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Abstract: The decreasing costs of molecular profiling
have fueled the biomedical research community with
a plethora of new types of biomedical data, enabling
a breakthrough towards more precise and personalized
medicine. Naturally, the increasing availability of data
also enables physicians to compare patients’ data and
treatments easily and to find similar patients in order
to propose the optimal therapy. Such similar patient
queries (SPQs) are of utmost importance to medical
practice and will be relied upon in future health infor-
mation exchange systems. While privacy-preserving so-
lutions have been previously studied, those are limited
to genomic data, ignoring the different newly available
types of biomedical data.
In this paper, we propose new cryptographic techniques
for finding similar patients in a privacy-preserving man-
ner with various types of biomedical data, including
genomic, epigenomic and transcriptomic data as well
as their combination. We design protocols for two of
the most common similarity metrics in biomedicine: the
Euclidean distance and Pearson correlation coefficient.
Moreover, unlike previous approaches, we account for
the fact that certain locations contribute differently to
a given disease or phenotype by allowing to limit the
query to the relevant locations and to assign them dif-
ferent weights. Our protocols are specifically designed
to be highly efficient in terms of communication and
bandwidth, requiring only one or two rounds of com-
munication and thus enabling scalable parallel queries.
We rigorously prove our protocols to be secure based on
cryptographic games and instantiate our technique with
three of the most important types of biomedical data –
namely DNA, microRNA expression, and DNA methy-
lation. Our experimental results show that our protocols
can compute a similarity query over a typical number of
positions against a database of 1,000 patients in a few
seconds. Finally, we propose and formalize strategies to
mitigate the threat of malicious users or hospitals.
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1 Introduction
With the plummeting costs of molecular profiling, and
in particular whole-genome sequencing, the amount of
personal biomedical data available is rapidly increasing.
This new data availability has positively affected the
research in medicine by enabling the development of re-
search directions that were previously impossible due to
the lack of data. Whole-genome sequencing has enabled
biomedical researchers to identify the relations between
a plethora of severe diseases and the genomic muta-
tions responsible for them. For instance, links have been
found between some genomic variants and the risk of de-
veloping Alzheimer’s disease [1]. However, the genome
is only the tip of the iceberg concerning the current
biomedical data deluge.

Researchers have shown that aberrant levels of other
types of biomedical data, such as epigenomic or tran-
scriptomic data, could indicate its owner carrying a se-
vere disease, such as diabetes, neurodegenerative dis-
eases, heart diseases or cancers [2–4]. Two of the most
important epigenetic elements in the human body, DNA
methylation and microRNAs (miRNAs), have been as-
sociated with numerous diseases as well. For example,
abnormal DNA methylation patterns, such as hyper- or
hypomethylation, are often observed for cancer patients,
leading to the hyper-activation of genes such as onco-
genes, or the silencing of tumor suppressor genes [5].
Dysregulation of microRNA expression has also been
shown to be linked to several types of cancer [6]. Finally,
the combination of different kinds of biomedical data is
an auspicious and growing direction of research. For in-
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stance, Hamed et al. study the relation between breast
cancer and the combination of various data such as DNA
methylation, microRNA expression, and genomic vari-
ants [7]. Speicher and Pfeiger combine DNA methyla-
tion, microRNA expression, and gene expression for in-
tegrative analysis of tumor samples [8, 9].

As biomedical data are increasingly available, it be-
comes easier to compare patients’ data with each other.
This functionality is of utmost importance to be able to
find similar patients and, e.g., check how they responded
to different therapies. In this context, the Global Al-
liance for Genomics and Health (GA4GH) has devel-
oped the MatchMaker Exchange [10], a platform that
facilitates rare disease gene discovery through a fed-
erated network of genotype and phenotype databases.
It typically answers requests such as “do you have any
patients similar to one who has hypertelorism with a
deleterious variant in CASQ2”, where the similarity is
defined by the receiving system. However, due to the se-
rious privacy concerns related to genomic data [11–16],
but also epigenomic and transcriptomic data [17–21], we
anticipate that any similarity computation will have to
be performed privately in the near future, i.e., without
disclosing the patients’ raw biomedical data.

While privacy-preserving similar patient queries
have been previously studied in the literature, these so-
lutions have been practically limited to whole-genome
queries [22–24]. In this paper, we propose new methods
that allow us to find similar patients based on various
types of biomedical data, such as genomic, epigenomic,
and transcriptomic data, and to combine them if nec-
essary. Moreover, our approach easily allows the users
to query specific locations instead of the whole genome.
This is especially important as omics-based diseases and
therapies are always related to a limited set of positions
[25–30]. Moreover, it easily allows a medical practitioner
to find similar patients carrying a certain disease by
querying the relevant disease markers for the chosen set
of biomedical data types. Finally, it is generic enough
to adapt to the functionality of any health information
exchange platform, such as the MatchMaker Exchange.

Contributions
In this paper, we introduce the first privacy-preserving
similar patient query system that can handle differ-
ent biomedical data types, while enabling the users to
query a specific subset of positions and to put different
weights on these positions or data types. Our system
relies on additively homomorphic encryption and imple-
ments different protocols for performing similar patient

queries based on two similarity measures widely used in
the biomedical context: the Euclidean distance and the
Pearson correlation coefficient.

Since the secure computation of Pearson correla-
tion coefficient involves squaring of ciphertexts, we also
propose an efficient extension for additively homomor-
phic encryption schemes that enables the squaring of
ciphertexts. An additional requirement on the encryp-
tion scheme is that it also supports scalar multiplication
of ciphertexts. Our extension is based on the work of
Catalano and Fiore [31], adapting their idea to squar-
ing and improving the efficiency in terms of ciphertext
size and decryption time. We also prove our extension
to be secure with regard to ciphertext indistinguishabil-
ity under chosen plaintext attacks. We instantiate our
protocols and the proposed extension with the Paillier
cryptosystem.

We consider three different settings of information
released to the parties involved in our protocols, thus
offering some flexibility to the system designer. These
range from both queried and querying parties learning
only whether the similarity measure is below or above
a predefined threshold (boolean outcome) to one of the
two parties learning the final similarity measure and the
other learning the boolean outcome. The latter case can
be helpful when the querying party (e.g., a physician)
wants to know to which extent his patient is similar
to patients in the queried party’s database (e.g., in a
hospital’s database). All our protocols are designed with
a focus on keeping the communication overhead low,
running in only one or two rounds of communication
depending on the chosen setting. This allows for scalable
parallel queries, effectively reducing the number of open
connections and the bandwidth on the hospital’s side.

We rigorously prove our protocols to be secure in
the presence of honest-but-curious user and hospital.
Moreover, we provide an in-depth discussion and for-
malize countermeasures to prevent inferences from ma-
licious users or hospitals. Finally, we implement and
test the different protocols using various combinations
of data. These show that we can query a typical num-
ber of biomedical data positions against a database of
1,000 patients in less than five seconds for the weighted
Euclidean distance protocol, and in less than thirty sec-
onds for the Pearson correlation coefficient. This demon-
strates that our approach is efficient and highly practical
in current clinical and research settings.
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2 Background

2.1 Similar Patient Query

A similar patient query (SPQ) denotes a query carried
out by a user (e.g., a medical practitioner) on a set of
patients (usually from a hospital database). The query
takes a patient’s data as input and returns a set of pa-
tients in the hospital database similar to the input pa-
tient. A single comparison between two patients can also
be referred to as an SPQ. SPQs are crucial for medical
practice. They are used, e.g., when a physician needs to
find similar patients to his own in order to study their
treatment history. The resulting information can then
be used to optimize the treatment for his own patient.
As biomedical data is privacy sensitive, it is crucial to
protect both the patient’s data and the hospital’s data.

While the previously mentioned use case is essen-
tial in the clinical environment, SPQs are not limited to
this setting. Such queries can also be employed to tell
whether participants of a study conducted by multiple
research groups are similar to each other or not. Often, it
is also desirable in these cases to protect the datasets of
each laboratory. A third scenario to mention is the use
of SPQs for consumer-oriented portals such as Ances-
try [32] or 23andMe [33] offering to find relatives based
on the similarities within the genome. Two of the most
popular similarity measures used in biomedical practice
are the Euclidean distance and Pearson correlation co-
efficient [34–38]. We provide protocols for performing
SPQs securely based on the two aforementioned simi-
larity measures in a way that none of the participants
learns the other’s data.

