$ sciendo

Proceedings on Privacy Enhancing Technologies ;

2019 (1):206-226

Mohsen Minaei*, Mainack Mondal, Patrick Loiseau, Krishna Gummadi, and Aniket Kate

Lethe: Conceal Content Deletion from Persistent Observers

Abstract:
lowing users to delete their posts, and a significant frac-

Most social platforms offer mechanisms al-

tion of users exercise this right to be forgotten. However,
ironically, users’ attempt to reduce attention to sensitive
posts via deletion, in practice, attracts unwanted atten-
tion from stalkers specifically to those (deleted) posts.
Thus, deletions may leave users more vulnerable to at-
tacks on their privacy in general. Users hoping to make
their posts forgotten face a “damned if I do, damned if
I don’t” dilemma. Many are shifting towards ephemeral
social platform like Snapchat, which will deprive us of
important user-data archival. In the form of intermit-
tent withdrawals, we present, Lethe, a novel solution
to this problem of (really) forgetting the forgotten. If
the next-generation social platforms are willing to give
up the uninterrupted availability of non-deleted posts
by a very small fraction, Lethe provides privacy to the
deleted posts over long durations. In presence of Lethe,
an adversarial observer becomes unsure if some posts
are permanently deleted or just temporarily withdrawn
by Lethe; at the same time, the adversarial observer
is overwhelmed by a large number of falsely flagged un-
deleted posts. To demonstrate the feasibility and perfor-
mance of Lethe, we analyze large-scale real data about
users’ deletion over Twitter and thoroughly investigate
how to choose time duration distributions for alternat-
ing between temporary withdrawals and resurrections of
non-deleted posts. We find a favorable trade-off between
privacy, availability and adversarial overhead in differ-
ent settings for users exercising their right to delete. We
show that, even against an ultimate adversary with an
uninterrupted access to the entire platform, Lethe offers
deletion privacy for up to 3 months from the time of
deletion, while maintaining content availability as high
as 95% and keeping the adversarial precision to 20%.

DOI 10.2478/popets-2019-0012
Received 2018-05-31; revised 2018-09-15; accepted 2018-09-16.

*Corresponding Author: Mohsen Minaei: Purdue Uni-
versity, mohsen@purdue.edu

Mainack Mondal: University of Chicago,
mainack@uchicago.edu

Patrick Loiseau: Univ. Grenoble Alpes, CNRS, Inria, Greno-
ble INP, LIG & MPI-SWS, patrick.loiseau@inria.fr

Krishna Gummadi: MPI-SWS, gummadi@Qmpi-sws.org
Aniket Kate: Purdue University, aniket@purdue.edu

1 Introduction

People freely open up about their personal life and opin-
ions on online social platforms (e.g., Facebook, Twit-
ter) today. The shared information remains available on
these platforms (to intended recipients as well as unin-
tended observers) and is archived by archival services
until (and if) the information is eventually deleted (or
confined) by its creator. This long-term exposure of the
shared data raises numerous longitudinal privacy con-
cerns [17, 18, 32] for the users: not only celebrities but
non-celebrities get regularly harassed and blackmailed
by data scavengers, who stalk their victims to identify
sensitive content from the shared data. Nevertheless,
sensitivity of a post is relative; it varies from person
to person, and also with life events and time in gen-
eral. Thus, effective (high precision and recall) mining
of available large-scale data to find suitable victims is
not always feasible for the scavengers.

The task should have become more difficult as plat-
forms and Internet archives honor users’ request to
delete their data. However, these deletions actually leave
the users more vulnerable to the scavengers who can
now focus only on the withdrawn posts to find sen-
sitive contents.! Indeed, we found this problem asso-
ciated with content deletions to be very practical—
today multiple web services find and hoard deleted con-
tent across different social platforms. Politwoops [35]
for Twitter, ReSavr [10] and Uneddit [15] for Red-
dit, StackPrinter-Deleted [11] for Stack overflow, and
YouTomb [42] for Youtube are some of the prominent
examples. In fact, Politwoops archived more than 1.1
million deleted tweets by 10,404 politicians, around the
world in 2015 [8], and by August 2017 Uneddit serves
more than 942 million deleted Reddit comments. These
services can enable attackers to specifically mine deleted
posts of users for nefarious purposes.

This large-scale identification and hoarding of
deleted content from social sites and archives pose a
serious violation of “Right to be Forgotten” and the ill-
effects of this phenomena on our social behavior will
be far reaching. For example, in one case, singer Ed

1 Closely associated phenomenon, “Streisand effect,” suggests
that an attempt to hide some information has the unintended
consequence of bringing particular attention of public to it.

Lethe: Conceal Content Deletion from Persistent Observers

Sheeran’s deletion of a tweet from 2011 was found and
widely publicized in media [7] leading to his brief dis-
appearance from Twitter. In another case, an SNL cast
member’s deletion of racist tweets back in September
2016 [6] were tracked by third parties and subsequently
publicized. Not only celebrities but normal users also
fell prey to this phenomenon when links delisted by
Google in Europe (to honor Right to be Forgotten re-
quests) were identified, publicized and scrutinized by
media [41]. In general, the users today are extremely
vulnerable due to the fact that, whatever content they
delete (ironically, to protect their privacy) will possibly
be identified, dissected and abused.

In spite of this threat, not surprisingly, without any
better alternatives available, information exposure con-
trol in the form of deletions still remains a common
phenomenon on the social platforms; Mondal et al. [32]
observe that a significant fraction (~35%) of all Twit-
ter users have now deleted or confined (i.e., made pri-
vate) their public Twitter posts made in 2009. Conse-
quently, as any persistent onlooker can keep track of
such changes and go after the deleted posts, users aim-
ing to make observers forget their posts are left with
a “damned if I do, damned if T don’t” dilemma. This
paper aims to provide a solution to the problem.

A trivial solution is to make users not publish sen-
sitive content in the first place; but this is infeasi-
ble even for extremely careful users as the sensitivity
of shared data changes drastically and unpredictably
with time and life events. A growing number of users
have now shifted to ephemeral social platforms such as
Snapchat [1], where everything gets deleted in a pre-
meditated fashion. However, given the huge historical,
cultural, and economical value of user-generated data,
it is extremely unlikely that most next-generation social
or archival platforms will adapt to this model.

This leaves us with a hard research question: can
we offer an alternative to the next-generation social or
archival platforms that achieves the best properties of
both deleting everything (i.e., privacy) and keeping an
archive of posts and events (i.e., availability)? The aim
of this work is to answer this question affirmatively and
develop a privacy mechanism that retains the archival
values of posted content and still allows deletions while
providing deniability and protection to the users after
some time of deletion, i.e., those deletions will not be
immediately discernible to even persistent onlookers.
A simple-yet-drastic proposal. We offer a simple-
yet-drastic proposal towards mitigating the problem of
concealing content deletions in presence of persistent ob-

— 207

servers while maintaining high availability of archived
content. In our proposed system, Lethe?, we very con-
servatively assume that the adversary has complete ac-
cess to the archival platform and can view any post. We
presume the platform administrator is working with the
data creator (or owner) to protect the privacy of dele-
tions. Lethe employs an intermittent withdrawal mech-
anism that protects privacy using two public, infinite-
support time distributions—one we call the up (or on-
line) distribution and the second is called down (or of-
fline) distribution. Just before publishing a post, Lethe
samples a time duration from the up distribution and
for that time duration makes that post available (i.e.,
visible) to everyone. After the up duration passes Lethe
takes an instance from the down distribution and for
that time duration hides the post from viewers.

In the same way, Lethe continues to toggle between
the up and down durations as long as the post has not
been deleted or its privacy preference has not changed.
Since Lethe also hides non-deleted posts, it will be con-
fusing for the adversary to distinguish whether a post
is hidden by Lethe or deleted by the owner.
Contributions. We make four key contributions.

Firstly, to the best of our knowledge, this is the first
systematic study of the problem with content deletion
in the presence of persistent onlookers. We formalize the
problem with content deletion in the presence of a very
powerful adversary who can take snapshots of the whole
platform at any point in time. We define and analyti-
cally quantify the necessary security notions: privacy—
likelihood ratio of a post deleted or not at any particular
time, availability—fraction of time the posts are visible
and adversarial overhead—adversary’s precision on de-
tecting deleted posts. Based on our formalization, we
propose and evaluate a novel scheme, Lethe, to provide
privacy for users’ deletions.

Secondly, we show that privacy is correlated with
the up and down distributions: (i) inversely proportional
to the hazard rate of up distribution, and (ii) inversely
proportional to the complementary cumulative distribu-
tion function (CCDF) of down distribution. Moreover,
we show that by picking geometric and negative bino-
mial distributions as the up and down distribution, not
only we achieve good privacy guarantees, but our notion
of privacy is simplified to a decision threshold period—

2 In Greek mythology, Lethe was the river of forgetfulness: all
those who drank from it experienced complete forgetfulness. The
word Lethe also means oblivion, forgetfulness, or concealment.

Lethe: Conceal Content Deletion from Persistent Observers

duration an adversary is willing to wait before identify-
ing a (hidden) post in a down period as deleted.

Thirdly, we present the trade-offs between the no-
tions mentioned above using data from Twitter. We
show that in the case of 95% content availability, the
adversary, with an uninterrupted access to the entire
platform, will have a precision value associated with ad-
versarial overhead below 20% even when a post has been
down for more than 90 days. In the case of a more for-
bearing adversary that has a decision threshold of 180
days, the precision will only increase to 35%. However,
the system administrator can reduce the availability of
the system by a small fraction and set it to 90%, which
drops the adversary’s precision back to 20%. For a large-
scale system such as Twitter, with trillions of tweets,
even precision of 80% can result in a significant overhead
for the adversary (investigating 20 million non-deleted
tweets falsely marked as deleted each day).

Finally, we evaluate the effect of our scheme on
Twitter dataset to show the feasibility of Lethe in a real-
world scenario. We show that our proposal, while main-
taining a trade-off between availability and privacy, also
allows interactions in the system without much interrup-
tion. Specifically, leveraging real-world interaction data
from Twitter we show that, by applying Lethe the util-
ity (i.e. user interactions with posts) remains above 99%
even when content availability is 85%.

Applicability of Lethe.
Twitter or Facebook are accustomed to uninterrupted

Users of platforms such as

availability of their uploaded/archived data. Any loss of
availability (even if loss is small) may be unacceptable
to some users, and such platforms can introduce Lethe
as an optional feature (providing an opt-out option for
the users as well as applying Lethe only to the posts
that are at least days or weeks old) if they find that
some of their users demand privacy for their deletions.
Nevertheless, we primarily envision Lethe for the next-
generation social or archival platforms, where, unlike
current ephemeral platforms like Snapchat, the users
expect to have an archive of old memories without the
fear of others breaking privacy for their deletions.
Moreover, high availability system like Lethe will
be less effective against an adversary that devotes time
and resources on a particular user such as the case of un-
earthing Ed Sheeran’s deletions [7]. Nevertheless, com-
pared to the state-of-the-art, Lethe raises the bar sig-
nificantly: it not only offers deniability to the celebrity
for at least a few arguably important weeks, but also
significantly increases the stalker’s workload.

— 208

2 Context and Motivation

One of the
widely employed form of content deletion today is user-

User-initiated spontaneous deletions.

initiated deletion; i.e., system operators remove content
when the owners explicitly asked them to do so. Almost
all real world social data sharing platforms today (e.g.,
Facebook, Twitter or YouTube) provide users option to
delete their uploaded content. Recent studies [16, 32]
have shown that users extensively use this mechanism
to protect the privacy of their past content—users delete
around 35% of posts within six years of posting them.
The European Union (EU) regulation of “Right to be
forgotten” [40, 41] which is part of EU General Data
Protection Regulation (GDPR) [4] is also trying to ac-
complish exactly this same, albeit at a much more elabo-
rate scale. They wish to enable users to remove historical
data about themselves from multiple systems, including
removing results from leading search engines. Neverthe-
less, as we already suggest, those deleted content attract
unwanted attention [41].
Premeditated withdrawals. Complementary to
these user-initiated spontaneous deletions, a number of
premeditated withdrawal methodologies have been pro-
posed and employed today.

