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Together or Alone: The Price of Privacy in
Collaborative Learning
Abstract: Machine learning algorithms have reached
mainstream status and are widely deployed in many ap-
plications. The accuracy of such algorithms depends sig-
nificantly on the size of the underlying training dataset;
in reality a small or medium sized organization often
does not have the necessary data to train a reasonably
accurate model. For such organizations, a realistic so-
lution is to train their machine learning models based
on their joint dataset (which is a union of the indi-
vidual ones). Unfortunately, privacy concerns prevent
them from straightforwardly doing so. While a num-
ber of privacy-preserving solutions exist for collaborat-
ing organizations to securely aggregate the parameters
in the process of training the models, we are not aware
of any work that provides a rational framework for the
participants to precisely balance the privacy loss and
accuracy gain in their collaboration.
In this paper, by focusing on a two-player setting, we
model the collaborative training process as a two-player
game where each player aims to achieve higher accu-
racy while preserving the privacy of its own dataset.
We introduce the notion of Price of Privacy, a novel ap-
proach for measuring the impact of privacy protection
on the accuracy in the proposed framework. Further-
more, we develop a game-theoretical model for different
player types, and then either find or prove the existence
of a Nash Equilibrium with regard to the strength of
privacy protection for each player. Using recommenda-
tion systems as our main use case, we demonstrate how
two players can make practical use of the proposed the-
oretical framework, including setting up the parameters
and approximating the non-trivial Nash Equilibrium.
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1 Introduction
Machine Learning (ML) (the process of learning from
data and making predictions about it by building
a model), has received much attention over the last
decade, mostly due to its vast application range such
as recommendation services, medicine, speech recogni-
tion, banking, gaming, driving, and more. For ML tasks,
it is widely known that more training data will lead to
a more accurate model. Unfortunately, most organiza-
tions do not possess a dataset as large as Netflix’s1 or
Amazon’s2. In such a situation, to obtain a relatively ac-
curate model, a natural solution would be to aggregate
all the data from different organizations on a centralized
server and train on the global dataset as seen on the
left side of Figure 1. This approach is efficient, however,
data holders have a valid privacy concern about shar-
ing their data, particularly with new privacy regulations
such as the European General Data Protection Regula-
tion3 (GDPR). Therefore, improving ML via straight-
forward data aggregation is likely undesirable and po-
tentially unlawful in reality. Various privacy concerns
exists with regard to ML (e.g., the privacy of the in-
put to the training or the privacy of the trained model);
in this paper, we focus on the privacy of the input for
individual data contributors.

Fig. 1. Centralized (left) and Distributed (right) Learning

In the literature, Privacy Preserving Distributed
ML [4, 11, 13, 14, 16] have been proposed to solve this

1 https://www.netflix.com
2 https://www.primevideo.com
3 https://eugdpr.org

https://www.netflix.com
https://www.primevideo.com
https://eugdpr.org
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problem by training the model locally and safely aggre-
gating all the local updates, illustrated on the right side
of Figure 1. On the other hand, these approaches’ ef-
ficiency depend on the number of participants and the
sample sizes as we highlight this in the related works.

In this paper, we are interested in a scenario with
two participants, each of whom possesses a significant
amount of data and would like to obtain a more accu-
rate model than what they would obtain if training was
carried out in isolation. It is clear that the players will
only be interested in collaboration if they can actually
benefit from each other. To this end, we simply assume
that the players have already evaluated the quality of
each other’s datasets to make sure training together is
beneficial for both of them before the collaboration. How
such evaluation should be done is out of scope for our
research; there are best practices already established in
the field [5]. Most of the ML papers, including privacy-
preserving ones, implicitly make this assumption.

1.1 Problem Statement

Collaborative Machine Learning (CoL) will increase the
model accuracy, but at the cost of leaking some in-
formation about the players’ datasets to each other.
To mitigate the information leakage, players can ap-
ply some privacy-preserving mechanisms, e.g., calibrat-
ing and adding some noise or deleting some sensitive at-
tributes. Many “solutions” have been proposed, as sur-
veyed in the related work. In most of them, the play-
ers are not provided with the option of choosing their
own privacy parameters. Clearly, there is a gap between
these solutions and reality, where players will have dif-
ferent preferences to privacy and utility and may want
to dynamically set the parameters.

To bridge this gap, we consider the parties involved
as rational players and model their collaboration as a
two-player game. In our setting, players have their own
trade-offs with respect to their privacy and expected
utility and can flexibly set their own privacy parameters.
The central research problem is to propose a general
game theoretical model and find a Nash Equilibrium [6].
Moreover, given a specific CoL task, we should answer
the following core questions:
– What are the potential ranges for privacy parame-

ters that make the CoL model is more accurate than
training alone?

– What is the optimal privacy parameter (which re-
sults in the highest payoff)?

– With this optimal parameter, how much accuracy
is lost overall due to the applied privacy-preserving
mechanisms?

1.2 Contribution

We first propose a two-player game theoretical model for
CoL (a training process via an arbitrary training algo-
rithm between two players). We profile the players and
analyze their best response strategies and the equilibria
of the designed game. Inspired by the notion of Price of
Anarchy [9], we define Price of Privacy, which is a new
way of measuring the accuracy degradation due to pri-
vacy protection. Then, we demonstrate the usage of the
model via a recommender use case, where two players
improve their own recommendation accuracy by lever-
aging on each other’s dataset. It is worth noting that
this is indeed a representative example since the used
Stochastic Gradient Descent (SGD) optimization pro-
cess is a universal procedure widely used in ML tasks
[5]. For illustration purposes, we consider two privacy
preserving mechanisms, including attribute deletion and
differential privacy [2]. Based on heuristics, we demon-
strate how to approximate the privacy-accuracy trade-
off functions, which lie in the core of the proposed theo-
retical model and determine how the players should set
the parameters, and illustrate the practically obtained
Nash Equilibrium [6].

We would like to emphasize that approximating the
privacy-accuracy trade-off function is a very realistic
choice in applying the proposed theoretical model. Sci-
entifically, we may want to use cryptographic techniques
such as secure two-party computation protocols to pre-
cisely compute these parameters. However, this is un-
desirable due to the incurred complexity. In order to
reduce complexity, most deployed ML systems imple-
ment heuristics, such as approximating the parameters
in Stochastic Gradient Descent [5].

1.3 Organization

In Section 2, we review some basic concepts used
throughout the paper such as game theory and differen-
tial privacy. In Section 3, we introduce the CoL game,
explain the parameters, define the concept of Price of
Privacy; moreover, we show how to apply the CoL game
framework in practice. In Section 4, we provide a the-
oretical analysis of the proposed game and investigate
the Nash Equilibria. In Section 5, we introduce the rec-
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ommender use case and describe two example privacy-
preserving mechanisms. In Section 6, for the recom-
mender use case, we demonstrate how to measure the
the privacy-accuracy trade-off function over the joint
dataset. In Section 7, first, we interpolate this trade-
off function and determine the corresponding numeri-
cal equilibria, then we show how to approximate the
trade-off function via heuristics and study its impact on
the equilibria. In Section 8, we review the the related
works from the perspective of game theory and privacy-
preserving ML. In Section 9, we conclude the paper.

As we use multiple well-known concepts through the
paper, we provide a summary of abbreviations in Ap-
pendix A to improve readability.

2 Preliminaries
In this section, we introduce differential privacy and the
game theoretic terminology used in the paper.

2.1 Differential Privacy

DP [2] have been used widely in the literature. It classi-
cally quantifies the privacy of a mechanism in terms of
parameters ε:

Definition (ε-differential privacy [2]). An algorithm A
is ε-DP (ε ∈ [0,∞)]) if for any two datasets D1 and D2
that differ on a single element and for any set of possible
outputs O:

Pr(A(D1) ∈ O) ≤ eε · Pr(A(D2) ∈ O)

DP gives a strong guarantee that presence or absence of
a single data point will not change the final output of the
algorithm significantly. Furthermore, the combination of
DP mechanisms also satisfies DP:

Theorem (Composition Theorem [2]). If the mecha-
nisms Ai are εi-DP, then any sequential combination
of them is

∑
i εi-DP.

To achieve DP, noise must be added to the output of
the algorithm. In most cases, this noise is drawn from
a Laplacian distribution and it is proportional to the
sensitivity of the algorithm itself:

Theorem (Laplace Mechanism [2]). For f : D → Rk,
if s is the sensitivity of f (i.e., s = maxD1,D2 ||f(D1)−
f(D2)|| for any two datasets D1 and D2 that differ on

a single element) then the mechanism A(D) = f(D) +
Lap( sε ) with independently generated noise to each of
the k outputs enjoys ε-DP.