2.2 Biomedical Data

While there exist a plethora of different types of biomed-
ical data, we focus on three of the most common types:
genomic data, microRNA expression profiles, and DNA
methylation profiles. Our approach, however, is general
enough to capture any biomedical data that can be rep-
resented by an integer or a real value.

2.2.1 Genome

The first data type we consider is the genome. Ab-
stractly, the genome is a pair of sequences of three billion

bases taking value in {A,T,G,C}. This pair of sequences
carries the genetic signature of its holder.

The genomes of two human beings only differ in
around 0.1% of the positions. These locations varying
between individuals are called single nucleotide poly-
morphisms (SNPs). There are currently about 150 mil-
lion referenced SNPs on dbSNP[39]. At each SNP loca-
tion within a single DNA sequence, there are two possi-
ble nucleotide values. The most frequent value is called
the major allele, and the other the minor allele.

As the DNA is a pair of sequences, at any SNP
position there are two alleles. Hence, there are only three
possible combinations for the values of a SNP which
are: (i) both are major alleles, (ii) one is major and the
other is minor, or (iii) both are minor alleles. We usually
encode these combinations as 0, 1 and 2, respectively.
Therefore, a genome of length L1 can be encoded as
{0, 1, 2}L1 . Note that we are interested in a subset of
length L′1 � L1 in our SPQ setting. We describe how
the genomic data comparison can be combined with the
other biomedical data types in Section 6.1.

2.2.2 MicroRNA Expression

The second type of biomedical data is microRNA
(miRNA) expressions data. MiRNAs are small non-
coding RNA molecules containing about 22 nucleotides
and are mainly responsible for gene regulation, i.e.,
which parts of the DNA are active in a given cell. There
are more than 5,000 known miRNAs. The expression
of microRNA is proportional to the number of active
miRNA molecules expressed in a group of cells and thus
is represented by a positive, real value. A microRNA ex-
pression profile of size L2 can be formally represented
as RL2

+ . As for the genome, we are interested in a subset
of the microRNA expression points of size L′2 � L2. In
Section 6.1, we explain how we encode these values as
fixed point integers in our implementation.

2.2.3 DNA Methylation

The third type of biomedical data we consider is DNA
methylation. In DNA methylation, a special molecule
is attached to a certain position of the DNA. Specif-
ically, such a methylation can only occur at positions
where a C nucleotide is followed by a G. While a posi-
tion in a single cell can only be methylated or not, the
DNA methylation can vary across different cells and
copies of the DNA. Hence, DNA methylation is mea-
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sured as a real value between 0 and 1, which represents
the fraction of cells that are methylated at a particu-
lar position. There are around 28 million known DNA
methylation positions in the human genome. A DNA
methylation profile of size L3 is formally structured as
[0, 1]L3 . Again, for our SPQ, we are only interested in
a subset of the methylation positions of size L′3 � L3.
As for the microRNA expression, we describe how we
encode the methylation values as fixed point integers in
Section 6.1.

3 System Model
Our protocols assume two participating parties we refer
to as the hospital and the user. The hospital is the entity
that possesses and manages the database of the biomed-
ical data. In principle, there can be multiple hospitals.
Although we name this party a hospital, it could as well
be any organization that collects and stores biomedical
data. The second party in our protocols is the user, who
initiates the query. The user is interested in performing
an SPQ against a patient in the hospital database.

We aim to compute the similarity between two pa-
tients. One patient’s data is known to the hospital, and
the other patient’s data is known to the user. None of
the parties should learn the other party’s data. Regard-
ing the outcome of the SPQ, we consider three different
scenarios of information released to either party. In the
first setting, the hospital is allowed to learn the sim-
ilarity measure outcome and returns to the user only
whether this outcome is above or below a predefined
threshold. In the second setting, both parties only learn
whether the similarity measure outcome is above or be-
low the threshold. Lastly, in the third setting, the hos-
pital does not learn anything, and the user learns the
similarity measure outcome.

In our approach, we assume an honest-but-curious
user and hospital, i.e., they have to follow the proto-
col but may try to extract or infer more information
from any data they can get. The honest-but-curious
hospital and user model is widely accepted in the lit-
erature [20, 22, 40–42]. However, we propose extensions
for the defense against a fully malicious user and hos-
pital in Section 9 to show the generalizability of our
approach for different use cases.

4 Building Blocks
In this section, we first recall the similarity measures
we use in our protocols. Then, we present the basics of
public key encryption and our extension to additively
homomorphic encryption for squaring operations.

4.1 Similarity Measures

In this paper, we focus on two types of similarity met-
rics, namely Pearson correlation coefficient (PC) and
the Euclidean distance (ED) since both metrics are fre-
quently used in the context of biomedical applications.
However, our general scheme can be easily extended to
other similarity measures, such as cosine similarity.

PC measures the linear correlation between two sets
of values. The coefficient’s value is between +1 and −1,
where +1 means complete positive correlation and −1
means complete negative correlation. We use the follow-
ing equation for calculating the PC:
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i∈I xiyi −

∑
i∈I xi

∑
i∈I yi√

(n
∑
i∈I x

2
i − (

∑
i∈I xi)2)(n

∑
i∈I y

2
i − (

∑
i∈I yi)2)

(1)

where I is the set of positions the user is interested
in, x and y are the two vectors whose similarity he wants
to measure.

ED is always greater than or equal to zero, and the
smaller the distance, the more similar two patients are.
We use the following equation for estimating ED:∑

i∈I

(xi − yi)2 (2)

In fact, the actual ED is the square root of that equa-
tion. However, since we just compare the distance with
a threshold, we can square both the threshold and the
real ED to facilitate the computation under encryption
and end up with the same result.

4.2 Public-key Encryption

Public-key encryption was first introduced by Diffie and
Hellman in [43], and numerous schemes for public-key
cryptography have been proposed since then. In our pa-
per, we require a public-key encryption scheme with
the additively homomorphic property, allowing to add
messages under encryption. More formally, we need a
scheme ΠPKE = (Gen,Enc,Dec,Add,Smul) such that:
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– (pk, sk) ← Gen(1k), the generation protocol gener-
ates a pair of public and private keys on the input
of the security parameter.

– c ← Enc(pk,m), the encryption protocol outputs a
ciphertext on the input of a message and the public
key.

– {m,⊥} ← Dec(sk, c), the decryption protocol out-
puts a message on the input of a valid ciphertext
and a private key, otherwise it fails.

– c2 ← Add(c, c1), the addition protocol, which out-
puts a ciphertext on the input of two ciphertexts.
The output ciphertext holds the sum of m and m1
where m and m1 are the decryptions of c and c1.

– c2 ← Smul(k, c1), the scalar multiplication proto-
col, which outputs a ciphertext on the input of a
scalar and a ciphertext. The output ciphertext con-
tains the multiplication of k and m1 where m1 is
the decryption of c1.

There are many available schemes fulfilling our require-
ment. We will rely on the Paillier cryptosystem [44] for
our implementation and evaluation.

4.3 Squaring of an Encrypted Message

Since both our similarity measures in Section 4.1 require
the user to calculate the square of an encrypted mes-
sage, we propose an extension of any additively homo-
morphic encryption scheme supporting scalar multipli-
cation. We will instantiate our extension exemplarily for
the original Paillier cryptosystem providing the ability
for the squaring operation. While plain additive homo-
morphic encryption does not support such an operation,
we follow the approach of Catalano and Fiore [31], which
extends an additively homomorphic encryption scheme
with a multiplication operation. However, the primary
drawback of their scheme is that the multiplication op-
eration and its subsequent operations can substantially
increase the size of the ciphertext.

Therefore, we adapt their scheme to only support
squaring of encrypted messages. Our modification elim-
inates one component of the original construction and
thus can significantly reduce the ciphertext size, thereby
also decreasing the decryption time by almost a factor
of two. We build on an additive homomorphic encryp-
tion scheme π̂ = (Gen′,Enc′,Dec′,Add′,Smul′) over the
message spaceM. Where Gen′ is the key generation al-
gorithm, Enc′ is the encryption algorithm, Dec′ is the
decryption algorithm, Add′ is the ciphertext addition
algorithm, and Smul′ is the scalar multiplication algo-

rithm. Leveraging this scheme, we build our new scheme
π = (Gen,Enc,Dec) over the same message space with
the operations

{Add(c1, c2),Smul(k, c),Square(c)}

In the following, we will define the operations on our
scheme π, starting with the encryption.

4.3.1 Encryption

In principle, now every ciphertext is represented by a
pair c = (α,B), with α being a ciphertext of the under-
lying scheme π̂ and B being a list of ciphertexts βi of
π̂.