Many of those aim to protect content privacy via
withdrawing all posts after a predefined viewership
or time of posting; we call those the age-based with-
drawals. Recent ephemeral social content sharing sites
like Snapchat [1] or Dust [5] are prominent examples
of age-based withdrawal. Several academic projects also
try to enforce age-based withdrawal in different context;
e.g., Vanish [24, 25] in distributed hash tables (DHTS),
EphPub [21] and [36] using DNS caches, and Ephemer-
izer [34] and its improvement [33] using trusted servers.
A user’s inability to a priori predict the right time (or
viewership) for her content withdrawal remains to be
the key issue with the age-based withdrawals. This pre-
vents deriving the best possible content availability.

Mondal et al. [32] suggest inactivity-based with-
drawal to eliminate the burden on the users to decide ex-
piry times and to facilitate continued discussions around
interesting content. Unlike in age-based withdrawals,
where a post is withdrawn after a predefined time or
viewership, in inactivity-based withdrawal posts can be
withdrawn only when it becomes inactive over time, i.e.,
it does not generate any more interactions (e.g., shar-
ing the post by other users). Recently proposed Neura-
lyzer [43] uses a similar concept to maintain the avail-
ability of content as long as there is sufficient demand

Lethe: Conceal Content Deletion from Persistent Observers

for it, and leverages the caching mechanisms of DNS to
keep track of the activity. A similar idea is also employed
on sites like 4chan [3, 28], where posts are withdrawn as
users stop contributing to them for a prolonged time.
Problems with premeditated withdrawals: No
historical data. The above premeditated withdrawal
methodologies remove every post from the public view
eventually; thus, there is no archived history of user
data. However, existence of archival data can be impor-
tant to not only the system but also the users. A recent
survey [18] shows that users have a keen interest in going
back to the past social content they have uploaded, e.g.,
for reminiscing old memories. Moreover, as social media
sites are often perceived as a mirror of the real world,
reflecting events in the past and how people reacted to
them, archiving the past uploaded content has immense
historical value; e.g., US Library of Congress [2] is al-
ready archiving all uploaded public Twitter data.
Moreover, if a user deletes her post before the pre-
defined time (or viewership) limit on the post, an ad-
versary can be certain that it is a user-initiated content
deletion. In this case, the current premeditated schemes
provide no privacy or deniability to the user.
Our Approach. Our challenge is to devise a privacy
mechanism that offers protection to user-initiated con-
tent deletions (from a persistent onlooker with pervasive
access) without reducing the content’s archival value.
We demonstrate how to achieve these contrasting pri-
vacy and availability goals by systematically withdraw-
ing and resurrecting non-deleted posts from public view.

3 Problem and Key Idea

3.1 System and Adversary Model

We model a user-generated data sharing platform (e.g.,
Twitter) as a public bulletin board where individuals
can upload and/or view content. Below we define promi-
nent players and their roles in our setup: Platform is the
system, which maintains the bulletin board (used to up-
load and view user generated content); Data Owner is a
user who uploads her posts to the bulletin board. Adver-
sary can view the uploaded posts on the bulletin board
and is constantly in search of posts which have been
deleted by their owners (possibly to scavenge for the
posts that are sensitive to their owners).

In our generic model, all the subscribers (includ-
ing the adversary) have complete access to the bulletin
board and can view the posts as they wish. After a data

— 209

owner decides to delete a post, the post will be removed
from the bulletin board and will not be visible to any-
one. We expect the publisher to be honest and assist
towards achieving the privacy goal.

Our adversary accesses the bulletin board continu-
ously and takes snapshots at will. He can determine the
deleted posts by comparing the two snapshots taken at
different times and pinpointing the posts that existed
in the first one but not in the second one (the same
strategy used to find deleted tweets in previous stud-
ies [31, 32]). The adversary is capable of adding posts
and deleting them from the bulletin board; however, it
will not be able to delete some other users’ posts. Al-
though the adversary is ultimate in terms of the data ac-
cess, given the manual nature of the task of determining
sensitive deletions, his goal will be to flag and analyze
as few non-deleted posts as possible. In the real world,
an adversary would be actually limited in its capability;
consequently, all the privacy guarantees we observe in
this work are actually lower bound (Section 8). Finally,
we expect all aspects of our system and its parameters
to be public, and the adversary to be aware of those.

3.2 Security Goals

Towards our goal to conceal deletions from the adver-
sary without significantly affecting the availability, we
propose the following security properties:
Deletion privacy is the uncertainty of the adversary
about a post having been deleted or just temporarily
withdrawn by the platform at a given point of time. In
other words, it is the deniability of deleting a post for
the data owner. As the post remains down for a longer
duration, the adversary becomes more certain about its
deletion, achieving a particular level of privacy is di-
rectly related to having a certain Decision Threshold
on the observed down periods for declaring that posts
are deleted beyond that point.
Platform availability represents the average availabil-
ity of a post within a period. The goal is to provide pri-
vacy guarantees to users while obtaining high levels of
availability. It is easy to observe that introducing down
periods creates a trade-off between privacy and avail-
ability. For example, assuming the mean up duration
is fixed, as the mean of down distribution increases the
availability of the platform will decrease; however, when
a post is deleted, it remains unnoticed to the adversary
for longer periods due to higher decision thresholds.

It is natural to ask why the adversary cannot se-
lect his decision threshold independent of down distri-

Lethe: Conceal Content Deletion from Persistent Observers

bution (and subsequently availability). The answer lies
in the difficulty of distinguishing sensitive posts from
non-sensitive ones. Sensitivity of a post varies from per-
son to person, and also with life events and time in gen-
eral, therefore, pinpointing sensitive posts for each user
is a hard task. Moreover, there is a huge discrepancy
between the content creation and deletion rates on so-
cial sites today (social sites are generating new content
at the rate around ten times more than deletions).

This brings us to our third property of adversarial
overhead as we expect our adversary to be concerned
with flagging many non-deleted posts (false positives).
Adversarial overhead. is associated with the number
of non-deleted posts falsely flagged as deleted (false-
positives) that the adversary has to investigate along
with the detected actual deleted posts (true-positives).
We capture it by the precision measure:

o True Positives
Precision =

True Positives + False Positives
Towards offering a balanced viewpoint, we also con-
sider the recall measure capturing false-negatives (i.e.,
posts that are flagged as non-deleted but will eventually
be deleted):

Recall = True Positives

True Positives + False Negatives’

There is a trade-off between privacy and adversarial
overhead similar to the trade-off between privacy and
availability. Ideally, the adversary overhead should be
high which implies that the precision should be low. If
the adversary needs to keep its overhead low (less false
positives), it has to provide better privacy (deniability)
to its victim by increasing its decision threshold period.

3.3 Key Idea

We plan to provide privacy for a post deletion by inter-
mittently withdrawing the non-deleted posts such that
the adversary cannot distinguish between a temporar-
ily withdrawn post and a permanently deleted post
for some long time duration after the deletion. At its
core, our intermittent withdrawal mechanism consists
of choosing alternating up and down periods of random
durations. This obviously adversely affects the availabil-
ity of posts: increasing withdrawal time of a post can
improve the deletion privacy; however, it reduces the
overall availability. Therefore, our key challenge is to de-
termine distributions (and their parameters) for these
intermittent withdrawals such that we achieve a sat-
isfactory level of deletion privacy without significantly
affecting the availability of the posts.

— 210

We illustrate our distributions selection process
through the following two Straw-man proposals.
Straw-man proposal I. As a simple example, con-
sider the degenerate (or fixed-value) distribution for up
and down duration of a post. With 90% availability in
mind, we consider an alternating series of fixed up pe-
riod of nine hours and fixed down period of an hour.
Here, every post once withdrawn remains down for a
complete hour. Thus, the adversary cannot flag a post
as deleted until it remains down for more than an hour
as any flagging during the first hour down time cannot
be better than just randomly flagging the posts. How-
ever, the adversary becomes certain about the deletion
right after this one hour of down period. Moreover, if the
deletion occurs sometime during the up period of nine
hours, the adversary can break the privacy immediately.

Although it is possible to increase down time while
maintaining the same availability, the adversary can
simply wait longer before becoming certain about the
deletion. Larger down time may also not be acceptable
to platforms expecting content to be highly available.
Straw-man proposal II. We can replace the above
degenerate distribution by the uniform distribution with
mean value of nine hours for the up distribution and
mean value of one hour for the down distribution. Here,
the deletion can happen anytime during the up dura-
tion without the adversary becoming certain about the
deletion. However, the problem with the down period
remains: with the finite support of the down distribu-
tion (two hours for our example), the adversary will be
sure about deletion after two hours.

Towards Lethe.
and the users to accurately predict the waiting time

As we do not expect the platform

(i.e., decision threshold) for the adversary, we propose
to use the distributions with infinite support. Here, the
adversary can never be certain about the deletions; but
it is easy to see that once the post is deleted, the adver-
sary becomes more certain about it as time progresses.

Towards building and analyzing Lethe, we measure
privacy as likelihood ratio in Section 4, and find it to be
inversely proportional to both hazard rate of the up dis-
tribution and complementary cumulative distribution of
the down distribution. We measure availability as the
ratio of mean up distribution and sum of means of both
(up and down) distributions. In Section 5, we then ex-
plore different distributions with infinite support to se-
lect an up and down distribution that offers an excellent
trade-off between deletion privacy, availability and ad-
versarial overhead. Finally, in Section 6, we evaluate the
system for the estimated Twitter dataset.

Lethe: Conceal Content Deletion from Persistent Observers

3.4 Non-goals

While solving this complex problem towards achieving
privacy, we make some simplifying assumptions.

Firstly, we consider all withdrawn posts to be equal,
and do not consider the sensitivity of a post’s content.
Several other studies [29, 30, 37] investigated the sen-
sitivity of posts in general and resulting privacy leaks.
Those studies provide complementary privacy guaran-
tees and can be used in addition to our approach.

Secondly, we do not take into account correlations
between posts, and instead, assume individual posts to
be independent in this first proposal for a very difficult
problem. Given extremely unpredictable and context-
dependent nature of correlations between posts on social
sites, considering correlations where they are apparent,
will be an interesting future work.

Finally, similar to the usage of salting in password
hashing against the dictionary (or rainbow table) at-
tacks, our goal is to protect the privacy of withdrawn
posts on a large scale, and our adversary scavenges
through all the withdrawn posts to find as many sen-
sitive deletions as possible. We do not aim to protect
against a devoted stalker who stalks a particular user
or post over a long duration. For example, an adversary
with prior knowledge of users (e.g., posting patterns)
will have an advantage that we do not consider. Nev-
ertheless, as compared to the state-of-the-art, we aim
at increasing the workload of devoted attackers and at
delaying the deletion privacy loss at least by a few ar-
guably important weeks.

4 Problem Formalization

4.1 Formalized Intermittent Withdrawals

In the proposed system, time is discretized in seconds.
We denote by t. the current time. We treat each post
independently, and therefore, the privacy and availabil-
ity analyses focus on an individual post. Let ty denote
the creation time of the post.

The intermittent withdrawal mechanism introduces
a disconnection between the real state of a post (deleted
or non-deleted) and the observed state of the post (pub-
licly visible or withdrawn). The real state of the post is
available only to the platform and the owner, while the
adversary can only see the observed state of the post.
Real state: Let R(t) denote the real state (either non-
deleted or deleted) of the post at time ¢. By convention,

— 211

Time
T v/ Tiv TV T
Creal;'on Time (1) le x sz x Td3 x Current Tim;z (t.)

Fig. 1. Timeline of a post. The post is created at time to, 1! is

u

the duration of an up phase and T; is the duration of a down
phase. In up phases the post is visible to the adversary, in down
phases it is not.

we say that R(t) = 1 if the post is not deleted at time
t and R(t) = 0 if the post is deleted. For example, at
creation time tg, R(to) = 1.

