analytic problems we consider. Since machine learning
is currently the prominent tool in data analysis, we fol-
low the convention in machine learning and consider two
classes of problems — unsupervised learning and super-
vised learning. The main difference between the two is
that, in the latter, in addition to the feature data in
)27 the teacher value or training label y € R" is also re-
quired to guide the data-analytic process. Hence, in the
subsequent analysis, we first consider the simpler class
of unsupervised learning, and then, show a simple mod-
ification to include the teacher value for the supervised



RON-Gauss: Enhancing Utility in Non-Interactive Private Data Release =— 34

learning. Additionally, we conclude with an extension of
RON-Gauss to the Gaussian Mixture Model.

4.2.3.1 Unsupervised Learning

The unsupervised learning problems do not require the
training label, so the Gaussian generative model only
needs to synthesize DP-protected X. The main parame-
ter for the Gaussian generative model is the covariance
matrix 3, so we need to estimate 3 from X. We use the
following formulation for the sample covariance:

1
»=-XxxT= - > oxix] € RO (2)
i=1

1
n
We note that this estimate may be statistically biased
since the mean may not necessarily be zero after the
re-normalization. However, this formulation would yield
significantly lower sensitivity than its unbiased coun-
terpart. This is due to the observation that only one
summand can change for neighboring datasets since, as
mentioned in the previous step, neighboring projected
datasets )~(, X still differ by only one sample. Hence, we
are willing to trade the bias for a much lower sensitivity.
In Appendix B, we specifically show that the saving in
sensitivity by our formulation is in the order of n, com-
pared to the MLE of the covariance. Clearly, for large
datasets, this is significant and can be the difference
between usable and unusable models.

Next, we derive the sensitivity of the covariance es-
timate in Eq. (2) as follows.

dataset X € R™X" et
X be the pre-processed and RON-projected dataset
via DATA__PREPROCESSING and RON__PROJECTION.
Then, the covariance ¥ € RP*P in Eq. (2) has the Li-

sensitivity of 2,/p/n.

Lemma 4. Given a

Proof. For neighboring datasets X, X/,

leor 1ot
s(f) =sup || =XXT — =X'X’
n n

1
n

)

1
nVVT [)(I [J,DP]_T} p(/ _ DPlT]TVV
1

1 n
=sup ZWT[Xi—pDP][Xi—uDP]TW
i=1

7

n
= > Wk — uPPix - uPPW
i=1 1

where the second equality is simply from the def-
inition of X through DATA_PREPROCESSING and

RON_ PROJECTION. Since all of the summands are the
same except for one in the neighboring datasets, we have

1
s(f) =sup — [WTxi — PP )i — uP7T'W
— W[k} — uPP)[x; — uPPTW]| .

Then, to simplify the notation and to apply Lemma 3,
we note that x; = W7 [x; — uPF] by definition. Hence,

1 ~ ~T
. % =T
s(f) = sup n ’ xix; —x'ix!;
D (|~ ~ ~ ~T
< sup —\nf XiXE —x/ix!;

)

2 — 2 - 2
< sup 2P 5, < sup 2 g 2 = 22

where the first inequality uses the norm relation [62,
page 333], and the last equality uses Lemma 3. O

Lemma 4 provides an important insight into the RON-
Gauss model. As discussed in the overview (Section 4.1),
the RON projection step of RON-Gauss serves two pur-
poses — to initiate the DFM effect, and to reduce the
sensitivity of the model. The latter purpose can clearly
be observed from Lemma 4. Specifically, Lemma 4 indi-
cates that the Li-sensitivity of the main parameter of
the RON-Gauss model, i.e. the covariance, reduces as
the dimension p reduces. This is particularly attractive
when the original data are very high-dimensional as the
noise added by the Laplace mechanism could be greatly
reduced. For example, for the original data with 100
dimensions, the RON projection onto a 10-dimensional
subspace would reduce the sensitivity by about 3x.

With the Li-sensitivity derived, the Laplace mecha-
nism in Theorem 1 can be used to derive the DP covari-
ance matrix: X7, With PP RON-Gauss then gen-
erates the synthetic DP data from A(0, D7), If the
mean is needed, we can readily use W7 uPF | which al-
ready satisfies DP due to the post-processing invariance
of DP [36]. This completes the RON-Gauss model for
unsupervised learning.