A freshly created ciphertext has an empty list B and
the message m is encrypted with the underlying scheme
π̂ and stored in the first part of the ciphertext α, i.e.,
Enc(m) = (Enc′(m), [ ]) with [ ] being the empty list.

4.3.2 Decryption

The decryption of a ciphertext c = (α,B) works as fol-
lows:

Dec((α,B)) = Dec′(α) +
∑
βi∈B

Dec′(βi)2.

4.3.3 Addition

To add two ciphertexts c1 = (α1, B1) and c2 = (α2, B2)
the α’s are just added together using the homomorphic
property and the B’s are concatenated. Hence, we get

Add(c1, c2) = (Add′(α1, α2), B1||B2),

where || is the list concatenation.

4.3.4 Scalar Multiplication

To scale a ciphertext c by a factor k, we distinguish
between two cases. The first is when c is a simple
ciphertext, i.e., ciphertexts for which the list B is
empty. In this case, Smul(k, c) = Smul(k, (α, [ ])) =
(Smul′(k, α), [ ]). The second case is when c has a list B
which is not empty. In this case, we only support scalar
multiplications with factors which have integer square
roots. To scale a ciphertext c with a factor k, we scale
α with k, and then scale all the ciphertexts in the list B
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with the square root of k. More formally, Smul(k, c) =
Smul(k, (α,B)) = (Smul′(k, α), [Smul′(

√
k, βi)]βi∈B).

4.3.5 Squaring

Below is the modified multiplication protocol from [31],
adapted only to calculate the square Square(c) of the
ciphertext c. The following protocol does only rely on
the given operations on ciphertexts and can hence be
executed without the knowledge of m.
1. Let Enc(m) = c = (α′, B′). If B′ is not empty, throw

an error since we only support a single squaring op-
eration.

2. Pick a random value a←M.
3. Calculate γ1 = Enc′(−a).
4. Calculate β = Add′(α′, γ1) = Enc′(m− a).
5. Calculate γ2 = Enc′(−a2).
6. Calculate γ3 = Smul′(2a, α′) = Enc′(2am).
7. Calculate α = Add′(γ2, γ3) = Enc′(−a2 + 2am).
8. Return (α, [β]), where [β] denotes the list with only

β as element.

Compared to the original multiplication protocol, our
modification reduces the number of random values to
one instead of two, effectively decreasing the size of β
by a factor of 2. β and α can be calculated efficiently
because of the additive and scaling properties of the en-
cryption scheme. The additive property allows the ad-
dition of the messages under encryption. The scaling
property allows the ciphertexts to be scaled by a scalar.

The correctness of these modifications follows from
the following theorem.

Theorem 1. The squaring modification is correct, i.e.,
Dec(Square(Enc(m))) = m2

Proof.

Dec(α) = −a2 + 2am (3)
Dec(β)2 = (m− a)2 (4)

Simplifying Equation 4 results in

Dec(β)2 = m2 − 2am+ a2 (5)

Adding Equation 3 and 5 results in

−a2 + 2am+m2 − 2am+ a2 = m2 (6)

The security proof is given in Appendix B.

5 Assumptions
We rely on the following two assumptions for our sys-
tem. First, we assume there exists a scheme π =
(Gen,Enc,Dec,Add,Smul), which is a CPA secure addi-
tively homomorphic public encryption scheme . Gen is
the key generation algorithm, Enc is the encryption al-
gorithm, Dec is the decryption algorithm, Add is the
ciphertext adding algorithm, and Smul is the scalar
multiplication algorithm. Second, we assume the non-
collusion between users and hospital. The non-collusion
assumption makes sense in our case because, if they col-
lude, then no information needs to be hidden, as they
can directly share their data with each other. In a real-
istic scenario, the hospital would try to learn the user’s
data, and the user would try to learn the hospital’s data.

6 Design
In this section, we present our protocols for performing
similar patient queries based on diverse biomedical data.

6.1 Setup

As previously mentioned, genomic data are usually rep-
resented as a sequence of nucleotides or, if we focus on
SNPs, as an integer between 0 and 2. MicroRNA expres-
sion and DNA methylation data are usually represented
in the form of real values, with DNA methylation being
bounded between 0 and 1.

Since the different representations of data can be a
barrier to combine all of them for calculating the SPQ,
we unify their representation by encoding them as fixed
point integers. We consider SNPs to be represented by
0, 1, or 2. DNA methylation values and microRNAs are
scaled up by a factor of 10p for p digits of precision
and then rounded to the nearest integer. In this work,
we set p = 8 digits of precision for DNA methylation
values because the methylation values in our dataset
are encoded with 8 digits. For the same reason, we set
p = 9 digits of precision for the microRNA expression
values.

Since all data are now presented as integers, the
hospital publishes all of its data under encryption and
reveals the locations and types of the data. A user then
picks the positions he is interested in and calculates the
similarity value, which he will send to the hospital in
order to obtain the final result.
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Inputs of User: Hospital’s encrypted values, Hospital’s encrypted squared values, Hospital’s pub-
lic key, his patient data, weights and set I of the positions he is interested in.

Inputs of Hospital: Private key and threshold.
Output: If ED between the hospital’s and user’s data is below the threshold or not.
User: Encrypts the data variants he wants to query and their squared values.
User: For each i ∈ I he calculates r1i = Enc(h2

i ) · Enc(u2
i ) which is equal to

Enc(h2
i + u2

i ).
User: For each i ∈ I he calculates r2i = Enc(hi)(−2ui) which is equal to

Enc(−2hiui).
User: Calculates res =

∑
i∈I r1i · r2i which is equal to

∑
i∈I Enc(h2

i + u2
i −2hiui).

The user can apply different weights for every position by just multiplying the
weights to the ciphertexts in each row using this equation

∑
i∈I

Enc(h2
i +u2

i −
2hiui)wi .

User → Hospital: User sends res to the hospital.
Hospital: Decrypts res.
Hospital → User: Hospital checks the value against some threshold which is defined by the hospi-

tal. If res is below this threshold then the hospital sends to the user that these
are similar else the hospital sends that they are not similar. This can be even
fine tuned so instead of sending just true or false the hospital can send how
similar this user is in a scale for example from 1 to 10.

Fig. 1. Our protocol for Similar Patient Queries using Euclidean distance.

It is important to mention that we are using addi-
tively homomorphic encryption scheme, hence the user
is able to apply different weights with different positions
or data types. He can apply the weights both to his val-
ues and to the hospital’s without any interaction with
the hospital. This is particularly crucial to account for
the scaling performed to the data types. For instance, if
the user wants to cancel the scaling factor while using
the PC version of the scheme, he just needs to make all
values scaled with the same factor. The scaling factor
will be canceled without any extra actions, due to the
PC Equation 1. For the ED version, the user would need
to divide the final value with the square of the scaling
factor to cancel it. An example for scaling the values
would be to multiply the methylation values by 10, and
DNA values by 109 to make them 9 digits similar to the
microRNA expression values.

We assume the hospital to create a key pair (pk, sk),
which is the key for the encryption scheme. For our eval-
uation, we rely on the adapted version of the Paillier
cryptosystem. Using this key pair, the hospital publishes
the patients’ biomedical data, including the positions,
the type of data, the encryption of the data itself. We
further assume the hospital to publish the encryption
of the square of the patients’ data values. While the
square could in principle be calculated by the user, di-
rectly publishing it is much more efficient.

For each of the similarity measures used in this pa-
per, we will present three settings differing in the in-
formation release to each party. Table 1 summarizes

Table 1. Three settings considered in our SPQ protocols with
regard to the information release to each party.

Setting Hospital User
1) similarity boolean
2) boolean boolean
3) nothing similarity

the three settings we consider. A “boolean” informa-
tion release to a party means that this party only learns
whether the similarity is below or above a predefined
threshold, whereas releasing the “similarity” means the
party learns the actual outcome of the similarity com-
putation.

6.2 SPQ using Euclidean Distance

Scheme 1 presents our protocol for calculating the SPQ
using ED in the basic setting, i.e., when the hospital
does learn the similarity value and returns to the user
whether it is below or above the predefined threshold.
However, instead of considering the equation for ED as
presented in Section 2, we will use an expanded version
of it as follows: ∑

i∈I

x2
i − 2xiyi + y2

i

By using the expanded version and the additionally
published squared values, we can avoid calculating the
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square of a ciphertext, which is not only computation-
ally expensive but results in increasing the ciphertext
size as mentioned in Section 4.3. The only disadvantage
of using that equation is that now the hospital needs to
also publish the encryption of the square of the values.
However, this is already required for the SPQ using PC
as will be explained in Section 6.3.