We assume that a post cannot be undeleted (or res-
urrected) and thus can be deleted only once. Conse-
quently, we define the deletion time t4.; > to such that
R(t) = 1forall t € [tg,tger) and R(t) = 0 for all ¢ > tge.
We also assume that ¢4.; is not a choice variable of the
platform and remains unknown to the platform at any
time before tge;.

Observable state: At any time ¢, by accessing the bul-
letin board, the adversary or any user only sees if the
post is up (visible) or down (withdrawn). Let O(¢) de-
note this observable state of the post at time t > ty. By
convention, we say that O(t) = 1 if the post is up and

O(t) = 0 if the post is down.

For a post, the platform can decide O(t) for all
to <t < tger- In particular, for each post, the platform
chooses a sequence of positive integer values (13);cz,

and (Té)jez+, interpreted as up and down time dura-
tions respectively. The observable state is set as follows.

For all t € [to, tger) : (1)
O(t) =1 if, for some i > 0,

i i i i+1 i
te to+ Y T+ Y Tito+ Y Ti+» Tj|;
j=1 j=1 j=1 j=1

O(t) = 0 if, for some ¢ > 0,
i i+1 i i+1 i+1

te |t +ZT5 +ZTg,to +ZT5 +ZT§> .
L = =1 =1 =1

For all t > tge; : O(t) = 0.

Figure 1 illustrates the observable state (from an ad-
versary’s point of view) for a post due to the sequences
of up and down duration. As the deletion time t4.; is not
known to the platform at any time before t4¢;, we can
assume without loss of generality that large sequences
(Tﬁ)jez+ and (T{g)jez.. are chosen by the platform at
the creation time tg. As a result, the observable state in
Equation (1) can be intuitively interpreted as follows.
The post is initially up and stays up for a duration T}}.

After the duration T, it goes down and stays down for

Lethe: Conceal Content Deletion from Persistent Observers

a duration Té before coming up again. This process con-
tinues indefinitely until the post is deleted by the owner.
Finally, when a post is deleted, it goes down immedi-
ately even if it is in middle of an up duration, and stays
down forever.

Our objective is to control the observable state so
that it becomes difficult for the adversary to be certain
about the deletion of a post. In the proposed intermit-
tent withdrawal mechanism, (Tg)jez+ and (Tg)jez+ are
mutually independent i.i.d. sequences of random vari-
ables drawn from probability mass functions (PMFs)
fr, and fr, respectively. We define the intermittent
withdrawal mechanism as follows:

Definition 4.1 (Intermittent withdrawal mechanism).
We define Mrw (fr,, fr,) as an algorithm that draws
mutually independent i.i.d. sequences (TZ)]-GZ+ and
(T))jez, from fr, and fr, respectively, and sets O(t)
as in Equation (1).

As elaborated later in Section 5 and onwards, We choose
parameters PMFs fr, and fr, of the My to sat-
isfy the contrasting privacy, availability, and adversarial
overhead requirements. Throughout the analysis, Fr,
and Fr, represent the cumulative distribution functions
(CDFs), and Fr, and Fr, represent the complementary
cumulative distribution functions (CCDFs) of fr, and
fr, respectively. We assume that the platform can ef-
ficiently sample values from distributions fr, and fr,,
and that these distributions are known to the adversary.

Next, we formally analyze our security goals in the
context of Mrw (fr,, fr,)-

4.2 Deletion Privacy

The notion of deletion privacy should quantify the un-
certainty of the adversary in distinguishing between a
post being really deleted by the owner or just in one of
its down durations. We define this likelihood of adver-
sary detecting an actual deleted post as the likelihood

Aty Time
— —_—
Y % e

: Atyg
» .

S

. M)

: : : : L] L[] [] [] []
th th te

Fig. 2. Observing the status of a single post from its creation
and precisely looking at the last up and down duration, At,,
and At, respectively. t. is the current time, ti denotes the last
up toggle and similarly tfi is the last down toggle time.

— 212

ratio of the observed sequence of observable states since
post creation conditioned on the post being deleted or
not at the current time t¢..

Definition 4.2. For any time t., we define the privacy
of mechanism Mrw (fr,, fr,) as a ratio (LR)

_SuptStc PT(OMIW([tovtC]) ‘ tdger = t)
supyss. Pr(Ompy ([to, te]) [taer = 1)’

LR (2)
where O,y ([to, te]) is the observed state for posts due
to Mpw in the interval [to,tc].

The above ratio is the classical likelihood ratio (LR)
statistic [20] for the test to determine if the post was
deleted or not, i.e., the test with null hypothesis Hy :
{R(tc) = 1} (equivalent to {t4e; > t.}) and alternative
hypothesis Hy : {R(t.) = 0} (equivalent to {tge; < tc}).
It is known that likelihood ratio tests have good prop-
erties and are often the most powerful tests that the
adversary can do to determine if the post was deleted
[20]. Hence, limiting this likelihood ratio is the best way
of limiting the possibility for the adversary of accurately
testing if the post was deleted or not. Increase in the LR
value for a post denotes increase in certainty of the ad-
versary about a post deletion; in short, lesser value of
LR denotes better privacy. Since the adversary knows
the up and down time distributions it can compute the
likelihood ratio of the deletion privacy. Our definition
of deletion privacy parallels with the definition of dif-
ferential privacy [23], however there is subtle difference
between them (Appendix A).

We will use Equation (2) to analyze the privacy
using the Frequentist approach. Later, It will slightly
change to be suitable for the Bayesian analysis.
Deletion Privacy for the Intermittent With-
drawal Mechanism Using Frequentist Approach.
As deletion privacy (or LR value) depends on O([tg, t.])
(i.e., the sequence of observable states chosen by the
platform) and consequently on the distributions fr, and
fr,, we need to quantify this dependency to understand
the deletion privacy offered by intermittent withdrawal
mechanism.

In our intermittent withdrawal mechanism, up and
down durations are drawn i.i.d. until the post is deleted.
Therefore, the probability of the sequence is the prod-
uct of probability of observing each duration which is
the same regardless of if the post was deleted or not
except for the last up and down durations; one of the
last up and down durations could be cut by the dele-
tion. As a result, the ratio LR depends only on the last
up and down durations. We denote last up and down

Lethe: Conceal Content Deletion from Persistent Observers

duration by At, and Aty respectively and by extension
by O(At,,Aty) the observed state in those times (see
illustration on Figure 2). Then the likelihood ratio on
the lhs of (2) can be simplified as

SUp;<q, Pr(O(Aty, Atg) | tger = 1)

LR = .
supys.y, Pr(O(Aty, Atg) | taer =t)

3)

Now we compute the numerator and denominator
separately. The denominator is simply the likelihood of
observing O(At,, Aty) if the post was not yet deleted
at time t. (i.e., R(t.) = 1), which is

Pr(O(Aty, Atg) | R(te) = 1) = fr,(Aty) - Pr,(Atg - 1).

(4)
As the post has not been deleted at time t. (i.e.,
R(tc) = 1), the probability of observing At,, is fr, (Aty,).
Moreover, since the post is in middle of a down period
the probability of observing Aty is Pr(T > Atg) =
Fr,(Atg —1).

For the numerator, we compute the probability of
O(Aty, Atg) conditioned on the deletion time being ¢
for each ¢t between the last toggle tﬁl and the current
time ¢, and take the maximum of those probabilities. (It
is not necessary to consider earlier deletion times since
the probability of O(At,,, Aty) would then be zero.) We
treat separately the case where tgo = tg which corre-
sponds to a deletion happening during (or at the end
of) an up period and the cases tqe; € (té,tc] which cor-
respond to a deletion happening during a down period.
In the second case, for ¢t € (tfi, tc], we have

PT(O(AtUm Atd) | tdel = t) = fTu (Atu) 'Tn(t - tél - 1),

which is maximized for t = té +1 where Fr,(t ftil -1)=
Fr,(0) = 1. In the case where tge = té, then the last
up period could have been either of exactly At, or of
more, hence

Pr(O(Aty, Atg) | tge = t) = Fr, (Aty) + fr, (Aty).

Since Fr, (At,) > 0, we conclude that
sup Pr(O(Aty, Atg) | tae = t) = Fr, (Aty) + fr, (Aty).

t<t.
(5)
Substituting (4) and (5) into (3), we get the final
expression of the likelihood ratio:

_ (Fr.(Aty) N S
m‘(m@M*Qfmmrm')

Equation (6) captures the relation between the LR
(i.e., deletion privacy) and the choice of up and down
time distributions: (i) the LR is (almost) inversely pro-
portional to the hazard rate fr,(At,)/Fr, (At,) of the

— 213

up distribution; and (ii) the LR is inversely proportional
to the CCDF Fr,(Aty—1) of the down distribution. We
need to optimize for these two functions while choosing
up and down time distributions for controlling privacy
guarantee of My .

Deletion Privacy for the Intermittent With-
drawal Mechanism Using Bayesian Analysis. To
observe the effect of prior deletion times on the likeli-
hood ratio we have conducted the Bayesian analysis on
the deletion privacy. Equation (2) is modified to

7PT(OMIW([tO7tC]) ‘ R(tC) = 0)
L = B @ty (o 1)) | R0 = 1)

which can be simplified as

PT(O(Atua Atd) | R(tc) = O)
Pr(O(Aty, Atg) | R(te) = 1)

We compute the numerator and denominator sepa-

LR =

rately. Similar to the Frequentist analysis, the denom-
inator is straightforward and same as Equation (4).
For the numerator, we compute the probability of
O(At,,, Atq) conditioned on the deletion time being ¢ for
each t between the last toggle tél and the current time
t.. Combining these probabilities according to Bayes for-
mula we obtain

te
E P?‘(O(Atu,Atd) ‘ tdel = t) . PT(tdel = t)
t=t},

te
Z PT'(tde[= t)

t=t!

Notice that, to compute the above equation, we
need to know the prior distribution on the deletion time
which we denote fge;(t) = Pr(tge; =t).

Similar to Frequentist analysis, we treat separately
the case where t4.; = tg which corresponds to a deletion
happening during (or at the end of) an up period and
the cases tge € (tfi,tc] which correspond to a deletion
happening during a down period. In the end, we find
that the likelihood ratio LR is

Fr, (Atu) - faer(th) te, .
W + t:§+1 Fr,(t —1tg) - fae(t)
LR = d — ' (7)
Fr,(Atg—1) Y faer(t)

—
t—td

4.3 Availability property

The intermittent withdrawal mechanism provides dele-
tion privacy at the cost of reducing availability of the
post. The post is not visible to the adversary as well

Lethe

as any benign observer during the down periods. Intu-

itively, the availability of a post is simply the fraction

of time the post is visible to an observer. Formally, for

mechanism My (fr,, fr,) the availability is:
Hfr,

Mfr, + Hfr, ’

where py,. is the mean of the up time distribution fr,

Availability = (8)

and gy, is the mean of the down time distribution fr,.

The LR (6) and availability (8), both are functions
of the up and down time distributions and thus are cor-
related. For instance, when posts in the archive are al-
ways down (e.g., fr, is a finite distribution and fr, is
a distribution with infinite mean), the archive has zero
availability and perfect privacy (the LR value is 1). On
the other hand, when posts in the archive are always
up (e.g., fr, is a uniform distribution with mean 0), the
archive has perfect availability of 1 and no privacy (LR
value is 00). In non-extreme cases, the relationship of
availability and privacy is more intricate and depends
on specific choices of up and down distributions. We
explore this trade-off empirically in Section 6.

5 Lethe Design

We parameterized the security guarantees in section 4,
but we still need to determine exact specifications for
these parameters to effectively control the guarantees.
The required parameters include the mean up (down)
times for the up (down) distributions as well as choices
of PMFs for those distributions. The key design chal-
lenge for Lethe is: How to choose suitable parameters
for Lethe to give good availability and privacy guaran-
tees? Here, we resolve this design challenge empirically.