Algorithm 3 summarizes the RON-Gauss model for
unsupervised learning. First, the data are pre-processed
via DATA PREPROCESSING (Algorithm 1). The DP
mean derivation in DATA-PREPROCESSING spends the
privacy budget ¢,. Second, the data are projected onto
a lower dimension p via RON__PROJECTION. Third,
the algorithm derives the DP covariance using the
Laplace mechanism with the sensitivity derived in
Lemma 4. Finally, the algorithm synthesizes DP data
by drawing samples from the Gaussian generative model
parametrized by the DP covariance. We conclude the
discussion on RON-Gauss for unsupervised learning
with the DP analysis of Algorithm 3.
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Algo. 3 RON-Gauss for unsupervised learning

Input: dataset X € R™*™, dimension p < m, and €, ex; > 0.

1. Obtain the pre-processed data X € R™X" from
DATA_ PREPROCESSING with inputs X and €.
2.  Obtain the RON-projected data X € RPX™ from

RON_ PROJECTION with inputs X and p.

3. Derive the DP covariance: ZPF = (%iiT) + Z, where
zj () is drawn i.i.d. from Lap(2./p/nes).

4. Synthesize DP data xiDP € RP by drawing samples from
N(0,=PF),

Output: {xPF,... ,xE,P .

Theorem 3. Algorithm 8 preserves (e, + e€x)-

differential privacy.

Proof. The proof follows the following induction. The
DP data X?P are derived from only one source, i.e.
the Gaussian generative model of RON-Gauss. Based
on the post-processing invariance of DP, if the model
is DP-protected, then the released data are also simi-
larly DP-protected. The Gaussian generative model is
parametrized by PF | which is DP-protected. Specifi-
cally, the P computation in step 3(a) spends ex; pri-
vacy budget with the Laplace mechanism, according to
Theorem 1. However, the centering process in step 1(c)
also spends ¢, privacy budget on the Laplace mechanism
to derive uPF, which assists in the »PP derivation pro-
cess. Due to the serial composition theorem [36], the two
privacy budgets add up. Hence, £PF preserves (eutex)-
differential privacy, and, consequently, the Gaussian
generative model preserves (e, +ex)-differential privacy,
so do the synthesized data. U

4.2.3.2 Supervised Learning

The unsupervised learning does not involve the guidance
from the training label. However, in supervised learning,
the training label y is also required. Hence, the Gaussian
generative model needs to be modified to incorporate
the training label into the model in order to synthesize
both DP-protected X and y.

A simple method to incorporate the training la-
bel into the Gaussian generative model is to treat it
as another feature. However, when RON projection is
applied, it should only be applied to the feature data,
but not to the training label. This is because when the
projection is applied, each induced feature is a linear
combination of all original features. Therefore, if RON
projection is also applied to the training label, the in-
tegrity of the training label would be spoiled. In other

words, we may not be able to extract the training label
from the projected data. Thus, to preserve the integrity
of the training label, it should not be modified by the
RON projection process.

In RON-Gauss, the aforementioned challenge in
supervised learning is navigated by augmenting the

X
data matrix with the training label as X, = [ T] €
y

R+ xn Then, the augmented covariance matrix can
be written in block form as,

1[X] 1< 1| XXT
T

)iy] S ®)
y'y

This can then be used in a similar fashion to the co-
variance matrix in Eq. (2) for unsupervised learning.
We note that, again, this may not be an unbiased es-
timate of the augmented covariance matrix since the
mean may not necessarily be zero, but, similar to the
unsupervised learning design, it has significantly lower
sensitivity than the unbiased counterpart. Therefore, we
are willing to trade the bias for achieving small sen-
sitivity. Given the training label with bounded value?
y € [—a,a]™, the sensitivity of the augmented covari-
ance matrix can be derived as follows.

Lemma 5. The L;-sensitivity of the augmented covari-

2
ance matriz in Eq. (3) is M.

Proof. For neighboring datasets X, X’, the sensitivity is

Xy] li(V’XV’T ij’y/}

1
S(X,) =sup —
( a) upn yTy lei«/T y/Tyl

)

1

xxT
yTXT

=sup l(H)?)N(T — ffTH +2 Hf(y — %y'
n 1

1
+ly"y ="

The proof then considers each summand separately. The
first summand is the sensitivity of 3 in Eq. (2), so it is
2,/p/n. The last summand can be written as,

ap DY =YY I )~ S v 6

n n
[y —y')?[], o
=sup——m = —,
n n
where the second equality is because only one element

in y and y’ differs.