As a reminder, I is the set of positions the user is
interested in. Let h be the vector containing the hospi-
tal’s patient’s data, u be the vector containing the user’s
patient’s data and w be the vector containing the values
of the user’s weight for each position of the set I.

Scheme 1 also explains how to incorporate the
weights for individual positions during the computation.
Basically, the user assigns different weights for every po-
sition by multiplying them to the ciphertexts in each
row following the equation

∑
i∈I Enc(h2

i +u2
i −2hiui)wi .

In our second setting, we hide the similarity value
from the hospital and only let both parties learn
whether it is above or below the threshold. This can be
easily achieved by leveraging the ciphertext comparison
protocol proposed in [45]. The hospital would publish
the encryption of the threshold and the user compares
it to his result using the building block, sending only
the comparison result to the hospital instead of res.

Our third setting, in which only the user learns the
similarity value, can be easily achieved by the user blind-
ing res. The hospital then sends the decrypted value to
the user, who unblinds it and hence receives the desired
outcome.

6.3 SPQ using Pearson Correlation
Coefficient

Scheme 2 presents our protocol for calculating the SPQ
using PC in the basic setting, in which the hospital
learns the correlation coefficient and returns to the user
only whether it is below or above a threshold. I is the
set of positions the user is interested in, h the vector
containing the hospital’s patient’s data, and u be the
vector containing the user’s patient’s data.

As shown in Scheme 2, we use our ciphertext squar-
ing extension to calculate p7. According to the Equation
1, p7 is supposed to be multiplied by −1. However, our
ciphertext squaring extension presented in Section 4.3
does not support such multiplication. In order to bypass
this issue, we calculate the opposite (negative value) of
both parts of the denominator in (1) leading to the same
final value since the two negative values cancel out.

For the blinding and unblinding of p10 and p11, it
is important to note that the blinding and unblinding
are performed in different groups. The blinding happens
on the encrypted values, but the unblinding happens on
the decrypted values. To ensure a correct unblinding,
overflow of the blinded values should be avoided. This
is not an issue in our scenario as the considered values
are significantly smaller than the modulus size. More
concretely, our data have maximum 9 digits which can
be encoded in 30 bits, which is much smaller than the
size of the cryptosystem modulus (2048 bits) that we
use in Section 8. Finally, there is no constraint on rh as
the blinding and unblinding operations are performed
in plain.

In order to hide the resulting correlation coefficient
from both parties, corresponding to our second setting,
and to only reveal whether the result is above or below
the hospital’s threshold, the hospital scales and encrypts
p14 before sending it to the user. The scaling depends
on the accuracy needed by the hospital and the thresh-
old should also be scaled with the same scaling factor,
which should be known and public. Then, the hospital
sends this encryption to the user who removes the blind-
ing. Finally, both parties run the ciphertext comparison
protocol proposed in [45] on the scaled threshold and
the unblinded encryption.

For our third setting, the protocol can be adapted
to let the user know the result instead of the hospital.
This is achieved by the hospital not blinding p12, which
enables the user to learn the correlation coefficient.

6.4 Advantages of our Approach

Here we highlight the main advantages of our approach,
notably with respect to previous contributions.

First of all, while some related protocols require a
trusted third party such as the one presented in [24], we
entirely eliminate the need thereof because neither the
security nor the functionality of our protocols depend
on any external parties.

Moreover, to the best of our knowledge, we are the
first to provide and evaluate protocols that are explicitly
able to combine different types of biomedical data, also
considering different weights for specific positions. They
are essential to give specific positions or biomedical data
more weight for the similarity calculation. Moreover,
weights can also be used to give the user the flexibil-
ity of normalizing the distance if needed.

Compared to most other approaches, our protocols
only require a very low amount of communication. One
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Inputs of User: Hospital’s encrypted values, Hospital’s encrypted squared values, Hospital’s public key, his patient data
and set I of the positions he is interested in.

Inputs of Hospital: Private key and threshold
Output: If the PC between the hospital’s and user’s data is below the threshold or not
User: Calculates

∑
i∈I ui. Then multiplies the encryption of the hospital’s values to get Enc(

∑
i∈I

hi) and
raises it to the previously calculated

∑
i∈I ui to get p1 = Enc(

∑
i∈I

ui

∑
i∈I

hi).
User: For every i the user raises Enc(hi) to ui to get Enc(hiui) then multiplies these ciphertexts to get

Enc(
∑

i∈I
hiui). Finally, he raises it to n, where n is the length of I to get p2 = Enc(n

∑
i∈I

hiui).
User: multiplies p−1

1 with p2 to get p3 = Enc(n
∑

i∈I
hiui −

∑
i∈I

hi

∑
i∈I

ui).
User: Calculates p4 = (

∑
i∈I

ui)2 − n
∑

i∈I
u2

i .
User: Multiplies the encryption of the hospital’s squared values to get Enc(

∑
i∈I

h2
i ), then raises it to n to get

p5 = Enc(n
∑

i∈I
h2

i ).
User: Multiplies the encryptions of the hospital’s values to get p6 = Enc(

∑
i∈I

hi) then squares it to get
p7 = Enc((

∑
i∈I

hi)2). This squaring is done with the extension we previously introduced in 4.3.
User: Multiplies p−1

5 to p7 to get p8 = Enc((
∑

i∈I
hi)2 − n

∑
i∈I

h2
i ).

User: Raises p8 to the square of p4, to get p9 = Enc(((
∑

i∈I
hi)2−n

∑
i∈I

h2
i )((

∑
i∈I

ui)2−n
∑

i∈I
u2

i )2).
User: Generates r1 and r2 as specified in Subsection 6.3
User: Blinds p9 with the square of a random number r1 to get p10 = Enc(r1

2((
∑

i∈I
hi)2 −

n
∑

i∈I
h2

i )((
∑

i∈I
ui)2 − n

∑
i∈I

u2
i )2).

User: Blinds p3 with the a random number r2 to get p11 = Enc(r2(n
∑

i∈I
hiui −

∑
i∈I

hi

∑
i∈I

ui)).
User → Hospital: User sends p10 and p11 to the hospital.
Hospital: Decrypts p10, and calculates the square root of it. Then divides it with the decryption of p11 to get

p12 =
r2(n

∑
i∈I

hiui−
∑

i∈I
hi

∑
i∈I

ui)

r1(
√

(n
∑

i∈I
h2

i
−(
∑

i∈I
hi)2)(n

∑
i∈I

u2
i
−(
∑

i∈I
ui)2)2)

.

Hospital → User: Hospital picks a random rh and sends p13 = p12 · rh to the user.
User: The user removes his blinding by multiplying p13 with r1

r2
, then multiplies it with p4 to remove the extra

scaling and get p14.
User → Hospital: User sends p14 to the hospital.
Hospital: The hospital removes its blinding by dividing p14 with rh to get the coefficient and decides if the patients

are similar or not.
Hospital → User: Sends the user if the patients are similar or not.

Fig. 2. Our protocol for Similar Patient Queries using Pearson Correlation Coefficient.

or two rounds of communication suffice to obtain the
final results depending on which variant is used. This
is important to reduce the online time of both par-
ties. In other words, the low number of rounds avoids
forcing both parties to be online to start the SPQ and
stay online during the computation. Furthermore, a low
amount of communication reduces the amount of band-
width needed for each query. This is not only beneficial
when limited bandwidth is available, but also when a
hospital receives many queries at the same time.

Moreover, our protocols enable the user to query
certain positions without the hospital knowing the po-
sitions. Since the hospital publishes the list of encrypted
values for all positions, the user is free to compute the
similarity on any set of positions without the hospital
learning this set. We also discuss an extension of our
protocols allowing to hide the result of the similarity
computation from the hospital and instead only reveal-
ing whether the value is above or below a threshold.

Finally, our protocol is generic enough to also apply to
other similarity measures, data types and use cases such
as the one presented in Appendix A.

7 Security and Correctness
Analysis

In this section, we analyze and prove the security and
correctness of our building blocks and protocols.

7.1 Correctness

The correctness property is defined as: the two par-
ties engaged in the scheme should calculate the desired
similarity metric. It is relatively straightforward to see
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the correctness of the scheme calculating ED (cf. Sec-
tion 6.2) and PC (cf. Section 6.3).

For ED scheme, the correctness follows from that we
just calculate the equation but under encryption, which
does not affect the final output. We use the expanded
version of ED as presented in Equation 2 and compare
it with the square of the threshold.