5.1 Choosing up/down distribution mean
values to control availability

Availability of Lethe, the average fraction of up time,
depends upon the mean for up and down distributions
(Equation (8)). While choosing mean values of up and
down time distributions, the platform operator needs
to decide upon the required availability of the platform.
From a practical perspective, we envision that the plat-
form would need the availability to be around 90%.
The absolute value of the down time is also inter-
esting from a usability viewpoint: Hypothetically if an
operator expecting 90% availability sets the mean down
time as one year and mean up time as nine years, a

— 214

: Conceal Content Deletion from Persistent Observers

T
zeta

g5 2500 i poisson == =]
= geometric i
?‘%E 2000) negative binomial e——
85 1500 /':_—
22 1000 /I"' -
g2 s00 -
2% il Ll 2
0 -
0 4 8 12 16 20 24

Last Up Duration (Hours)OOO
Fig. 3. Variation of inverse hazard rate with time for four
choices of up time distributions (with same mean). Increase
in inverse hazard rate signifies increase in LR value.

particular post will be hidden on average for one year.
However, a year of down time on average is unaccept-
able in many real-world scenarios: the users may leave
the system if the non-deleted content is not available for
such large durations. Therefore, unless otherwise stated,
we set mean for down time distributions as one hour and
mean for up time distributions as nine hours.

Furthermore, in the Bayesian analysis (Equa-
tion (7)), we observed that we need to have prior knowl-
edge on the distribution of deletions. In Appendix B we
demonstrate the process of collecting deletion notifica-
tions and constructing the deletion distribution. We de-
duce that the deletion distribution follows a generalized
Pareto distribution.

5.2 Choosing up/down distribution PMFs
to control deletion privacy

The platform operator needs to control the deletion
privacy guarantee of Lethe via setting some suitable
choices for up and down time distributions (i.e., their
PMFs). Her aim is to minimize the LR value.

Geometric distribution is a suitable choice for
up time distribution. Recall that the value of LR, in
both the Frequentist and Bayesian analysis, is inversely
proportional to the hazard rate for the up time distri-
bution (Equation (6), Equation (7)) at the last up dura-
tion. To select the up times distribution, we considered
a wide range of distributions varying in their main char-
acteristics and we present here four distributions with
infinite support and the same mean of nine hours—zeta,
poisson, geometric and negative binomial [39]—that il-
lustrate the main rationales behind our choice. Figure 3
shows the inverse hazard rate for these four choices of
up time distributions for different values of last up du-
rations (ranging up to 24 hours). The trends remain
similar for longer time durations. Note that, negative
binomial distribution requires a parameter called the
shape parameter or n, which is set to 0.15 in Figure 3

Lethe: Conceal Content Deletion from Persistent Observers

L
O | | L}
am W

S 1000 Y ASSR R
Ls 1 _ e
02 1 > ol
05 100 .
88 ’ //
5 [] zeta wm =
22 10 > o poisson = m |3
=8 (geometric

5 [negative binomial s |

1 &
4 8 12 16 20 24

Last Down Duration (Hours)OOO
Fig. 4. Variation of inverse of CCDF values in log scaled (pro-
portional to value of LR) for down distribution with last down
duration for four choices of down distributions.

for demonstration. The take away in this figure remains
the same for other values of n. The key observation is
that only the memoryless geometric distribution has a
constant inverse hazard rate for different last up dura-
tions. If we take geometric distribution as our up time
distribution function, any value of last up duration will
have the same effect on the value of LR, i.e., the value
of LR will not be affected even when a deletion happens
in middle of an up duration (and effectively cut short
the original up duration).

this is the
distributions—their inverse hazard rate changes with

However, not case for other
the value of last up duration. Thus, aside from geometric
distribution, any other choice of up time distributions
poses two problems: (i) the inverse hazard rate (and
consequently LR value) would be very high at some
point for the last up duration, as evident from Fig-
ure 3 and (ii) if a post is deleted in the middle of last
up duration the LR wvalue will change for that post
(since deletion effectively changes the original value of
last up duration) compare to the case of no deletion.
This phenomenon might provide additional hint to the
attacker. Thus we strongly prescribe to use geometric
distribution as a suitable choice of up time distribution.

We note that our choice is conservative—for other
distributions, there will be instances where inverse haz-
ard rate (and subsequently the LR value) is lower com-
pare to geometric distribution (see Figure 3). However,
we prefer predictability in the inverse hazard rate of geo-
metric distribution (thus value of LR) for a deployment.
Negative binomial distribution is a suitable
choice for down time distribution. Similar to up
time distribution analysis, we have experimented with
a wide range of distributions for down times. Recall
that the LR value, in Frequentist and Bayesian anal-
ysis, is proportional to the inverse CCDF of a given
down time distribution (Equation (6), Equation (7)).
Figure 4 presents the inverse of CCDF of down time
distribution in log scale for different values of last down

time duration (ranging up to 24 hours) for our four rep-

— 215

resentative choices—zeta, geometric, Poisson and nega-
tive binomial [39] (each with a mean of one hour). The
trends remain similar for longer time durations. We first
observe that for a small down duration, the Poisson dis-
tribution has the lowest inverse CCDF value (thus low-
est LR). However, at the mean down duration, the value
quickly jumps and becomes the highest amongst the dif-
ferent distributions tested. The reason is that most val-
ues in the Poisson distribution are concentrated around
the mean. Hence, before the mean, the CCDF is close
to 1 but quickly after the mean it becomes close to zero
(intuitively, for Poisson distribution there is a negligible
chance that a non-deleted post observes a down time
much larger than the mean; thus observing one gives a
very strong signal to the attacker).

Similarly, any other distribution with value concen-
trated around a mode would suffer the same limitation
and it is preferable to select a distribution with a de-
creasing PMF such as geometric, zeta or negative bi-
nomial. Amongst those three, geometric has lowest LR
for small down time durations, but it increases rapidly
for large down time durations. Comparatively, zeta has
higher LR for small down time durations and smaller
values for large down time duration. This difference is
because the geometric distribution has a light tail and
its PMF decreases faster whereas the zeta distribution
has a heavy tail and therefore assigns higher weights
to very large values—hence observing even a very large
value has a non-negligible probability to happen under
no deletion if the down time distribution is zeta. Finally,
the key observation from Figure 4 is that the inverse
CCDF value of negative binomial distribution provides
a balance between these two patterns and thus presents
itself as a nice choice for down time distribution.

However, there is a challenge while using negative
binomial distribution: it takes another parameter (in ad-
dition to mean down time), called the shape parameter
and denoted “n”. In Figure 4, n is set to 0.15 for demon-
strating trends, but a practical deployment of Lethe re-
quires a systematic guideline for setting n. Specifically,
if the platform operator can have an estimate 6* for ad-
versary’s decision threshold, then it can choose n such
that the value of LR is lowest for decision threshold 6*.
The platform operator may even base 6* on user percep-
tion, e.g., operator decides that it is ok, if an adversary
finds out deletion of a post after six months or more.

As evident in Figure 4, zeta distribution will out-
perform negative binomial distribution at some point in
time. However, we claim that for all the decision thresh-
olds that we have considered (even years), there exists
a shape parameter for the negative binomial distribu-

Lethe: Conceal Content Deletion from Persistent Observers

T
frequentist #
100 Fliivedur = 1imin == == / R
O live dur = 1hour /
E live dur = 1day ~ wem wm %
) live dur = Imonth -
> - -
= _ g™ - .|
g 10 ™ -
-
x / o p—_
- - ‘— e T
?
i i

1

4 8 12 16 20 24
Last Down Duration (Hours)OOO

Fig. 5. Comparison of LR values, between the Frequentist and
Bayesian approaches. The Bayesian approach considers multiple
live durations (time between the creation and deletion), where
higher live durations have smaller LR values. All the Bayesian
cases have a LR value smaller than the Frequentist approach.

tion that provides lower LR wvalue for that threshold
compared to zeta distribution. On the other hand, if
the platform cannot come up with any reasonable * it
might use zeta distribution, since eventually it will per-
form better than negative binomial distribution; how-
ever, this comes at the cost of lowering privacy, i.e.,
increased LR value, for some period of time. In general,
we expect the platform operators, based on their expe-
rience, to estimate the range of decision threshold 6*
values reasonably well.

One may ask how does the deletion distribution im-
pact the process of choosing the down distribution in
the Bayesian analysis? To capture this phenomena we
have conducted the same experiment as above with the
difference of considering the deletion distribution along
with the time of deletions (i.e., the time that has passed
since the creation of the post). Due to limited space we
have included the results in Appendix C. In summary,
negative binomial distribution is indeed a suitable down
distribution for the Bayesian analysis as well.

5.3 LR Comparison for Frequentist and
Bayesian Analysis

Figure 5 is showing a comparison of LR values between
the Frequentist and Bayesian analysis. In all the cases,
geometric and negative binomial are the up and down
distributions respectively. We observe that the Frequen-
tist analysis has a higher LR value compared to the
Bayesian. As evident, there is distinction between the
LR values of Bayesian analysis based on live duration
(i.e., time duration between the creation and deletion)
of posts. Looking back at the deletion distribution (Ap-
pendix B), most of the deleted posts are deleted not long
after their creation. Therefore, this prior plays a role in
having a greater LR value for those posts that have a

— 216

shorter live duration. As the live duration increases the
difference between the LR values decrease. We can es-
timate that after a live duration of a day the LR value
will be independent of it, and LR will not change signif-
icantly. The trend continues for longer time durations.

We discuss a procedure to calculate the value of the
shape parameter (n) of negative binomial distribution
(given the mean down time and the adversary’s decision
threshold) and its effect on the LR value in Appendix D.

5.4 Lethe Algorithm

Input: platform availability percentage, mean down
time, adversary’s decision threshold.
Algorithm:

1. Acquire the mean up time based on the provided
mean down time and availability values.

2. Obtain the shape parameter using the derivative
procedure based on Equation (9) using the mean
down time and decision threshold from input.

3. Initialize the up and down distributions by passing
the mean up and down times along with the shape
parameter for the down distribution.

4. Upon a post creation, set the real state of the post
to 1 and instantiate the first up period from the up
distribution. Set observable state of the post to 1.

5. Upon a toggle signal for a post, if the post was in a
up period instantiate a down period from the down
distribution and set the observable state to zero;
Otherwise instantiate an up period from the up dis-
tribution and set the observable state to one.

6. Upon a deletion request for a post from the owner,
set the real and observable state to zero and remove
the post from the active set (i.e. posts that toggle).

These steps provide a platform operator the basic
algorithm to run Lethe. However, from a system design
point of view a relevant question is—how to efficiently
implement these steps? For example, a simple but inef-
ficient (not scalable) implementation for the platform is
to just assign one process per post to track the observ-
able state for that post (which is toggled due to Lethe).
We find that pre-computing future up and down dura-
tions and updating them lazily results in efficient Lethe
implementation. We direct interested readers to Ap-
pendix E for an efficient Lethe implementation sketch.

Note that we expect the platform to run Lethe to
provide privacy to their users; however, some platform
may even let the post owners themselves enforce the
intermittent withdrawal mechanism for their posts; Our
analysis remains same in those cases as well.

Lethe: Conceal Content Deletion from Persistent Observers

6 Evaluation of Lethe

We evaluate the usefulness of Lethe by answering a key
question: In practice, how hard is it for an adversary to
detect deleted posts in presence of Lethe (adversarial
overhead for identifying deleted posts)?

The posts, which are deleted by the users, will be
in a down period for an infinite time. Thus, the down
period of such posts will at some point exceed the ad-
versarially chosen decision threshold 6 (associated with
the LR values) and be flagged by the adversary. These
deleted posts, once correctly flagged by an adversary,
constitute the true-positives T Py. Conversely, when a
down period Té for some non-deleted posts exceed the
decision threshold, these falsely flagged posts constitute
the false positives F'Py. On the other hand, the posts
that are flagged as non-deleted but will eventually be
deleted will be the false negatives F'Ny.