2.2 Game Theory

Game theory [6] is “the study of mathematical models
of conflict between intelligent, rational decision-makers”.
Almost every multi-party interaction can be modeled
as a game. In our case, these decision makers are the
participants (players) of CoL.

Definition (Game). A normal form representation of
a game is a tuple 〈N ,Σ,U〉, where N = {1, . . . ,m} is the
set of players, Σ = {S1, . . . , Sm} where Si = {s1, s2, . . . }
is the set of actions for player i and U = {u1, . . . , um}
is the set of payoff functions.

A Best Response (BR) strategy gives the most favorable
outcome for a player, taking other players’ strategies as
given:

Definition (Best Response). For a game 〈N ,Σ,U〉 the
BR strategy for player i for a given strategy vector
s−i = (s1, . . . , si−1, si+1, . . . , sm) is ŝi if ∀sij ∈ Si:
ui(ŝi, s−i) ≥ ui(sij , s−i).

A Nash Equilibrium (NE) is a strategy vector where all
the player’s strategies are BR strategies. In other words,
in a NE state every player makes the best/optimal de-
cision for itself as long as the others’ choices remain
unchanged:

Definition (Nash Equilibrium). A pure-strategy NE
of a game 〈N ,Σ,U〉 is a strategy vector (s∗1, . . . , s∗m)
where s∗i ∈ Si, such that for each player i

∀sij ∈ Si: ui(s∗i , s∗−i) ≥ ui(sij , s∗−i) where s∗−i =
(s∗1, . . . , s∗i−1, s

∗
i+1, . . . , s

∗
m).

NE provides a way of predicting what will happen if
several entities are making decisions at the same time
where the outcome depends on the decisions of the oth-
ers. The existence of a NE means no player will gain
more by unilaterally changing its strategy at this unique
state.

Another game-theoretic concept is Social Optimum,
which is a strategy vector that maximizes social welfare:

Definition (Social Optimum). The Social Optimum of
a game 〈N ,Σ,U〉 is a strategy vector (s′1, . . . , s′m) where
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s′i ∈ Si, such that

max
s1∈S1,...,sm∈Sm

∑
n∈N

un(s1, . . . , sm) =
∑
n∈N

un(s′1, . . . , s′m)

Despite the fact that no one can do better by changing
strategy, NEs are not necessarily Social Optimums (as
an example see Prisoner’s Dilemma [6]). Price of Anar-
chy [9] measures the ratio between these two: how the
efficiency of a system degrades due to the selfish behav-
ior of its players:

Definition (Price of Anarchy [9]). Priva of Anarchy4

of a game 〈N ,Σ,U〉 is

PoA :=
maxs∈S

∑
n∈N un(s)

mins∗∈S∗
∑
n∈N un(s∗)

where S = S1×· · ·×Sm is the set of all possible outcomes
while S∗ is the set of NEs.

3 Game Theoretic Model
In this section, we describe the CoL game and show how
it can be used in practice. Specifically, the CoL game
captures the actions of two privacy-aware data holders
in the scenario of applying an arbitrary privacy preserv-
ing mechanism and training algorithm on their datasets.
We define the corresponding utility functions and elab-
orate on their components. Furthermore, we introduce
the notion of Price of Privacy, a novel measure of the
effect of privacy protection on the accuracy of players.

3.1 The Collaborative Learning Game

At a high level, the players’ goal in the CoL game is to
maximize their utility, which is a function of the model
accuracy and the privacy loss. We do not consider the
adversarial aspect of players, hence the gain includes
only the accuracy improvements on the model for a par-
ticular player as benefit (without the accuracy decrease
of the other player5) while the cost is private informa-
tion leakage: the trained model leaks some information
about the local dataset used for training.

Players only choose the privacy parameters for a
predetermined privacy preserving method M (rather

4 Sometimes referred to as Price of Stability.
5 Extending the game for competing companies is an interesting
future direction.

than choosing the method with the parameter). This
means each M corresponds to a different game with a
different definition of privacy, rather than having one
game where the players’ actions are deciding which
mechanism to use and to what extent. This is a re-
stricted scenario, nonetheless, even this scenario barely
lends itself to purely analytical treatment; it is already
not straightforward to derive the exact NE.

The variables of the CoL game are listed in Table
1, where the accuracy is measured as the prediction er-
ror of the trained model: lower θn and ΦMn correspond
to a more accurate model. Maximal privacy protection
is represented via pn = 1, while pn = 0 means no pro-
tection for player n. The benefit and the privacy loss
are not on the same scale as the first depends on the
accuracy while the latter on information loss. To make
them comparable, we introduce weight parameters: the
benefit function is multiplied with the accuracy weight
Bn > 0, while the privacy loss function is multiplied
with the privacy weight CMn ≥ 0.

Variable Meaning
M Privacy mechanism applied by the players
pn Privacy parameter for player n
CM

n Privacy weight for player n
Bn Accuracy weight for player n
θn Model error by training alone for player n

ΦM
n (p1, p2) Model error by training together for player n
b(θn,ΦM

n ) Benefit function for player n
cM (pn) Privacy loss function for player n

Table 1. Parameters of the CoL game

The accuracy (error) achieved by training together
(ΦMn (p1, p2)) naturally depends also on the datasets and
the used algorithm besides the privacy parameters pn
and the corresponding privacy mechanism M . However,
for simplicity we abstract them since it does not affect
our theoretical analysis as long as ΦMn is symbolic.

Definition 1 (Collaborative Learning Game). The
CoL game is a tuple 〈N ,Σ,U〉, where the set of play-
ers is N = {1, 2}, their actions are Σ = {p1, p2}
where p1, p2 ∈ [0, 1] while their utility functions are
U = {u1, u2} such that for n ∈ N :

un(p1, p2) = Bn · b(θn,ΦMn (p1, p2))− CMn · cM (pn) (1)

The CoL game is of symmetric information, i.e., the in-
troduced parameters are public knowledge (i.e., M , Bn,
CMn , b, cM , θn and ΦMn ) except for the actions of the
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players (i.e., pn). Moreover, we do not consider any neg-
ative effect of the training such as time or electricity con-
sumption, however, such variables may be introduced to
the model in the future.

In the following, whenever possible, we simplify the
notion CMn , cM and ΦMn by removing the symbol M to
use Cn, c and Φn respectively. We only need to keep
in mind that these functions depend on the underly-
ing privacy-preserving mechanism M in the implemen-
tation.
Privacy Loss Function c(pn). This function repre-
sents the loss due to private data leakage. We define c
with the following natural properties:

Definition 2 (Privacy loss function). c : [0, 1] → [0, 1]
such that it is continuous and twice differentiable, c(0) =
1, c(1) = 0 and ∂pnc < 0.

This definition indicates that the maximal potential
leakage is 1 which corresponds to no protection at all,
while maximal privacy protection corresponds to zero
privacy loss. Furthermore, c is monotone decreasing
which means stronger privacy protection corresponds to
less privacy loss.
Benefit Function b(θn,Φn). The benefit function has
two inputs: the error achieved by training alone (θn) and
when both players train together (Φn). Since a rational
player would not collaborate to end up with a model
with higher error, we are only interested in the case
when Φn < θn. Hence, we define b with the following
natural properties:

Definition 3 (Benefit function). b : R+ × R+ → R+
0

such that it is continuous and twice differentiable,
∂pnb ≤ 0 and b(θn,Φn) = 0 if θn ≤ Φn.

This definition indicates that there is no benefit when
the error of the model trained together is higher than the
error of the model trained alone. Furthermore, since b is
monotone decreasing in pn, stronger privacy protection
results in lower benefit (due to the increased error).
Privacy-Accuracy Trade-off Function Φn(p1, p2).
Φn plays a crucial role in the benefit function b. How-
ever, the function of how a privacy protection mech-
anism affects a complex training algorithm (and con-
sequently the accuracy) is unique for each dataset and
algorithm. Although we measure it in Section 6, and ap-
proximate it in Section 7 for a recommendation system
use case, in general the exact form of Φn is unknown.
On the other hand, some properties are expected:

Definition 4 (Privacy-accuracy trade-off function).
Φn : [0, 1] × [0, 1] → R+ such that it is continuous,
twice differentiable and:
– ∃m ∈ N : pm = 1⇒ ∀n ∈ N : Φn(p1, p2) ≥ θn
– ∀n,m ∈ N : ∂pmΦn > 0
– ∀n ∈ N : θn > Φn(0, 0)

The first property means that maximal privacy protec-
tion cannot result in lower error than training alone for
both players. The second property indicates that higher
privacy protection corresponds to higher error since Φn
is monotone increasing in both p1 and p2. The last prop-
erty ensures that training together with no privacy cor-
responds to lower error than training alone.