The scheme calculating PC uses the exact equation
for the coefficient as presented in Equation 1. The blind-
ing factors added in the scheme are all removed at a later
stage, thus eventually providing the exact PC.

7.2 Security

Due to space constraints, we present the definitions and
proofs related to the following theorems in Appendix B.

Theorem 2. Let ΠPKE be IND-CPA secure. Then the
squaring modification is CPA secure.

Theorem 3. Let ΠPKE be IND-CPA secure. Then the
SPQ using ED protocol is secure.

Theorem 4. Let ΠPKE be IND-CPA secure. Then the
SPQ using PC protocol is secure.

8 Performance Evaluation
In this section, we first describe the three datasets we
rely upon for our experiments and then present our ex-
perimental setup and results.

8.1 Datasets Description

In our experiments, we use three types of data, DNA,
DNA methylation, and microRNA expression taken
from three different datasets. For the genomic data,
we use the publicly available data from the Personal
Genomes Project (PGP) platform, which contains 7840
whole-genome sequences[46]. The data are stored in
VCF (variant call format) files, which is a standard for-
mat in bioinformatics. We randomly extract from the
VCF files 1000 SNP values. These values are 0, 1, and
2 as already mentioned depending on the alleles the
SNP contains. The values 0, 1, and 2 are not equally
distributed, the value 0 is the most frequent one. For
the DNA methylation data, we rely on an epigenomic
dataset from the Gene Expression Omnibus (GEO)[47]

available under accession number GSE44684 [48]. We
extract from the files the locations and methylation val-
ues of 67 individuals. Finally, for the microRNA expres-
sion data, we use the dataset under accession number
GSE68951 from the Gene Expression Omnibus (GEO)
[49]. We extract from the files the locations and the ex-
pression values of 26 patients. These three datasets show
the general applicability of our approach to any type of
biomedical data as well as their combination.

8.2 Experiments and Results

We run the evaluation on two different servers located
in different states. The hospital is run on the Amazon
AWS service with an instance of type c3.8xlarge, which
has 60 GB of memory, 32 Intel Xeon E5-2680v2 cores,
and a network bandwidth up to 10 Gbps. The user is run
on a local server with a 768 GB of memory and 4 Intel
Xeon E5-4650L octa-core processors, providing 32 phys-
ical CPUs, and has the Intel’s hyper-threading technol-
ogy enabled. Note that our protocol does not fully use
the complete computational power of these machines.
In practice, the maximum memory consumption of our
protocols is about 20% of the hospital machine – 12 GB
– and 2% of the user machine – 15 GB –, and the actual
bandwidth of the network is about 200 Mbps. Both of
the protocols use the second setting presented in Table 1
and are implemented in Java using multi-threading. As
previously mentioned, we implement our evaluation in-
stantiated by the Paillier cryptosystem [44] with a key
size of 2048. It is also important to note that we imple-
ment the Paillier cryptosystem without any efficiency
improvements, like those presented in [50]. These could
be further implemented to reduce the running time.

We test different combinations of the number of par-
ticipants, the number of positions, the data distribu-
tion with the protocol for the second setting, and every
similarity measure variant. Recall that the second set-
ting only reveals the boolean outcome to both parties.
We chose to evaluate this setting, since it requires the
most rounds of communication, thus providing an up-
per bound on our protocols. The first protocol we evalu-
ate calculates ED without weights, the second protocol
computes PC, and finally, the third protocol calculates
the weighted Euclidean distance (WED). We randomly
assign weights to every position independently. Regard-
ing the biomedical data distributions we test the follow-
ing combinations: We first assume that each type of data
occupies 100% of the positions. Then, we assume one
scenario in which each type of data takes an (almost)
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equal share in the similarity protocol, i.e., DNA (D)
taking 33%, microRNA expression (R) 33% and DNA
methylation (M) 34%.

We consider between 10 and 1000 positions in one
of the three biomedical data types or spread among all
of them if we assume a given disease is influenced by
multiple types of data. In the latter case, we assume
all three data types have an (almost) equal number of
positions that contribute to the disease. For instance,
if we consider 10 positions, we pick 3 SNPs from the
genome, 3 microRNA expressions, and 4 methylation
positions. We select a range between 10 and 1000 posi-
tions to be as close as possible to realistic queries. For
example, many diseases are associated with less than
10 genomic positions [25–27], while other diseases are
influenced by up to 100 positions [28, 29], and finally
there are a few examples where we need up to 1000 po-
sitions, like the study on classifying brain tumors based
on methylation profiles in [30]. We test the range from
100 to 1000 positions (with an increasing step of 100)
especially for demonstrating the scalability of our ap-
proach and cover even rare cases where more than 100
positions are relevant.

Regarding the number of participants, we consider
numbers ranging from 100 to 1000 participants in the
hospital’s database, with an increasing step of 100.
Fig. 3 depicts the hospital’s computational time and
the total time including the communication time and
the user’s computational time for six different repre-
sentative scenarios. First, we observe that the hospital
computational time is almost constant regardless of the
number of positions. This is because the hospital re-
ceives only one ciphertext no matter what the number
of positions is. It is also independent of the number of
participants because the hospital can operate on each
participant’s data separately, in other words, the hospi-
tal processes all participants’ queries in parallel. Com-
paring the hospital time of Fig. 3, we observe that the
data types that are used do not influence the hospital’s
computational time. This is expected as the hospital al-
ways gets the same formatted ciphertext, regardless of
the type of data being encrypted.

We also observe that the hospital’s time is almost
equal for protocols WED and ED. This is not surprising
because, in both cases, the hospital performs the same
operations, as noted in Scheme 1. For the PC proto-
col, the hospital’s time is more than four or five times
the corresponding time in the other protocols. This in-
crement is due to the hospital having to decrypt and
work on more ciphertexts than for the other protocols
as noted by the number of operations the hospital per-

forms in Scheme 2 compared to the number of opera-
tions in Scheme 1. Furthermore, one of these ciphertexts
is the result of the squaring of a number which is ex-
pected to take more time as described in Section 4.3.
Finally, we observe that the hospital’s computational
burden is negligible compared to the user’s as well as
to the communication time in our protocols shown by
the blue curves with square dots in the figures. The rea-
son for this is that the user performs the computations
himself to hide the locations he is interested in, and the
hospital mostly just decrypts the resulting ciphertexts.

Looking at the total time of Fig. 3 (a)-(c), we ob-
serve that the running time is larger for methylation
data than for genomic data. It is slightly shorter than
with methylation data when we combine all three data
types. This shows that considering or combining dif-
ferent biomedical data other than solely genomic data
increases the complexity of same patient queries. In gen-
eral, the DNA-based similarity test takes less than 30
seconds for 1000 users and 1000 positions, and less than
5 seconds for 100 positions. Methylation-based similar-
ity tests take around 10 seconds for 1000 participants
and 100 positions. Note that the results for microRNA
data are almost the same as for DNA methylation data
as expected due to the similar real-valued nature and
pre-processing of these data.

We further observe that the total time is in gen-
eral not only linear in the number of positions that
are queried but also in the number of participants in
the database. The only exception for this observation is
Fig. 3b. This exception results from having a higher con-
centration of 0s in the first 500 SNPs than in the second
500 SNPs. The non-linear behavior is because addition
of zeros is faster than the addition of the non-zero val-
ues. This is the case since we add a plaintext value –
the user value – directly to a ciphertext – the hospital
value –, not a ciphertext to a ciphertext, for efficiency
reasons. Finally, comparing the different protocols, we
notice first that ED protocol (Fig. 3f) is the fastest one,
about two times faster than WED protocol (see Fig. 3c
for comparison with 3f). Furthermore, PC protocol takes
the longest time: it is about six times slower than WED
protocol (see Fig. 3d and 3e for comparison). This is
because, in the PC protocol, the user calculates much
more than in the other protocols, as can be seen when
comparing Scheme 2 with Scheme 1. Moreover, in the
PC protocol, there is an additional round of communi-
cation that is needed in the middle of the protocol. The
increment in time between protocols ED and WED is
caused by the additional operations needed for applying
the weights (cf. Scheme 1).
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Fig. 3. Time performance of the different protocols under various data distribution, numbers of participants/positions scenarios. (a)
WED with 1000 participants and DNA methylation data only, (b) WED with 1000 participants and genome only, (c) WED with 1000
participants and combined genome, microRNA expression and DNA methylation data (uniformly distributed), (d) WED with 10 posi-
tions and DNA methylation data only, (e) PC wit 10 positions and DNA methylation data only, and (f) ED with 1000 participants and
combined biomedical data as in (c).