2 As suggested by Liu [80], real-world data are often bounded,
and the bounded-valued assumption is often made in DP anal-
ysis for multi-dimensional query (cf. [27, 39, 43, 137]).
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Algo. 4 RON-Gauss for supervised learning

Algo. 5 RON-Gauss’ extension to GMM

Input: dataset with training labels X € R™*" y € [—a,a]",
dimension p < m, and €y, ex > 0.

1. Obtain the pre-processed data X € R™X" from
DATA_ PREPROCESSING with inputs X and €.

2.  Obtain the RON-projected data X € RPX™ from
RON__PROJECTION with inputs X and p.

3. Form the augmented data matrix X, = )gﬂ c R(P+1)xn,

4. Derive the DP augmented covariance: SPF = (%XGXZ) —+
Z(3) | where z]z(z) is drawn i.i.d. from Lap((2\/p + 4a./p +

a?)/nex).
«DP
5.  Synthesize DP augmented data (-l)DP € R+l by
y(3
drawing samples from A (0, =PF).
Output: {xPF,... 7xf,P} with training label yPF.

For the second summand, we have

2|32 %) - 52, %' ()
L — sup
n n
2|[%iw(i) - Xy )

n
201y )l + |
n

2 /b1y )l + |

‘ 1

2 Hiy - fy’
sup

1

= sup

XLy’ (i)

)

IN

sup

x;y' (7)

-

IN

sup
n
_2/p(20) _ dayp

n n

9

where the second line is from the fact that the other n—1
terms are similar for neighboring datasets. By combing
the three summands, we have completed the proof. [

As the Li-sensitivity of ¥, has been derived, we can
use the Laplace mechanism in Theorem 1 to acquire the
DP augmented covariance matrix: 2P Then, similar
to the unsupervised learning, RON-Gauss generates the
synthetic DP data — which include both the feature data
and the training label — from A(0,£2F). Notice that
the only difference between the RON-Gauss model for
unsupervised learning and supervised learning is the use
of ZPP (Eq. (2)) and PP (Eq. (3)), respectively.

Algorithm 4 presents the RON-Gauss model for su-
pervised learning. The algorithm is similar to Algorithm
3. The only difference is the use of the augmented covari-
ance matrix in step 4 with the sensitivity from Lemma 5
to incorporate the training label. As a result, Algorithm
4 can synthesize both the DP feature data x”¥ and the
DP training label yP. Finally, we present the privacy
guarantee of Algorithm 4 as follows.

Input: dataset X € R™*"™y € {c1,co,...
p <m, and €y, ex > 0.

,c}™ , dimension

1. forcin {ci1,...,cr} do:

(a) Form X., whose n. column vectors are all samples in

class c.

Obtain the pre-processed data X. € R"™*"c and the

DP class-mean p2F from DATA PREPROCESSING with

inputs (Xc, €4).

(c) Obtain the RON-projected data X, € RPX"c and the

projection matrix W from RON__ PROJECTION with in-

puts X, and p.

Derive the DP class-covariance: ZPF = (nicici?) +

Z, where z;(i) is drawn i.i.d. from Lap(2,/p/ncex).

(e) Synthesize DP class-c data XPF by drawing samples

from N(WT uDP BDP) and assign yPF = ¢ for all
samples in XDPP.

2. Let XPP = [XDP .  XDF]

33
T
3. Let yDP:[ng -

(b)

(d)

T
"7y£)LP ]T‘

Output: {XPF yPP1,

Theorem 4. Algorithm 4 preserves (e, + ex)-

differential privacy.

Proof. The proof mirrors that of Theorem 3 but uses
the sensitivity of the augmented covariance in Lemma
5 instead. O

4.2.3.3 Extension to Gaussian Mixture Model
Algorithm 4 for supervised learning uses the unimodal
Gaussian generative model. The labels synthesized from
this algorithm are numerical. In many applications, e.g.
regression, this may already be effective. However, in
some applications, e.g. classification, it is desirable to
synthesize the labels that are discrete or categorical. To
this end, we extend RON-Gauss to a multi-modal Gaus-
sian generative model using the Gaussian Mizture Model
(GMM) [12, 90]. Conceptually, each mode of GMM can
be used to capture the distribution of the data in each
class. Thus, the entire dataset is modeled by the mixture
of these modes. In fact, many classifiers such as Linear
Discriminant Analysis (LDA) [46], Bayes Net [90], and
mixture of Gaussians [90] also utilize this type of gen-
erative model, so this GMM extension has historically
been shown to be effective for classification.