3.2 The Price of Privacy

Inspired by the notion of Price of Anarchy [9], we define
Price of Privacy (PoP ) to measure the accuracy loss
due to privacy constraints:

Definition 5 (Price of Privacy). PoP measures the
overall effect of privacy protection on the accuracy:

PoP (p∗1, p∗2) := 1−
∑
n b(θn,Φn(p∗1, p∗2))∑
n b(θn,Φn(0, 0)) (2)

The quotient is between the total accuracy improvement
in a NE (p∗1, p∗2) and the total accuracy improvement
without privacy protection.

Due to the Definition 3 and 4, PoP ∈ [0, 1], where 0 cor-
responds the lowest possible error which can be achieved
via collaboration with no privacy, while 1 corresponds
to the highest possible error which can be achieved by
training alone. In other words, Price of Privacy eval-
uates the benefit of a given equilibrium: the lower its
value, the lower the error achieved by collaboration.

Note that while Price of Anarchy characterizes a
game as a whole, Price of Privacy is a property of a
NE. Also, since Φn can only be estimated in a real-
world scenario, the players can only approximate the
value of PoP , which would then measure the efficiency
of the collaboration.

3.3 Applying the Collaborative Learning
Game

Given that the actual value of Φn is required to com-
pute the optimal strategies, Φn has to be numerically
evaluated for putting the CoL game to practical use.
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Different from other parameters which can be set freely,
the impact of the privacy-preserving mechanism M on
the joint accuracy (and thus Φn) is determined by both
datasets. Precisely computing this function requires ac-
cess to the joint dataset; thus, it raises the very privacy
concern which we want to mitigate in the first place.
To break this loop, we propose to adopt an approxima-
tion approach for applying the model. To this end, we
provide a heuristic solution in Section 7. The necessary
steps for setting up the collaboration are presented in
Figure 2:

Fig. 2. Process diagram for applying the CoL game framework

– Initialization: The players have their datasets Dn
with corresponding privacy policies Pn.

– Setup: Based on the privacy policies Pn, players
determine which privacy preserving method M to
use, what benefit b and cost c functions to apply, and
what should the corresponding weight parameters
C1, B1, C2, B2 be.

– Approximation: If the privacy-accuracy trade-off
function Φn is not (entirely) known, players must
approximate it either by interpolating it from mea-

surement points (assuming measurements can be
obtained) or based on their own local datasets Dn.

– Game: The players determine the NE (p∗1, p∗2)n
and its corresponding Price of Privacy via the CoL
game by using either the true or the approximated
privacy-accuracy trade-off function with the param-
eters determined in “Setup” step.

– Collaboration: If the NE suggests that training to-
gether is beneficial for both participants, then they
collaborate using their datasets Dn with the opti-
mal privacy parameter p∗n.

Remarks on Φ. It is clear that Φ is specific to the ac-
tual application scenario, therefore it can only be eval-
uated on a use case basis. We present our recommenda-
tion system use case in Section 5. Then, having defined
both the training algorithm and datasets, we establish
measurements of Φ for different parameter values in Sec-
tion 6. Using these empirical results, we approximate Φ
and compute the NEs in Section 7.

4 Equilibrium Analysis
In this section, we characterize the NEs for a simple and-
more complex cases of the CoL game. We derive sym-
bolic NEs in closed form for the case where exactly one
of the players is privacy-concerned (i.e., Collaboration-
as-a-Service (CaaS) scenario). Next, we prove the exis-
tence of a pure strategy NE in the general case, where
both players are privacy-concerned to a given degree. To
preserve clarity, all mathematical proofs for theorems in
this section are given in Appendix B.

The simplest NE of the CoL game is no collabora-
tion:

Theorem 1. Applying maximal privacy protection
(training alone) in the CoL game is a NE: (p∗1, p∗2) =
(1, 1).

Clearly, when the players train alone there will be no
improvement in accuracy. This means that the Price
of Privacy for this NE is the maximum 1: the entire
potential accuracy improvement is lost due to privacy
protection. This finding seemingly contradicts [1], which
states that all players refraining to participate cannot be
an equilibrium. There is a significant difference though;
estimation cost is a public good in [1], while in our case
accuracy is private and each participant has a base ac-
curacy level obtained by training alone.
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4.1 Player Types

Based on the properties of CoL game, two natural ex-
pectations arise:
– A player prefers collaboration if it values accuracy

significantly more than privacy (Bn � Cn).
– A player prefers training alone if it values accuracy

significantly less than privacy (Bn � Cn).

These intuitions are captured in the following two lem-
mas:

Lemma 1. ∃αn ≥ 0 such that if Cn
Bn
≤ αn for player n

than its BR is p̂n = 0.

Lemma 2. ∃βn ≥ 0 such that if Cn
Bn
≥ βn for player n

then its BR is to set p̂n = 1.

The questions we are interested in answering are: what
are the exact values of αn and βn and what is the NE
in case αn ≤ Cn

Bn
≤ βn. Based on the ratio Cn

Bn
∈ [0,∞],

we define two types of players:
– Unconcerned: This type of player cares only about

accuracy. This represents the case when Cn
Bn

= 0: the
privacy weight for player n is zero (Cn = 0).

– Concerned: This player is more privacy-aware, as
the privacy loss is present in its utility function. This
represents the case when Cn

Bn
> 0.

This information is available to both players as the CoL
game is a symmetric information game: both players
know which type of player they face.

4.2 One Player is Privacy Concerned

Definition 6 (Collaboration-as-a-Service). In a CaaS
scenario one player acts as a for-profit service provider
of collaborative training without privacy concerns, i.e.,
its privacy weight is 0.

Example. Imagine a company who offers CaaS for her
own profit (Player 2). The CaaS provider does not ap-
ply any privacy-preserving mechanism (see Theorem 2).
Any interested party (Player 1) who wants to to boost its
accuracy can use this service. At the same time, Player
1 requires additional privacy protection (besides the in-
herent complexity of the training algorithm) to prevent
her own data from leaking.

Theorem 2 (Training as an unconcerned player). If
player n is unconcerned (Cn = 0) then its BR is to
collaborate without any privacy protection: p̂n = 0.

Remark. When both players are unconcerned (C1 =
C2 = 0), (p∗1, p∗2) = (0, 0) is a NE. The corresponding
Price of Privacy value is 0 as no accuracy is lost due to
privacy protection.

As a result, the unconcerned player do not apply
any privacy-preserving mechanism. Without loss of gen-
erality we assume Player 2 is unconcerned, so its BR is
p̂2 = 0. This allows us to make the following simplifica-
tions: Φ(p1) := Φ1(p1, p̂2), b(p1) := b(θ1,Φ(p1, p̂2)) and
u(p1) := u1(p1, p̂2) while f ′ = ∂p1f and f ′′ = ∂2

p1f .

Theorem 3 (Training with an unconcerned player).
A NE of the CoL game when Player 1 is concerned
(C1 > 0) while Player 2 is unconcerned (C2 = 0) is
(p∗1, p∗2) = (ρ, 0) where ρ is defined by Equation (3)
where [·]−1 is the inverse function of [·] and r = C1

B1
:

ρ =


[

b′Φ′

c′

]−1
(r) if

u′′(ρ) < 0
ρ ∈ [0, 1]
u(ρ) > 0

0 if b(0) > r

1 otherwise

(3)

The three possible NEs when Player 2 is unconcerned,
and the corresponding Price of Privacy values are:
– If the possible maximal benefit is higher than the

weight ratio (b(0) > C1
B1

) for Player 1, this player
should train without any privacy protection as
(p∗1, p∗2) = (0, 0) is a NE. In this case PoP = 0.

– If all the required conditions in Theorem 3 hold,

(p∗1, p∗2) =
([

b′Φ′
c′

]−1 (
C1
B1

)
, 0
)

is a NE with

PoP = 1−

∑
n b

(
θn,Φn

([
b′Φ′
c′

]−1 (
C1
B1

)
, 0
))

∑
n b(θn,Φn(0, 0))

– Otherwise (p∗1, p∗2) = (1, 0) is a NE. In this case,
when one player apply maximal privacy protection
(Player 1), the other player’s utility cannot be pos-
itive due to the Definition 4. Furthermore, since
Player 2 is privacy unconcerned, its actual pay-
off is 0 independently of its action. As a result,
(p∗1, p∗2) = (1, p2) is a NE for all p2 ∈ [0, 1] as they
all correspond to the same 0 payoff. For simplicity,
we use (1, 1) to represent this case (the players train
alone), where the corresponding PoP value is 1.
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This result is quite abstract because all the components
of the utility function are treated symbolically. However,
even if we specify the benefit and the privacy loss func-
tions, the privacy-accuracy trade-off function Φn would
still be unknown due to the unspecified training algo-
rithm. We show this in the next Corollary where we set
b and c to be linear, as it is shown in Equation (4) where
[·]+ = max{·, 0}.

c(pn) := 1− pn
b(θn,Φn(p1, p2)) := [θn − Φn(p1, p2)]+

(4)

Corollary. With the same notations as in Theorem 3
and with the benefit and privacy loss functions defined
in Eq. (4), (p∗1, p∗2) = (ρ, 0) is a NE when C1 > 0 and
C2 = 0 if ρ is:

ρ =

 0 if r ≤ θ1 −Φ(0)
[Φ′]−1 (r) if Φ′′ (r) < 0, u1(ρ, 0) > 0, ρ ∈ [0, 1]

1 otherwise

To compute the numerical NE and the corresponding
Price of Privacy of the CoL game, we need to define
the function Φn. While for simpler training algorithms
(such as [1, 7]) Φn is known, for more complex algo-
rithms it can only be approximated. We demonstrate a
two potential approximation method in Section 7: inter-
polation and Self-Division.