To further test our protocols’ scalability, we evalu-
ate their performance when performing a similar patient
query against 1 million patients in six different settings
covering each of the six scenarios in Fig. 3. In the follow-
ing, we report the setting and the corresponding total
time to perform the similarity computation: (a) WED
protocol for 100 positions on methylation data: 4.6 hrs,
(b) WED protocol for 1,000 positions on DNA: 14.6 hrs,
(c) WED protocol for 100 positions on the three data
types: 2.3 hrs, (d) WED protocol for 10 positions on
methylation data: 1.3 hr, (e) PC protocol for 10 posi-
tions on methylation data: 3.8 hrs, (f) ED protocol for
1,000 positions on the three data types: 10.8 hrs. These
results demonstrate the ability of our protocols to scale
to up to 1 million patients.

In order to show that our protocols can even be
run on less powerful machines, we perform several ex-
periments locally, i.e., on a MacBook Pro with 16 GB

memory and 2,7 GHz Intel Core i7 processor. The same
laptop is used for both the hospital and user. The re-
sulting time is on average five times slower than with
more powerful machines used in other experiments.

We also report the size of communication between
the hospital and the user in Table 2. As expected, us-
ing different combinations of biomedical data or a dif-
ferent number of positions does not affect the size of
data being exchanged because the size of ciphertexts is
independent of the data type. The hospital or user al-
ways sends/responds with the same type and number of
ciphertexts, independently of the data type used, only
depending on which protocol is being executed. This
is why we just report the data exchanged per patient.
As the table shows, the PC protocol’s communication
size is larger compared to the other protocols. This is
due to having two rounds of communication and having
a ciphertext which is the result of squaring a cipher-
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text, compared to the other protocols that only have
one round with standard ciphertexts being sent. The
squared ciphertext has a larger size than a standard
ciphertext due to its construction as described in Sec-
tion 4.3. Finally, note that the data exchanged is slightly
larger than expected due to the overhead added by Java.

We do not report the encryption time because the
hospital encrypts the data only once per patient in its
database. As already mentioned, this encryption occurs
before any user can use the system and, as such, it is
not time-critical. After the data is encrypted, users can
start querying the hospital’s encrypted data.

Finally, it is important to mention that we are con-
sidering the worst case for the number of queries. In-
deed, according to our biomedical colleagues, medical
practitioners or researchers are interested in having one
to maximum three similar patients for a given case. On
one hand, for common diseases or variants, there is a
high chance that the user gets the one or those few
patients he needs in 1,000 queries or before. On the
other hand, there is some chance that she would have
to query more than 1,000 patients before finding one or
two matching patient(s) in the case of rare diseases. In
order to account for the latter case, we have further ex-
perimented our similarity computation protocols with 1
million patients.

Second, the number of queries can be significantly
decreased by clustering the hospital’s data. The hospi-
tal can use clustering techniques to provide a few repre-
sentative patients and let the user query against those
only. If the SPQ results in a similar representative, a
more fine-grained search in the cluster containing this
representative can be carried out similarly.

However, the clustering technique mentioned in [35]
would not work in our setting because it creates clusters
based on the whole genome. Intuitively, our clustering
idea is to run the clustering algorithm on the data multi-
ple times, each time on different sets of positions. Each
patient will have an ID to represent him, for cluster-
ing purpose only. The hospital would then publish the
clusters’ description, i.e., which positions are considered
into this cluster, and attach a list next to each patient
identifying which clusters he is in. The positions used
for clusters can be for example the positions used for
identifying different diseases, with every disease having
its own clusters. Note that since the hospital knows its
patients’ values, the clustering would happen on plain
data and only once, at the setup.

Table 2. Data exchanged per patient between the user and the
hospital for the different protocol variants

Protocol Data sent by user Data sent by hospital
ED & WED 802 Bytes 47 Bytes

PC 3594 Bytes 849 Bytes

9 Countering Malicious Behavior
In this section, we propose possible defenses against ma-
licious users and hospital.

9.1 Malicious Users

Our first defense aims to maintain the accuracy of the
SPQs while enhancing the hospital’s data protection. It
is based on the fact that the users are not anonymous
while querying the hospital. The hospital should create
and store a profile for each user based on his expected
behavior. Then, as the user is not anonymous while
querying the hospital, the hospital monitors the user’s
actions in order to detect any deviation from proper be-
havior. If the hospital catches misbehavior, it can take
actions ranging from blocking the user to legal actions.

Due to the strong privacy guarantees of our proto-
cols, the hospital only learns which user is querying the
service. However, it does not learn which positions are
queried, which patient on the hospital’s side is queried,
or what the patient’s data on the user side looks like.
Depending on the protocol used, it does not learn either
the exact similarity outcome. Therefore, it is challenging
for the hospital to detect every kind of misbehavior. We
will present here an extension for the defense mentioned
above, which provides more capabilities to the hospital
– effectively increasing the privacy of the hospital’s data
– by degrading the accuracy of the SPQs.

If we want to protect our scheme against a malicious
user, we must assume he does not know the final sim-
ilarity value. If the user knew the similarity outcome,
it would be quite easy for him to query specific SNPs
and appropriately assign his SNPs’ values to infer those
of the hospital. Therefore, in the following, we assume
the setting in which only the hospital learns the simi-
larity measure while the user only learns whether the
similarity outcome is above or below a public threshold.
In this setting, we can apply the sparse vector technique
for differential privacy as defined in [51]. The sparse
vector technique adds noise to the similarity values and
compares the result to a noised threshold. Generally, it
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is assumed that queries resulting in a value above the
threshold are considered privacy sensitive (also called a
positive outcome). The noise on the threshold is only
redrawn when the outcome is positive, and there is a
bound c on the number of queries that yield such a
positive outcome. It is straightforward to adapt the al-
gorithm for the case where results below the threshold
should be considered privacy-sensitive.

Given our similarity measures, we consider the case
where query results above the threshold are considered
privacy-sensitive. The sparse vector technique is (ε, δ)-
differentially private and provides (α, β)-accuracy guar-
antees on the result. Let a1, . . . , ak ∈ {>,⊥} denote a
stream of answers for k queries x1, . . . , xk, determining
whether the similarity s(xi, h) between xi and the hos-
pital’s values h is above the threshold (>) or not (⊥).
Given δ > 0, the following equation defines the relation
between (ε, δ)-differentially privacy and (α, β)-accuracy:

α =
(ln k + ln 2c

β

√
512 ln 1

δ )
ε

.

The sparse vector technique is called (α, β)-accurate
with respect to a threshold T if, except with probability
at most β, the algorithm does not halt before the kth

query, and for all ai = >: s(xi, h) ≥ T − α, and for all
ai = ⊥: s(xi, h) ≤ T + α. In practice, this means that
the threshold has not been altered by more than α with
probability (1− β).

There are six parameters influencing the algorithm:
k, c, α, β, ε, δ. k is the total number of queries a user
is potentially able to submit, and c ≤ k is the cut-off
point on the number of privacy sensitive outcomes. If c
queries returned a positive outcome (above the noised
threshold), further queries will not be answered. Given
this guarantee, the algorithm is able to answer these
queries with a positive outcome up to an error α with
probability (1− β). The parameter ε is the privacy-loss
parameter, controlling the amount of noise. δ controls
the probability of a privacy breach event happening and
should be kept very small or event be set to 0 (the cor-
responding relation for δ = 0 can be found in [51]).

By determining suitable bounds for the error on
the threshold, the hospital can use the relation above
to calculate suitable parameters for the sparse vector
technique in order to increase the patient’s data privacy
while striving for an acceptable utility. How the parame-
ters have to be chosen in practice mainly depends on the
amount of error medical practitioners would feel com-
fortable with.

For example, a hospital could allow a user to per-
form a total of k = 1, 000 queries, c = 10 of which may

yield a positive outcome. From medical practice with a
given type of data, the hospital determines that an er-
ror of at most α = 50 is acceptable. The chosen error
should only be allowed to exceed α in β = 10% of the
cases. Setting δ = 10−10 will then yield ε ≈ 11.64.

9.2 Malicious Hospital

First, it is important to note that a malicious hospital
can publish wrong data in the first place. However, as
the hospital’s encrypted data is published, such data
cannot be changed at any time without anyone notic-
ing it. This eliminates the risk of having the hospital
publishing data specially crafted to steal a user’s data.