In classification, the training label is categorical, i.e.
Yy € {Cl, ..
presents an extension of RON-Gauss to GMM. The algo-

.,cr} for L-class classification. Algorithm 5

rithm iterates through the data samples in each class. It
derives DP samples for each class in a similar procedure
to Algorithm 3 with one difference. For GMM, the data
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in each class are generated from the Gaussian generative
model with the mean equal to the RON-projected DP
class-mean, i.e. WT;pr. This is to capture the multi-
modal nature of GMM. Since every DP sample drawn
from each iteration of step 1 belongs to the same class,
the same training label is assigned for every synthesized
sample. Finally, after iterating through all classes, the
algorithm stacks the DP samples and training labels to-
gether before releasing the synthesized data.

We note that this algorithm assumes that each data
sample belongs to one class only, so each mode of Gaus-
sian is derived from a disjoint set of data. This is
the common setting in supervised learning applications
(cf. [12, 71, 90, 122]). In addition, to comply with the
bounded DP notion we adopt throughout (cf. Remark
2), the algorithm assumes that the number of samples in
each class n. is public information. Finally, we present
the DP analysis of Algorithm 5 as follows.

Theorem 5. Algorithm 5 preserves (eu + €x)-

differential privacy.

Proof. Since the data partition is disjoint, and each class
has the same domain, the privacy budget used for each
class does not add up from the parallel composition [38,
85]. The proof then follows from that of Theorem 3. [

5 Experiments

We demonstrate that RON-Gauss is effective across a
range of datasets and machine learning tasks via three
experiments. For the datasets, we use a facial expres-
sion dataset [32], a sensor displacement dataset [6, 7],
and a social media dataset [67]. For the machine learn-
ing tasks, we use the clustering, classification, and re-
gression applications. In non-interactive DP, the aim
is to release DP data such that the utility of the DP
data closely resembles that of the original data. Hence,
to evaluate the quality of the non-interactive DP algo-
rithms based on the utility measure commonly used for
the respective task (cf. Section 5.2). DP data with high
quality, therefore, should provide the values of the util-
ity measure close to that obtained from the non-private
data, and our experiments show that RON-Gauss can
achieve this objective. We note that we choose task-
centric utility measures for our experiments since we
want to evaluate the approach based on how much in-
sight can be gained from the synthesized data with re-
spect to each task. However, in other settings, task-
independent evaluation metrics such as reconstruction

error or mutual information could also be appropriate.
We also compare our work to four previous approaches
that solely relied on either DR, or generative models.
Table 2 summarizes the experimental setups, and we
discuss them in detail as follows.

5.1 Datasets
5.1.1 Grammatical Facial Expression (GFE)

This dataset is based on facial expression analysis from
video images under Libras (a Brazilian sign language),
and has 27,936 samples and 301 features [32]. There are
multiple clusters based on different grammatical expres-
sions. The image features are designed to be informa-
tive of the facial expressions. However, the same fea-
tures may be used to infer the individuals whose images
are included in the dataset. Hence, it is desirable to re-
lease a DP-protected dataset. We use this dataset for
the privacy-preserving clustering study on Algorithm 3.

5.1.2 Realistic Sensor Displacement (Realdisp)

This is a mobile-sensing dataset used for activity recog-
nition [6, 7]. The features include readings of various
motion sensors, and the goal is to identify the activ-
ity being performed. However, the same features can
possibly be used to identify the individuals whose data
are in the dataset. Therefore, it is desirable to release a
DP-protected dataset. The dataset consists of 216,752
training samples, and 1,290 testing samples with 117
features. In our experiments, we use this dataset for the
privacy-preserving classification study with Algorithm
5. Specifically, we formulate it as a binary classifica-
tion — identifying whether the subject is performing an
action that causes a location displacement or not, e.g.
walking, running, cycling, etc.

5.1.3 Buzz in Social Media (Twitter)

This dataset extracts 77 features from Twitter posts,
which are used to predict the popularity level of the
topic represented as a real value in [—1, 1] [67]. However,
these features may also be used to infer the owner of
each tweet; thus it is desirable to instead release the DP-
protected dataset. The dataset is divided into the train-
ing set of 573,820 samples, and the testing set of 4,715
samples. We use this dataset for privacy-preserving re-
gression, and adopt Algorithm 4 for the experiments.

