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Choosing Epsilon for Privacy as a Service
Abstract: In many real world scenarios, terms of service
allow a producer of a service to collect data from its
users. Producers value data but often only compensate
users for their data indirectly with reduced prices for the
service. This work considers how a producer (data ana-
lyst) may offer differential privacy as a premium service
for its users (data subjects), where the degree of pri-
vacy offered may itself depend on the user data. Along
the way, it strengthens prior negative results for privacy
markets to the pay-for-privacy setting and develops a
new notion of endogenous differential privacy. A posi-
tive result for endogenous privacy is given in the form
of a class of mechanisms for privacy-as-a-service mar-
kets that 1) determine ε using the privacy and accuracy
preferences of a heterogeneous body of data subjects
and a single analyst, 2) collect and distribute payments
for the chosen level of privacy, and 3) privately analyze
the database. These mechanisms are endogenously dif-
ferentially private with respect to data subjects’ privacy
preferences as well as their private data, they directly
elicit data subjects’ true preferences, and they deter-
mine a level of privacy that is efficient given all parties’
preferences.
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1 Introduction
As consumers have become more privacy conscious, pro-
ducers of goods and services who collect masses of data
as a matter of course have begun to advertise data pri-
vacy as a feature. Like many services, privacy has a cost
to the provider because it requires restricting access to
otherwise profitable data. This cost is visible in several
instances of creative pricing schemes. For example, Pro-
gressive’s Snapshot program allows a customer to save
on car insurance premiums by volunteering to plug a
device into their car that sends Progressive information
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about their driving behavior [19]. When AT&T first of-
fered gigabit internet service in Austin, the base rate
was $70/month, but for $99/month customers could opt
out of targeted advertising based on collected browsing
history [2]. In both cases, data subjects paid the data
collector a base rate for a primary service and a pre-
mium to keep their data private.

The choice between data access for producers and
privacy for users need not be binary. The field of differ-
ential privacy offers methods to ensure against leaking
individuals’ private data while permitting meaningful
statistical analysis. A data access or sanitization mech-
anism is said to be ε-differentially private if no row of
the database has too much effect probabilistically on
the output of the mechanism, where privacy parameter
ε > 0 quantifies the magnitude of this effect. Varying ε
corresponds to smoothly transitioning from perfect pri-
vacy (no data access) to no privacy (full data access).
There is by now a rich body of research that establishes
how to conduct a wide variety of statistical analysis
goals while maintaining differential privacy, but much
of this literature is agnostic to the choice of ε.

Different applications intuitively require different
levels of privacy; medical records, for example, may re-
quire a higher standard of privacy than Netflix pref-
erences. But what are the analytical attributes of an
optimal compromise between privacy and data access,
and how can it be implemented in the presence of con-
flicting interests between data subjects and analysts? A
database curator might set ε according to some expert
discretion about the relative needs for privacy versus
meaningful data analysis, but she may not have good
information about the privacy preferences of the data
subjects or the value of accurate data for analysts. In-
deed, we would expect data subjects and analysts to
inflate their stated respective needs for privacy and ac-
curate data if there is no downside to doing so. A non-
optimal value of ε may be economically inefficient in
that an analyst may be willing to pay data subjects to
accept a weaker privacy guarantee in order to improve
the accuracy of a statistical analysis, or data subjects
may be willing to pay more for stronger privacy.

Existing frameworks monetizing privacy fall short
of solving the market problem of finding an optimal
level of privacy in a manner that itself preserves privacy.
Mechanism design and computational market equilib-
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rium techniques have been applied to similar settings
in which multiple parties’ competing preferences jointly
determine socially efficient pricing and allocation of
goods. This work helps bridge the gap between database
privacy and market economics by 1) formalizing a new
privacy definition for mechanisms that provide input-
dependent privacy guarantees, including those that sim-
ulate privacy markets by making monetary transfers re-
flecting the value of the data and/or privacy guarantees,
and 2) adapting an existing mechanism for efficient al-
location of public goods to this privacy setting.

1.1 Related Works

The problem of quantifying the optimal tradeoff be-
tween privacy and accuracy is considered in [1, 13]. The
setting in [1] is motivated by a statistical agency such
as the U.S. Census Bureau charged with the responsibil-
ity to publicly release statistical information about the
population. Data collectors and data subjects are not
modeled as separate entities with opposing preferences,
but rather data subjects’ utility functions reflect prefer-
ence for accuracy as well as privacy. They model privacy
as a public good and propose that the best choice of ε
is that which maximizes society’s aggregate utility for
privacy and accuracy subject to the constraints imposed
by the differential privacy technology in use. In [13], the
authors consider the choice of ε in terms of the proba-
bility of specific events in concrete applications.

A number of works explore the ramifications of mod-
eling the monetary cost of privacy loss to individual data
subjects. A primary focus of many of these works is
incentive compatibility, also referred to as truthfulness,
which is the property that each data subject maximizes
his utility by revealing his true private data. In [22], au-
thors provides a generic transformation of any truthful
mechanism into one that is differentially private, but
truthfulness breaks if privacy itself influences utility.
Several other papers provide mechanisms that are both
truthful and private [3, 15, 17]. In their mechanisms,
data subject utility depends on the output of the mech-
anism as well as privacy, so the mechanism itself may
provide value to the data subjects.

Other works assume that private data has already
been collected, so mechanisms in this setting needn’t
elicit truthful data, but they must elicit truthful privacy
preferences. Because data subjects’ private data and pri-
vacy preferences may be correlated, the privacy of both
must be protected. To capture the setting of data col-
lectors soliciting information by paying would-be data

subjects, [14] and [8] design survey mechanisms that
incentivize enough voluntarily participation to guaran-
tee accurate differentially private analysis. The survey
mechanism of [14] causes some data subjects to experi-
ence a net negative utility, i.e., the mechanism is not in-
dividually rational, while [8] rely on knowledge of a prior
distribution of privacy preferences for each private data
type. Dropping the assumption of a known prior distri-
bution, [18] develop an individually rational mechanism
that truthfully elicits privacy preferences directly, and
they guarantee a relaxed notion of privacy.

In all of the above mechanisms that consider the
preferences of individual data subjects, ε must be cho-
sen exogenously, before looking at these preferences or
the private data itself. In contrast, [10] propose mech-
anisms that solicit these privacy preferences, determine
an appropriate value of ε, charge the analyst some pay-
ment in exchange for a noisy statistic on the data, and
distribute this payment among data subjects to com-
pensate for their ε loss of privacy. Their mechanisms
privately estimate a counting query while also guaran-
teeing incentive compatibility and individual rationality.
This result is extended in [5], who provide a mechanism
estimating a more general linear predictor. An alternate
model is proposed in [9], in which an analyst proposes
some differentially private computation designed so the
privacy parameter ε decreases with the number of data
subjects that voluntarily opt in.

A weakness of the insensitive value model of [10]
and the opt-in model of [9] is that while differential pri-
vacy is guaranteed at any level output by the mecha-
nism, privacy is with respect to the private data only.
This means that if individuals’ data are correlated with
their preferences or opt-out decisions, the mechanism
may indirectly leak information about private data. To
address this concern, [10] also propose a stronger sensi-
tive value model that requires differential privacy with
respect to privacy preferences as well as private data.
However, they prove that no mechanism can simultane-
ously offer this privacy guarantee, accuracy of the pub-
lished statistic, and several desirable economic proper-
ties. This result and new extensions are discussed more
fully in Section 3.