Thus, for a decision threshold 0 set by our adversary,
if his strategy gives the T'Py, F Py and F'Ny, we measure
the adversarial overhead as the precision Precisiong =
% and the recall Recally = %.

To evaluate usefulness of Lethe we empirically ex-
plore the relation between adversarial precision, avail-
ability and decision threshold set by the adversary.
Data Collection: Today, such an intermittent with-
drawal mechanism does not exist in the domain of so-
cial media and archives. To evaluate the feasibility and
performance of Lethe, we take Twitter data as a good
model platform. To that end, we need numbers for non-
deleted and deleted posts on Twitter, and the rate of
deletion and new tweets addition in Twitter.

Using reports such as [13, 14], we estimate that
there are one trillion non-deleted tweets in the Twit-
ter platform as of 2015. To determine the rates of dele-
tion/addition of tweets, we resort to the 1% random
sample provided by Twitter [12]. Specifically, we col-
lected 1% random sample for 18 months (from October
2015 to April 2017). In our 1% random sample, daily
on average, 3.2 million tweets are created, i.e. in the
whole Twitter 320 million new tweets are created daily.
Further, the 1% sample also provides us deletion no-
tices; using those notices we determine how many of
archived tweets are deleted daily [16]. We found that on
average around 1 million tweets are deleted daily from
1% sample. So daily, on average 100 million tweets are
deleted from the whole Twitter archive. Thus, the ratio
between the volume of deleted and non-deleted tweets in
the Twitter platform is approximately 0.01%. As time
passes, this ratio will become smaller (assuming dele-

— 217

0
lo T LEELRRRAL] LN ELRRAL | T
10 Down Duration s |
2 \ Up Duration e
10 \
102
-4
10
10 \
" \ \
10 ‘
107 ¥

CCDF ValueOO

o Yoo Yoo oz Yos
Up/Down Duration Periods (Minutes)

<00

Fig. 6. CCDF value of up and down durations. The up distribu-
tion is a geometric distribution with the mean of 9 hours. The
down distribution is a negative binomial distribution with the
mean of 1 hour.

tion volume will not change too much). Finally, daily
220 million non-deleted tweets are added to the archive.
Experimental setup: For our experiment, we set 1
day as our time unit and pick three system availabil-
ities to experiment—85%, 90% and 95%, all with the
mean down time of one hour. Consequently, for 85%,
90% and 95% availability the mean up times are re-
spectively 5.7, 9 and 19 hours. Next, we set the up and
down time distributions as geometric and negative bi-
nomial respectively (as discussed in Section 5). We use
Table 3 to set the shape parameter n for our negative
binomial distribution.

To make the Lethe simulation feasible with our

available resources, we scale down the absolute numbers
of deleted /non-deleted tweets to 0.01% of their original
values. In other words, we simulate Lethe on a scaled
down version of Twitter (our archival platform). We con-
sider that our platform contains 100 million non-deleted
tweets (0.01% of 1 trillion) already archived in the plat-
form Moreover, 32k tweets are created each day and 10k
tweets are deleted (thus adding 22k non-deleted tweets
each day) in our platform.
Experimental methodology: For the evaluation of
Lethe we take the Frequentist design explained in Sec-
tions 4.2 and 5. We note that in order to simulate Lethe
we don’t need the exact timestamps for each post cre-
ation and deletion. Lethe is applied to the posts as if
all of them were created on the first day of experiment.
We take 1 day as our time unit and for our simulation,
we assume that creation and deletion notifications are
received in batch in every time unit. We continue this
experiment for 10 years (considering creation and dele-
tion of tweets each day). Figure 6 presents the CCDF
value of the up and down durations for the chosen distri-
butions at the 90% availability. More than 99% of the
down durations are less than or equal to one minute.
The mean up duration in Figure 6 is 9 hours and more
than 90% of the up durations are longer than 3 hours.

Lethe: Conceal Content Deletion from Persistent Observers

|-}

2 — ;

?: 50 | Availability = 85% ==

o Availability = 90% === S
X 40 | Availability = 95% ==@e==

(8]

@ N
a 30 —

<

E 20‘?& -

&

2 10 ‘

g P 52} % {eo {% \7&0

Decision Threshold (Days)O0O
Fig. 7. Variation of adversarial precision against decision thresh-
old periods for different availability values in flag-once scenario.
In this scenario, each tweet can be flagged only once.

Leveraging our aforementioned experimental set-up

we simulate Lethe and measure adversarial overhead
(i.e. precision and recall) at different decision thresh-
olds. In our set up the true positive for the adversary is
simply: number of daily deletions x (experiment dura-
tion - decision threshold). The false positives for our ad-
versary, on the other hand, are non-deleted tweets that
get flagged based on the adversary’s decision threshold.
Further, we note that our adversary might decide to flag
the false positives either once or multiple times (i.e., re-
move flag from a tweet when the tweet is resurrected
after a long time and again flag it later). We consider
these two scenarios separately.
Adversary investigates a flagged tweet only once:
In this scenario, if a non-deleted post gets flagged the
adversary will investigate it and after its investigation,
it will remove that tweet from his consideration. Thus,
the adversary will not consider the post again in the
future, even though the post is visible again. We call
this scenario flag-once. Figure 7 is showing the variation
of adversarial precision for different decision thresholds
in X-axis. As the decision threshold increases the ad-
versary’s confidence about a tweet being deleted also
increases which result in higher precision values. Note
that even for 85% and 90% platform availability the
adversarial precision is around (or less than) 35% even
when the decision threshold is as high as six months or
180 days , i.e., due to Lethe a deletion will go unnoticed
for as long as six months.

This scenario checks a flagged post only once and
will not consider it later again. Thus, it is possible that
a non-deleted post flagged at time ¢t will actually be
deleted at a time later than ¢. So some posts might
be deleted but not considered by the adversary, intro-
ducing false negatives. Figure 8 shows the variation of
adversarial recall of deleted posts for different decision
thresholds in X-axis. We make two observations. First,
the adversary’s recall increases with decision threshold.
This is because, with increasing threshold, tweets that
are not deleted at time ¢ (but deleted later) will have

— 218

b 100

S

g 90 '/lf '/?7

@ N
S —

E e=—=T"Rvailability = 85% 1

8 = | Availability = 90% —&—

5 Availability = 95% =@

S 70

< P o % %, ‘s, %

Decision Threshold (Days)000
Fig. 8. Variation of adversarial recall against decision threshold
periods for different availability values in flag-once scenario.

more time to become visible (not getting flagged) before
their actual time of deletion. Second, the recall increases
with system availability. The reason is that the number
of down periods decreases with increasing system avail-
abilities and thus it is less likely to obtain larger down
periods to flag tweets. This results in higher recall.
Adversary investigates a flagged tweet multiple
times: This scenario is opposite of the previous one in
the sense that once a non-deleted tweet has been flagged
and investigated it will return to the set of non-deleted.
We call this scenario flag-multi. The rationality behind
this scenario is: it is true that the falsely flagged tweets
are not deleted at the current time, but they might be
at a future point in time, since sensitivity changes with
time and life events. Thus the adversary would also like
to take into consideration the real deletion of false pos-
itive tweets. Figure 9 shows the adversarial precision
with varying decision thresholds. Compared to the sce-
nario in Figure 7 the adversary has a lower precision for
different thresholds for all values of platform availability.
The reason is, in this case, a tweet can be flagged mul-
tiple times and result in higher false positives. Specifi-
cally, in Figure 9, for the case of 90% availability, Lethe
keeps adversarial precision around 20% even when the
adversary’s decision threshold is as high as 6 months.
In this scenario if a post is flagged it can again be
considered for investigation. Since, a deleted post will
remain in a down period forever, the adversary will flag
it as soon as the decision threshold is over. Thus, all the
deletions will be identified eventually. Consequently, in
this case there are no type II errors (false negatives) and
recall will always be 100%.
Overhead of investigating falsely flagged tweets:
Finally, we address one aspect of Lethe that we did
not consider so far: the astronomical number of falsely
flagged tweets that an adversary has to investigate (i.e.,
extra work) in either of these scenarios. Table 1 presents
the raw number of non-deleted tweets falsely flagged
(i.e. false positives) for both of the aforementioned sce-
narios. In the worst case, the adversary falsely flagged
13 trillion tweets in the flag-multi scenario when the

Lethe: Conceal Content Deletion from Persistent Observers

50 | [Availability = 85% ==
Availability = 90% ===
40 I Availability = 95% ==@=

Adversarial Precision %C

30
- ——t—X
10 fr""s .
0 | |
% & Q N4 < R
o (4 (4 <0 «5‘0)

Decision Threshold (Days)O0O
Fig. 9. Variation of adversarial precision against decision thresh-
old periods for different availability values in flag-multi scenario.
In this scenario a tweet can be falsely flagged multiple times.

availability and decision threshold are respectively 85%
and 30 days. As Table 1 shows, even in the best case,
with 95% availability and 180 day decision threshold in
the flag-once scenario, the adversary needs to investi-
gate 340 billion falsely flagged tweets.

We have also considered one extreme case—setting
the platform availability to 99% (results not shown),
i.e., setting the mean down and up time respectively to
1 hour and 99 hours. Although the precision, in that
case, is higher compared to the ones in Figure 7 and 9,
we found that even with 99% availability, in the best
case (decision threshold 6 months, flag-once scenario)
the adversary still needs to investigate 70 billion falsely
flagged tweets. In short, We emphasize that the number
of falsely flagged tweets is astronomical, and without in-
curring very high infrastructural cost an adversary can
not support such investigation. Thus, much higher de-
cision thresholds are needed for the adversary.

Note that, if an adversary targets a subset of all
users, then precision/recall values for both scenarios re-
main the same and it will only proportionately effect
actual number of falsely flagged tweets mentioned in
Table 1. For example, if the adversary is targeting 0.1%
of all the users then number of falsely flagged tweets
in Table 1 will be in billions instead of trillions. Fur-
thermore, as the number of users decreases, the prior
knowledge of the adversary about the deletion patterns
of the users becomes more precise. This advantage re-
sults in a more accurate adversarial model that lowers
the privacy of the users.

7 Effect of Lethe in Practice

Platforms would like to make sure that their users are
able to normally interact with the content they want
and thus utility of their system is preserved when Lethe
is in place. This guarantee differs from availability since
even with 99% availability, the 1% non-available con-

— 219

#FFT (in trillions) for || #FFT (in trillions) for
flag-once scenario and flag-multi scenario and
diff availability % diff availability %
DT (days) | 85% | 90% | 95% || 85% | 90% | 95%
30 1.64 | 1.54 | 1.23 13.05 | 8.7 4.35
60 1.45 1.24 | 0.83 6.39 | 4.26 | 2.13
90 1.25 1.01 | 0.62 4.18 | 2.78 1.39
120 1.09 | 0.84 | 0.48 3.07 | 2.04 | 1.02
150 0.95 | 0.71 | 0.40 2,40 | 1.60 | 0.80
180 0.84 | 0.61 | 0.34 1.96 | 1.30 | 0.65

Table 1. Falsely Flagged Tweets (FFT) with different availabil-
ities, which the adversary needs to investigate under different
scenarios. DT denotes decision threshold.

tent might be the ones users are interested in. We iden-
tify one key factor that captures the distinction be-
tween availability and utility—the interaction with con-
tent in many platforms go down with time passing.
E.g., [9, 38] shows that tweets receive more than 60% of
their retweets and replies within the first hour of posting
and it quickly becomes negligible as time passes. Thus,
in this section we investigate how Lethe preserves the
utility and not hinder the normal platform operations.