5.2 Setups

Since RON-Gauss algorithms require €, and ey for the
mean and the covariance, respectively, given a fixed
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Exp. Dataset ‘ Training Size Feature Size Metric ‘ ML Alg. DP Alg.
Clustering GFE [32] 27,936 301 S.C. (Thetter) K-Means Alg. 3
Classification Realdisp [6, 7] 216,752 117 Accuracy (Tbetter) SVM Alg. 5
Regression Twitter [67] 573,820 77 RMSE (|better) KRR Alg. 4

Table 2. Summary of the experimental setups of the three experiments.

total privacy budget of €, we allocate the budget as:
€u = 0.3¢ and ex; = 0.7¢. The rationale is that the covari-
ance is the more critical parameter in our algorithms,
and usually has higher complexity than the mean (RP*?
vs R™). For all experiments, we perform 100 trials and
report the average with the 95% confidence interval.

5.2.1 Clustering Setup

Clustering is unsupervised learning, so we apply Al-
gorithm 3. We use K-means [71] as the clustering
method for its simplicity and efficiency, even for large
datasets, and use the Silhouette Coefficient (S.C.) [104]
as the metric for evaluation. The number of clusters
in K-means is set using the Silhouette analysis method
[104, 110]. S.C. is defined as follows. For the sample x;
assigned to class y(i),
— let a(i) be the average distance between x; and all
other samples assigned to the same class y(i);
— let b(¢) be the average distance between x; and all
points assigned to the next nearest class.

b(@)—a(i)

W, and S.C. is defined as:

Let sc(i) =
1 n
S.C.=— se(i).
- ; (i)
Intuitively, S.C. measures the average distance between
the sample and its class mean, normalized by the dis-
tance to the next nearest class mean. Its range is [—1, 1],
where higher value indicates better the performance.
We pick this metric for two reasons. First, as op-
posed to other metrics including ACC [131], ARI [64],
or V-measure [102], S.C. does not require the knowledge
of the ground truth. This is vital both for our evaluation
and for real-world applications, respectively because the
ground truth is not available for the synthetic data in
our evaluation, and it is often not available in practice,
too. Second, as suggested by Rousseeuw [104], S.C. de-
pends primarily on the distribution of the data, but less
on the clustering algorithm used, so it is fitting for the
evaluation of non-interactive private data release.

5.2.2 Classification Setup

For classification, we employ the GMM according to Al-
gorithm 5, and use the support vector machine (SVM)

[29, 95] as the classifier in all experiments. SVM is cho-
sen since it has been shown to perform well on binary
classification [23, 69, 108], and it has been proven —
both empirically and theoretically — to generalize well
[108, 122]. The evaluation metric is the traditional clas-
sification accuracy.

Since we consider the original training data as sen-
sitive, we apply RON-Gauss to generate DP data that
are used to train machine learning models. However, we
test the machine learning models on the real test data
in order to evaluate the ability of the DP training data
to capture the classification pattern of the real data.

5.2.3 Regression Setup

We use Algorithm 4 for regression, and use kernel
ridge regression (KRR) [71, 95] as the regressor due
to its large hypothesis class with proven theoretical er-
ror bound [108, 135]. The evaluation metric is the root-
mean-square error (RMSE) [12, 71]. Finally, for compar-
ison, we also provide a random-guess baseline of which
the prediction is drawn i.i.d. from a uniform distribu-
tion. Finally, we manage the train/test split in a similar
fashion to the above classification setup (Section 5.2.2).

5.2.4 Comparison to Other Methods

To provide context to the experimental results, we com-
pare our approach to four previous works and a non-
private baseline method as follows.

1. Real data: the non-private baseline approach, where
the result is obtained from the original data without
any modification.