For this defense, we consider the setting in which
only the user learns the similarity measure, and the hos-
pital learns nothing. The intuition behind the defense is
forcing the hospital to perform all of its operations in
public while presenting proof of correctness for them.
The user can check that if the hospital is misbehaving
by merely checking the operations and the proofs.

The hospital only decrypts the value in the ED
scheme. To defend against a malicious hospital, the hos-
pital would only need to provide a proof of decryption
like the one presented in [52]. This way the user will be
sure that the decryption is correct, then he can follow
the scheme to unblind the value locally and learns the
similarity measure, while the hospital learns nothing.

For the PC scheme, it is more complicated. In this
scheme the hospital blinds p10 and p11 locally. To per-
form the blinding in public, the hospital would need to
blind the values before decrypting them to avoid leak-
ing their values to the user, and to provide a proof of
correctness for the blinding. To accomplish this, the hos-
pital can use a non-interactive zero-knowledge proof of
knowledge (NIZK) [53]. More concretely, the hospital
publishes X1 and X2 which correspond to the blinded
versions of p10 and p11, respectively. The hospital then
proves the correctness of X1’s and X2’s construction by
creating and publishing the following proof of knowl-
edge PK{(rh) : X1 = p

r2
h

10 ∧ X2 = prh
11}. Concretely, this

proof shows that there exists an rh that the hospital
knows and uses to construct X1 and X2 as illustrated
in the proof. The hospital can decrypt both values in
public while proving their decryption. Since the same
blinding factor rh is used in blinding both values, the
user can calculate p12 himself, and the rest is executed
as described in the original scheme.
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10 Related Work
There are several previous papers on finding similar pa-
tients in a privacy-preserving manner.

Wang et al. [22] propose a technique for similar
patient queries that uses the edit distance between
DNA sequences approximated by a private set differ-
ence. Contrary to this approach, we are not bound to
genomic data, but instead we consider other types of
biomedical data such DNA methylation or microRNA
expression data as well. These data types cannot be han-
dled by Wang et al.’s approach due to its representation
and the similarity measure they use. Furthermore, our
approach improves upon the amount of communication
needed and the flexibility to query specific positions se-
lectively.

Al Aziz et al. [54] propose two approximations for
edit distance to perform similar patient queries. Their
work is similar to [22], with one of their approxima-
tions achieving a better accuracy for longer genomic se-
quences at the expense of the running time. Our proto-
col does not rely on the edit distance, which enables us
to use other data types than DNA only. Also, it gives us
the advantage to offer the user the possibility to apply
different weights for different positions, which cannot be
done using their approach.

Asharov et al. [23] present another SPQ improving
upon the work in [22]. However, they also only consider
DNA data. Moreover, their approach leaks a syntactic
reference genome, which they claim does not leak any in-
formation but without any formal proof. Our approach
does not leak any information about the result except
that it is above or below a threshold, and we reduce the
communication needed for the protocols. Besides, even
if the syntactic reference genome does not leak infor-
mation, it has another disadvantage: Each hospital will
have a different reference genome, which forces the user
to calculate and store the difference between each of his
patients and all of these reference genomes.

Naveed et al. [24] give an interesting solution for
a variety of operations like similar patient query, pa-
ternity test, etc. by relying on controlled functional en-
cryption. Their approach presents a modified functional
encryption which is efficient and can achieve the previ-
ously mentioned functions for DNA sequences. However,
it would be hard to handle the methylation or expres-
sion data as they consider the patient as a vector of
1’s and 0’s which indicate the user’s SNPs values. The
challenge of methylation or expression data is that they
are real, not binary, values. They further rely on a third

party which does not collude with anyone, which is not
required with our approach. Finally, we consider differ-
ent settings regarding the leakage of the final result (as
shown in Table 1).

Huang et al. [55] show that garbled circuits can be
used for efficiently computing similar patient queries
similarly to [22]. However, using homomorphic encryp-
tion makes our schemes more flexible than garbled cir-
cuits since garbled circuits require the number and set
of positions to be determined in advance. Given the size
of every data type, it is not practical to create a circuit
for every possible combination of positions. Finally, con-
trary to our schemes, garbled circuits cannot prevent the
leakage of the positions the user is interested in.

Finally, Oprisanu and De Cristofaro propose a
privacy-enhanced version [56] of the Matchmaker Ex-
change (MME) platform [10]. More specifically, they
rely on Reverse Private Information Retrieval (PIR) to
allow researchers to query a gene within the MME plat-
form anonymously. Contrary to their approach, we pro-
vide data confidentiality by hiding both the positions
and values of the queried genomic variants.

Another field which handles similar problems as
finding the similarity between two users is location pri-
vacy. In location privacy, the task is to find similar
routes. Hallgren et al. present a scheme for privacy-
preserving ridesharing based on threshold private set in-
tersection (PSI) in [57]. Using PSI for comparing similar
patients would have several drawbacks. First, it would
restrict the similarity metrics used. Second, the user
would need to reveal the set of positions he is interested
in. Third, combining different data types with different
weights would not be possible unless the user reveals
the set of weights, which is hidden in our schemes.

Zhong et al. present three protocols for determin-
ing if two users are close to each other while preserv-
ing their location privacy [58]. They use homomorphic
encryption similar to our approach. However, their use
case is restricted to only finding the distance between
two users. We are considering many positions and more
complicated use cases. Moreover, their protocols suffer
from disadvantages which would question the practical-
ity if used in our use case, such as the need for a trusted
third party or the cost on the results’ accuracy.

11 Conclusion
In this paper, we develop the first cryptographic proto-
cols able to perform privacy-preserving similar patient
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queries with new types of biomedical that will be used in
daily routine by medical practitioners in the near future.
Beyond genomic data, epigenomic and transcriptomic
data reveal a lot about our personal health status and,
as such, must be processed with the highest security
and privacy guarantees. In this endeavor, we propose
two schemes which rely on different similarity measures,
namely the Euclidean distance and Pearson correlation
coefficient, with the ability to query a specific subset of
data and positions with different weights. Our schemes
do not require any trusted third party and significantly
reduce the online time needed by the hospital and user.

We prove the security of our schemes against honest-
but-curious users and hospitals, and we implement and
test our protocols to show their applicability in real set-
tings based on real biomedical data. Our experimental
results demonstrate that a typical number of positions
of interest can be queried for 1,000 patients in less than
five seconds for the weighted Euclidean distance and in
less than thirty seconds for the Pearson correlation co-
efficient. Finally, we present strategies to mitigate the
threat of malicious users or hospitals. We formalize our
defense against malicious users by relying on the sparse
vector technique which provides guarantees on the data
privacy and on the results’ accuracy.
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A Reversed SPQ
Reversing the roles of hospital and user results in an ad-
ditional protocol, which is useful by itself. Suppose that

a physician wants to test a patient against some disease.
The other party (a hospital or a third party laboratory)
has a private model (i.e., positions and similarity mea-
sure) they do not wish to reveal. In such a scenario, the
physician could act in the role of our protocol’s hospi-
tal and reveal his encrypted data to the other party.
The other party then utilizes the protocol (as described
in Section 6.2 and 6.3) to test the patient’s data for
a specific disease. In the end, the physician is the one
decrypting the final result and learning the diagnosis.

B Security Analysis
In this section, we analyze and prove the security of
our building blocks and protocols. We define security as
follows: the user should not learn anything about the
hospital’s data except the final outcome of the schemes.
Similarly, the hospital should not learn anything about
the user’s data except the final outcome of the scheme.
We formalize security as the following cryptographic
game between a challenger and an adversary:

Definition 1 (Security). A similar patient query π is
secure if and only if, for all polynomial-time (PPT) ad-
versaries A, there is a negligible function negl such that:∣∣∣∣Pr[ExpSecA

π(κ, b) = 1]
∣∣∣∣ ≤ 0.5 + negl(κ)

Where κ is the security parameter, π is the similarity
metric, and ExpSecAπ (κ, b) denotes the following experi-
ment:
Setup: The challenger sets up the system as defined in
Section 6.1.
Queries: The challenger provides A with the following
two interfaces:
– On input CorruptUser, the challenger aborts if

CorruptHospital interface was called before, other-
wise it passes the control over the user to A and
plays the role of the hospital in the specified protocol
as defined in the scheme π.

– On input CorruptHospital, the challenger aborts if
CorruptUser interface was called before, otherwise it
passes the control over the hospital to A and plays
the role of the hospital in the specified protocol as
defined in the scheme π.