1.2 Overview

The first major contribution of this work is a new defi-
nition of privacy for mechanisms that select privacy pa-
rameters as a function of data, whose necessity is justi-
fied in part by new negative results strengthening those
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of [10]. We argue that because the standard definition of
differential privacy is parameterized by a fixed ε, it can-
not enforce a meaningful relationship between the pri-
vacy guarantee of a mechanism whose internal privacy-
preserving behavior is a function of the data and the in-
puts themselves. For example, [10] require the outputs
of their mechanisms on any two neighboring databases
to be ε close for the smallest ε the mechanism may out-
put on any input database; we call this ε the minimum
privacy selection of the mechanism. This requirement
compels such mechanisms to effectively always choose
the minimal value of ε, ignoring the inputs:

Definition 1.1 (Privacy in [10], informal). A mecha-
nism M that internally selects ε ∈ R+ as a function
of its inputs d ∈ Dn and publicly outputs some R ∈ R
is differentially private if for all neighboring d,d′ ∈ Dn

and event E ⊆ R, we have

Pr[M(d) ∈ E] ≤ exp(ε) · Pr[M(d′) ∈ E],

where ε is the minimum privacy selection ofM on any
input.

The negative result of [10] states that no mechanism
guaranteeing privacy as above can simultaneously of-
fer non-trivial accuracy and individual rationality while
charging the analyst any finite quantity to compensate
data subjects for their privacy loss. This result is pre-
sented formally in Section 3. The intuition is that if a
data subject can have arbitrarily high cost associated
with privacy loss, then an individually rational mecha-
nism must be prepared to charge the analyst an arbi-
trarily high payment for any fixed ε. Maintaining differ-
ential privacy with respect to these privacy preferences
means this high lower bound on the analyst payment
must hold even when privacy preferences are moderate.

In Section 3 we provide new negative results in the
pay-for-privacy setting in which an analyst is a producer
that already has access to user data and wishes to charge
a premium for privacy. These new negative results sug-
gest that while forcing users to pay for privacy rather
than forcing producers to pay for data makes it easier
to simultaneously realize individual rationality and in-
centive compatibility, we need a new data-dependent
endogenous privacy definition to more fundamentally
circumvents the impossibility result of [10].

The proposed definition of endogenous differential
privacy is a strict relaxation, still requiring that the
mechanism’s output on a particular database is close to
the output on a neighboring database, but only by an
amount determined by the ε chosen for that database:

Definition 1.2 (Endogenous privacy, informal). A
mechanism M that internally selects ε, δ ∈ R+ as a
function of its inputs d ∈ Dn and publicly outputs
some R ∈ R is endogenously differentially private if for
all neighboring d,d′ ∈ Dn, event E ⊆ R, and ε, δ the
privacy selection ofM(d), we have

Pr[M(d) ∈ E] ≥ exp(−ε) · Pr[M(d′) ∈ E] + δ,

Pr[M(d) ∈ E] ≤ exp(ε) · Pr[M(d′) ∈ E] + δ.

Both inequalities are necessary since ε is specific to d,
breaking the symmetry of d and d′. The formalization
of this definition (Definition 3.6) includes syntactic dif-
ferences for added generality and applicability to the
market setting of interest (Model 1), but here we first of-
fer a concrete example of a simple endogenously private
mechanism without any market considerations. Suppose
a database consists of one bit bi per person i ∈ [n],
and we wish approximate the count of 1-bits with an
increasingly strong privacy guarantee as this count in-
creases. For example, bi could indicate whether i cares
about privacy, and we want to estimate how many peo-
ple care about privacy while respecting the aggregate
preference. We can do this by adding Lap(

√∑
bi + 1)

noise, producing an approximation of
∑
bi that has

error at most
√∑

bi + 1 ln 1/β with all but probabil-
ity β and guaranteeing endogenous differential privacy
for ε = 1/

√∑
bi + 1 and δ = exp(−2

√∑
bi). In the

extreme case that no one cares about privacy, these
bounds correspond to ln 1/β error and no guarantee of
privacy (ε = 1, δ = 1). This result follows from the struc-
ture of the proof of Lemma 4.3, which pertains to the
more general Model 1 and so involves more parameters
that are not made explicit here for simplicity. We note
that the δ > 0 is unavoidable because two neighbor-
ing inputs receive noise from distributions with differing
variance.

By adding data-dependent noise, this example ap-
pears similar to mechanisms that add noise proportional
to local sensitivity, which are susceptible to attack when
the local sensitivity of neighboring databases may differ
dramatically [16]. In the above example and the class of
mechanisms presented in Section 3, the data-dependent
noise is varying with the choice of ε, which depends
on the input data smoothly in that it has finite global
sensitivity. In this way, mechanisms can add different
amounts of noise as ε varies (smoothly).

After formally introducing the new notion of en-
dogenous privacy, we present a class of endogenously
private privacy-as-a-service market mechanisms. This
class of mechanisms that receive the private data, so-
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licit privacy and accuracy preferences from the data
subjects and analyst, choose a level of privacy consis-
tent with these preferences, make monetary transfers,
and get a noisy statistic by running a standard differen-
tially private mechanism on the data at the previously
determined level of privacy. These mechanisms captures
the idea of privacy as a premium service, assuming that
users have already divulged their private data to an en-
tity that they can expect will try to profit from it, and
they are willing to pay more for privacy versus a base-
line of unrestricted data access. Viewing privacy as a
good, it is easy to design mechanisms that do not over-
charge data subjects for privacy, ensuring individual ra-
tionality. The new challenge is to construct a payment
scheme that discourages data subjects from understat-
ing their individual preferences for privacy, letting oth-
ers pay for the privacy enjoyed by all. The cumulative
works of [4, 11, 12, 21] provide an elegant solution to
this “free-rider problem” as it exists more generally in
neoclassical economies, achieving the market goal of a
Pareto efficient (see Definition A.4) level of production
while incentivizing consumers to report their true pref-
erences.

The class of mechanisms presented in Section 4
adapts this solution to the free-rider problem to our pri-
vacy market framework. A mechanism M in our class
computes the level of privacy that maximizes the value
of privacy to data subjects less the cost of accuracy loss
to the analyst, it charges data subjects individual pay-
ments that align individual utility with social utility,
and it pays the analyst noisy compensation for her as-
sociated accuracy loss. It then runs some standard dif-
ferentially private computation to approximate the de-
sired query on the database at the market-determined
level of privacy. We prove that our mechanisms are en-
dogenously differentially private, incentive compatible,
individually rational when the sum of data subjects’ val-
ues for privacy is not too small relative to analyst cost,
Pareto efficient for appropriate choices of parameters,
and collect non-negative revenue in expectation.