2. Li et al. [78]: the method based on dimensionality
reduction via Bernoulli random projection on the
identity query.

3. Jiang et al. [66]: the method based on PCA on the
identity query.

4. Blum et al. [16]: exponential mechanism for non-
interactive setting.

5. Liu [80]: parametric generative model without DR.

We compare RON-Gauss to these five methods for the
following reasons. The first comparison is to show the
real-world usability of RON-Gauss. The second and
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Method Model DR € S.C. AS.C. Method Model DR €  Accuracy (%)
Real data - — — .286 .00 Real data - - - 89.61
Li et al. [78] Identity Bern. 1. .1234.000 .16 Li et al. [78] Identity Bern. 1. 65.04 + 0.90
Rand. Rand.
Jiang et al. Identity PCA 1. .123+.000 .16 Jiang et al. [66] Identity PCA 1. 54.51 £ 1.65
[66] Blum et al. [16] Exp. - 1. 51.24+1.83
Blum et al. Exp. - 1. .026+.017 .26 Mech.
[16] Mech. Liu [80] GMM - 1. 6131+0.65
Liu [80] Gaussian - 1. .092+.001 .19 RON-Gauss GMM RON 1 8716 4 0.27
RON-Gauss Gaussian RON 1. .274+.015 .01

Table 3. Clustering results (GFE dataset). AS.C. indicates the
error relative to the performance by real data.

third comparisons are to motivate the use of the Gaus-
sian generative model over the identity query, and the
remaining comparisons are to motivate DR via the RON
projection. For all previous methods, we use the param-
eters suggested by the respective authors, and we vary
the hyper-parameter before reporting the best result.

5.3 Experimental Results

For methods with DR, the results reported are the best

results among varied dimensions.3

5.3.1 Privacy-Preserving Clustering

Table 3 summarizes the results for clustering, and the

following are main observations.

— Compared to the non-private baseline (real data),
RON-Gauss has almost identical performance with
only 0.01 additional error (4% error) while preserv-
ing strong privacy (e = 1.0).

— Compared to Li et al. [78] and Jiang et al. [66], who
use the identity query as opposed to the Gaussian
generative model, RON-Gauss has over 2x better
utility with the same privacy budget.

— Compared to Blum et al. [16] and Liu [80], who do
not use DR, RON-Gauss has over 10x and 3x better
utility with the same privacy budget.

For RON-Gauss, the optimal number of clusters based
on the Silhouette analysis is four. It is interesting to
note that RON-Gauss achieves good results despite us-
ing the unimodal Gaussian model. This can partially be
explained by the curse of dimensionality [9, 34, 48, 70].

3 As discussed by Chaudhuri et al. [26], in the real-world de-
ployment, the parameter tuning process must be private as well.

Table 4. Classification results (Realdisp dataset).

One consequence of the curse of dimensionality is the
concentration of the data mass near the surface of the
hypercube encapsulating the data domain space. With
respect to our results, this leads to the observation that
despite using the unimodal Gaussian model the data
generated by RON-Gauss can form different clusters
around different parts of the hypercube surface. Thus,
if this unimodal distribution can represent the original
data well according to the DFM effect, it can provide
clustering performance close to that of the original data.

5.3.2 Privacy-Preserving Classification

Table 4 summarizes the classification results. The fol-

lowing are main observations.

— Compared to the non-private baseline (real data),
RON-Gauss has almost identical performance with
2.45% additional error, while preserving strong pri-
vacy (e = 1.0).

— Compared to Li et al. [78] and Jiang et al. [66],
who use the identity query as opposed to GMM,
RON-Gauss has over 20% and 30% better utility,
respectively, with the same privacy budget.

—  Compared to Blum et al. [16] and Liu [80], who
do not use DR, RON-Gauss has over 35% and 25%
better utility, respectively, with the same privacy.

5.3.3 Privacy-Preserving Regression

Table 5 summarizes the results for regression. The fol-

lowing are main observations.

— Compared to the non-private baseline (real data),
RON-Gauss actually performs statistically equally
well, while preserving strong privacy (e = 1.0).

— Compared to Li et al. [78] and Jiang et al. [66], who
use the identity query as opposed to the Gaussian
generative model, RON-Gauss has over 3x better
utility with the same privacy budget.
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Method Model DR € RMSE (x1072)
Real data - - - 0.21
Li et al. [78] Identity Bern. 1. 0.68 +0.01
Rand.
Jiang et al. [66] Identity PCA 1. 0.68 £ 0.00
Blum et al. [16] Exp. - 1. 0.62 £ 0.07
Mech.
Liu [80] Gaussian - 1. 1.00 £0.12
RON-Gauss Gaussian RON 1. 0.21+0.01

Table 5. Regression results (Twitter dataset). RMSE is an error
metric, so lower values indicate better utility. (note: RMSE of
random guess is ~ 57.20 x 1072).