7.1 Quantifying utility of a platform

In order to evaluate the effect on utility in a real world
scenario, we leverage data from Twitter. But first, we
need to concretely define the utility of each post as well
as the utility of the platform in the context of Twitter.
Utility of a post and of the platform: We take
“retweets” as a proxy for interactions (temporal utility)
around a tweet. We quantitatively measure the collec-
tive utility of the platform to be the fraction of retweets
allowed when Lethe is in place. Although retweets are
only a subset of all interactions (other interactions
might be replies or user mentions) and may not capture
the entirety of interactions, it is still one of the widely
employed proxies of activity around a tweet [19, 22, 32].
Collecting a utility dataset: We need to ensure that
Lethe preserves utility for all normal users of our sys-
tem. To create a collective random sample of such users,
we first take all the users who appeared in the 1%
random Twitter sample collected in the first week of
November 2011. Then we divide the users into five ex-
ponential buckets based on their number of followers
(i.e. by their popularity) and randomly sampled 500
users from each bucket. We did this subsampling in
mid-February 2016. Thus we end up with 2,500 random
users. We collected all the tweets posted by these users
(respecting Twitter’s limit of 3200 most recent tweets

Lethe: Conceal Content Deletion from Persistent Observers

DT (days) 30 60 90 120 150 180
Avail- 85% 99.25 99.46 99.55 99.61 99.63 99.68
ability 90% 99.50 99.66 99.72 99.76 99.79 99.82

95% 99.76 99.83 99.87 99.89 99.90 99.91

Table 2. Utility for Twitter in presence of Lethe operating with
different availabilities and different decision thresholds. All cases
the utility of the system is above 99%, and as the availability
increases the utility increases. DT stands for Decision Threshold.

per user) and all the retweets of those tweets on end of
February 2016. Out of 2,500, 6 users have made their
account private between the time of subsampling and
the time of all-tweets collection. So we end up collect-
ing data from rest of the 2,494 users. There are a total of
4,858,014 tweets in our dataset. Among them there are
730,055 tweets with at least one retweet and these tweets
have 8,836,706 retweets in total. We use this dataset to
check the Lethe’s effect on platform utility.

7.2 How does Lethe affect utility?

We simulate Lethe on our utility dataset with the fol-
lowing set-up for Lethe’s parameters.
Setup for measuring utility in presence of Lethe:
We have experimented with setting the platform avail-
ability to 85%, 90% and 95%. We again set the mean
down time to 1 hour and set mean up times to satisfy the
availability requirements. The up and down distribu-
tions are geometric and negative binomial respectively.
Recall that the negative binomial distribution needs a
shape parameter along with the mean. Although we are
not considering the adversary in the utility experiment,
to be consistent with the privacy analysis, we repeat the
experiment for the shape parameters from Table 3.
Specifically, we simulate Lethe for each of the posts
in our utility dataset. Note that, an original retweet
happening in a down duration (i.e., when the tweet is
hidden) is essentially missed and thus platform utility is
affected. However, retweets happening in an up duration
essentially remain unaffected. We count all the retweets
that would have been missed if Lethe was in place and
calculate the fraction of retweets missed due to Lethe.
Note that, here we do not consider the effect of missed
retweets on future retweets, modeling such effect are
part of our future work. Finally, the utility of our system
will be simply 1 - fraction of retweets missed.
Lethe has minimal effect on system utility: Ta-
ble 2 shows the utility of the platform in presence of
Lethe with varying decision thresholds (for each of them
the optimal shape parameter is used). The table is show-
ing the utility, i.e., the fraction of retweets allowed, for

— 220

85, 90 and 95% availability. For each of the availabilities,
we have chosen six different decision thresholds with
their corresponding shape parameter from Table 3. The
key observation is: for all the cases the utility is quite
high. Difference between the utilities are at most 0.5%
for different availabilities, and if 99% utility is sufficient
for the platform, the platform can simply choose 85%
availability over 95% to provide better privacy to the
users while maintaining utility.

In summary, Lethe can indeed hide deletion of users
while having minimal effect on platform utility. For a
successful Lethe deployment, even 85% or less avail-
ability might provide a good trade off between privacy,
availability, adversarial overhead and platform utility.

8 Enhancements and Discussion

Real-world restricted adversary. In this work, we
considered an adversary that can consistently observe
each and every post of our platform and has full access
to the Lethe up/down distribution parameters. How-
ever, a real-world adversary will have a much more re-
stricted view of the platform (e.g., Twitter normally al-
lows the developers to collect only 1% random sample
of their data) or even of the Lethe deployment (e.g.,
the adversary has to estimate the exact parameters of
up/down distribution). Further, in the real world, non-
state-level adversaries will be severely limited by com-
puting power and memory. Hence a possible extension
of Lethe is to restrict the adversary model (i.e., capa-
bilities of the adversary) with practical restrictions on
the adversary’s resources and considering the estimation
overhead of Lethe parameters. The privacy guarantees
provided by Lethe will significantly improve for such
restricted, real-world adversaries.

Providing privacy guarantees based on users’
needs. We note that by choosing different up/down
time distributions, a platform operator can provide a
range of privacy guarantees for Lethe. For example, if a
user needs privacy specifically for 2 or 3 days (e.g., dur-
ing an uprising) then the system operator can provide
short-term privacy by choosing appropriate distribu-
tions (where LR value is very low for a short term, then
increase rapidly). On the other hand, some celebrity
might want long term privacy, where the privacy guar-
antee is not very high, but it is relatively stable over
time. In other words, another possible extension will be
to match users’ need for privacy by simply tweaking
the parameters and distributions in Lethe. The privacy

Lethe: Conceal Content Deletion from Persistent Observers

guarantees can further be improved in case a user does
not mind deleting their content only in down periods.
Recall that, we choose geometric distribution as a suit-
able up distribution primarily since it enables the users
to delete their content in both up and down time du-
rations without any effect on the privacy. In case post
deletions are restricted only to down durations, we can
also explore other choices for up distributions.

Will six month be sufficient?. Lethe provides plau-
sible deniability guarantees for a deletion even after 3
to 6 months of deletion. We argue that delaying an ad-
versary 3 to 6 months to detect deletions might be suf-
ficient in many scenarios. The reason is twofold: (i) Re-
cent work [27] modeled users of social platforms as lim-
ited memory information processing actors; these actors
care less and less about old information. In fact, this
model is supported by the phenomena that almost all
large social media sites today show the posts in reverse
chronologically. (ii) Usually, curious people may focus
on some specific user’s posts related to some offline (i.e.,
physical work) event (e.g., in the case of the SNL cast
member [6], it was her joining the SNL); however due
to the very same reason the user in focus might decide
to delete her posts at that time. If Lethe can delay the
revelation of this deletion even for a few days, it should
be sufficient to dissuade the observers.
Opt-outs and Delayed Execution. In some cases,
users wish to maintain uninterrupted availability of
some of their posts infinitely (e.g., pinned tweets on
Twitter) or for the first few days. Lethe can easily skip
such posts specifically marked by the user. Although
these posts do not affect privacy and only improve
availability, they can improve adversarial precision: such
posts are hardly deleted and thus, their continuous pres-
ence will result in lesser false positives. Nevertheless,
given the very high utility provided by Lethe, we ex-
pect the number of such posts to remain limited.
Deception for Intrusion Detection and Surveil-
lance Systems. Lethe can have interesting applica-
bility beyond the content deletion scenario. Consider an
intrusion detection or surveillance system that continu-
ously monitors accesses to a system. Assume an intruder
with a side channel that allows him to determine if the
system is not functioning for maintenance, power out-
age or crash. The intruder wishes to exploit this side
channel to attack the system; nevertheless, the attack
might be time-consuming, and the stakes can be very
high such that he does not like to get caught in action.
Lethe’s approach can be used in this context as a de-
ceptive technology, deterring the intruder even when the

— 221

system goes down. It will be confusing for the intruder
as it cannot determine if the system is in a sleep mode
due to Lethe or has crashed. Interestingly, this approach
will also be helpful towards making the surveillance sys-
tem energy-efficient as it will not have to be online and
operate constantly.

9 Conclusion and Future Work

In the world with perfect and permanent memory, we
are in dire need of mechanisms to restore the ability to
forget. Against an adversary who can persistently ob-
serve a user’s data, the user’s deletions make her more
vulnerable by directly pointing the adversary to sensi-
tive information. In this work, we have defined, formal-
ized, and addressed this problem by designing Lethe.

In particular, we have formally defined a novel inter-
mittent withdrawal mechanism, quantified its privacy,
availability, and adversarial overhead guarantees in the
form of a tradeoff. We leverage this mechanism to design
Lethe which provides users deniability for their deletions
while having very little impact on the system availability
against an extremely powerful adversary having com-
plete knowledge about the archival platform. Still, even
in the case of such an adversary, leveraging real-world
data we have demonstrated the efficacy of Lethe in pro-
viding a good tradeoff between privacy, availability, ad-
versarial overhead and platform utility. For example, we
have shown that while maintaining 95% availability and
utility as high as 99.7%, we can offer deletion privacy
for up to 3 months from the time of deletion while still
keeping the adversarial precision to 20%.

Our work takes first few prominent steps towards
solving the multi-faceted problem of forgetting the
forgotten, while several interesting challenges remain.
One future challenge is to consider deletion of corre-
lated posts. Another challenge is to handle concrete
deployment issues for Lethe, e.g., how to synchronize
hiding/unhiding processes between geo-replicated data
stores? To conclude, we believe our work calls for fur-
ther research into these issues in order to provide users
a more private right to be forgotten.

Acknowledgment. We gratefully thank the anony-
mous reviewers for their helpful comments. This work
was partially supported by an Intel-CERIAS research

fellowship and the Alexander von Humboldt foundation.

Lethe: Conceal Content Deletion from Persistent Observers =— 222

References

[1] Snapchat. https://www.snapchat.com/. (Accessed on
February 2018).

[2] How tweet it is!: Library acquires entire twitter archive.
http://blogs.loc.gov/loc/2010/04 /how- tweet-it-is- library-
acquires-entire-twitter-archive/, 2010. (Accessed on Febru-
ary 2018).

[3] 4chan raids: how one dark corner of the internet is spread-
ing its shadows. http://www.theconversation.com/4chan-
raids- how-one-dark-corner-of-the-internet-is-spreading-its-
shadows-68394, 2016. (Accessed on February 2018).

[4] Art. 17, general data protection regulation, right to be for-
gotten. https://gdpr-info.eu/art-17-gdpr/, 2016. (Accessed
on February 2018).

[5] Dust. https://www.usedust.com/, 2016. (Accessed on
February 2018).

[6] Snl's first latina cast member is caught out deleting thou-
sands of tweets, some of which were 'racist and offensive’.
http://www.dailymail.co.uk /news/article-3805356 /SNL-
s-Latina-cast-member-caught-deleting-thousands-tweets-
racist-offensive.html, 2016. (Accessed on February 2018).

[7] 24 tweets ed sheeran will probably delete soon. https://
www.buzzfeed.com /mjs538/we-r-who-we-r-is-a-good-song-
tho, 2017. (Accessed on February 2018).

[8] Politwoops’ archive of 1m deleted tweets from politicians is
available again. https://thenextweb.com/twitter/2015/
09/17 /politwoops- archive-of- 1m-deleted- tweets-from-
politicians-is-available-again/, 2017. (Accessed on Febru-
ary 2018).

[9] Replies and retweets on twitter. https://sysomos.com/
inside-twitter/twitter-retweet-stats/, 2017. (Accessed on
February 2018).

[10] Resavr. https://www.resavr.com/, 2017. (Accessed on
February 2018).

[11] Stackprinter. http://www.stackprinter.com/deleted, 2017.
(Accessed on February 2018).

[12] The streaming apis. https://dev.twitter.com/streaming/
overview, 2017.

[13] Twitter puts trillions of tweets up for sale to data miners.
https://www.theguardian.com/technology/2015/mar/18/
twitter- puts-trillions-tweets-for-sale-data-miners, 2017. (Ac-
cessed on February 2018).

[14] Twitter's evolving plans to make money from its data
stream. https://bits.blogs.nytimes.com/2015/04/11/
twitters-evolving-plans-to-make-money-from-its-data-
stream, 2017. (Accessed on February 2018).