4.3 Both Players are Privacy Concerned

Now we consider the general case when both players’
privacy weights are non-zero. We prove the existence of
a pure-strategy NE besides the trivial (p∗1, p∗2) = (1, 1);
we utilize the chain rule of derivation for higher dimen-
sions and a result from the theory of potential games
[12].

Lemma (Chain Rule). If f : R2 → R and g : R2 → R
are differentiable functions, then

∀i ∈ [1, 2] : ∂xif(x, g(x1, x2)) = ∂gf · ∂xig(x1, x2)

Definition (Potential Game [12]). A two-player game
G is a potential game if the mixed second order partial
derivative of the utility functions are equal:

∂p1∂p2u1 = ∂p1∂p2u2 (5)

Theorem (Monderer & Shapley [12]). Every potential
game admits at least one pure-strategy NE.

Now we can state the theorem which holds even if both
players are privacy-concerned:

Theorem 4. The CoL game has at least one non-trivial
pure-strategy NE if

∂2
Φb ·(∂p1Φ1−∂p2Φ2) = ∂Φb ·(∂p1∂p2Φ2−∂p1∂p2Φ1) (6)

Corollary (1). If we assume ∂ip1Φ1 = ∂ip2Φ2 for i ∈
{1, 2} then Theorem 4 holds.

The condition on the derivatives of Φn in Corollary
1 means that the player’s accuracy changes the same
way in relation to their own privacy parameter, inde-
pendently from the other player’s privacy parameter.
In Section 6 we measure the error for multiple privacy
parameter values and find that this is indeed the case.
Moreover, we find that Φ1 ≈ Φ2 when the players have
equal dataset sizes.6

Remarks on equilibria. Note that a non-trivial pure-
strategy NE does not necessarily correspond to positive
payoffs: if ∃n ∈ N : un(p∗1, p∗2) < 0 then player n would
rather not collaborate. Instead, it would train alone and
gain 0. This situation is plausible since 0 utility corre-
sponds to the accuracy of the locally trained model.
As such, an actual accuracy improvement is not triv-
ial by collaboration, especially with additional privacy
concerns (as we demonstrate later in Section 6).

5 Use Case: Recommendation
System

In this section, we describe our Recommendation Sys-
tem (RecSys) use case, where Matrix Factorization
(MF) is performed via Stochastic Gradient Descent
(SGD) [5]. Then, we introduce two example privacy-
preserving mechanisms: Suppression (Sup) and bounded
DP (bDP).

5.1 The Learning Process

If there are only two parties in a distributed learning sce-
nario (right side of Figure 1), the trained model reveals
some information about both players’ dataset. Hence,
in our scenario, the players train the same model iter-

6 Note that these findings are empirical: based on the specific
datasets/algorithm we used. For more details see Section 6.
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atively without any safe aggregation. If there are only
two participants, parallelization does not improve the
efficiency much, so the players are training the model
sequentially as seen in Figure 3. The problem of infor-
mation leakage is tackled with privacy-preserving mech-
anisms.

Fig. 3. Learning sequentially

Our use case is a RecSys scenario. We assume that
players hold a user-item rating matrix with a common
item-set I = I1 = I2 and disjoint user-set: U1 ∩ U2 = ∅
where U = U1 ∪ U2. As usual, rui ∈ R|U |×|I| refers to
the rating user u gives item i.

The goal of the learning algorithm is to find the
items that users desire. One of the most widespread
method to do that is MF [8] as seen in Figure 4: finding
P|U |×κ and Qκ×|I| such that P ·Q ≈ R. As the user-sets
are disjoint, players only need to share the item feature
matrix Q.

Fig. 4. RecSys scenario

The goal of this MF algorithm is to minimize the
error between the prediction and the observed ratings
as described in Equation (7) where λ is the regulariza-
tion parameter, while pu (qi) is the corresponding row
(column) in P (Q) for rui.

min
P,Q

∑
rui∈R

(rui − puqi)2 + λ(||pu||2 + ||qi||2) (7)

One of the most popular techniques to minimize this
formula is SGD [5]. It works by iteratively selecting a
random rating rui ∈ R and updating the corresponding

factor vectors according to Equation (8) where eiu =
puqi − rui and γ is the learning rate.

p′u := pu + γ(euiqj − λpu)
q′i := qi + γ(euipu − λqi)

(8)

Since we use SGD, the training process shown in
Figure 3 is essentially equivalent to mini-batch learning
where the batches are the datasets of the players. As
we use RecSys as an illustrative example, we simplify
it: we assume that players share the learning algorithm
which is embedded with the necessary parameters such
as learning rate γ, regularization parameter λ, number
of features κ, and maximum number of iterations ι. No-
tations are summarized in Table 2.

Variable Meaning
U Joint user-set
I Itemset
R Rating matrix
rui Rating of user u for item i

P,Q Feature matrices
γ Learning rate
λ Regularization parameter
κ Number of features
ι Number of iterations

Table 2. RecSys parameters

5.2 Privacy Preserving Mechanisms

We focus on input manipulation for privacy preservation
as we are concerned with input data privacy. In fact,
[3] concluded that input perturbation achieves the most
efficient accuracy-privacy trade-off amongst various DP
mechanisms. We investigate Sup and bDP as available
mechanisms.
Suppression. Sup essentially chooses a subset of the
dataset to be used for training together. Sup can be
used to remove sensitive data from the dataset, so even
if the other player can reconstruct the dataset from
the trained model, the removed part remains fully pro-
tected.

Definition 7 (Suppression). Sup removes input data
from the original dataset to protect it from information
leakage resulting from the model or the learning pro-
cess. The size of reduction is determined by the privacy
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parameter p ∈ [0, 1], i.e., p is proportional to the data
removed7.

Bounded Differential Privacy. To apply bDP , we
must determine the sensitivity of the machine learning
algorithm first:

Theorem 5 (Sensitivity of RecSys). The sensitivity S
of the introduced RecSys scenario is

S ≤ κ · ι · γ · (∆r · pmax − λ · qmax) (9)

Proof Theorem 5. See Appendix C.

Now, we consider the bDP mechanism [3]:

Definition 8 (bounded DP). bDP aims to hide the
value of a rating. To achieve ε-bDP, each rating is mod-
ified as it is shown in Equation (10) where L(x) is a
Laplacian noise with 0 mean and x variance.

r′ui :=

rmax if rui + L( S
ε

) ≥ rmax

rmin if rui + L( S
ε

) ≤ rmin

rui + L( S
ε

) otherwise
(10)

5.3 Unifying Privacy Parameters

These approaches are hard to compare since they fo-
cus on protecting different things. Sup aims to provide
maximal privacy for some of the data while leaving the
rest unprotected. On the other hand, bDP provides an
equal amount of privacy for all the data based on the
parameter ε. In the CoL game we defined the privacy
parameter on a scale 0 to 1, therefore the specific param-
eters of Sup and bDP must be mapped to [0, 1] where
p = 0 means no privacy, while p = 1 stands for full pri-
vacy protection. For Sup the value p is straightforward:
p represents the portion of data removed. Hiding the
dataset in whole (100% protection) means p = 1 while
if the whole dataset is used for training (0% protection)
then p = 0.

In case of bDP, 100% privacy (p = 1) is achieved
when ε = 0 (infinite noise) while ε ≈ ∞ corresponds
to zero noise (p = 0). This relation can be captured
via a function f : [0,∞) → [0, 1] such that f(0) = 1,
limx→∞ f(x) = 0 and f is monotone decreasing. We
use the mapping p = f(ε) = 1

ε+1 and ε = f−1(p) =
1
p − 1. This mapping does not carry meaning such as

7 We treat p as a continuous variable even though it is discrete;
this does not affect our analysis owing to large dataset sizes.

equivalence in any sense between methods, so it is not
used for direct comparison. We only use it to convert
the privacy parameter ε into [0, 1] so we can use bDP as
privacy-preserving method M in the CoL game defined
in Section 3.