— Compared to Blum et al. [16] and Liu [80], who do
not use DR, RON-Gauss has over 3x and 5x better
utility with the same privacy budget.

5.3.4 Summary of Experimental Results

RON-Gauss outperforms all four other methods in

terms of utility across all three learning tasks. RON-

Gauss also performs comparably well relative to the

maximum utility achieved by the non-private baseline

in all tasks. The main results are concluded as follows.

— RON-Gauss provides performance close to that at-
tainable from the non-private real data.

— Using the Gaussian generative model over the iden-
tity query has been shown to provide the utility gain
of up to 2x, 30%, and 3x for clustering, classifica-
tion, and regression, respectively.

— Using RON to reduce dimension of the data has
been shown to provide the utility gain of up to 10x,
35%, and 5x, for clustering, classification, and re-
gression, respectively.

6 Discussion

6.1 Effect of Dimension on the Utility

In Section 4, we discuss how RON projection can reduce
the level of noise required for DP. This effect can be ob-
served experimentally as illustrated by Figure 1, which
shows the relationship between the dimension the data
are reduced to and the utility performance. Noticeably,
there is a gain in utility as the dimension is reduced.
Specifically, the peak performance is achieved at 4 di-
mensions in this case. This general trend is consistent

across different privacy budgets. Seeking the optimal

.0024 Effect of Dimension (Regression)
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Fig. 1. Effects of dimension on the regression performance on
Twitter dataset.
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Fig. 2. Membership inference attack on RON-Gauss using Reald-
isp dataset. (Left) The attack accuracy against different values
of €. The dashed line shows the attack accuracy on the real data
for comparison. (Right) The tradeoff between the utility (classifi-
cation accuracy) and the privacy leakage (the difference between
the membership inference accuracy and random guess at 50%).

dimension a priori is an interesting topic for future re-
search on the RON-projection-based methods.

6.2 RON-Gauss Against Membership
Inference Attack

Recent works have suggested using inference attacks to
measure the susceptibility of the released data and iden-
tify the appropriate values of € for non-interactive dif-
ferential privacy, e.g. [5, 114]. To evaluate RON-Gauss
against inference attacks, we implement the member-
ship inference attack proposed by Shokri et al. [114]
using their published software [113]. This attack trains
shadow machine learning models and an attack model
to identify whether a given sample is in the dataset.
Since their attack is designed for a classification task,
we evaluate it on our classification experimental setup
using Realdisp data. For the attack, we use ten shadow
models and use neural network for the attack model
with 0.01 learning rate trained on 50 epochs. These are
the default parameter values of the software used [113].

The results are shown in Figure 2. The test set is
chosen such that a random guess on the membership
inference attack would yield an accuracy of 50%. Figure



RON-Gauss: Enhancing Utility in Non-Interactive Private Data Release =— 41

2 (Left) suggests that ¢ values of 1.5 or less are ap-
propriate for this setting since the performance of the
membership inference attack is close to a random guess.
Figure 2 (Right) illustrates the utility-privacy tradeoff
based on this attack. The privacy leakage is defined as
the attack accuracy above the random guess level. In
other words, it measures how much the attack performs
better than a random guess. The utility is measured by
the classification accuracy similar to our classification
experiments in Section 5. The plot allows the practition-
ers to choose an € value that meets their utility-privacy
tradeoff. For example, if we require the privacy leak-
age to be less than 10%, the curve in Figure 2 (Right)
suggests that we can achieve almost 88% utility.

We note that the membership inference attack of
Shokri et al. [114] may not be the optimal inference at-
tack against RON-Gauss, since it is a general attack
method not specifically tailored for our approach. We
leave the analysis of more advanced attacks that specif-
ically utilize knowledge of the RON-Gauss mechanism
to future work, e.g. using hypothesis testing [5].