Corrupting a party in the game means that A will be able
to see any messages that this party can see. However, the
adversary still has to follow the protocol correctly due to
the honest-but-curious setup.

https://my.pgp-hms.org
https://my.pgp-hms.org
https://www.ncbi.nlm.nih.gov/geo/
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Challenge: At some point, A wants to be challenged on
two patients (i and j), the data of which have the same
dimensions and type. If i and j have different data di-
mensions, the challenger aborts. Otherwise, it flips a
coin b and picks a user to encrypt his data and publish
the encryption. A has to follow the protocol in her role,
but can try to learn extra information from any value
received or generated by the party she has corrupted.
The protocol is run normally till the point the similarity
measurement is learned. We do not allow A to learn the
result because by learning the result she can trivially win
the game by just running the scheme against the user i
and j and checking the output. Then, A outputs the bit b′
which represents which patient he thinks the challenger
picked, challenger outputs 1 if and only if b = b′.

Before proving our schemes to be secure, we next recall
the definition of CPA security.

B.1 CPA security

The CPA property stands for indistinguishability of ci-
phertexts under chosen plaintext attack. This property
is a basic property for any secure public key cryptosys-
tem. Intuitively, this property means that the scheme
is secure even if an attacker has an encryption oracle.
It is considered basic in public key cryptosystems, be-
cause the public key is by definition public, effectively
corresponding to an encryption oracle.

A public key encryption scheme π is called CPA
secure if, for all polynomial-time (PPT) adversaries A,
there is a negligible function negl such that:∣∣∣∣Pr[ExpCPAAπ (κ, b) = 1]

∣∣∣∣ ≤ 0.5 + negl(κ)

Where κ is the security parameter, and ExpCPAAπ (κ, b)
denotes the following experiment:

Experiment 1 (ExpCPAAπ (κ, b)).

(pk, sk)← Genπ(1κ)
(m0,m1)← A(pk)
cb ← Enc(pk,mb)
b′ ← A(cb)

Output 1 if and only if |m0| = |m1| ∧ b′ = b.

B.2 Squaring modification proof

Having recalled the CPA property, we will first show our
squaring modification to yield a CPA secure scheme.

Proof of Theorem 2. Intuitively, if we are able to re-
place the output of the extension with the encryption
of uniformly random numbers and the adversary can-
not distinguish the difference, then the modification is
secure.

The output of the extension consists of two cipher-
texts β and α. In order to prove that we can replace β
and α with the result of squaring a uniformly random
number, we design a cryptographic game. In this game,
the adversary is given the public key. Then, the adver-
sary gives a number he wants to be squared. The game
flips a coin b and sends him β′ and α′ which are the
result of squaring the encryption of a uniformly random
number if b = 1, or the result β and α of squaring his en-
crypted, chosen number if b = 0. The adversary outputs
b′ and he wins only if b′ is equal to b.

We assume towards contradiction that there is a
distinguisher D which can differentiate between the two
cases with a non-negligible probability. We build a re-
duction R against the CPA property of ΠPKE.

Simulation
R initializes the CPA challenger to get the public key pk,
which it forwards toD and waits untilD sends a number
m. R generates a uniformly random r and forwards m, r
as its challenge and waits to receive c∗. R squares the
ciphertext c∗ as mentioned in Section 4.3 to get α∗ and
β∗. It forwards them to D and waits for the output of
D. Whenever D outputs b, it simply forwards it as its
own output.

Analysis
R is efficient and perfectly simulates both cases of D. In
the first case, when b = 0, A receives β and α, which are
the result of squaring m. In the second case, when b = 1,
A receives β∗ and α∗, which are the result of squaring
a uniformly random number.

Since D wins with a non-negligible probability, R
also wins with a non-negligible probability. This is a
contradiction to the CPA property of ΠPKE. Therefore,
the modification is secure.

B.3 SPQ using Euclidean distance

Proof of Theorem 3. To prove the security of this proto-
col we will consider the two possible views of the adver-
sary. The first when he corrupts the hospital and the sec-
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ond when he corrupts the the user, which is simulated in
the game by the adversary calling the CorruptHospital or
CorruptUser interface. Since the game only allows a sin-
gle entity to be corrupted every run, we will prove every
case separately and show that both cases the adversary
cannot win with a probability more than 0.5 + negl(κ).

Let the two events CorruptHospitalWin and
CorruptUserWin represent the events of winning the
game when the adversary called the CorruptHospital or
CorruptUser interface, respectively.

First we start with the simulation of the game, then
we calculate the winning probabilities for each event.
Assume towards contradiction the existence of an at-
tacker A, who can break the SPQ using Euclidean dis-
tance with a probability greater than 0.5+negl(κ), where
negl is a negligible function. We build a reduction R

which is an attacker against the CPA property of ΠPKE.

Simulation
R initializes the CPA challenger to get the public key
pk, which it publishes. Since this is a public encryption
scheme, A can encrypt all the messages she wants and
does not need an encryption oracle. R waits for A to
send the two patient data P0, P1 and aborts if these are
not of the same dimension. Otherwise, R parses them
to two sets of messages m0,m1, where the mi is the
biomedical data for Pi. R then forwards m0,m1 as its
challenge messages set and receives cb, which it pub-
lishes online. It is important to maintain the order of
the messages because each item of this set would be the
biomedical data of a certain position and type. R waits
for A to corrupt a party using the interface provided,
then according to which party was corrupted, R takes
the role of the uncorrupted party and interacts with A
as specified by the protocol except that it does not send
the final outputs. R waits for A to output b′ which rep-
resents A’s guess on which patient it is. R then forwards
the b′ as its own output which represents which message
is encrypted in cb.

Analysis
We start with the CorruptHospitalWin event. Here A cor-
rupts the hospital and R simulates the user. Since we
do not consider the final value, A’s view is just the en-
cryption of the similarity value. The simulation here is
simple since R just calculates the Euclidean distance be-
tween the encrypted values as indicated in Section 6.2
and sends A the final encrypted value.

In both cases b = 0 and b = 1, R perfectly simulates
the game for A. The order of messages are preserved
because the CPA game does not change the order of
messages. Since A wins with a probability greater than
0.5 + negl(κ) then R wins with the same probability. As
R is efficient and wins the CPA game with a probability
greater than 0.5+negl(κ), this contradicts the CPA prop-
erty of ΠPKE. Therefore, P [CorruptHospitalWin] <

0.5 + negl(κ).
For the CorruptUserWin event, A corrupts the user

and R simulates the hospital. Since we do not consider
the final value so A’s view ends after sending the en-
cryption of the similarity value. A just calculates the
Euclidean distance between the encrypted values as in-
dicated in Section 6.2 and sends R the final encrypted
value.

The probability analysis here is the same as for the
CorruptHospitalWin event. R simulates the game per-
fectly so the winning probability of A is the same as
R, which contradicts the CPA property of ΠPKE. There-
fore, P [CorruptUserWin] < 0.5 + negl(κ).

Finally, since both events CorruptHospitalWin and
CorruptUserWin winning probability is less than 0.5 +
negl(κ), the SPQ using Euclidean distance protocol is
secure.

B.4 SPQ using Pearson’s coefficient

Proof of Theorem 4. Abstractly, this variant is similar
to the other one which uses the Euclidean distance as
a measurement of similarity. The only differences are
that the parties perform another set of operations on
the published ciphertext. But this is done locally, so
it does not make a difference in the proof. There is a
round of interaction in this protocol, which we will give
a proof for. We consider the same events as mentioned
in Section B.3.

We first consider the CorruptHospitalWin event. This
case is more complex than the other variant as the hos-
pital receives additional data from the user, which the
adversary will learn. The hospital receives two cipher-
texts which it can decrypt to get the two values of the
nominator and denominator of the Pearson’s coefficient.
However, these two values are blinded by two randoms
with at least the same length. This perfectly hides the
values, since new randoms are picked for every value
sent by the user. It perfectly hides since one can find
r1 · r2 = r′1 · userData, assuming that the userData is
the data the user sent to the hospital and r1, r2 and r′1
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are random numbers. Therefore, an adversary corrupt-
ing the hospital does not learn anything about the user
except the final result.

For the other event CorruptUserWin. A similar
information-theoretic hiding argument can be applied
on the p13 he receives because the hospital blinds it
with a random number. This only leaves the part of the
protocol before sending p12 which does not include any
interaction between the user and hospital. Thus, the rest
of the proof can be carried out analogously to the cor-
responding part in the SPQ with Euclidean distance’s
proof. Hence, the SPQ using Pearson’s coefficient pro-
tocol is secure.
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