6 RecSys: Measuring Φ

For all questions in relation with CoL, the answers de-
pend on ΦMn . Consequently, in this section we measure
the model accuracy for various privacy parameters with
regard to the learning task and the privacy mechanisms
introduced in Section 5.

For our experiments, we implemented SGD as train-
ing algorithm in Matlab [15]. We used the MovieLens
1M8 and Netflix9 datasets; for complexity reasons we
shrunk the Netflix dataset to 10% by randomly filtering
out 90% of the users. Furthermore, both datasets are
preprocessed similarly to [3]. Preprocessing is described
in details in Appendix D. We will refer to the prepro-
cessed datasets as 1M and NF10, respectively. The pa-
rameters of the preprocessed datasets are shown in Ta-
ble 3.

Dataset Rating User Item Density
1M 998 539 6040 3260 0.051
NF10 10 033 823 46 462 16 395 0.013

Table 3. The datasets size after preprocessing

The algorithm for MF is SGD, where the number of
features are κ = 4. The algorithm runs for 20 iterations
(ι = 20) with learning rate γ = 0.0075 and regularization
parameter λ = 0.01. The feature matrices are bounded
by pmax = qmax = 0.5. This means that the sensitivity
of the RecSys scenario is S ≤ 4 · 20 · 0.0075 · (2 · 2 · 0.5−
0.01 · 0.5) = 1.197 as a result of Theorem 5.

We assume that if a model is trained using datasets
from very different distributions, the model captures the
properties of the mixed distribution of the combined
dataset (which might be far from the original distri-
butions). On the other hand, using training data from
similar distributions results in capturing the statistical

8 https://grouplens.org/datasets/movielens/
9 http://academictorrents.com/details/
9b13183dc4d60676b773c9e2cd6de5e5542cee9a

https://grouplens.org/datasets/movielens/
http://academictorrents.com/details/9b13183dc4d60676b773c9e2cd6de5e5542cee9a
http://academictorrents.com/details/9b13183dc4d60676b773c9e2cd6de5e5542cee9a
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properties of a distribution close to the original ones.
As such, if the players’ datasets are from a similar dif-
ferent distribution, training together likely results in a
more accurate model than training alone. Consequently,
we imitate the players’ datasets by splitting 1M and
NF10: each user with its corresponding ratings is as-
signed to one of the players. To remove the effect of
randomness of the dataset division, we run our experi-
ments three times and only present the averages. Now,
each player splits its dataset further into a training set
(80%) and a verification set (20%). The players can run
the SGD algorithm alone or together, where additional
privacy mechanisms can be deployed. The accuracy of
the trained model is measured via root mean square er-

ror: RMSE =
√∑

e2
iu

|R| .

6.1 Alone vs Together

First, we compare the achieved accuracy with and with-
out the other player’s data in Figure 5. The horizontal
axis represents the ratio of the user-set sizes: how 1M
and NF10 was split into two. More precisely, x = α

β

represents that Player 1’s dataset is α
β times the size of

Player 2’s dataset. The vertical axis shows the differ-
ence in the normalized accuracy improvements of train-
ing alone and together: y = (θ−o)−(φ−o)

θ−o = θ−φ
θ−o , where o

is the accuracy of the model without training. In other
words, y is the normalized accuracy improvement via
training together; y = 0 represents the accuracy of train-
ing alone.

Fig. 5. Accuracy improvement (y axis) of training together using
1M/NF10 datasets where one player has x times more (less) data
than the other (x axis)

It is clear that training together is superior to train-
ing alone for both datasets and all size ratios. Figure 5

also shows that the owner of the smaller dataset benefits
more from collaboration; a well-expected characteristic.

6.2 One Player is Privacy Concerned

Training together achieves higher accuracy than train-
ing alone. The question is, how does the situation change
with a privacy mechanism in place. First we analyze the
CaaS scenario introduced in Definition 6. Without loss
of generality, we can assume p2 = 0. Player 1’s options
are either to set p1 for Sup or ε1 for bDP.

Fig. 6. Accuracy improvements of training together (y axis) for
different privacy levels (x axis) with the 1M dataset is divided
such that the data size ratios are 0.25, 1 and 4

Figure 6 shows the tradeoff between accuracy and
privacy when the 1M dataset is divided such that the
data size ratio is 0.25, 1 and 4 (from Player 1’s perspec-
tive). The horizontal axis is the privacy parameter p1
(ε1) while the vertical axis shows the normalized im-
provement on accuracy achieved by training together
(similar to Figure 5). In Figure 6, we can observe both
higher (y > 0) and lower (y < 0) collaborative accuracy
regions. Note, that we only show the case for 1M and se-
lect dataset size ratios as we found that using other size
ratios or the NF10 dataset produce similar curves. The
main observation is valid in all settings: as the dataset
size ratio increases the accuracy improvement decreases.

These results suggest that the realistic privacy pa-
rameters the players can apply (to obtain a more accu-
rate model) depend on the relative size of their datasets:
a player with relatively smaller dataset (e.g., triangle in
Figure 6) can apply a stronger privacy parameter (and
still obtain more accurate model) than a player with a
relatively larger dataset (e.g., circle in Figure 6).

This finding confirms our assumption about the
derivatives of ΦMn in Corollary 1: since the relative
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dataset size effects the obtained accuracy with a con-
stant, a change in the privacy parameter effects the ac-
curacy the same way independently of these ratios. This
is indeed implies that ∂p1ΦM1 = ∂p2ΦM2 .

6.3 Both Players are Privacy Concerned

In this section we jointly train a model where both play-
ers employ the same mechanismM with privacy level p1
(ε1) and p2 (ε2). Section 6.1 and 6.2 already pointed out
that a player with a significantly larger dataset would
not benefit much from collaboration. Consequently, for
this experiment we use datasets with similar sizes. This
makes our scenario symmetric, i.e., it is enough to
demonstrate the accuracy change for one player. We ob-
tained results for both 1M and NF10, but due to their
similarity we only display the results for 1M in Figure 7.
We use the notation pown (εown) and pother (εother) to
represent the privacy parameters from the perspective
of the player under scrutiny.

Figure 7 shows the normalized accuracy improve-
ment for different privacy parameters with privacy
mechanism M ∈ {Sup, bDP}. It is visible that indepen-
dently fromM , accuracy is more sensitive to the player’s
own privacy parameter than to that of the other. In
other words, by degrading the quality of a given player’s
data (via a privacy mechanism), this player’s accuracy
will be affected more than the accuracy of the other
player. This means, if the players would have additional
incentive to undermine the other player’s accuracy (e.g.,
competing companies), by doing so they would actually
decrease their own accuracy more.

7 RecSyS: Numerical Equilibria
In this section we compute the numerical values of NE
(p∗i ) for the RecSyS scenario, implementing the process
depicted in Figure 2. In Section 7.1 we assume that some
measurements on Φ are readily available. In Section 7.2
we relax this assumption, and propose a heuristic called
Self-Division to approximate ΦMn locally.

7.1 NE Computation via Interpolation

Using the values of ΦMn obtained in Section 6, it is pos-
sible to interpolate the privacy-accuracy trade-off func-
tion and combine it with the theoretical results in Sec-
tion 4 to obtain numerical equilibria.

Fig. 7. Accuracy improvement of collaboration where 0 represents
the accuracy level of training alone (1M dataset split equally,
M ∈ {Sup, bDP}).

Let b and c be linear as in Equation (4). Now, we
interpolate directly b instead of ΦMn , i.e., we interpolate
the normalized accuracy improvement shown in Figure
7. We use Mathematica’s10 built-in Interpolate function
with InterpolationOrder→ 1 in order to have a mono-
tone approximation required by Definition 3. Via this
interpolation the numerical NE can be calculated for
the specific dataset (1M) and algorithm (SGD) defined
in Section 5. We assume that the 1M dataset is split
equally between the players.
One player is privacy concerned. In the CaaS sce-
nario we assume that Player 1 is privacy unconcerned.

10 https://www.wolfram.com/mathematica/

https://www.wolfram.com/mathematica/
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According to Theorem 2, this player’s BR is p̂1 = 0.
Now the utility function of Player 2 is:

u2(0, p2) = B2 ·

b(0,p2)︷ ︸︸ ︷[
θ2 − Φ(0, p2)

θ2

]+
−C2 · c(p2) (11)

As Lemma 1 and 2 state, there is a lower and an
upper bound on C2

B2
for Player 2 which ensures that the

BR p̂2 is either 0 or 1. We calculate the exact bounds us-
ing our interpolation. Furthermore, the utility of Player
2 (Equation (11)) has to be positive (Theorem 3), oth-
erwise there is no incentive for Player 2 to participate
in the CoL process. These bounds are shown in Table
4; they can also be observed prominently in Figure 8
(where B2 = 1).