[15] Uneddit. https://web.archive.org/web/20170824002119/
http://uneddit.com/, 2017. (Accessed on February 2018).

[16] ArmuHIMEDI, H., WILSON, S., Liu, B., SADEH, N., AND
AcqQuisTi, A. Tweets are forever: A large-scale quantitative
analysis of deleted tweets. In CSCW’13.

[17] AvaLoN, O., AND TocH, E. Retrospective privacy: Man-
aging longitudinal privacy in online social networks. In
SOUPS'13.

[18] BAUER, L., CRANOR, L. F., KOMANDURI, S., MAZUREK,
M. L., REITER, M. K., SLEEPER, M., AND UR, B. The
post anachronism: The temporal dimension of facebook
privacy. In ACM WPES '13.

[19] Boyp, D., GOLDER, S., AND LOTAN, G. Tweet, tweet,
retweet: Conversational aspects of retweeting on twitter. In
System Sciences (HICSS), 2010 43rd Hawaii International
Conference on (2010), IEEE, pp. 1-10.

[20] CaseLLA, G., AND BERGER, R. L. Statistical Inference,
2nd ed. Duxbury Press, 2002.

[21] CastELLUCCIA, C., DE CRISTOFARO, E., FRANCILLON, A.,
AND KAAFAR, M.-A. Ephpub: Toward robust ephemeral
publishing. In ICNP’11.

[22] CoNOVER, M., RATKIEWICZ, J., FRANCISCO, M. R., AND
GONGALVES, B. Political polarization on twitter.

[23] Dwork, C. Differential privacy. In ICALP’06.

[24] GeEamBAsU, R., KonNo, T., KRISHNAMURTHY, A., LEVY,
A., LEvy, H. M., GARDNER, P., AND MOSCARITOLO, V.
New directions for self-destructing data. Tech. Rep. UW-
CSE-11-08-01, University of Washington, 2011.

[25] GeEamBaAsu, R., Konno, T., LEvy, A. A., AND LEVY,

H. M. Vanish: Increasing data privacy with self-destructing
data. In USENIX Security Symposium '09.

[26] GeEamBAsuU, R., LEvy, A. A., Kouno, T., KRISHNA-
MURTHY, A., AND LEvY, H. M. Comet: An active dis-
tributed key-value store. In OSDI’'10.

[27] GomEz-RoODRIGUEZ, M., GumMADI, K. P., AND
SCHOLKOPF, B. Quantifying Information Overload in Social
Media and Its Impact on Social Contagions. In ICWSM'14.

[28] HINE, G. E., ONAOLAPO, J., DE CRISTOFARO, E.,
KoURTELLIS, N., LEONTIADIS, I., SAMARAS, R., STRINGH-
INI, G., AND BLACKBURN, J. Kek, cucks, and god emperor
trump: A measurement study of 4chan’s politically incor-
rect forum and its effects on the web. In ICWSM (2017),
pp. 92-101.

[29] KRrRISHNAMURTHY, B., NARYSHKIN, K., AND WILLS, C.
Privacy leakage vs. protection measures: the growing discon-
nect. In WEB 2.0 SECURITY & PRIVACY 2011.

[30] KrRISHNAMURTHY, B., AND WILLS, C. E. On the leakage of
personally identifiable information via online social networks.
In WOSN'09.

[31] Mappock, JiM, K. S.;, AND MasoN, R. M. Using his-
torical twitter data for research: Ethical challenges of tweet
deletions. In CSCW 15 Workshop on Ethics.

[32] MonpAL, M., MEssias, J., GHOSH, S., GumMmADI, K. P,
AND KATE, A. Forgetting in social media: Understanding
and controlling longitudinal exposure of socially shared data.
In USENIX SOUPS '16.

[33] NaIR, S. K., Dasuti, M. T., Crispo, B., AND TANEN-
BAUM, A. S. A hybrid PKI-IBC based ephemerizer system.
In SEC'07.

[34] PERLMAN, R. The ephemerizer: Making data disappear.
Tech. Rep. SMLI TR-2005-140, Sun Microsystems, Inc.,
2005.

[35] Politwoops. http://politwoops.sunlightfoundation.com/.
(Accessed on February 2018).

[36] REIMANN, S., AND DURMUTH, M. Timed revocation of user
data: Long expiration times from existing infrastructure. In
WPES'12.

[37] SrivasTAvA, A., AND GEETHAKUMARI, G. Measuring
privacy leaks in online social networks. In ICACCI'13.

[38] vaN LIERE, D. How far does a tweet travel?: Information
brokers in the twitterverse. In MSM '10.

https://www.snapchat.com/
http://blogs.loc.gov/loc/2010/04/how-tweet-it-is-library-acquires-entire-twitter-archive/
http://blogs.loc.gov/loc/2010/04/how-tweet-it-is-library-acquires-entire-twitter-archive/
http://www.theconversation.com/4chan-raids-how-one-dark-corner-of-the-internet-is-spreading-its-shadows-68394
http://www.theconversation.com/4chan-raids-how-one-dark-corner-of-the-internet-is-spreading-its-shadows-68394
http://www.theconversation.com/4chan-raids-how-one-dark-corner-of-the-internet-is-spreading-its-shadows-68394
https://gdpr-info.eu/art-17-gdpr/
https://www.usedust.com/
http://www.dailymail.co.uk/news/article-3805356/SNL-s-Latina-cast-member-caught-deleting-thousands-tweets-racist-offensive.html
http://www.dailymail.co.uk/news/article-3805356/SNL-s-Latina-cast-member-caught-deleting-thousands-tweets-racist-offensive.html
http://www.dailymail.co.uk/news/article-3805356/SNL-s-Latina-cast-member-caught-deleting-thousands-tweets-racist-offensive.html
https://www.buzzfeed.com/mjs538/we-r-who-we-r-is-a-good-song-tho
https://www.buzzfeed.com/mjs538/we-r-who-we-r-is-a-good-song-tho
https://www.buzzfeed.com/mjs538/we-r-who-we-r-is-a-good-song-tho
https://thenextweb.com/twitter/2015/09/17/politwoops-archive-of-1m-deleted-tweets-from-politicians-is-available-again/
https://thenextweb.com/twitter/2015/09/17/politwoops-archive-of-1m-deleted-tweets-from-politicians-is-available-again/
https://thenextweb.com/twitter/2015/09/17/politwoops-archive-of-1m-deleted-tweets-from-politicians-is-available-again/
https://sysomos.com/inside-twitter/twitter-retweet-stats/
https://sysomos.com/inside-twitter/twitter-retweet-stats/
https://www.resavr.com/
http://www.stackprinter.com/deleted
https://dev.twitter.com/streaming/overview
https://dev.twitter.com/streaming/overview
https://www.theguardian.com/technology/2015/mar/18/twitter-puts-trillions-tweets-for-sale-data-miners
https://www.theguardian.com/technology/2015/mar/18/twitter-puts-trillions-tweets-for-sale-data-miners
https://bits.blogs.nytimes.com/2015/04/11/twitters-evolving-plans-to-make-money-from-its-data-stream
https://bits.blogs.nytimes.com/2015/04/11/twitters-evolving-plans-to-make-money-from-its-data-stream
https://bits.blogs.nytimes.com/2015/04/11/twitters-evolving-plans-to-make-money-from-its-data-stream
https://web.archive.org/web/20170824002119/http://uneddit.com/
https://web.archive.org/web/20170824002119/http://uneddit.com/
http://politwoops.sunlightfoundation.com/

Lethe: Conceal Content Deletion from Persistent Observers

[39] WaLck, C. Handbook on statistical distributions for experi-
mentalists.

WEBER, R. H. The right to be forgotten more than a pan-
dora’s box? jipitec 2, 2 (2011).

XUE, M., MagNoO, G., CUNHA, E., ALMEIDA, V., AND
Ross, K. W. The right to be forgotten in the media: A
data-driven study. PoPETs 2016, 4 (2016), 389-402.
YouToMB. https://web.archive.org/web/20141029040225/
http://youtomb.mit.edu/, 2017. (Accessed on February
2018).

ZARRAS, A., KoHLs, K., DURMUTH, M., AND POPPER, C.
Neuralyzer: Flexible expiration times for the revocation of
online data. In ACM CODASPY '16.

40]

(41]
(42]

(43]

A Difference between Deletion
Privacy and Differential Privacy

Our notion of deletion privacy has parallels with dif-
ferential privacy [23] in that we consider the ratio of
likelihood of observed states, but there is also a sub-
tle difference. The privacy parameter defined in Defini-
tion 4.2 depends on the specific observed states O. This
is in contrast with differential privacy where the rele-
vant ratio e€ (for the parameter €) is defined as a worst-
case bound for all possible observations. The reason for
choosing this definition instead of differential privacy
is that it is not possible to find a meaningful bound
on the ratio in Equation (2) valid for all observations:
as time-since-deletion increases, the adversary becomes
more certain about deletion. In short we can interpret
our deletion privacy definition as a way to capture the
certainty of an adversary for detecting post deletion with
his observed states over time.

B Modeling Deletion Distribution

Twitter provides 1% random sample of all the tweets
posted in real time via their streaming API [12]. We
collect this random sample continuously for more than
one year (From October 2015 to February 2017) and
leverage all the tweets provided in this 16 months ran-
dom sample. There is a total of 834,750, 752 tweets (not
including retweets) in our dataset. Additionally, when a
tweet is deleted Twitter provides a deletion notification
to the data collectors. We leverage these deletion notifi-
cations in the same way as in [16] and for each tweet, we
detect whether the tweet is deleted at some time (along
with the timestamp of deletion).

— 223

10° T S
101) deletions e 1
5 fitted distribution s
10 —
-3
10
10*
10]
10°® ‘
10-7 I
o <00 <00 os o
Live Duration of Deleted Tweets (Minutes)

Probability 000

‘os

Fig. 10. Deletion probability density of more than 110 million
tweets over the period of 16 months along with the fitted dis-
tribution. Showing most deletions happening within the first
hours and decreasing as time passes by.

We observed in Section 4.2 that, for the Bayesian
analysis we need to have a prior distribution for the
posts deletion times. We leverage our deletion notifica-
tions to create the creation and deletion history for each
tweet. We found that 115,785,407 tweets in our dataset
are deleted. Using the creation and deletion timestamps
of these tweets we also ascertain how long did it take
for each tweet to be deleted, i.e. the deletion times for
each tweet.

Figure 10 shows the probability density of time
taken for deletions with bins of one minute. We fur-
ther chose to fit a closed form probability distribution
for this empirical deletion time distribution. The reason
is: a fitted distribution enables a researcher to study
our system even when the data is much more than 16
months (our data collection period in this work).

Based on our study on more than 110 million tweet
deletions over the period of 16 months, we found that
the deletions are well modeled by a generalized Pareto
distribution with a shape parameter of £k = 10 and scale
factor of ¢ = 11. Thus, we model the probability of
deletion at time ¢ as:

Jaet(t:k) = (1 + kD)=,
o o
We will use this fitted distribution of deletion times for
the rest of our work.

C Choice of Down Distribution in
Bayesian Analysis

To find a suitable down distribution, we conducted the
same experiment as in Section 5.2. The only difference
here is that now we have to deal with the deletion dis-
tribution along with the time of deletion. Since we have
chosen the geometric distribution as the up distribution

https://web.archive.org/web/20141029040225/http://youtomb.mit.edu/
https://web.archive.org/web/20141029040225/http://youtomb.mit.edu/

Lethe: Conceal Content Deletion from Persistent Observers

T T
zeta Imin —— ||

1000 i
' geo Imin == =
nbinom 1min wes ¥
' zeta 1month =
100 geo 1month =

/’#nbinom 1month
wl
' 4 gy . -

10 g R
0 el
K"_

| | | |
4 8 12 16 20 24
Last Down Duration (Hours)O0OO

LR ValueOO

Fig. 11. Comparison of LR values, between zeta, geometric
and negative binomial distribution for the value til set to one
minute and one month. Considering each ¢}, value separately,
negative binomial distribution is the better choice.