2 Preliminaries
Let R denote the set of real numbers and R+ denote the
nonnegative reals. For families of functions F that are
isomorphic to the reals, we write F ≡ R. In this case,
we often let a single letter denote both the function
and the associated real, e.g., for the family of constant
functions, we may write c(x) = c. Let x+ = max(0, x) for

x ∈ R. Let
∑

or
∑
i denote

∑
i∈[n], and

∑
j 6=i denotes∑

j∈[n]\{i} when n is clear. For any n-dimensional vector
v, let vi denote the ith entry, and denote the vector
without vi as v−i. Let v−i‖v′i denote v with vi replaced
with v′i. For n-dimension vectors v,v′, let v ∼ v′ denote
that they differ on only one row, and we call such vectors
neighboring.

The following is the standard definition of (approxi-
mate) differential privacy [7] with respect to neighboring
databases differing in at most one row:

Definition 2.1. A mechanism M : Dn → R is (ε, δ)-
differentially private if for all neighboring databases
d,d′ ∈ Dn differing on one row and S ⊆ R,

Pr[M(d) ∈ S] ≤ exp(ε) · Pr[M(d′) ∈ S] + δ.

For any b ∈ R+, let Lap(b) denote the real random
variable with pdf p(x) = 1

2b exp(−|x|/b). For any query
f : Dn → R with sensitivity maxd∼d′ |f(d)−f(d′)| ≤ ∆,
the Laplace mechanism [7] is an (ε, 0)-differentially ap-
proximation of f computed as f(d) + Lap(∆/ε).

3 Lower Bounds for Positive
Value Privacy Markets

The question of whether a pay-for-privacy market can
simultaneously satisfy privacy, accuracy, and desired
economic properties is in large part motivated by the
negative results for the pay-for-data sensitive value
model of [10]. In this section, we provide additional neg-
ative results in the pay-for-privacy setting when their
worst-case (non-endogenous) privacy is required. These
results motivate a new notion of endogenous privacy
and suggest that this definition and not pay-for-privacy
is the core change that allows us to circumvent the im-
possibility result of [10] in Section 4.

3.1 A General Model for Privacy Markets

We start by describing a generalization of the setting
considered in [10]; this generalized setting is formalized
in Model 1. A mechanism M in the generalized model
internally chooses some privacy policy q ∈ Q, possibly
as a function of its inputs, and it publishes a statistic
R ∈ R summarizing the data. By allowing Q to be gen-
eral, q may determine the amount of noise reflected in
R, as in the example in the overview and the mecha-
nisms in Section 4, or it may be a vector of ε privacy
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requirements for each data subject, as in the results in
this section. Each data subject i ∈ [n] has a true pri-
vacy preference v∗i ∈ V ⊆ {Q → R}, where v∗i (q) indi-
cates the utility (positive or negative) realized by i when
the mechanism enacts privacy policy q. The mechanism
receives reported privacy preferences v ∈ Vn and ver-
ifiable data d ∈ Dn from the data subjects as well as
a function c ∈ C ⊆ {Q → R} from the analyst, which
restricts the allowed monetary transfers. In [10], we can
think of C as being the set of constant functions im-
posing a budget constraint; in Section 4, we will let C
represent inaccuracy cost functions, so that c(q) rep-
resents the analyst’s loss in profit due to the expected
inaccuracy from privacy policy q. After selecting privacy
policy q, the mechanism collects payments p ∈ Rn from
the data subjects and pays the analyst P ∈ R. In [10],
the pi and P are negative because the analyst must pay
for the data; in Section 4, they are positive.

Model 1 Privacy Market
1: Upon initialization, there exists a mechanism M :
Dn × Vn × C → Q × Rn × R × R for general types
D,R,Q and V, C ⊆ {Q → R}. Each data subject
i ∈ [n] has verifiable data di ∈ D and some true
privacy preference v∗i ∈ V, and an analyst has a
cost function c ∈ C.

2: M receives the verifiable data, and data subjects
and the analyst report their preferences toM.

3: M internally selects endogenous privacy parameter
q ∈ Q.

4: M makes transfers p ∈ Rn and P ∈ R from and to
the data subjects and analyst, resp.

5: M publishes statistic R ∈ R.
6: Each data subject i ∈ [n] realizes utility v∗i (q)− pi.

Mechanisms in this model are expected to simulta-
neously satisfy privacy with respect to reported prefer-
ences v and verifiable data d and accuracy of R with
respect to some desired statistical goal. It is important
that privacy must be with respect to both these inputs
in the event that they are related, or even identical, as
in the example in the introduction. In addition, mech-
anisms should satisfy the market properties of incen-
tive compatibility (a data subject cannot benefit from
misreporting v∗i ), individual rationality (a data subject
gains non-negative utility from the mechanism), bal-
anced budget (the mechanism collects as much money
as it pays out), and Pareto efficiency (no other choice
of q will benefit one data subject without harming an-

other, subject to the payment constraints imposed by
c). These properties are formally defined in the context
of this model in Appendix A.

For the rest of this section, we consider D = {0, 1},
R = R and the task of private bit approximation as in
[10]. We also consider Q = (R+)n and interpret a choice
of q as a vector of privacy parameters εi for i ∈ [n].
Privacy and accuracy as in [10] using the notation of
Model 1 are formalized as follows.

Definition 3.1 (Accuracy of bit approximation [10]).
A mechanismM : {0, 1}n×Vn×C → (R+)n×Rn×R×R
is called α-accurate if for any v ∈ Vn,d ∈ {0, 1}n, c ∈ C,
we have Pr[|MR(d,v, c) −

∑
di| > αn] ≤ 1/3, where

MR(d,v, c) denotes the random variable describing the
statistic published byM on the specified inputs.

Definition 3.2 (Privacy in [10]). For any ε ∈ (R+)n, a
mechanismM is ε-differentially private if for any i ∈ [n],
c ∈ C, neighboring (d,v) ∼ (d′,v′) differing on row i,
and E ⊆ R×R,

Pr[MR,P (d,v, c) ∈ E] ≤ exp(εi)·Pr[MR,P (d′,v′, c) ∈ E],

where MR,P (d,v, c) denotes the joint random variable
of the published outputs (R,P ) of M on specified in-
puts.

For their mechanisms choosing ε ∈ Q, [10] require ε-
differential privacy for ε consisting of the entrywise
smallest values of εi the mechanism can choose on any
inputs (possibly with c ∈ C fixed).

3.2 New Lower Bounds

The main negative result of [10] (Theorem 3.3) is that
a mechanism cannot be non-trivially accurate, individ-
ually rational, and budget-balanced if privacy of data
subjects’ privacy valuations as well as private data is
required in the above sense for any ε in the privacy sup-
port of the mechanism.1 The crux of this result is that
individual rationality means analyst payment must be
arbitrarily large for some databases. Since the payment
is small with probability zero on such a database, pri-
vacy then precludes a small payment for any database.