0 ≤ u2(0, p̂2) if p̂2 if

C2
B2
≤ 0.990 Sup 0 C2

B2
≤ 1.400

1 C2
B2
≥ 1.827

C2
B2
≤ 1.150 bDP 0 C2

B2
≤ 0.349

1 C2
B2
≥ 2.251

Table 4. NEs for Player 2 when Player 1 is privacy unconcerned

In Figure 8 we display the BR and the correspond-
ing utility as a function of the privacy weight C2 where
the utility function is normalized by B2 (i.e., B2 = 1).
This transformation is sign-preserving, i.e., if the utility
is negative, the BR is not a NE, since no collaboration
corresponds to a higher utility.

In case of Sup the interval defined by the two lem-
mas (represented by the two vertical gray lines) corre-
sponds to negative utility. Thus, the NE is either col-
laboration without privacy protection or no collabora-
tion depending on the weight ratio C2

B2
. More precisely,

according to Theorem 3 the NE is (p∗1, p∗2) = (0, 0) if
C2
B2
≤ b(θ2,Φ2(0, 0)) = 0.990 and (p∗1, p∗2) = (1, 1) other-

wise.
In case of bDP, the leftmost part of the interval

created by the lemmas corresponds to positive utility,
i.e., there exists a non-trivial NE. More precisely, if
0.349 ≤ C2

B2
≤ 1.150 then p∗2 is neither 0 nor 1. Note,

that the BR function is step-like because of the piece-
wise linear interpolation. As such, within this interval
the NE is p∗2 = 0.2 ⇔ ε∗2 = 4. The Prive of Privacy
for this NE is PoP (0, 0.2) = 0.066, i.e., less than 7%
of the overall achievable accuracy is lost due to privacy
concerns.

Fig. 8. BR and corresponding utility for Player 2 when Player 1 is
privacy unconcerned

Both players are privacy concerned. Here we
present results only for bDP (Sup shows similar char-
acteristics). Theorem 4 states that when both player is
privacy concerned a non-trivial NE exists. To this end,
we use BR dynamics [6], eventually converging to a NE
due to the following theorem:

Theorem (Monderer & Shapley [12]). In a finite11 po-
tential game, from an arbitrary initial outcome, the BR
dynamics converges to a pure strategy NE.

In BR dynamics (over several rounds) players update
their strategies in the next round based on the their BR
to the strategy of the other player in the last round. We
start the iteration from (p1, p2) = (0, 0)12 and update
the players’ strategies alternately starting with Player
1. The NEs to which the process converges are shown in
Table 5 with the corresponding Price of Privacy values
for discrete weight ratios {0, 0.1, . . . }.

This suggest that players with a low privacy weight
prefer to train together without protection, while a high

11 As the CoL game is not finite, we discretized the action
spaces of the players via floating point numbers.
12 The higher the privacy level from where the BR dynamics
starts, the wider the interval of weight ratios in which it con-
verges to 1 (i.e., no collaboration).
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C2
B2
∈ → [0, 0.3] [0.4, 0.9] [1,∞]

C1
B1
∈ [0, 0.3] (0, 0) (0, 0.2) (1, 1)

0.000 0.066 1.000
C1
B1
∈ [0.4, 0.9] (0.2, 0) (0.2, 0.2) (1, 1)

0.066 0.131 1.000
C1
B1
∈ [1,∞] (1, 1) (1, 1) (1, 1)

1.000 1.000 1.000

Table 5. NEs for different weight ratios

privacy weight ensures no collaboration. Also, the nar-
row interval in-between corresponds to collaboration
with low privacy protection or no collaboration at all.

7.2 NE Computation via Self-Division

Direct interpolation of ΦMn is only possible when both
datasets are fully available. In a real-world scenario it
must be approximated by other means. Here we demon-
strate a simple approach to fill the gap in the CoL game
caused by the obscurity of ΦMn (Step “Approximation”
in Figure 2). Note, that our intention is not to provide
a sound generic method for approximating the effect of
privacy mechanisms on the accuracy of complex train-
ing algorithms, but rather to show a direction how it
could be done. More research is required in this direc-
tion, which we consider interesting future work.
Self-Division and parameter heuristics. As we ar-
gued in Section 6, we can assume that players’ datasets
are from similar distributions, i.e., a player can imitate
CoL by mimicking the other player’s dataset by split-
ting their own dataset into two and approximate ΦMn
locally.

Based on our experiments which are visible in Ap-
pendix E, we establish a heuristic formula which mini-
mizes the error of this local approximation based on the
size and density of the players’ datasets. The formula
can be seen in Equation (12) where d is the density of
the datasets and Dn is player n’s dataset. We refer to
the true (interpolated) privacy-accuracy trade-off func-
tion as ΦMn and our approximation via Self-Division as
Φ̃Mn .

100 000 ≈ d · |Dn| =
|Dn|2

|Un| · |I|
(12)

Equilibrium computation. Let bDP be the privacy-
preserving mechanism M . We assume that players have
a chunk of the preprocessed NF rating dataset, which
contains only movie ratings. As such, it is expected that
the players value privacy less than accuracy: for the sake

of this example, we set B1 = B2 = 1 and C1 = C2 = 0.1.
We use the benefit and privacy loss functions defined in
Equation (4).

As we showed in Appendix E, Self-Division is the
most punctual when Equation (12) holds. Since the den-
sity of the original NF dataset is d ≈ 0.01, we assign
both players datasets with 10 million ratings: we ran-
domly choose 20% of the users from NF10 and assign
them to either one of the players.

The players separately approximate Φn by self-
division, therefore, Φ̃1 and Φ̃2 are not necessarily the
same. The exact values of these approximations can be
seen in Appendix F together with the true value of Φn.13

We found that the RMSE of Φ̃n is around 0.001 for both
players.

Using Φ̃1 Player 1 approximates the NE as
(p̃∗1, p̃∗2) = (0, 0) while Player 2 reaches the same con-
clusion via Φ̃2; this corresponds to PoP = 0. Approxi-
mated utilities are ũ1 = 0.18 and ũ2 = 0.07 respectively.
The actual utilities in case of (p̃∗1, p̃∗2) are (0.21, 0.07),
which are very close to the approximated values. While
utility approximation is fairly accurate, Φn actually cor-
responds to a slightly different NE: (p∗1, p∗2) = (0.2, 0.2)
with utility (u1, u2) = (0.14, 0.06) and PoP = 0.25.
Note, that while both players obtain a higher payoff
via p̃∗n that is not an actual NE.

8 Related Work
Several works have been devoted to the privacy im-
plications of collaborative information sharing systems.
The fundamental trade-off between privacy and accu-
racy was studied in [10], where the authors proposed
a general model for collaborative information analysis
systems to determine which privacy mechanism opti-
mizes the trade-off between privacy and accuracy. In a
follow-up work [17], authors proposed a privacy mech-
anism which finds the best set of features in terms of
privacy-utility trade-off in a distributed data sharing
architecture. In the rest of this section, we divide the
remaining related literature into two categories; privacy
preservation and game-theoretical modeling.

13 Note, that Φn itself is interpolated from its actual value at
measured points (see Section 7.1).
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8.1 Privacy Preserving Distributed ML

ML is frequently implemented in a distributed fashion
for efficiency reasons. To tackle its emerging privacy as-
pect, privacy preserving distributed ML was introduced,
where the locally trained models are safely aggregated.

Distributed training scenarios unanimously assume
a large number of participants and the involvement of a
third party such as in [4, 11, 13, 14, 16]. In more details,
in [13] mutually untrusted parties train classifiers locally
and aggregate them with the help of an untrusted cura-
tor. In the introduced ε-DP protocol, achieved accuracy
depends on the number of parties and the relative frac-
tions of data owned by the different parties. In [16] these
dependencies were eliminated for a SGD training algo-
rithms. On the other hand, authors used (ε, δ)-DP, a
weaker form of DP.

More recently in [4] an ε-DP classifier was intro-
duced with error bound O((εN)−2) compared to the
result of the non-private training where N is the num-
ber of participants. This approach results in strong pri-
vacy guarantees without performance loss for large N .
Federated Learning introduced in [11] follows another
approach, where the users generate pairwise noise to
mask their data from the aggregator. The bottleneck
of this approach is the communication constraints. Fur-
thermore, the solution is not applicable to two partici-
pants.

All these works assumed the existence of a third-
party aggregator; however, in our work the data holders
themselves train a model together to achieve higher ac-
curacy than what they would have obtained if training
in isolation. Furthermore, all of these works are either
not suitable or not efficient for two participants.