6.3 RON-Gauss as a Generative Model

Our work uses a parametric generative model to cap-
ture the essence of the unknown data distribution. Since
RON-Gauss involves DR as an important step, the
RON-Gauss model is inevitably lossy, i.e. there is in-
formation loss due to the use of the model itself. How-
ever, this loss is mitigated partly by the DFM effect,
which ensures that the data are close to Gaussian after
the RON projection. To illustrate the effectiveness of
this effect and of RON-Gauss as a parametric genera-
tive model, we test RON-Gauss purely for its quality as
a generative model, i.e. without the DP component, on
the MNIST dataset [72, 73]. Since MNIST is typically
used for classification, we use Algorithm 5 for RON-
Gauss and set € — oo to leave out the effect of DP
noise. We project the data onto 392 dimensions — half
of the original dimensions of 784 — and synthesize the
samples, which are then reconstructed into the synthe-
sized images. Examples of the synthesized images are
shown in Figure 3. These images show good digit visi-
bility, which indicates the potential of RON-Gauss as a
generative model.

However, admittedly, the visibility of the digits sub-
sides gradually as we project the data onto lower dimen-
sions. Particularly, we observe that, at dimensions lower
than 100, the digits are not very visible anymore. This
depicts that, despite its promise, RON-Gauss may not
yet be the universal model for every situation since there

Fig. 3. Synthesized MNIST images from the RON-Gauss model
without the DP component using half of the full dimensions.

remains the need to balance the information loss due to
DR. However, if sufficient information is retained, RON-
Gauss has shown the potential to be a quality model by
utilizing the DFM effect,as demonstrated by our exper-
iments in Section 5.

6.4 The Design of ¢, and €5 for
RON-Gauss Algorithms

RON-Gauss Algorithms take as inputs two privacy pa-
rameters: €, and ex. The algorithms are then shown to
preserve (¢, + ex)-differential privacy. This means that,
for a fixed total privacy budget of € = ¢, + €5, we can
choose how much to allocate to ¢, and ex in order to
maximize the utility of the synthesized data. In our ex-
periments, we fix the ratio between the two based on the
observation about the sensitivity of the mean and the
covariance. However, the allocation can possibly be de-
signed better by formulating it as an optimization prob-
lem that aims at maximizing the utility of the synthetic
data. Then, the optimal solution can be obtained using
grid search, random search, or Bayesian optimization
[115]. We leave this as a possible future direction.

7 Conclusion

In this work, we combine two previously non-
intersecting techniques — random orthonormal pro-
jection and Gaussian generative model — to provide
a solution to non-interactive private data release.
We propose the RON-Gauss model that exploits the
Diaconis-Freedman-Meckes effect, and present three al-
gorithms for both unsupervised and supervised learn-
ing. We prove that our RON-Gauss model preserves e-
differential privacy. Finally, our experiments on three
real-world datasets under clustering, classification, and
regression applications show the strength of the method.
RON-Gauss provides significant performance improve-
ment over previous approaches, and yields the utility
performance close to the non-private baseline, while pre-
serving differential privacy with € = 1.
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A Proof of Lemma 3

Proof. The proof uses the property of orthogonal pro-
jection in a vector space. First, notice that HWTXHF =
HWWTXH o which can be verified as follows.

WTx| . = V/ir(xTWWTx)
F
= /irxTWWTWWTx)
= [[WWx] .

where the second equality is from the fact that WTW =
I. Then, notice that P = WW7 is a projection matrix
with p orthonormal basis as the columns of W (cf. [88,
Chapter 5]). Therefore, the idempotent property of P
can be used as,

W] = [WW x| = IPx]
= (Px,Px), = (Px,X) .

The last equality can be verified as follows. Let
Px € P, and let xt! = x — Px e Pt
then (Px,x)p = <Px,Px+xJ—>F = (Px,Px), +
(Px,xt) . = (Px,Px), from the additivity of the
inner product and the fact that <PX,XJ‘>F = 0 by
construction. Then, using the Cauchy-Schwarz inequal-
ity, [Px|% = (Px,x)% < [Px|lp[ix|p, and, hence,
IPx] - = [|[WWTx|,. = [WTx|| < [x]| - O

B L,-Sensitivity of the MLE of
the Covariance

Consider the maximum likelihood estimate (MLE) [47]
for the covariance matrix, which is an unbiased estimate
(cf. [123]):

n

1 - ~
SMLE = -~ Z(Xi - -7,

=1

where p is the sample mean specific to the instance of
the dataset. Hence, the neighboring datasets may have
different means. Then, the sensitivity can be derived as
follows.

Lemma 6. The Li-sensitivity of the MLE of the co-
variance matriz is (2,/p + 2n./p)/n.

Proof. For neighboring datasets X, X/,

n
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The last inequality is due to the following observation:
llp =5 IX%lp < 7 X%l =1 O
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