1 Note that all the lower bounds in this section hold even for
non-truthful mechanisms, i.e., mechanisms that do not incen-
tivize data subjects to report their true privacy valuation as
required by Definition A.1.
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We note that for ε chosen independent of the in-
put data, any standard moneyless differentially private
mechanism is trivially budget balanced and individually
rational if its privacy provides data subjects with non-
negative utility, and such a mechanism is accurate and ε-
differentially private for this single exogenous value of ε.
Although this technically circumvents the impossibility
result, assumption of nonnegative privacy utility alone
does not make any real progress towards selecting a sen-
sible value of ε endogenously without also modifying the
definition of privacy. On the contrary, we show that such
trivial mechanisms are essentially the only mechanisms
possible in this positive-value scenario (Theorem 3.4).
If we allow mechanisms to run a deficit at most half
the time, we get a slightly weaker but still unsatisfy-
ing negative result in this model (Theorem 3.5). Ulti-
mately, our endogenous privacy definition (along with
valuing privacy positively and permitting the mecha-
nism to sometimes run a deficit) allows our framework
to admit meaningful privacy markets such as those in
Section 4, circumventing the key negative result of [10].

In proving their impossibility result, [10] assume for
simplicity that V ≡ R+ with v∗i (ε) = −v∗i · εi and show
that nontrivial accuracy and privacy together require∑
εi ≥ ln(4/3). They could more generally assume that

the privacy support of the mechanism is nontrivial, i.e.,
it contains some nonzero ε ∈ (R+)n, and that the pri-
vacy cost function family is unbounded, i.e. for any pay-
ment −P > 0 from the analyst and nonzero ε ∈ (R+)n,
there exists some v ∈ (R+)n with

∑
vi · εi > −P . We

present the proof for their result in this more general
case for comparison to the new lower bounds in our
framework. Our new results for positive value markets
analogously concern mechanisms in Model 1 with arbi-
trarily small value to the data subjects, i.e., V such that
for any payment P > 0 to the analyst, there exists a
v ∈ Vn with

∑
vi(εi) < P for any q = ε in the privacy

support ofM on v.

Theorem 3.3 (Theorem 5.1 [10]). Any mechanismM
in Model 1 with nontrivial privacy support and un-
bounded cost function family that is εi-differentially pri-
vate for each i ∈ [n] for every ε it outputs, individually
rational, and budget-balanced can never charge the an-
alyst any finite payment.

Proof summary. Assume for contradiction that there
exists some private, individually rational, and budget-
balanced mechanism M that charges the analyst some
finite −P ′ on some fixed v′ and other inputs with posi-
tive probability. Consider v with

∑
vi·εi > −P ′ for some

nontrivial ε in the privacy support of M. By individ-
ual rationality and the balanced budget assumption,M
running on v must charge the analyst more than −P ′,
i.e.,M charges at most −P ′ with probability zero. Then
by privacy, the probability that M on v′ outputs −P ′

is also zero, contradicting the initial assumption.

When privacy has positive value to data subjects, in-
dividual rationality is easy to achieve with these other
properties in mechanisms that make no monetary trans-
fers. Clearly any moneyless (trivially budget-balanced)
standard differentially private mechanism with some
fixed privacy parameter (that it privately outputs) satis-
fies differential privacy and individual rationality when
the mechanism has non-negative utility for the data sub-
jects. The following theorem shows that these are the
only positive-value approximation mechanisms that sat-
isfy all these properties.

Theorem 3.4. Any mechanism M in Model 1 with
Q = (R+)n and arbitrarily small value to the data sub-
jects that is εi-differentially private for each i ∈ [n]
for every q = ε it outputs, individually rational, and
budget-balanced can never make any positive payment
to the analyst.

Proof. Fix any P > 0 and let v be a set of valuations
such that

∑
vi(εi) < P for ε in the privacy support ofM

on v. Then by individual rationality and the balanced
budget assumption, M must pay the analyst less than
P when running on v, and by privacy, the probability
that M pays the analyst at least P when running on
any inputs is also zero.

Underlying the result of Theorem 3.4 is the zero-
probability event that a strictly budget-balanced mecha-
nism pays the analyst more than it can charge data sub-
jects for some fixed inputs and corresponding privacy
guarantees. By permitting the mechanism to sometimes
lose money by paying the analyst more than the in-
dividual rationality-mandated maximum that the data
subjects can be charged, arbitrarily small

∑
vi(εi) no

longer forces an arbitrarily small upper bound on the
noisy P . However, if we make only the weak assumption
that for any fixed inputs, the mechanism loses money at
most half the time, the standard definition of differential
privacy still imposes a strict upper bound on the prob-
ability of the analyst receiving any positive payment.

Theorem 3.5. Let M be any mechanism in Model 1
with Q = (R+)n and arbitrarily small value to the data
subjects that is εi-differentially private for each i ∈ [n]
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for every q = ε it outputs, individually rational, and
satisfies Pr[P >

∑
pi] ≤ 1/2 for any inputs. Let εi,inf

denote the infimum of qi = εi in the support of the
mechanism. Then for any fixed P̄ > 0 and any inputs,
M pays the analyst more than P̄ with probability at
most exp(

∑
εi,inf)/2.

Proof. Fix any P̄ > 0 and let v be a set of valua-
tions such that

∑
vi(εi) < P̄ for ε in the privacy sup-

port of M on v. By individual rationality, we have∑
pi ≤

∑
vi(εi), so we must have Pr[P > P̄ ] ≤ 1/2.

Then by privacy, we have that for any inputs, Pr[P >

P̄ ] ≤ exp(
∑
εi,inf)/2.

In other words, any mechanism capable of making
strong privacy guarantees must pay the analyst noth-
ing almost half the time if the standard notion of input-
independent differential privacy is used.

3.3 Endogenous Privacy

In addition to yielding the negative results of the pre-
vious subsection, the strength of the privacy require-
ment of [10] counterintuitively breaks the relationship
between the privacy guarantee output by a mechanism
and a data subject’s utility for that run of the mecha-
nism. Since outputs of any neighboring inputs are guar-
anteed to be ε-close for the smallest possible value of ε,
it does not make sense that a data subject would value
privacy as a function of the ε chosen on a particular
run of a mechanism. The usual definition of differen-
tial privacy captures the idea that an individual cares
about the difference between two output distributions:
that of the mechanism run on the true database, and
that of the mechanism run on the same database with
his row changed. We argue that privacy for all ε in the
support of the mechanism goes far beyond the true con-
cerns of a data subject. We propose the following new
privacy definition, which endogenizes the privacy guar-
antee by requiring that the output distribution of the
mechanism on any set of reference inputs is close to the
output distribution of the mechanism on any neighbor-
ing set of inputs, where closeness is determined only by
the ε supported by mechanism running on the reference
inputs. Using the syntax of Model 1, we define privacy
with respect to fixed functions ε, δ : Q → R+ that map
the mechanism’s internally chosen privacy level q to its
provable privacy guarantee as follows:

Definition 3.6 (Endogenous differential privacy). For
fixed ε, δ : Q → R+, a mechanism M is (ε, δ)-

endogenously differentially private if for all neighbor-
ing (d,v) ∼ (d′,v′), c ∈ C, q in the privacy support of
M(d,v, c), and E ⊆ R× R,

Pr[M(d,v, c) ∈ E] ≤ eε(q) · Pr[M(d′,v′, c) ∈ E] + δ(q),

Pr[M(d′,v′, c) ∈ E] ≤ eε(q) · Pr[M(d,v, c) ∈ E] + δ(q).