8.2 Distributed ML and Game Theory

In [14] the learning process was modeled as a Stackel-
berg game amongst N + 1 players where a learner de-
clares a privacy level and then the other N data holders
respond by perturbing their data as they desire. The
authors concluded that in equilibrium each data holder
perturbs its data independently of the others, which
leads to high accuracy loss.

The closest to our work are [1, 7, 18]. In [7] a linear
regression scenario was studied where the features were
public but the data were private. With these settings,
the authors proved the existence of a unique non-trivial
NE, and determined its efficiency via the Price of Sta-
bility.

A simpler problem was modeled in [1]: estimating
a population’s average of a single scalar quantity. The
authors studied the interaction between agents and an
analyst, where the agents can either deny access to their
private data or decide the level of precision at which the
analyst gets access. Findings include that it is always
better to let new agents enter the game as it results in
more accurate estimation, and the accuracy can further
be improved if the analyst sets a minimum precision
level.

In both previous scenarios, players would like to
learn a model which represents the whole population.
The accuracy of the estimate is a public good (i.e., non-
exclusive and non-rival [6]). On the contrary, in CoL the
players seek to selfishly improve their own accuracy as
that is in their own self-interest. As such, they measure
the accuracy of the trained model by how well it fits to
their own datasets, which can result in different accu-
racy levels. Furthermore, these works focused on partic-
ular tasks (linear regression and scalar averaging) while
our model is applicable for any training mechanism.

[18] studied the problem of private information leak-
age in a data publishing scenario where datasets are
correlated. As such, the utility function for an agent
consists of the benefit of publishing its own sanitized
dataset and the privacy leakage which depends on the
privacy parameters of all involved agents. Opposed to
this, in our model datasets are independent, while the
benefit is affected by the actions of both players. Thus,
the accuracy of the training depends on the privacy pa-
rameters of both agents, while the privacy loss depends
only on the privacy parameter of a single agent.

9 Conclusion
In this paper, we designed a Collaborative Learning pro-
cess among two players. We defined two player types
(privacy concerned and unconcerned) and modeled the
training process as a two-player game. We proved the
existence of a Nash Equilibrium with a natural assump-
tion about the privacy-accuracy trade-off function (Φ)
in the general case, while provided the exact formula
when one player is privacy unconcerned. We also defined
the Price of Privacy to measure the overall degradation
of accuracy owing to the players’ protecting the privacy
of their own dataset.

On the practical side, we studied a Recommenda-
tion System use case: we applied two different privacy-
preserving mechanisms (suppression and bounded dif-
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ferential privacy) on two real-world datasets (Movie-
Lens and Netflix). We confirmed via experiments that
the assumption which ensures the existence of a Nash
Equilibrium holds. Moreover, as a complementary work
besides the designed game, we interpolated Φ for this
use case, and devised a possible way to approximate it
in real-world scenarios. We found that privacy protec-
tion degrades the accuracy heavily for its user. More-
over, Collaborative Learning is only practical when ei-
ther one player is privacy unconcerned or the players
have similar dataset sizes and both players’ privacy con-
cerns (weights) are relatively low.
Future work. There are multiple opportunities to im-
prove this line of work such as upgrading the CoL pro-
cess by controlling the other party’s updates. Another
possibility is to design a repetitive game where each
player faces a decision after each iteration or make the
game asymmetric by defining the weights B and C in
private. Incorporating the impact of the potential adver-
sarial aspect for competing companies, and thus inves-
tigating a more elaborate utility function is another in-
triguing possibility. Finally, how to determine the weight
parameters for specific scenarios and approximate Φ is
crucial for the real-world usability of the model.

Acknowledgments
We would like to thank the anonymous reviewers for
their insightful comments. This work has been par-
tially funded by the Higher Education Excellence Pro-
gram of the Hungarian Ministry of Human Capacities in
the frame of the Artificial Intelligence research area of
the Budapest University of Technology and Economics
(BME FIKP-MI/SC). Gergely Biczók has been sup-
ported by the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences.

References
[1] Michela Chessa, Jens Grossklags, and Patrick Loiseau. A

game-theoretic study on non-monetary incentives in data
analytics projects with privacy implications. In Computer
Security Foundations Symposium (CSF), 2015 IEEE 28th.
IEEE, 2015.

[2] Cynthia Dwork. Differential privacy. In Proceedings of the
33rd international conference on Automata, Languages and
Programming. ACM, 2006.

[3] Arik Friedman, Shlomo Berkovsky, and Mohamed Ali Kaa-
far. A differential privacy framework for matrix factorization

recommender systems. User Modeling and User-Adapted
Interaction, 2016.

[4] Jihun Hamm, Yingjun Cao, and Mikhail Belkin. Learning
privately from multiparty data. In International Conference
on Machine Learning, 2016.

[5] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, 2012.

[6] John C Harsanyi, Reinhard Selten, et al. A general theory of
equilibrium selection in games. MIT Press Books, 1988.

[7] Stratis Ioannidis and Patrick Loiseau. Linear regression as a
non-cooperative game. In International Conference on Web
and Internet Economics. Springer, 2013.

[8] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix fac-
torization techniques for recommender systems. Computer,
2009.

[9] Elias Koutsoupias and Christos Papadimitriou. Worst-case
equilibria. In Stacs. Springer, 1999.

[10] Fabio Martinelli, Andrea Saracino, and Mina Sheikhalishahi.
Modeling privacy aware information sharing systems: A for-
mal and general approach. In Trustcom/BigDataSE/ISPA,
2016 IEEE, pages 767–774. IEEE, 2016.

[11] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, et al. Communication-efficient learning of
deep networks from decentralized data. arXiv preprint
arXiv:1602.05629, 2016.

[12] Dov Monderer and Lloyd S Shapley. Potential games.
Games and economic behavior, 1996.

[13] Manas Pathak, Shantanu Rane, and Bhiksha Raj. Multiparty
differential privacy via aggregation of locally trained classi-
fiers. In Advances in Neural Information Processing Systems,
2010.

[14] Jeffrey Pawlick and Quanyan Zhu. A stackelberg game
perspective on the conflict between machine learning and
data obfuscation. In Information Forensics and Security
(WIFS), 2016 IEEE International Workshop on, 2016.

[15] Balazs Pejo. Matrix factorisation in matlab via stochastic
gradient descent. https://github.com/pidzso/ML.

[16] Arun Rajkumar and Shivani Agarwal. A differentially pri-
vate stochastic gradient descent algorithm for multiparty
classification. In Artificial Intelligence and Statistics, 2012.

[17] Mina Sheikhalishahi and Fabio Martinelli. Privacy-utility
feature selection as a privacy mechanism in collaborative
data classification. In Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), 2017 IEEE 26th
International Conference on, pages 244–249. IEEE, 2017.

[18] Xiaotong Wu, Taotao Wu, Maqbool Khan, Qiang Ni, and
Wanchun Dou. Game theory based correlated privacy pre-
serving analysis in big data. IEEE Transactions on Big Data,
2017.

https://github.com/pidzso/ML


63

Appendices
A List of Abbreviations

Abr. Meaning

ML Machine Learning
CoL Collaborative Learning

RecSys Recommender System
MF Matrix Factorization
SGD Stochastic Gradient Descent
DP Differential Privacy
Sup Suppression
CaaS Collaboration-as-a-Service
PoP Price of Privacy
NE Nash Equilibrium
BR Best Response

Table 6. Frequently used abbreviations

B Proofs for Section 4
Proof Theorem 1. Without loss of generality, assume
Player 2 sets p2 = 1. The highest accuracy Player 1
can achieve corresponds to p1 = 0 due to Definition 3
and 4. From Definition 4 we can also deduce that if
one player sets its privacy parameter to 1 then neither
of the players can obtain higher accuracy by training
together than by training alone. As such, the highest
accuracy that Player 1 can reach by training together
when Player 2 sets its privacy parameter to maximum
is less than what it would achieve by training alone:
Φ1(0, 1) ≥ θ1. Note that Φ and θ measure the error,
i.e., the higher these values are, the less accurate the
corresponding model is.

As such, p1 = 0 does not correspond to positive ben-
efit but only results in privacy loss. Hence, the highest
payoff Player 1 can reach is 0 corresponding to maximal
privacy protection p1 = 1. In other words, if Player 2
sets p2 = 1 the BR of Player 1 is also to set p1 = 1. Since
this is also true the other way around, (p∗1, p∗2) = (1, 1) is
indeed a NE which is equivalent to the case of training
alone.

Proof Lemma 1. If αn = 0, the utility function in Equa-
tion (1) is reduced to un = Bn · b(θn,Φn) since Cn = 0.
This is strictly positive by definition. Also by definition
b is monotone decreasing in pn. As a result, the utility is

highest when no privacy protection is in place. As such,
there indeed exists αn such that p̂n = 0 is the BR for
player n.