Appendix C is simplified to:

te - .
ho - fae(ty) + > Pry(t —t%) - fae(t)

t=tt +1
LR = AR 7
FPr,(Atg—1) 3 faal(t)
t=t}

where h,, is the inverse hazard rate for the last up du-
ration.

We analyze three representative choices of down
time distributions—zeta, geometric and negative bino-
mial distribution for different tfi (i.e., most recent times-
tamp when the post went into down duration since the
creation of the post) values. By setting the tfi to specific
values, we observe that negative binomial has a lower
LR value compared to the other distributions, imply-
ing better deletion privacy. In Figure 11, we present
results for two extreme cases of tﬁi values, one minute
and one month while considering geometric, zeta and
negative binomial distribution as down time distribu-
tions. Comparing, the LR values for different down dis-
tributions when til = 1 min we can see that negative
binomial is the better choice (lowest LR values) even
in the Bayesian analysis. This observation remains un-
changed for til = 1 month. This trend remains the same
for longer durations and other values of tfi' Note that by
choosing better shape parameter for negative binomial
distribution, it will be possible to improve the results in
Figure 11, while zeta does not offer such possibility. For
longer durations the shape parameter of the negative
binomial is set similar to the approach in Appendix D.
In Figure 11 the shape parameter is set to 0.065.

— 224

Estimate of decision
threshold is 6* days
Shape parameter n
for lowest LR x10—%

30 60 90 120 150 180

6 3 2 1.5 1.2 1

Table 3. The best shape parameter n i.e. the lowest LR value
when the estimated decision threshold for the adversary is 8*
days. The mean of our negative binomial distribution is one hour.

D Effect of Negative Binomial
Shape Parameter

What is a suitable shape parameter for negative
binomial distribution? We present an analytical ap-
proach to set an optimal n, given platform operator’s
estimate of decision threshold 6*. Since we set the up
time distribution as geometric distribution with a con-
stant inverse hazard rate (which we will denote by “c”),
Equation (6) becomes

[R——t1
Fr,(Atg —1)

Ideally, the platform operator should set n such
that, when the adversary’s decision threshold is 6* (i.e.,
the adversary flags a post as deleted after not observing
the post for time 6* or more), the post has the lowest
LR value. In other words, LR value should be lowest
when the last down duration is 6*. Thus, by deciding
negative binomial distribution with mean 4 and shape
parameter n, we would want Fr,(At; — 1) to reach a
maximum at Aty = 6*. Thus, we take the derivative
of Fr,(Aty — 1) with respect to shape parameter n and
equate it to 0 at Aty = 0%, i.e.,

(;%FTd(e* —1) = %I(l_n%)(e*,n) =0 (9)
where I (a,b) is the incomplete beta integral. Now set-
ting ug = 1 hour, we solve for n to determine the best
shape parameter for a given value of 6*.

Table 3 shows the best shape parameters for differ-
ent values of 8*. An archive operator can choose any of
these values according to her choice of 6* or even calcu-
late suitable values of n for her estimated 6* using our
analytical technique.

Effect of Negative binomial Shape Parameter on
LR value: Furthermore, in Figure 12, we demonstrate
how parameter n impacts the LR value by plotting the
LR for some of the shape parameters in table 3 (corre-
sponding to 8* 1, 2 and 6 months). We have set the mean
up and down time to nine and one hours respectively. As

Lethe: Conceal Content Deletion from Persistent Observers

T T
8 zeta —
1x10 n=00006 4 i
O n=00003 @ "
= 7 [| n=0.0001]
0 1x10 _—
i e
1x10° |
|
E2 N T S O <%

Last Down Duration (Days)CC0

Fig. 12. Variation of LR for zeta distribution and three choices
of shape parameters for the negative binomial distribution. The
x-axis is showing the last down duration in months and y-axis
is showing the LR value in log scaled. The lowest LR value for
each of the decision thresholds in table 3 is for the correspond-
ing shape parameter. Choosing negative binomial distribution
with any of the parameters for the given down durations results
lower LR values then choosing zeta as the down distribution.

evident there is no shape parameter that performs best
for all the times, however, we can observe that for each
of the decision thresholds #* in Table 3 the correspond-
ing shape parameter has the lowest LR value. We also
observe that for all the chosen parameters, LR value for
negative binomial is lower than the case of picking zeta
as down distribution.

E An Overview of Lethe
Implementation

In section 5 we presented the basic steps of Lethe. How-
ever in our paper we considered that Lethe should be
applied to each single post. So a very pratical question
is: How to efficiently implement Lethe in a platform?
Here we provide a brief implementation sketch.

Basic setup for a platform. We assume a generic
archival platform where each post is stored as an Active
Store Object (ASO) [26]. ASOs are simply key-value
pairs with some (optional) code to run on values. Tra-
ditionally this ASO code is written in terms of han-
dlers (e.g., code to handle deletion). Each post ASO
will have an unique post id as key, the user generated
post content as value, identification of the owner (as
authentication token) and some metadata (e.g., the real
state flag for a post). We further assume that there is
an internal trusted time server, which is used through-
out the platform for synchronizing operations. The plat-
form internally does not use any other timestamps. Any
mention of timestamps in this section refers to this in-
ternal timestamp. Extending this set-up to traditional
databases is simple and left to future work.

— 225

/Active Storage Object (ASO) for post 1

State:
post id, content, owner auth token,
other metadata

Code (handlers)

ASO for
post 2

LS

A

ASO runtime

Active Subsystem

Users
(including
/ adversaries)

v

\j)uting substrate (searches and return ASOs) Ff

Platform
operator

Fig. 13. A basic implementation schematic for Lethe. Each post
is an ASO, and using APIls and code handlers these ASOs can
be accessed. An operator can add more metadate to the ASO
content according to requirement of the platform.

We use an architecture similar to Comet [26], where
the platform operator as well as platform users (includ-
ing adversary) have some specific Application Program-
mer Interfaces (API) to access/create/delete the posts.
However note that in our adversary model, the adver-
sary can just query the posts and can not change them in
any way. Thus, unlike Comet in Lethe post ASO objects
are immutable from the point of view of an adversary.

Straw man implementation. A straightforward im-
plementation of Lethe is to add an “observable state”
flag (binary) with meta data of each post ASO. When-
ever a post is created, the platform operator assigns a
process (or a thread) to the post. That process will ap-
ply Lethe algorithm to toggle the observable state. In
case of a view request, another user initiated process will
seek the required ASO or ASOs, check the “observable
state” flag and return a post if the post is observable
(i.e., observable state flag is TRUE). However, this de-
sign if definitely not scalable for a platform with billions
of posts. Thus we need an improved implementation.

Key insight. Our key insight is simple—the platform
can precompute the timestamps for future up and down
durations and then lazily update those duration times-
tamps. At any current time, for a view request, the plat-
form operator can use the current timestamp to deter-
mine if the post should be in up or down duration (using
the precomputed up/down duration timestamps) and
return a post in case the post is in up duration or re-
turn null otherwise. The only exception is if the data
owner requested to view her own post, the post should
be returned, irrespective of up/down duration.

An improved Lethe implementation. We note
that instead of keeping track of the observable state, a
process can simply compute the observable state of an
ASO using the current timestamp and the precomputed

Lethe: Conceal Content Deletion from Persistent Observers

up/down duration timestamps. Thus, when the plat-
form operator adds each post ASO, they should also add
(in bulk) the timestamps corresponding to up and down
durations for a large time period in future (e.g., for next
one year). Specifically we present the basic schematic of
our proposed implementation in Figure 13. Each post
ASO contains a state which includes the post content,
an authentication token to identify the owner of the
post (who can delete the post) and timestamps for fu-
ture up and down durations. Both users (including ad-
versaries) and platform uses a routing substrate to find
ASOs in the distributed storage (e.g., via a hash table
of keys). The active subsystem contains a trusted time
server and the ASO runtime, which converts platform
and user API calls to ASO handlers and executes the
ASO handler code.

Table 4 contains the summary of API and ASO han-
dler code descriptions. We use authentication (or auth)
tokens to identify a user (to determine data owner or
not). Any user can create a post using her auth token
with put or delete her posts using delete. Handler code
for call get first checks the auth token and if the request
is from data owner the platform always returns the post
(if it is not deleted). If the get request is not from a
data owner, then (using the precomputed up/down du-
rations) the handler code checks if the current times-
tamp is within the up of down time duration. If the
current timestamp falls in an up duration for the post
then the platform returns the post’s content to the re-
questing user, otherwise the platform returns null. In
addition to get, put and delete, the platform operator
internally runs multiple processes with updateT'S func-
tion to keep adding future up and down time durations
for ASO objects. The “post_ids” to update (given to
updateT'S) should be divided in these processes based
on a hash table of ASO keys. The mapping between API
and ASO handler codes is in 37¢ column of Table 4.

Possible optimizations of this implementation
sketch. We emphasize that this is just a sketch Lethe
implementation with scopes for further optimization.
E.g., updateT'S can additionally delete up/down times-
tamps lesser than current timestamp to optimize storage
or there can be batch garbage collection after multiple
calls to delete. Further the input to updateTS can be
chosen more intelligently e.g., by keeping a min-heap to
determine the ASO objects which are in immediate need
to update up/down timestamp. We leave exploration of
these concrete system challenges to future work.

— 226

l APIs for the user (including adversary)

|

Name Parameter Description Associated
ASO
handlers

put post__content, Creates a post ASO | onPut

authentica- for the data owner,
tion_token returns a post_id

get post_id, Returns a post ASO | onGet

authentica- or null depending on

tion_token (i) ownership and (ii)
if the post is in
up/down duration.

delete post_id, deletes associated | onDelete

authentica- post and returns
tion_token null.

l Internal APIs for the platform

Name Parameter Description Associated
ASO
handlers

updateT S | list of post_ids | Updates the future | onUpdate

to update up/down times in
ASOs with post_ids.

l Handlers in ASOs

Name Parameter Description Associated
ASO
handlers

onPut post__content, Creates an ASO | -

authentica- object and assigns
tion_token, cur- | up/down timestamps
rent_timestamp | covering next 1 year.

onGet post_id, Check current times- | -

authentica- tamp and if in up

tion_token, cur- | duration return post

rent_timestamp | content, else return
null.

onDelete | post_id, Assign one down | -

authentica- timestamp—infinity;
tion_token, cur- | remove post con-
rent__timestamp | tent.

onUpdate| post_id, If current set of | -

authentica- up/down times cover

tion_token, cur-
rent__timestamp

less than 1 year, cre-
ate more up/down
times.

Table 4. Summary of APl and ASO handler code descriptions
(and the mapping between them) for Lethe sketch implemen-

tation. Note that data owner always gets back her non-deleted

posts irrespective of up/down duration.

	 Lethe: Conceal Content Deletion from Persistent Observers
	1 Introduction
	2 Context and Motivation
	3 Problem and Key Idea
	3.1 System and Adversary Model
	3.2 Security Goals
	3.3 Key Idea
	3.4 Non-goals

	4 Problem Formalization
	4.1 Formalized Intermittent Withdrawals
	4.2 Deletion Privacy
	4.3 Availability property

	5 Lethe Design
	5.1 Choosing up/down distribution mean values to control availability
	5.2 Choosing up/down distribution PMFs to control deletion privacy
	5.3 LR Comparison for Frequentist and Bayesian Analysis
	5.4 Lethe Algorithm

	6 Evaluation of Lethe
	7 Effect of Lethe in Practice
	7.1 Quantifying utility of a platform
	7.2 How does Lethe affect utility?

	8 Enhancements and Discussion
	9 Conclusion and Future Work
	A Difference between Deletion Privacy and Differential Privacy
	B Modeling Deletion Distribution
	C Choice of Down Distribution in Bayesian Analysis
	D Effect of Negative Binomial Shape Parameter
	E An Overview of Lethe Implementation