To see how this definition circumvents the negative re-
sults of the previous section, we consider the proba-
bility bound in Theorem 3.5 showing that any mech-
anism capable of making strong privacy guarantees has
limited ability to collect significant rents for the an-
alyst. This bound arises from collapsing the bounds
in probabilities of the event that the mechanism pays
the analyst P > P̄ on neighboring pairs of databases
in the chain of databases v(0) = v′, . . . ,v(j) =
(v1, . . . , vj , v

′
j+1, . . . , v

′
n), . . . ,v(n) = v where v is such

that
∑
vi(εi) < P̄ and v′ is arbitrary.

With (ε, δ)-endogenous privacy for ε the identity
function and δ the zero function, the reference databases
and not {εi,inf} determine the probability differences
across neighboring databases. Let ε(j) denote the entry-
wise minimum privacy parameters in the support of
M(v(j)). Then endogenous privacy yields the bound:

Pr[P > P̄ | v′] ≤ exp(ε(1)
1 ) Pr[P > P̄ | v(1)]

≤ . . .

≤ exp(
∑

ε
(i)
i ) Pr[P > P̄ | v]

≤ exp(
∑

ε
(i)
i )/2.

For v small enough for
∑
vi(εi) < P̄ , we expect the

ε
(i)
i for large i to be large, making this bound2 loose if
not trivial, and suggesting that the definition of endoge-
nous privacy permits mechanisms exhibiting reasonable
behavior.

The mechanisms providing positive results in Sec-
tion 4 use Q = R+ and offer the same privacy guarantee
to each data subject. The privacy policy q selected inter-
nally corresponds to the quality of the privacy guaran-
tee, because noise proportional to q is added to the pub-
licly released quantities R and P . In the Laplace mech-
anism, noise magnitude directly implies some level of
ε-differential privacy, but we present the definition of en-
dogenous privacy for general Q because in some settings
it may be useful to choose among a more general set of
privacy policies which data subjects may value in more

2 We also get a similar bound for every permutation π on [n]
identifying a different chain of hybrid databases between v′ and
v, but in all of these cases, the ε(i)

π(i) for large i should be large.
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subtle ways. For example, [3, 15, 18] argue that ε alone
can only provide an upper bound on the information
leaked by a mechanism. This is because output distri-
butions of a mechanism on neighboring databases may
only be ε apart for an extremely unlikely set of events
and closer otherwise, or the analyzed upper bound on ε
may itself be loose. By allowing q to be of a general form,
future mechanisms in this framework can potentially re-
lease more specific information about their privacy poli-
cies that may allow tighter analysis of privacy loss. Fur-
thermore, data subjects’ utilities for a mechanism se-
lecting a general privacy parameter need not be limited
to the mechanism’s privacy properties. For example, q
may include the publicly released analysis R, allowing
the new framework to model outcome-dependent util-
ity [3, 15, 17, 18], which depends on differential privacy
guarantees and public outputs.

We also note that the choice of q in Model 1 does
not itself mandate a privacy requirement. In the same
spirit of the parametrized notion of differential pri-
vacy, the strength of an endogenous privacy guarantee
is parametrized through carefully chosen functions ε, δ
connecting the privacy policy to the privacy guarantee,
permitting a meaningful relationship between the util-
ity realized by the data subjects and the data-dependent
private behavior of the mechanism.

Finally we remark that although the syntax of Defi-
nition 3.6 is consistent with that or Model 1, the defini-
tion does not rely on this specific framework for privacy
markets or even access to privacy preferences.

4 Endogenous Privacy Markets
In this section, we present a class of mechanisms in our
framework satisfying the previously discussed proper-
ties. Our mechanisms will discourage users from over-
stating their privacy preferences by charging premiums
that increase with the amount of privacy demanded.
The challenge is that users may try to avoid higher in-
dividual premiums by understating their preference for
privacy, letting others pay for the privacy enjoyed by
all. This “free-rider problem” is solved in a much more
general public goods setting in the cumulative works
of [4, 11, 12, 21].

In the setting studied by [4, 11, 12], consumers com-
municate to some central body, called the government,
their valuation vi(·) of a certain public good. The gov-
ernment chooses the level of public good that optimizes
social utility, and it levies taxes designed to align indi-

vidual consumers’ utilities with social utility in order to
avoid free-riding [4]. Specifically, the government pays
a producer c(q) to produce q ≥ 0 units of the good for
the level q maximizing consumer surplus,

∑
vi(q)−c(q).

Each consumer i receives utility vi(q) for the public good
and is charged the amount he diminishes others’ surplus:
c(q)−

∑
j 6=i vj(q) + maxq−i(

∑
j 6=i vj(q−i)−

n−1
n c(q−i)).

With these allocation and tax rules, consumers are in-
centivized to communicate their true preferences, and
sufficient funds are raised to produce a Pareto efficient
level of the public good. (See Appendix B.)

4.1 A Class of Pareto Efficient Privacy
Markets

Our class of mechanisms assumes the statistical anal-
ysis goal is characterized by some query f : Dn → R,
and that there exists some differentially private Mf :
Dn → R that is (εf , δf )-differentially private in (in the
standard sense) when instantiated on any εf , δf in some
legal set, including arbitrarily small εf . We fix Q, C,V
as follows:
– Q = R+, with larger values implying more noise and

(because the ε, δ parametrizing the privacy guaran-
tee are decreasing functions of q) stronger privacy.

– C is the set of functions c(q) = cq for c ∈ R+, con-
sistent with [4, 12].

– V is the set of functions vi(q) = vi ln(q + 1) for
vi ∈ R+, chosen for arithmetic convenience and cap-
turing the notion of diminishing marginal returns;
Appendix D considers other V.

The below mechanism also fixes a truncation parameter
∆ ∈ R+ and function h : R+ → R+ specifying how
much noise to add for privacy. The following results hold
for arbitrary ∆, h, but privacy is meaningful for choices
specified by Lemma 4.4. For concreteness, consider

∆ = lnn h(q) =
√
q + ∆.

Mechanism 2 first truncates the reported privacy
valuations depending on ∆ and then computes the
Pareto efficient privacy level q and incentive-compatible
charges to the data subjects, using the allocation and
tax rules from [12]. The analyst payment P includes
noise that is a function of q, and the statistic R is com-
puted by Mf running with privacy parameters εf , δf ,
where εf is some other function of q and δf is a privacy
parameter required byMf , possibly 0 depending on the
mechanism.
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Mechanism 2 Privacy Market
Inputs: Database d ∈ Dn, privacy valuations v ∈

(R+)n and cost c ∈ R+.
1: v̄i ← min(vi, c ·∆) for all i ∈ [n].

2: q ← (
∑

i
v̄i

c − 1)+.
3: pi ← cq −

∑
j 6=i v̄j ln(q + 1)

+ maxq−i≥0

(∑
j 6=i v̄j ln(q−i + 1)− n−1

n cq−i

)
for all i ∈ [n].

4: P ← c(q + γ) with γ drawn from Lap(h(q)).
5: R ← Mf (d) with privacy parameters εf = ∆

h(q−∆)
and δf .

6: Publish R, collect pi from each i ∈ [n], and pay
analyst P .