Proof Lemma 2. Without loss of generality we assume
n = 1. We show that maxp1 u1(p1, p2) = u1(1, p2) = 0 if
C1 →∞ which is equivalent to the statement in Lemma
2:

lim
C1→∞

u1(p1, p2) =

lim
C1→∞

B1 · b(θ1,Φ1(p1, p2))− c(p1) · C1 ≤

lim
C1→∞

B1 · b(θ1,Φ1(0, 0))− c(p1) · C1 =

lim
C1→∞

β0 − c(p1) · C1 =

{
β0 if c(p1) = 0
−∞ if c(p1) > 0

(13)

As a result, u1(p1, p2) ≤ β0 for some β0 ≥ 0 and it
can only be non-negative if c(p1) = 0 which corresponds
to p1 = 1. The utility is maximal in this case, thus,
maxp1 u(p1, p2) = u(1, p2) which is indeed 0.

Proof Theorem 2. In the proof of Lemma 1 we set Cn =
0 in which case player n’s BR was indeed p̂n = 0. For
more details read the proof of Lemma 1.

Proof Theorem 3. The utility function u(p1) is maximal
in the interval [0, 1] either on the border or at a point
where its derivative is zero. The derivative of Equation
(1) is

u′(p1) = B1b
′(p1)Φ′(p1)− C1c

′(p1) (14)

which is zero at p̃1 if

u′(p̃1) = 0⇒ b′(p̃1)Φ′(p̃1)
c′(p̃1) = C1

B1
(15)

Of course the extreme point p̃1 must be in [0, 1] and
u(p̃1) > 0. Furthermore, this extreme point is a maxi-
mum only if the second derivative is negative.

On the other hand, if Equation (14) is never zero in
[0, 1] or the second derivative is positive at that point,
the maximum of u(p1) is on the edge of the interval
[0, 1]. u(1) = 0 since both the benefit and the privacy
loss functions are zero at p1 = 1. As a result, p1 = 0 is
the maximum point if u(0) > 0. This is indeed the case
when the maximal benefit b(0) is higher than the ratio
of the privacy and accuracy weight C1

B1
as it is shown

below:

0 < u(0) = B1b(0)− C1 ⇒ b(0) > C1
B1
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Proof Theorem 4. We divide un by Bn: ũn = un
Bn

. This
new function inherits the properties of un (such as the
sign, monotonicity, maximum/minimum points, etc.).
As a result, a similar game with utility function ũn has
the same equilibria. Furthermore, this similar game is a
potential game if the mixed second order partial deriva-
tive of the utility functions are equal. Due to the con-
stitution of ũn, this condition is equivalent to

∂p1∂p2b(θ1,Φ1(p1, p2)) = ∂p1∂p2b(θ2,Φ2(p1, p2))

This formula can be transformed into the one in the
theorem by applying the chain rule of derivation for
higher dimensions.

Proof Corollary 1. The left side of the equation in The-
orem 4 is zero since we assumed ∂p1Φ1 = ∂p2Φ2. On the
right side ∂p1∂p2Φ2 = ∂2

p1Φ1 and ∂p2∂p1Φ1 = ∂2
p2Φ2 for

the same reason. Theorem 4 holds since both sides of
the equation are 0.

C Proof of Theorem 5
Proof Theorem 5. Since the user sets of the players are
disjoint while the item set is shared, the only thing the
players need to share is the item feature matrix Q. The
effect of a single update is shown in Equation (8). We
assume that the data points are independent, hence, the
sensitivity S̃ of one update is

S̃ = max
rui

|q′ki − qki| = max
rui

[γ(euipuk − λqki)]

≤ γ(∆rpmax + λqmax)

where
– k ∈ [1, κ]
– ∆r is the maximal distance of two ratings: ∆r =

max rui −min rui
– pmax and qmax are the maximal absolute values of

the user and item features, respectively.

S̃ is the sensitivity of updating a single feature, thus, to
capture the full effect of the update on vector qi, we need
to multiply S̃ with qi’s dimension κ. Moreover, we have
only considered the effect of a rating on Q within one
iteration. However, this update occurs ι times. Thus,
to achieve ε-DP, we need to apply κ·ι·S̃

ε level of Lapla-
cian noise on the ratings before the training due to the
Composition Theorem. Therefore, the overall sensitivity
is indeed bounded by the formula in the theorem.

D Preprocessing
1 Remove items/users with less than 10 ratings.
2 For each remaining item, calculate the average rat-

ing and discount it from the corresponding rui’s:

r′ui := rui − IAvg(i)

3 For each remaining user, calculate the average rat-
ing and discount it from the corresponding r′ui’s:

r′′ui := r′ui − UAvg(u) = rui − IAvg(i)− UAvg(u)

4 The discounted ratings as well as the averages are
clamped:
– IAvg(i) ∈ [min(rui),max(rui)] = [1, 5]
– UAvg(u) ∈ [−2, 2]
– r′′ui ∈ [−2, 2]

E Self-Division: Experiment
1 We create datasets with approximately the same

density but different sizes:
– 1M: We modify the size of the dataset

while keeping its density; we randomly re-
move users such that the remaining dataset has
1000k/800k/600k ratings (i.e., the players have
500k-500k/400k-400k and 300k-300k ratings).

– NF10D: We create a new dataset originated
from NF10 by increasing its density to the level
of 1M via filtering out the less rated items14. Af-
terwards we modify the size of this dataset while
keeping its newly acquired density: we randomly
remove users such that the remaining dataset
has 8M/6M/4M/2M ratings.

2 We execute CoL with pi ∈ {0, 0.2, 0.4, 0.6} for
i = {1, 2} and for M ∈ {Sup, bDP} using
the newly created datasets (i.e., the players have
300k/400k/. . . /3M/4M ratings) and we obtain the
normalized accuracy improvement for both players:
Φ′ = θ−Φ

θ−o , where o is the error corresponding to the
initial model.

3 We execute CoL with the same privacy parameters
and methods using only one player’s data: the play-
ers imitate CoL by halving their own datasets (i.e.,
dataset sizes are 150k-150k/. . . /2m-2m). We obtain
Φ̃′ = θ̃n−Φ̃n

θ̃n−õn

where ·̃n corresponds to the errors of
the CoL model produced solely by Player n’s data.

14 We remove items with less than 250 ratings
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4 We calculate the RMSE between the true (inter-
polated) normalized accuracy Φ′ and the approxi-
mated normalized accuracy via Self-Division Φ̃′ for
both players and privacy methods.

Fig. 9. We show the error (RMSE) of Self-Division (i.e., Φ′ − Φ̃′)
for both player and privacy methods.

We found, that the RMSE was minimal for both pri-
vacy mechanisms and players when the players have
|Dn| = 2 000 000 ratings. This means that for datasets
with density d ≈ 0.05, Φ̃′n is the closest to Φ′n when the
100 000 ≈ d · |Dn| heuristic holds.

F Playerwise Approximations

Φ̃1 p2 = 0.0 p2 = 0.2 p2 = 0.4 p2 = 0.6

p1 = 0.0 0.28 0.26 0.24 −0.05
p1 = 0.2 0.25 0.16 0.15 −0.05
p1 = 0.4 −0.07 −0.10 −0.19 −0.37
p1 = 0.6 −1.01 −1.16 −1.37 −1.72

Φ̃2 p1 = 0.0 p1 = 0.2 p1 = 0.4 p1 = 0.6

p2 = 0.0 0.17 0.16 0.15 −0.05
p2 = 0.2 0.14 0.12 0.12 −0.07
p2 = 0.4 −0.14 −0.17 −0.28 −0.60
p2 = 0.6 −1.19 −1.21 −1.28 −1.83

Φ1 p2 = 0.0 p2 = 0.2 p2 = 0.4 p2 = 0.6

p1 = 0.0 0.17 0.14 0.11 −0.03
p1 = 0.2 0.15 0.12 0.08 −0.26
p1 = 0.4 −0.13 −0.19 −0.33 −0.69
p1 = 0.6 −1.16 −1.32 −1.49 −2.08

Φ2 p1 = 0.0 p1 = 0.2 p1 = 0.4 p1 = 0.6

p2 = 0.0 0.31 0.23 0.17 −0.05
p2 = 0.2 0.31 0.22 0.11 −0.18
p2 = 0.4 −0.14 −0.16 −0.22 −0.52
p2 = 0.6 −1.13 −1.25 −1.30 −1.85

Table 7. Approximated privacy-accuracy tradeoff function for
both players (Φ̃1, Φ̃2) and its true value (Φ1 and Φ2).
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