Theorem 4.1. Fix anyMf differentially private in the
standard sense, ∆ ∈ R+, and increasing, differentiable,
concave h : R+ → R+ with h′(0) ≤ 1. Then Mecha-
nism 2 is (ε, δ)-endogenously differentially private for
ε(q) = 3∆

h(q−∆) and δ(q) = δf + 1/ exp(1/h′(q − ∆)).
Mechanism 2 is incentive compatible with respect to pri-
vacy valuations, individually rational when c ≤

∑
v̄i/e,

budget-balanced in expectation, and Pareto efficient
when vi ≤ c∆.

This theorem follows from a series of lemmas we outline
below. We show that truncation allows us to bound the
sensitivity of the privacy policy q (Lemma 4.2) without
harming incentive compatibility (Lemma C.1). Then we
can establish endogenous privacy (Lemma 4.3) based on
the noise added to the analyst payment and the privacy
of Mf . Individual rationality is guaranteed in all but
extreme cases with very low privacy valuations relative
to accuracy cost (Lemma C.2). Symmetric noise along
with the fact that payments are structured so

∑
pi ≥ cq

guarantees a balanced budget in expectation.
After providing proofs for these lemmas, we pro-

vide guidance for reasonable choices of parameters
(Lemma 4.4). Good concrete choices to keep in mind
are ∆ = lnn and h(q) =

√
q + lnn. With these choices

and values of vi, c ∈ Θ(1), Theorem 4.1 gives privacy for
ε, δ decreasing functions of n, incentive compatibility,
individual rationality, balanced budget in expectation
with a negligible chance of a large deficit, and Pareto
efficiency.

4.2 Sensitivity of Privacy Policy q

After fixing c(q) = cq for c, q ∈ R+ following [4, 12], the
main goal is to release P ≈ cq in an (ε, δ)-endogenously
differentially private manner for some appropriate (pos-
itive and decreasing) functions ε(q) and δ(q). Classi-
cal differential privacy techniques would suggest first
bounding the sensitivity of arg maxq≥0

∑
vi(q) − cq by

some ∆, and then P = c(q+Lap(∆/ε)) is ε-differentially
private for some fixed target ε. While our endogenous
privacy parameter ε will be a function of q, we nonethe-
less first attempt to bound the sensitivity of q.

For consistency with the perspective of q as a pub-
lic good, willingness-to-pay functions vi(q) should be
nonnegative, increasing, and concave. With c(q) = cq,
the unique consumer surplus-maximizing level of pri-
vacy will have

∑
d
dq vi(q) = c unless q = 0. When

vi(q) = vi ln(q + 1), this optimal level is given by
q = (

∑
vi/c−1)+ as in Step 2. By first truncating the vi

to v̄i = min(vi, c ·∆), sensitivity of q is immediate from
|(
∑
v̄i/c− 1)+ − (

∑
v̄′i/c− 1)+| = |(vi − v′i)/c| ≤ ∆:

Lemma 4.2 (Sensitivity of q). For any c ∈ R+ and
neighboring v ∼ v′, we have:

|(
∑

v̄i/c− 1)+ − (
∑

v̄′i/c− 1)+| ≤ ∆

We may worry that bounding vi will generate sample
bias (see [10]). Indeed, if data subjects have negative
utilities for privacy loss, a mechanism operating on trun-
cated costs will not be able to adequately compensate
data subjects, and if these privacy-sensitive data sub-
jects are able to opt out of the mechanism, this may
bias the data. Alternatively, we may worry that trun-
cation might break truthfulness. However, Lemma C.1
shows that truncation preserves the incentive compati-
bility argument of [12], and Lemma C.2 shows that our
positive-value mechanism is individually rational for all
data subjects as long as analyst cost is not too high
relative to data subject valuations.

4.3 Heteroskedastic Noise for Endogenous
Privacy

With non-negative and increasing vi, truncation in
Step 1 preserves the incentive compatibility argument of
[12]. The proof that the mechanism is individually ratio-
nal for all data subjects as long as analyst cost is not too
high relative to data subject valuations is presented in
the appendix. Noting that truncation ensures that q has
sensitivity ∆, it remains to argue that releasing noisy
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P ≈ cq preserves endogenous privacy for some appro-
priate (positive and decreasing) functions ε(q), δ(q). We
prove privacy with respect to an arbitrary noise func-
tion h that is a parameter of a mechanism; Lemma 4.4
describes choices for which privacy is meaningful.

Note that in our mechanism, noise is heteroskedas-
tic in that the variance of the Laplace noise added to q
is not uniform across all values of q. This deviates sig-
nificantly from the usual privacy scenario and creates a
new challenge in proving endogenous privacy.

Lemma 4.3 (Privately publishing q). Define ε(q) =
2∆/h(q −∆) and δ(q) = exp(−1/h′(q −∆)) for increas-
ing, differentiable, concave h : R+ → R+ with h′(0) ≤ 1,
fixed ∆ ∈ R+, and any q ∈ R+. For any c ∈ R+

and neighboring v ∼ v′, let q = (
∑
v̄i/c − 1)+, q′ =

(
∑
v̄′i/c − 1)+, and let γ and γ′ denote random vari-

ables with distributions Lap(h(q)) and Lap(h(q′)), re-
spectively. Then for any T ⊆ R, we have

Pr[q + γ ∈ T ] ≤ exp(ε(q)) · Pr[q′ + γ′ ∈ T ] + δ(q), (1)
Pr[q′ + γ′ ∈ T ] ≤ exp(ε(q)) · Pr[q + γ ∈ T ] + δ(q). (2)

The proof sketch is as follows. If we show 1 for q < q′

and then for q′ < q, then 2 follows by symmetry. First
note that if q < q′, then Pr[q + γ = t] ≤ Pr[q′ + γ′ = t]
for t sufficiently far from q′, and otherwise their ratios
differ maximally at t = q. Then it is enough to show
Pr[q + γ = q]/Pr[q′ + γ′ = q] ≤ ε(q), which can be shown
using the sensitivity bound on q with the concavity and
other assumptions about h.

Now consider q′ < q. Since Pr[q + γ = t]/Pr[q′ +
γ′ = t] grows with t, we will not be able to achieve
(ε, 0)-differential privacy for any ε. Instead note that∫∞
t∗

Pr[q + γ = t]dt = exp(−1/h′(q −∆))/2 = δ(q)/2 for
t∗ = q + h(q)/h′(q −∆). Then we can bound Pr[q + γ =
t]/Pr[q′ + γ′ = t] only for t ∈ [q − h(q)/h′(q − ∆), t∗].
Since t∗ is the point in this range where the pdfs of
q + γ and q′ + γ′ differ maximally, it is enough to show
Pr[q + γ = t∗]/Pr[q′ + γ′ = t∗] ≤ ε(q). As in the first
case, this bound is achieved using the sensitivity of q
and the assumptions about h.

Note that q = (
∑
v̄i/c − 1)+ is the unique q in

the privacy support ofM(d,v, c) for any inputs d,v, c.
Therefore, Lemma 4.3 establishes endogenous differen-
tial privacy (Definition 3.6) of P = c(q + Lap(h(q))) for
the ε, δ in the lemma statement. Endogenous differential
privacy of the overall mechanism (Theorem 4.1) is an
immediate corollary assuming the differential privacy of
Mf in the standard sense and using basic composition.

4.4 Choosing ∆ and h for Pareto
Efficiency and Accuracy

The internally chosen consumer surplus maximizing pri-
vacy level q is noiseless, so its Pareto efficiency follows
immediately by the arguments of [12] whenever trunca-
tion is avoided, i.e., when each vi ≤ ∆ · c. If we expect
constant vi and c, we should set ∆ = ω(1) to avoid
truncation. An immediate consequence of the taxation
scheme of [12] is that the budget balances in expec-
tation since

∑
pi ≥ cq. Accuracy of R is inherited di-

rectly fromMf , so the parameters should be set so that
ε(q), δ(q) decrease with n. Good choices are ∆ = lnn
and h(q) =

√
q + ∆. The following lemma gives more

general conditions on ∆, h for which we simultaneously
achieve all desired properties:

Lemma 4.4. Let ∆ = ω(1), and let h be increasing,
differentiable, and concave with h(−∆) = 0, h(V ) =
o(n), h′(0) ≤ 1, h′(V ) = o(1/ lnn) for any V = Θ(n).
If vi, c = Θ(1) for i ∈ [n], then Mechanism 2 on inputs
v, c and any database d is Pareto efficient and accurate
as determined byMf with εf ≤ O(∆/h(V )) and δf for
some V ∈ Θ(n), endogenously private for ε(q) = o(1)
and δ(q) = δf + 1/ exp(Θ(h(n))) ≤ δf + 1/poly(n), in-
centive compatible, individually rational, and has a bal-
anced budget in expectation and a deficit greater than
t with probability at most exp(−t/h(Θ(n)))/2.

5 Open Questions
Our class of endogenously private mechanisms is a spe-
cial case of the schema for Pareto efficient allocation of
goods described in [12]. Their framework allows for mul-
tiple public goods with different production prices. This
generality could be readily exploited to create markets
for privacy with multiple analysts, possibly with differ-
ent levels of ε for different databases or different queries.

Although the negative results extending those of
[10] do not hold up under endogenous privacy, the tech-
niques used in Section 4 rely heavily on the view of
privacy as a public good. It remains an interesting open
question whether the endogenous differential privacy re-
laxation alone is enough to give a positive result that
circumvents the negative result of [10] when data sub-
jects have disutility for imperfect privacy.
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A Market Properties
The principal mechanism design goal of both [10] and
the current work is to elicit data subjects’ true privacy
valuations v∗i . In order to reasonably assume that data
subjects report these private types truthfully, we would
like our mechanisms to be incentive compatible, meaning
that each data subject maximizes his expected utility by
reporting his true type:

Definition A.1 (Incentive compatibility). A mecha-
nism M is incentive compatible if for any i ∈ [n], pri-
vacy valuation v∗i ∈ V, and any inputs d ∈ Dn,v−i ∈
Vn−1, c ∈ C,

v∗i ∈ arg max
vi

E[v∗i (q)− pi],

where (q, pi) is draw fromM(d,v−i‖vi, c) according to
the randomness ofM.
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Note that this definition is only consistent with util-
ity models in which the value of privacy is tied to the
privacy output of the particular run of the mechanism
rather than a potentially input-independent overall pri-
vacy property of the mechanism. The same is true for
the definition of individual rationality, the property that
no one is worse off having participated in the mecha-
nism:

Definition A.2 (Individual rationality). A mecha-
nism M is individually rational if for any i ∈ [n] and
inputs d ∈ Dn,v ∈ Vn, c ∈ C,

E[vi(q)− pi] ≥ 0,

where (q, pi) is draw fromM(d,v−i‖vi, c) according to
the randomness ofM.

As in [10], we require incentive compatibility of privacy
valuations but not of private data, assuming instead
that the true private data is already held somewhere.
In this case it may not be possible for data subjects to
opt out of the privacy market even if they do not ex-
pect it to be individually rational for them. For this rea-
son, we consider individual rationality to be a secondary
fairness goal and permit mechanisms with qualified in-
dividual rationality.

Mechanisms in [10] are required to be budget-
balanced, i.e., −P ≥

∑
−pi for any run of the mech-

anism so the mechanism always raises enough funds to
pay the data subjects. We will add noise to the ana-
lyst’s payment to protect privacy and must therefore
relax this requirement:

Definition A.3 (Expected balanced budget). A
mechanism M is budget-balanced in expectation if
for any inputs d ∈ Dn,v ∈ Vn, c ∈ C,

E[
∑
pi − P ] ≥ 0,

where (P,p) is drawn from M(d,v, c) according to the
randomness ofM.

A mechanism with a balanced budget in expectation can
be thought of as having a cyclically balanced budget, in
that its surpluses will offset its deficits over time across
many runs. The left tail of

∑
pi − P should be tightly

bounded so the mechanism is unlikely to ever run a large
deficit. The particular class of mechanisms we study will
further ensure that the analyst achieves a fair target
revenue, E[P ] = c(q), where the expectation is over the
randomness of M conditioned on the event that q was
selected.

Rather than seeking to minimize analyst payment
subject to a minimum accuracy requirement or maxi-
mize accuracy subject to a maximum budget as in [10],
our mechanisms take into account an analyst’s desired
tradeoff between money and accuracy by soliciting c ∈
C ⊆ {Q → R}, which indirectly describes this tradeoff
by assigning a monetary value to each possible privacy
level q, representing the cost to the analyst of R gen-
erated by the mechanism running on q compared to a
noiseless statistic. Given the preferences of data subjects
and the analyst, our mechanisms seek to find a Pareto
efficient (or Pareto optimal) level of privacy, meaning
one where no data subject can be made strictly better
off without making another strictly worse off, subject to
collecting enough total funds for the analyst. V and C
should be chosen so that for any v ∈ Vn, c ∈ C, there
exists some Pareto efficient q ∈ Q.

Definition A.4 (Pareto efficiency). Privacy level q ∈
Q is Pareto efficient for v ∈ Vn, c ∈ C if there exist
payments p ∈ Rn such that

∑
pi ≥ c(q), and for all q′

and p′ such that
∑
p′i ≥ c(q′) and vi(q′)−p′i > vi(q)−pi

for some i ∈ [n], there exists some j ∈ [n] with vj(q′)−
p′j < vj(q)− pj .

B Properties of Non-Private
Public Goods Allocation

To verify incentive compatibility of the public goods
mechanisms discussed in Section 4 [4, 11, 12, 21],
note that maxq−i(

∑
j 6=i vj(q−i) −

n−1
n c(q−i)) is inde-

pendent of vi, so to maximize his utility, i should
report arg maxvi v

∗
i (q(v−i‖vi, c)) − (c(q(v−i‖vi, c)) −∑

j 6=i vj(q(v−i‖vi, c)). Because q(v−i‖v∗i , c) =
arg maxq v∗i (q) +

∑
j 6=i vj(q) − c(q), this quantity is

indeed maximized when vi = v∗i .
A sufficient condition for Pareto efficiency is the

Samuelson condition [20], that the sum of the marginal
benefit of a public good over all consumers equals its
marginal cost. With this allocation rule, the quan-
tity maximizing consumer surplus is q such that∑

d
dq vi(q) = d

dq c(q). Assuming incentive compatibility,
this is equivalent to the condition that the sum of the
marginal benefit of q is equal to the marginal cost, so
the allocation rule is Pareto efficient.

It can be easily verified that the sum of payments
is at least c(q). Since it may be strictly greater, the
payments collected are not guaranteed to be Pareto ef-
ficient. This is a problem addressed in [12] through dif-
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ferent tax and allocation rules, but these modifications
complicate the privacy utility model in our setting.

C Privacy Market Proofs
For notational simplicity, we define the following func-
tions for the optimal privacy level and individual taxes
computed by the mechanism for inputs v ∈ (R+)n, c ∈
R+, recalling that v̄i = min(vi, c ·∆):

q(v, c) =
(∑

v̄i
c
− 1
)+

pi(v, c) = cq(v, c)−
∑
j 6=i

v̄j ln(q(v, c) + 1)

+ max
q−i

(
∑
j 6=i

v̄j ln(q−i + 1)− n−1
n cq−i).

Lemma C.1. Mechanism 2 is incentive compatible.

Proof. Fix any i ∈ [n] and v∗i ∈ R+, and denote

Ui(v, c) = v∗i (q(v, c))− pi(v, c)

= (v∗i +
∑
j 6=i

v̄j) ln(q(v, c) + 1)− cq(v, c)

− max
q−i≥0

(
∑
j 6=i

v̄j ln(q−i + 1)− n−1
n cq−i).

We need to show that for any v−i ∈ (R+)n−1 and c ∈
R+, we have v∗i ∈ arg maxvi Ui(v−i‖vi, c).

Observing that maxq−i≥0(
∑
j 6=i v̄j ln(q−i + 1) −

n−1
n cq−i) has no dependence on vi, we see that Ui(v, c)

increases with q until q = (v∗i +
∑
j 6=i v̄j)/c−1. Therefore,

by declaring vi = v∗i , q(v, c) coincides with i’s optimal
value of q if v∗i ≤ c · ∆, and it it maximizes i’s utility
subject to truncation otherwise.

Lemma C.2. Mechanism 2 is individually rational on
inputs v ∈ (R+)n, c ≤

∑
v̄i/e.

Proof. First note that vi ln(q(v, c)+1) = vi ln
∑

v̄i

c ≥ v̄i,
so it is enough to show that pi(v, c) ≤ v̄i. Bound pi as

follows:

pi(v, c) = cq(v, c)−
∑
j 6=i

v̄j ln(q(v, c) + 1)

+ max
q−i

(
∑
j 6=i

v̄j ln(q−i + 1)− n− 1
n

cq−i)

= (
∑

v̄i − c)−
∑
j 6=i

v̄j ln
∑
v̄i
c

+
∑
j 6=i

v̄j

((
ln
∑
j 6=i v̄j
n−1
n c

)
− 1
)

+ n− 1
n

c

= v̄i −
c

n
−
∑
j 6=i

v̄j(1 + ln
∑
v̄i
c
− ln

∑
j 6=i v̄j
n−1
n c

)

= v̄i −
c

n
−
∑
j 6=i

v̄j ln
en−1

n

∑
v̄i∑

j 6=i v̄j
.

Since the v̄i are nonnegative, it is enough to show that
en−1

n ≥ 1, which clearly holds for any n ≥ 2.

Note that the conditions for Lemma C.2 hold when-
ever c ≤ n and

∑
min(vi, c ·∆)/n ≥ e. The mechanism

could easily be modified to enforce c ≤ n and in many
scenarios it may be a reasonable to assume a distribu-
tion on vi satisfying the latter requirement. Note that
these qualifications do not affect the impossibility result
in [10], which relies on the existence of vi implying ar-
bitrarily high costs for any fixed εi. They do affect The-
orem 3.4 since a mechanism running on this restricted
set of inputs cannot output a privacy level with arbitrar-
ily small value to the data subjects. However, note that
v = (0, . . . , 0, ce) satisfies c ≤

∑
v̄i/e for ∆ ≥ 1. Mech-

anism 2 outputs q =
∑
v̄i/c − 1 = e − 1 on v, c, and∑

vi(e− 1) = ce ln(e− 1 + 1) = ce. Then with standard
instead of endogenous differential privacy, individually
rational mechanisms running on the restricted set of in-
puts can pay the analyst at most ce with almost 1/2
probability.

If qualified individual rationality is undesired, one
might consider applying the propose-test-release strat-
egy of [6] and aborting as a first step if the conditions
of Lemma C.2 are not met. However, note that

∑
v̄i/c

has sensitivity ∆. Adding noise Lap(∆/ε) for differential
privacy (although there would be some modifications to
make this endogenously private) would overwhelm the
threshold e when ∆ = ω(1) as in the usual case, so this
strategy seems unlikely to work directly. We leave the
issue of unqualified individual rationality as a question
for future work.



Choosing Epsilon for Privacy as a Service 205

D Generalized Privacy Valuations
Mechanism 2 relies on the assumption each data sub-
ject’s utility for the level of q provided by the mechanism
is represented by some vi(q) = vi ln(q + 1). This choice
of logarithmic utility functions was the convenient one,
since it allows us to easily bound the sensitivity of q
using a simple truncation rule. However, many other
non-negative, increasing, concave functions of q may be
appropriate models of the utility to data subjects of q.

Consider the case that each data subject has val-
uation function vi(q) = viq

1/a for a > 1. As before,
we first truncate the vi so that v̄i = max(vi, vmax)
for some vmax to be determined later to adequately
control the sensitivity of q, which is the level of pri-
vacy that maximizes consumer surplus, i.e., q(v, c) :=
arg maxq≥0

∑
v̄i(q)− cq. Then we have:

q(v, c) =
(∑

v̄′i
ac

) a
a−1

|q(v−i‖vi, c)− q(v, c)|

= (ac)
a−1

a · |(v′i +
∑
j 6=i

vj)
a

a−1 − (vi +
∑
j 6=i

vj)
a

a−1 |

≤ (ac)
a−1

a ·

(vmax +
∑
j 6=i

vj)
a

a−1 − (
∑
j 6=i

vj)
a

a−1


≤ (ac)

a−1
a ·

(
(nvmax)

a
a−1 − ((n− 1)vmax)

a
a−1

)
≤
(

(n− 1)vmax
ac

) a
a−1

·
(

(1 + 1
n− 1)

a
a−1 − 1

)
≤
(

(n− 1)vmax
ac

) a
a−1

·

(
a
a−1 (1 + 1/n)

1
a−1

n

)

In the case that a ≥ 2, we have |q(v−i‖vi, c) −
q(v, c)| ≤ (nvmax/c)

a
a−1 /n. Then if we set vmax =

c∆
a−1

a /n1/a, the sensitivity of q is ∆ for some fixed ∆
as before, and privacy follows as in Lemma 4.3. Incen-
tive compatibility also follows as in Lemma C.1. Indi-
vidual rationality, however, does not appear to hold for
agents with low privacy sensitivity. In particular, when
vi = 0, i will always be charged pi(v, c) > 0 whenever∑
j 6=i vj > 0. With the exception of individual rational-

ity, the other properties of Lemma 4.4 hold with Θ(n)
replaced with Θ(na/(a−1)). It remains an open prob-
lem to identify further classes of valuation functions for
which our mechanism or variants of it satisfy all desired
properties for endogenous privacy markets.
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